
A A Bayesian perspective to derive (6)476

Given observed data, Bayesian inference allows us to derive a distribution of the parameters of a477

statistical model. By considering µ(k) + z(k) as the observed data and p as a model parameter, we478

will show that picking the p that minimizes (6) is the same as choosing the p that has the largest479

probability in the derived distribution. In (5), we have assumed that (µ(k) + z(k))− h(k) follows a480

spherical Gaussian distribution N (0, σ2I), where h(k) is the mean of p. Therefore, given p, we also481

have482

Pr(µ(k) + z(k)|p) = Pr(µ(k) + z(k)|h(k)) ∝ exp

(
− 1

2σ2

∥∥∥(µ(k) + z(k))− h(k)
∥∥∥2) . (24)

Here, we let the prior distribution of p satisfy483

Pr(p|u(k)) ∝ exp
(
−ηK(p, u(k))

)
, (25)

where η > 0 is a super parameter that controls the probability decreasing speed as p deviates484

from u(k). Then the posterior distribution of p satisfies485

Pr(p|µ(k) + z(k), u(k)) ∝ Pr(µ(k) + z(k)|p) Pr(p|u(k))

∝ exp

(
− 1

2σ2

∥∥∥(µ(k) + z(k))− h(k)
∥∥∥2 − ηK(p, u(k))

)
.

Finding p∗ that maximizes Pr(p|µ(k) + z(k), u(k)) is the same as finding486

p∗ = arg min
p

{
1

2σ2

∥∥∥(µ(k) + z(k))− h(k)
∥∥∥2 + ηK(p, u(k))

}
= arg min

p

{
1

2ησ2

∥∥∥(µ(k) + z(k))− h(k)
∥∥∥+K(p, u(k))

}
,

which is equivalent to (6) by setting α−1 = ησ2.487
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