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A A Bayesian perspective to derive (6)

Given observed data, Bayesian inference allows us to derive a distribution of the parameters of a
statistical model. By considering ;%) 4+ 2(*) as the observed data and p as a model parameter, we
will show that picking the p that minimizes (6) is the same as choosing the p that has the largest
probability in the derived distribution. In (3, we have assumed that (u*) 4 2(?)) — h(*) follows a

spherical Gaussian distribution A/ (0, 021), where h(F) is the mean of p. Therefore, given p, we also
have

1 2
Pr(u® + z0|p) = Pr(u® + zD|A®) o exp (2 a4 209) — a9 ) e
o
Here, we let the prior distribution of p satisfy

Pr(plu™) ox exp (—nK(p,u™)) 25)

where > 0 is a super parameter that controls the probability decreasing speed as p deviates
from u(*). Then the posterior distribution of p satisfies

Pr(p|u® + 25 u®)) oc Pr(u™® + 2¥|p) Pr(plu®))

1 2
X exp (— H(,u(k) + 20y — h(k)H —nK(p, u(k))> .

202

Finding p* that maximizes Pr(p|u®) + 2(*) 4(¥)) is the same as finding
1 2
p" =argmin{ — H(u(k) + 2By — pk) H + K (p, u™)
p | 202

1
= argmin<{ —— H(M(’“) + 2y — h(k)H + K(p,u®) L
p | 2no?

which is equivalent to (6) by setting = = no?.
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