
A Theoretical Analysis

A.1 Proof of Theorem 1

Proof. Following GCSL [12], we denote a real trajectory as ⌧ = {s0, a0, . . . , sT , aT }. The ex-
pected goal is g, and the real dynamics is p(st+1|st, at). We assume the initial state s0 is uni-
formly distributed in the state space. To simplify the analysis, the relabeling goal is defined as
the achieved goal of the last state G(⌧) , �(sT), where � is the state-to-goal mapping and G
is the mapping from trajectories to relabeling goals. This simplification is also adopted in [12].
Then we denote a virtual trajectory generated by the trained dynamics model pm(s0

t+1|s0t, a0t) as
⌧m = {s00, a00, . . . , s0n, a0n}, s00 = s0, and suppose T � n. The model-based relabeling goal is defined
as G(⌧m) , �(s0

n
). We utilize a sparse reward function: r(st, at, g) = 1[�(st) = g], therefore the

reward at each timestep is bounded rt 2 [0, 1]. Other variables are defined in Section 3.

In our setting, the original multi-goal RL objective is:

J(⇡) = Eg⇠p(g),at⇠⇡,st+1⇠p(·|st,at)

⇥ TX

t=0

�
t
r(st, at, g)

⇤
.

Similarly, the expected return of the virtual trajectory ⌧m is:

Jm(⇡) = Eg⇠p(g),at⇠⇡,st+1⇠pm(·|st,at)[
nX

t=0

�
t
r(st, at, g)].

Following MBPO [15], we first bound model error using ✏m. As our model-based approach collects
data with current policy ⇡, the policy shift ✏⇡ = 0. Next, we apply Lemma 2 to bound J(⇡) with
Jm(⇡) and absorb constants into C1 as:

J(⇡) � Jm(⇡) + C1✏m,

where C1 = � 2�rmax

(1��)2 = � 2�
(1��)2 is derived from Lemma 2.

In GCSL, agents optimize the goal-reaching objective, i.e., maximizing the probability of reaching g

at the last step:
Ĵ(⇡) = Eg⇠p(g),at⇠⇡,st+1⇠p(·|st,at)[1|G(⌧) = g].

With Lemma 3, we can also obtain the goal-reaching return bound for model-based return Jm(⇡):

Jm(⇡) � �
n
Eg⇠p(g),at⇠⇡,st+1⇠pm(·|st,at)

⇥
1[G(⌧m) = g]

⇤
,

and denote the inequality as Jm(⇡) � �
n
Ĵm(⇡). For Ĵm(⇡), we follow Theorem 4.1 in [12] and

have:

Ĵm(⇡) � Eat⇠⇡,st+1⇠pm(·|st,at)

⇥ nX

t=0

log⇡(at|st,G(⌧m))
⇤
+ C2

As we collect data using the current policy ⇡, we don’t have the policy variation term. The right side
of this inequality means using relabeled data for maximum likelihood estimation, therefore the policy
⇡ is required to be stochastic and select actions with non-zero probability.

Combining the intermediate results, we can conclude that:

J(⇡) � Jm(⇡) + C1✏m � �
n
Ĵm(⇡) + C1✏m

� �
n
Eat⇠⇡,st+1⇠pm(·|st,at)

⇥ nX

t=0

log⇡(at|st,G(⌧m))
⇤
+ C1✏m + C2

Then, we take the Diagonal Gaussian policy with mean vector ⇡(st, g) of dimension |a| and non-zero
positive constant variance �

2:

P (at|st, g) =
1

(�
p
2Pi)|a|

e

�kat�⇡(st,g)k22
2�2 .

12

Note that we use Pi to represent ’pi’ in the Gaussian distribution and to distinguish from the policy
⇡. Pi is a constant and we will absorb it in C2 in the following derivation. Denoting the model-based
relabeled data distribution as Bm and relabeled goal as g0, we have:

J(⇡) � � �
n

2�2
E(at,st,g

0)nt=0⇠Bm

⇥ nX

t=0

kat � ⇡(st, g
0)k22

⇤
+ C1✏m + C2

= �n�
n

2�2
E(at,st,g

0)⇠Bm
kat � ⇡(st, g

0)k22 + C1✏m + C2

This completes the proof.

A.2 Useful Lemmas

Lemma 1 (Finite Horizon Return Bound). Suppose the model error is bounded as

maxtEs⇠p
t
1(s)

DTV (p1(s0|s, a)kp2(s0|s, a))  ✏m, and maxsDTV (⇡1(a|s)k⇡2(a|s))  ✏⇡. And

We denote J
(T)(⇡) as expected return of finite horizon T under policy ⇡, and rmax > 0 is the

maximum reward. Then the difference of finite horizon returns are bounded as:

|J (T)(⇡1)� J
(T)(⇡2)|  2rmax

TX

t=0

�
t[t(✏m + ✏⇡) + ✏⇡]

Proof. This lemma can be derived by Lemma B.3 in [15], we also provide a sketch proof.

|J (T)(⇡1)� J
(T)(⇡2)| = |

X

s,a

X

t

�
t(pt1(s, a)� p

t

2(s, a))r(s, a)|

 rmax

X

t

X

s,a

�
t|pt1(s, a)� p

t

2(s, a)|

= 2rmax

X

t

�
t
DTV (p

t

1(s, a)kpt2(s, a))

 2rmax

X

t

�
t[DTV (p

t

1(s)kpt2(s)) +maxsDTV (⇡1(a|s)k⇡2(a|s))]

 2rmax

TX

t=0

�
t[t(✏m + ✏⇡) + ✏⇡]

where DTV (pt1(s)kpt2(s))  t(✏m + ✏⇡) is also prove in Lemma B.3 in [15]. The branched returns
bound (Lemma B.3 in [15]) is a special case of our Lemma 1 when horizon T ! 1.

Lemma 2. Let J
(1)(⇡) denote J(⇡) with infinite horizon, where the superscript refers to the horizon.

J(⇡) = J
(T)(⇡), Jm(⇡) = J

(n)
m (⇡), T � n. Given model error ✏m and policy shift ✏⇡ defined in

[15], non-negative reward function r(st, at) � 0, and the maximum reward rmax, J(⇡) can be

bounded as:

J(⇡) � Jm(⇡)� 2rmax

(1� �)2
(�✏m + 2✏⇡),

Proof. Let ⇡D denote the data collecting policy, we follow the proof of Theorem A.1 in [15] and
have:

J
(T)(⇡)� J

(T)
m

(⇡) = J
(T)(⇡)� J

(T)(⇡D)| {z }
L1

+ J
(T)(⇡D)� J

(T)
m

(⇡)| {z }
L2

For L1 and L2, we apply Lemma 1 to derive the following bound (note that there should be no model
error in L1 term):

J
(T)(⇡)� J

(T)
m

(⇡) � �2rmax

TX

t=0

�
t
⇥
t✏⇡ + ✏⇡

⇤

| {z }
L1

�2rmax

TX

t=0

�
t
⇥
t(✏m + ✏⇡) + ✏⇡

⇤

| {z }
L2

= �2rmax

TX

t=0

�
t
⇥
t(✏m + 2✏⇡) + 2✏⇡

⇤
,

13

To verify the above inequality, let T ! 1 and leverage the properties
P1

t=0 �
t
t  �

(1��)2 and
P1

t=0 �
t  1

1��
, then we can get MBPO performance bound (Theorem A.1 in [15]). Utilizing the

assumptions rt 2 [0, 1], T � n and properties ✏m � 0, ✏⇡ � 0, J (T)
m � J

(n)
m , we can then prove the

lower bound

J
(T)(⇡) � J

(T)
m

(⇡)� 2rmax

TX

t=0

�
t
⇥
t(✏m + 2✏⇡) + 2✏⇡

⇤

� J
(T)
m

(⇡)� 2rmax

1X

t=0

�
t
⇥
t(✏m + 2✏⇡) + 2✏⇡

⇤

� J
(n)
m

(⇡)� 2rmax[�✏m + 2�✏⇡ + 2✏⇡(1� �)]

(1� �)2

� J
(n)
m

(⇡)� 2rmax

(1� �)2
(�✏m + 2✏⇡).

Alternating J
(n)
m (⇡), J (T)(⇡) with Jm(⇡), J(⇡) completes the proof.

Lemma 3 (Goal-reaching Return Bound). Given trajectories ⌧ = {s0, a0, . . . , sT , aT } and reward

function r(st, at, g) = 1[�(st) = g], the goal-reaching objective �
T
Ĵ(⇡) is a lower bound of the

original multi-goal objective J(⇡).

Proof. Leveraging the definition of J(⇡), Ĵ(⇡), and the reward function r(st, at, g) = 1[�(st) = g],
we have:

J(⇡) = Eg⇠p(g),at⇠⇡,st+1⇠p(·|st,at)

⇥ TX

t=0

�
t
r(st, at, g)

⇤

� Eg⇠p(g),at⇠⇡,st+1⇠p(·|st,at)

⇥
�
T
r(sT , aT , g)

⇤

= �
T
Eg⇠p(g),at⇠⇡,st+1⇠p(·|st,at)

⇥
1[G(⌧) = g]

⇤

= �
T
Ĵ(⇡).

A.3 Theoretical Analysis of Virtual Achieved Goals

We provide formal analysis on the expected distance between virtual achieved goals and original
desired goals. First, we define the expected distance (ED⇡(g)) as the sum of the product of distance
and the discounted visitation frequencies:

ED⇡(g) =
X

s

⇢⇡(s)k�(s)� gk22

where g refer to original desired goals, � is a state-to-goal mapping, and ⇢⇡(s) = P (s0 = s) +
�P (s1 = s|⇡) + �

2
P (s2 = s|⇡) + ..., s0 ⇠ p(s0) and actions are sampled according to ⇡. The

expected distance ED⇡(g) measure the proximity of trajectories generated by the policy ⇡ and
the desired goal g. The following theory demonstrates the expected distance in the model-based
relabeling can be minimized by optimizing the policy.
Theorem 2 (Expected Distance Bound, Infinite Horizon). Suppose the state space is finite, the policy

⇡ is optimized to maximize J(⇡), the reward function is sparse r(s, a, g) = 1[k�(s) � gk  ✏], ✏
is a small positive threshold, the goal space is bounded, i.e., kg � g

0k22  Cg, 8g, g0 2 G, Cg � 0.

Denote the environmental dynamics as p(s0|s, a), the model error ✏m, the learned dynamics model

as pm(s0|s, a), and the discounted visitation frequencies with the dynamics model as ⇢⇡,m(s). Then,

optimizing J(⇡) is equivalent to minimizing the expected distance between virtual achieved goals
and original desired goals, i.e., ED⇡,m(g) =

P
s
⇢⇡,m(s)k�(s)� gk22. Specifically, the following

inequality holds:

ED⇡,m(g)  �Cg · J(⇡) +
Cg + ✏

1� �
+

2�✏mCg

(1� �)2

14

Proof. We first bound the expected distance as:

ED⇡(g) =
X

s

⇢⇡(s)k�(s)� gk22 · 1[k�(s)� gk22  ✏] +
X

s

⇢⇡(s)k�(s)� gk22 · 1[k�(s)� gk22 > ✏]

 ✏

1� �
+
X

s

⇢⇡(s)k�(s)� gk22 · 1[k�(s)� gk22 > ✏]

 ✏

1� �
+ Cg

X

s

⇢⇡(s) · 1[k�(s)� gk22 > ✏]

(8)
The above derivation leverages the property that:

X

s

⇢⇡(s) =
X

s

P (s0 = s) + �

X

s

P (s1 = s) + �
2
X

s

P (s2 = s) + · · · = 1

1� �

As in our setting, rewards only depend on states, thus the RL objective can be written as:

J(⇡) = Es0⇠p(s0),at⇠⇡(at|st),st+1⇠p(st+1|st,at)

⇥ 1X

t=0

�
t
r(st)

⇤

=
1X

t=0

X

s

P (st = s|⇡) · �t
r(s) =

X

s

1X

t=0

�
t
P (st = s|⇡) · r(s)

=
X

s

⇢⇡(s) · 1[k�(s)� gk22  ✏]

=
X

s

⇢⇡(s) ·
⇥
1� 1[k�(s)� gk22 > ✏]

⇤

=
1

1� �
�
X

s

⇢⇡(s) · 1[k�(s)� gk22 > ✏]

Taking the upper bound of ED⇡(g) in Eq 8 into J(⇡), we have:

J(⇡)  1

1� �
� 1

Cg

[ED⇡(g)�
✏

1� �
]

and

ED⇡(g)  �Cg · J(⇡) +
Cg + ✏

1� �
.

The virtual achieved goals are generated with the learned dynamics model, therefore the following
inequality also holds for the learned dynamics model:

ED⇡,m(g)  �Cg · Jm(⇡) +
Cg + ✏

1� �
.

From the proof of Lemma 2, J (1)
m (⇡) can be bounded as: Jm(⇡) � J(⇡)� 2�✏m

(1��)2 , where ✏m is the
model error defined before. Finally, we can conclude that:

ED⇡,m(g)  �Cg · Jm(⇡) +
Cg + ✏

1� �

 �Cg · J(⇡) +
Cg + ✏

1� �
+

2�✏mCg

(1� �)2
.

This completes the proof.

Theorem 3 (Expected Distance Bound, Finite Horizon). Assume the finite horizon for model-based

rollout equals the horizon in real environment, i.e., n = T . Following Theorem 2 and [Ross et al.

2011], the expected distance bound for finite horizon is:

ED⇡,m(g)  �Cg · J(⇡) + (Cg + ✏)T + 2�✏mCgT
2

15

Figure 6: Comparison results with model-based baselines, including PlanGAN.

Figure 7: Comparison results with MBPO+HER and MVE+HER in FetchReach-v1, SawyerReachXYZEnv-v1,
and Reacher-v2.

B Extra Experimental Results

In this section, we provide additional experimental results to further understand MHER and its
effectiveness. We report the average success rate and standard deviation across 10 random seeds for
all the experiments.

B.1 Comparison Results with Model-based Baselines

In our paper, we have compared with model-based RL baseines such as MVE [10] and MBPO [15].
Furthermore, we include PlanGAN as our baseline, which is not a RL method but a planning method
requiring huge amount of computation. The procedure of selection one single action of planner in
PlanGAN is: 1) first random sampling 20 initial actions, 2) further sampling 50 trajectories with
model and GANs for each initial action, 3) computing average return of each initial action, and
4) selecting the best action in the initial set. Even if we ignore the additional computation to train
GANs, PlanGAN needs at least 105 (20 initial action⇥ 50 trajectories ⇥50 steps ⇥2 policy and
model propagation) times forward propagations than MHER to select a single action. As PlanGAN
is highly dependent on the learned model, we train the model and GANs in PlanGAN with a batch
size of 128 and each epoch train 25 times. In MHER, we only update the model 2 times each epoch
with a batch size of 64, therefore MHER is more computationally friendly compared to PlanGAN.
We report the median test success rate and interquartile across 10 random seeds in Figure 6, which
apparently shows MHER is more sample efficient than PlanGAN. Moreover, MHER is much more
stable compared with PlanGAN and other model-based baselines considering the deviation in the
results.

Moreover, we provide comparison results with MBPO+HER and MVE+HER in Figure 7. In the two
methods, we perform hindsight relabeling before model-based interaction, and then the model-based
interaction is also driven by hindsight goals. Through combining with HER, MBPO and MVE work
better in sparse reward tasks. However, their performance still cannot surpasses MHER’s.

B.2 Study of the Model Layers

In this section, we study the impact of model layers in MHER by varying the number of layers (each
of which is of 256 neurons). The empirical results in Figure 8 show the number of layers does not
affect the performance much and even one layer can perform comparably to 4 layers. The dynamics
model with 4 layers achieves stable and good performance in different tasks.

16

Figure 8: Varying the number of model layers in FetchReach-v1, SawyerReachXYZEnv-v1, and Reacher-v2.

B.3 Parameter Study

Additional parameter studies of ↵ and model-based interaction steps are shown in Figure 9. In the
results, we can conclude that the performance of MHER improves when parameter ↵ increases from
0 to 3 in the two environments, but decrease slightly when ↵ is beyond 3 in Reacher-v2. Regarding
the model-based interaction steps, we can observe a performance increase as steps increase from 0 to
5, and a performance decrease as steps are more than 5.

(a) (b) (c) (d)

Figure 9: (a)(b) Additional parameter studies of ↵ in SawyerReachXYZEnv-v1 and Reacher-v2. (c)(d) Additional
parameter studies of model-based interaction steps in SawyerReachXYZEnv-v1 and Reacher-v2.

Figure 10: Additional ablation studies in benchmark environments.

B.4 Ablations

We also provide more ablation study results in Figure 10. The results are consistent with the
conclusions in our paper: (1) MBR is more important than SL, (2) we can outperform HER using
MBR alone, and (3) SL is not robust and fails to learn in FetchReach-v1 and Reacher-v2.

B.5 Additional Comparisons

We conducted additional experiments in Figure 11 to study how does MHER compare to random

relabeling and HER with goal noise. For random relabeling, we relabel the transitions with random
goals sampled from the goal space. Regarding goal noise, Gaussian noise with zero mean and constant
(0.01) standard deviation is applied to hindsight goals of HER. We can observe from the results that
goal noise provides slight improvement over HER in FetchReach-v1 and SawyerReachXYZEnv-v1,

17

but it worsens the result in Reacher-v2. In addition, it seems that random relabeling does not work,
which might be because it hardly helps with the sparse reward problem.

Figure 11: Comparison results between MHER, random relabeling and goal noise.

C Details about Virtual Achieved Goals

Previous work, HER [1], assumes there exists a state-to-goal mapping function: � : S ! G, i.e.,
given a state s, we can find a goal g = �(s) 2 G achieved by this state. In the case where each goal
corresponds to a state we want to achieve (e.g., 2D point reaching task), goal space equals state space
G = S and the mapping � is exactly an identity transformation.

Model-based relabeling is a novel goal relabeling method different from previous relabeling methods
and enjoys many advantages by leveraging the dynamics model. MHER follows the same setting
as HER. The difference is that MHER leverages the virtual states generated from model-based
interaction rather than past collected states. As shown in Figure 12, the blue trajectory is collected by
past policy, while the green trajectory is generated by interaction of current policy and the learned
dynamics model.

Given a transition in a past collected trajectory (st, at, rt, st+1, g), model-based relabeling (MBR)
aims to find a virtual achieved goal to replace the original goal g and reward rt. MBR inter-
acts with the dynamics model m for n steps starting from st+1, and collects a virtual trajectory
{s0

t+i
, a

0
t+i

, s
0
t+i+1}ni=1, where s0

t+1 = st+1, a
0
t+i

= ⇡(s0
t+i

, g), s0
t+i+1 = s

0
t+i

+m(s0
t+i

, a
0
t+i

), i 2
[1, n]. Note that we start interaction from st+1, which is reasonable because starting from st means
at, st+1 also need to be replaced. After model-based interaction, MBR samples from virtual achieved
goals g0 = �(st+i), i 2 [1, n] and alternates the original transition as (st, at, r0t, st+1, g

0), where r
0
t

is the recomputed reward r
0
t
= r(st, at, g0) according to Eq. 1. The model-based relabeled data can

be further used for off-policy reinforcement learning and goal-conditioned supervised learning.

Virtual Trajectory

Real Trajectory

model-based relabeling

model model

hindsight relabeling

Figure 12: Simplified schematic of model-based relabeling.

18

D Implementation Details

D.1 Implementation of MHER

In this section, we will provide implementation details of MHER. The actor and critic networks of
MHER are both 3-layer fully connected networks with 256 units each and ReLU non-linearities.
The actor and critic are updated with Adam optimizer, learning rate 1⇥ 10�3. Target nets of actor
and critic with the same network structure are adopted for stabilizing training, the Polyak averaging
coefficient of the target net is set as 0.9. The probability of random action is 0.3, and the scale of
Gaussian noisy for exploration is 0.2. The model-based relabeling rate is 80%, and we keep 20%
samples without relabeling. MHER uses one rollout worker, and the buffer size is 106. At the end of
each episode (including 100 environment steps), we train the networks with 5 batches of size 64. We
only use one single CPU and one GPU to train MHER.

Regarding the dynamics model in MHER, we use a fully connected network with 4 hidden layers and
256 neurons each layer. The optimizer is Adam and the learning rate is 0.001. The dynamics model
is trained to minimize the loss Lmodel in Eq. 4. In the warmup period, we train the dynamics model
for 100 updates with a batch size of 512. When training with MHER, every batch we update m with
a batch size of 64 for 2 times.

D.2 Implementation of GCSL

We implement GCSL with a Diagonal Gaussian policy with a constant standard deviation of 0.2.
GCSL only keeps a single policy network (3 layers, 256 neurons each) as the actor in MHER, without
target network. The policy network is trained to minimize the loss

LGCSL = E(st,at,g
0)⇠Bh

⇥
kat � ⇡(st, g

0)k22
⇤

where g
0 is relabeled using future achieved goals like HER [1]. The optimizer is Adam and the

learning rate is also 1 · 10�3. GCSL shares other parameters with MHER for fair comparison, such
as replay buffer size and batch size.

D.3 Implementation of MVE and MBPO

Model-based value expansion (MVE) [10] rollouts with a learned dynamics model and introduces
multi-step value estimation based on the expanded transitions. Denote the replay buffer as B, a real
transition (st, at, rt, st+1, g), generated transitions {ŝt+i, ât+i, r̂t+i}, i 2 [1, H], ŝt+1 = st+1, MVE
updates the Q-function to minimize the following loss:

Lcritic = E(st,at,g,rt,st+1)⇠B

⇥
(
H�1X

i=0

�
i
r̂t+i + �

H
Q(ŝt+H ,⇡(ŝt+H , g), g)�Q(st, at, g))

2
⇤
, (9)

where r̂t = rt, r̂t+i = r(ŝt+i,⇡(ŝt+i, g), g), r is the reward function in Eq. 1. We also use DDPG to
learn the policy, and the hyper-parameters of DDPG and dynamics model are the same as MHER. We
provide empirical results with varying H in Figure 6.

Model-based policy optimization (MBPO) [15] stores short model-generated rollouts branched from
real data to the model dataset Dmodel, and optimizes policy using the model dataset Dmodel. For fair
comparison, we also utilize DDPG for policy optimization and the size of Dmodel is 1 · 106. Hyper-
parameters of DDPG and dynamics model are the same as MHER. The results with model-based
horizon {3, 5, 7} are reported in Figure 6.

E Comparison with Concurrent Work

We noticed a concurrent work, MapGo [35], which shares similar idea of model-based relabeling
(MBR) with us. However, MapGo doesn’t exploit the MBR goals deeper. Instead, we further leverage
MBR goals for supervised policy learning with theoretical guarantees. Moreover, MapGo utilizes a
large number of virtual rollout for policy improvement, and thus introduces model error in both states
and actions. In Section 4.2, we have emphasized that MHER avoids training with fully virtual states,
and only the goals in the training data are generated by the model. Therefore, our method can be

19

more robust to model errors. Despite the differences, MapGo found the model cannot fit exactly for
hard manipulation tasks, which we have also observed in our experiments and we believe it is worth
further research.

F Task Descriptions

All of the five tasks have continuous state space, action space and goal space. In this section, we will
introduce these tasks in detail.

F.1 Point2DLargeEnv-v1

Target
Point

Point2DLarge

Point2DLargeEnv-v1 is taken from the open-source package multi-world and it
requires the blue point to reach the green circle. The state space [�5, 5]⇥ [�5, 5]
has two dimensions representing Cartesian coordinates of the blue point, and the
action space [�1, 1] ⇥ [�1, 1] also has two dimensions meaning the horizontal
and vertical displacement. The goal space is the same as state space, which means
�(s) = s. The bule point and the green circle are randomly initialized in the state
space. The allowable error ✏ of reaching goal is the radius of the target circle and is set as 1. The
reward function is defined as:

r(sXY , a, gXY) = �1(ksXY � gXY k22 > ✏).

F.2 Point2D-FourRoom-v1

Target
Point
Wall

PointFourRoom

The Point2D-FourRoom-v1 environment is also built on multi-world. The state
space, the action space, the goal space, and the reward function are same as
Point2DLarge-v1. The difference is that there are four rooms separated by gray
walls.

F.3 FetchReach-v1

FetchReach

The FetchReach-v1 environment is taken from OpenAI Gym [4]. In this envi-
ronment, a 7-DoF robotic arm is expected to touch a desired location with its
two-finger gripper. The state space is 10-dimensional, including the gripper’s
position and linear velocities. The action space is 4-dimensional, which represents
the gripper’s movements and its status about the opening and closing. Moreover,
the goals are 3-dimensional vectors representing the target place of the gripper.
The state-to-goal mapping is �(s) = s[0 : 3], because the first 3 dimensions of
state describe the position of the gripper. The allowable error in FetchReach is
✏ = 0.05. The reward function is defined as:

r(sXY Z , a, gXY Z) = �1(ksXY Z � gXY Zk22 > ✏).

F.4 SawyerReachXYZEnv-v1

SawyerReach

The SawyerReachXYZEnv environment is taken from multi-world. The Sawyer
robot aims to reach a target position with its end-effector. The observation space
is 3-dimensional, representing the 3D Cartesian position of the end-effector. Cor-
respondingly, the goal space is 3-dimensional and describes the expected position,
and the state-to-goal mapping is �(s) = s. Besides, the action space has 3 dimen-
sions describing the next position of the end-effector. The reward function is the
same as FetchReach except the allowable error ✏ = 0.06.

F.5 Reacher-v2

Reacher

The Reacher environment is revised from OpenAI Gym [4]. States are 11-
dimensional, which indicates the angles, the positions, and the velocity of the
joints. Actions are 2-dimensional and control the movement of two joints. The

20

goals are 2-dimension representing the expected XY position. And the state-to-
goal mapping is �(s) = s[�3 : �1], where the last three dimensions are the XYZ
position of the end-effect. The reward function is defined as:

r(sXY , a, gXY) = �1(ksXY � gXY k22 > ✏),

where the allowable error ✏ is set as 0.02.

21

	Introduction
	Related Work
	Preliminaries
	Multi-goal Reinforcement Learning
	Hindsight Experience Replay

	Methodology
	Dynamics Models
	Model-based Relabeling
	Learning Policy with Model-based Relabeled Data
	Algorithm

	Experiments
	Experimental Settings
	Benchmark Results
	Results of Model-based RL baselines
	Relationship with Curriculum Goal Relabeling
	Ablation Studies

	Conclusion
	Theoretical Analysis
	Proof of Theorem 1
	Useful Lemmas
	Theoretical Analysis of Virtual Achieved Goals

	Extra Experimental Results
	Comparison Results with Model-based Baselines
	Study of the Model Layers
	Parameter Study
	Ablations
	Additional Comparisons

	Details about Virtual Achieved Goals
	Implementation Details
	Implementation of MHER
	Implementation of GCSL
	Implementation of MVE and MBPO

	Comparison with Concurrent Work
	Task Descriptions
	Point2DLargeEnv-v1
	Point2D-FourRoom-v1
	FetchReach-v1
	SawyerReachXYZEnv-v1
	Reacher-v2

