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ABSTRACT

In order to train agents that can quickly adapt to new objectives or reward
functions, efficient unsupervised representation learning in sequential decision-
making environments can be important. Frameworks such as the Exogenous
Block Markov Decision Process (Ex-BMDP) have been proposed to formalize
this representation-learning problem (Efroni et al., 2022b). In the Ex-BMDP
framework, the agent’s high-dimensional observations of the environment have
two latent factors: a controllable factor, which evolves deterministically within a
small state space according to the agent’s actions, and an exogenous factor, which
represents time-correlated noise, and can be highly complex. The goal of the rep-
resentation learning problem is to learn an encoder that maps from observations
into the controllable latent space, as well as the dynamics of this space. Efroni
et al. (2022b) has shown that this is possible with a sample complexity that de-
pends only on the size of the controllable latent space, and not on the size of the
noise factor. However, this prior work has focused on the episodic setting, where
the controllable latent state resets to a specific start state after a finite horizon.
By contrast, if the agent can only interact with the environment in a single con-
tinuous trajectory, prior works have not established sample-complexity bounds.
We propose STEEL, the first provably sample-efficient algorithm for learning the
controllable dynamics of an Ex-BMDP from a single trajectory, in the function
approximation setting. STEEL has a sample complexity that depends only on the
sizes of the controllable latent space and the encoder function class, and (at worst
linearly) on the mixing time of the exogenous noise factor. We prove that STEEL is
correct and sample-efficient, and demonstrate STEEL on two toy problems. Code
is available at: https://github.com/midi-lab/steel.

1 INTRODUCTION

This work considers the unsupervised representation learning problem in sequential control envi-
ronments. Suppose an agent (e.g., a robot) is able to make observations and take actions in an en-
vironment for some period of time, but does not yet have an externally-defined task to accomplish.
We want the agent to learn a model of the environment that may be useful for many downstream
tasks: the question is then how to efficiently explore the environment to learn such a model.

Sequential decision-making tasks are often modeled as Markov Decision Processes (MDPs). In the
unsupervised setting, an MDP consists of a set of possible observations X , a set of possible actions
A, a distribution over initial observations π0 ∈ P(X ), and a transition function T : X×A → P(X ).
The agent does not have direct access to T . Instead, at each timestep t, the agent observes xt ∈ X
and selects action at. The next observation xt+1 is then sampled as xt+1 ∼ T (xt, at).

In the totally generic MDP setting, the only model learning possible is to directly learn the transition
function T . However, if the space of possible observations is large, this task becomes intractable.
Therefore, prior works have attempted to simplify the problem by assuming that the MDP has some
underlying structure, which a learning algorithm can exploit. One such structural assumption is
the Ex-BMDP (Exogenous Block MDP) framework, introduced by Efroni et al. (2022b). The Ex-

∗Correspondence to: alevine0@cs.utexas.edu

1

https://github.com/midi-lab/steel


Published as a conference paper at ICLR 2025

BMDP framework captures situations where the space of observations X is very large, but the parts
of the environment that the agent has control over can be represented by a much smaller latent state.

An Ex-BMDP has an observation space X , a controllable (or endogenous) latent state space S, and
an exogenous state space E . In the version of this setting that we consider, the controllable state
st ∈ S evolves deterministically according to a latent transition function T : S × A → S. That
is: st+1 = T (st, at). The exogenous state et ∈ E represents time correlated noise: it evolves
stochastically, independently of actions, according to a transition function Te : E → P(E). That
is: et+1 ∼ Te(et). Neither s nor e is directly observed. Instead, the observation xt is sampled as
xt ∼ Q(st, et), where Q ∈ S × E → P(X ) is the emission function. We make a block assumption
onQ with respect to S: that is, we assume that for distinct latent states s, s′ ∈ S, the sets of possible
observations that can be sampled from Q(s, ·) and Q(s′, ·) are disjoint. In other words, there exists
a deterministic partial inverse ofQ, which is ϕ∗ : X → S, such that if x ∼ Q(s, e), then ϕ∗(x) = s.
Hence, it is always possible in principle to infer s from x.1

As in the general MDP setting, the agent only directly observes xt ∈ X , and chooses actions at
in response. However, rather than attempting to learn the full transition dynamics T of the system
(which is determined by T , Te, and Q together), the objective of the agent is instead to efficiently
model only the latent encoder ϕ∗ and the latent transition function T . Together, these models allow
the agent to plan or learn in downstream tasks using the encoded representations ϕ∗(x), modeling
only the parts of the environment that the agent can actually control (the latent state s ∈ S) while
ignoring the potentially-complex dynamics of time-correlated noise.

Specifically, the aim of efficient representation learning in this setting is to learn ϕ∗ and T , using a
number of environment steps of exploration that is dependent only on |S| and the size of the function
class F that the encoder ϕ∗ belongs to, and is not dependent on the size of X or E . This allows X
and E to be very large or potentially even infinite, but still allows for representation learning to
be tractable. Efroni et al. (2022b) proposes an algorithm, PPE, with this property. However, PPE
only works in a finite-horizon setting, where the agent interacts with the environment in episodes of
fixed length H . After each episode, the controllable state (almost) always resets to a deterministic
start state s0 ∈ S at the beginning of each episode. In this work, we instead consider the single-
trajectory, no-reset setting, where the agent interacts with the environment in a single episode of
unbounded length, with no ability to reset the state. This better models real-world cases, where,
for example, expensive human intervention would be required to “reset” the environment that a
robot trains in: we would rather not require this intervention. This no-reset Ex-BMDP setting was
previously considered by Lamb et al. (2023) and Levine et al. (2024); however, the algorithms
presented in those works do not have sample-complexity guarantees.

By contrast, the algorithm presented in this work is guaranteed to learn ϕ∗ and T using samples
polynomial in |S| and log |F|, with no dependence on |E| and |X |. We only require that the mixing
time of the exogenous noise is bounded. In other words, the requirement is that tmix, the mixing
time of the Markov chain on E induced by Te, is at most some known quantity t̂mix. Note that we
do not require that the endogenous state s mixes quickly under any particular policy (although we
do require – as do Lamb et al. (2023) and Levine et al. (2024) – that all states in S are eventually
reachable from one another). In this setting, we derive an algorithm with the following asymptotic
sample complexity (where O∗(f(x)) := O(f(x) log(f(x)))):

O∗
(
ND|S|2|A| · log |F|

δ
+ |S||A|t̂mix · log

N |F|
δ

+
|S|2D

ϵ
· log |F|

δ
+
|S|t̂mix

ϵ
· log |F|

δ

)
, (1)

where N is a predetermined upper-bound on |S|, δ is the failure rate of the algorithm, D is the
maximum distance between any two latent states in S (at most |S|), and ϵ is the minimum accuracy
of the output learned encoder ϕ on any latent state class s ∈ S . Note that this expression is at worst
polynomial in |S|, and linear in t̂mix and log |F|.
Our algorithm proceeds iteratively, at each iteration taking a certain sequence of actions repeatedly
in a loop. Because the latent state dynamics T are deterministic, this process is guaranteed to (after
some transient period) enter a cycle of latent states, of bounded length. Because the latent states in

1Unlike most prior works on Ex-BMDPs, we do not make a block assumption on E : we allow the same x to
be emitted by Q(s, e) and Q(s, e′), for distinct e, e′. Technically, then, our Ex-BMDP framework represents
a restricted class of Partially-Observed MDPs (POMDPs), rather than MDPs, because the complete state is not
encoded within the observed X .
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this cycle are repeatedly re-visited, the algorithm is then able to predictably collect many samples
of the same latent state, without the need to “re-set” the environment. Furthermore, because this
looping can be continued indefinitely, the algorithm can “wait out” the mixing time of the exogenous
dynamics, in order to collect near-i.i.d. samples of each latent state. We call our algorithm Single-
Trajectory Exploration for Ex-BMDPs via Looping, or STEEL. In summary, we: (1) introduce
STEEL, the first provably sample-efficient algorithm for learning Ex-BMDPs in a general function-
approximation setting from a single trajectory, (2) prove the correctness and sample complexity of
STEEL, and (3) empirically test STEEL on two toy problems to demonstrate its efficacy.

2 RELATED WORKS

2.1 REPRESENTATION LEARNING FOR EX-BMDP AND EXO-MDPS

The Ex-BMDP model was originally introduced by Efroni et al. (2022b), who propose the PPE algo-
rithm to learn the endogenous state encoder ϕ(·) and latent transition dynamics T of an Ex-BMDP.
PPE has explicit sample-complexity guarantees that are polynomial in |S| and log |F|: crucially, the
sample complexity does not depend explicitly on |E| or |X |. However, unlike the method proposed
in this work, PPE is restricted to the episodic, finite horizon setting with (nearly) deterministic re-
sets. After each episode, the endogenous state is (nearly) always reset to the same starting latent
state s0 ∈ S, and the exogenous state e0 ∈ E is i.i.d. resampled from a fixed starting distribution.
Similarly to this work, PPE assumes that the latent transition dynamics T are (close to) determinis-
tic. Because both s0 and T are nearly deterministic, PPE can collect i.i.d. samples of observations
x associated with any latent state s ∈ S simply by executing the same sequence of actions starting
from s0 after each reset. By contrast, in our setting, we cannot reset the Ex-BMDP state, so it is
more challenging to collect samples of a given latent state s.

Other works have considered the Ex-BMDP setting without latent state resets. Lamb et al. (2023)
and Levine et al. (2024) consider a setting similar to ours, where the agent interacts with the environ-
ment in a single trajectory. However, these methods do not provide sample-complexity guarantees,
and instead are only guaranteed to converge to the correct encoder in the limit of infinite samples.

Efroni et al. (2022a) considers a related “Exo-MDP” setting, and proposes the ExoRL algorithm. In
this setting, while the environment is episodic, the latent state s0 resets to a starting value sampled
randomly from a fixed distribution after each episode. Additionally, the latent transition dynamics
may be non-deterministic. However, unlike our work, Efroni et al. (2022a) does not consider the
general function-approximation setting for state encoders. Instead, the observation x is explicitly
factorized into d factors, and the controllable state s consists of some unknown subset of k of these
factors: the representation learning problem is reduced to identifying which k of the d factors are
action-dependent. ExoRL guarantees a sample-complexity polynomial in 2k = |S| and log(d).2

Recently, Mhammedi et al. (2024) have proposed an algorithm for provably sample-efficient policy
optimization in the episodic Ex-BMDP setting with rewards, that can handle nondeterministic latent
dynamics. However, the algorithm requires simulator access to the environment: this means that the
agent is able to reset the environment to any observation x ∈ X that has been previously observed.
This requirement is considerably stronger than even the requirement of deterministic resets to a
single latent state found in Efroni et al. (2022b).

In addition to our main claim that our proposed algorithm is the first provably sample-efficient
algorithm for representation learning in the single-trajectory Ex-BMDP setting, another property of
our method is that we do not make a “block” assumption on the exogenous state e. For a fixed s ∈ S,
in our setting, the same observation x ∈ X may be emitted by multiple distinct exogenous states
e, e′ ∈ E . Prior works (Efroni et al., 2022b;a; Lamb et al., 2023; Levine et al., 2024) have stated
assumptions that require that e may be uniquely inferred from x.3 Removing this restriction allows
one to model a greater range of phenomena. For example, suppose an agent can turn on or turn off

2Because ExoRL allows for nondeterministic starting latent states, one might be able to adapt ExoRL to
the infinite-horizon no-reset setting by considering the single episode as a chain of “pseudo-episodes” with
nondeterministic start state (c.f., Xu et al. (2024)). However, one would have to ensure that s mixes sufficiently
between episodes, which may be challenging given that s is not directly observed and has unknown, controllable
dynamics. Even still, the resulting algorithm would not apply to our general function-approximation setting.

3Although it is not immediately clear why this restriction is necessary for the proposed algorithms.
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No-Reset Sample-Complexity Function Nondeterministic Partially-Observed Nondeterministic
Setting Guarantees Approximation Reset State Exogenous State Latent Transitions

STEEL ✓ ✓ ✓ ✓ ✓ ✗
(Efroni’22b) ✗ ✓ ✓ ✗ ? ✗
(Lamb’23) ✓ ✗ ✓ ✓ ? ✗
(Levine’24) ✓ ✗ ✓ ✓ ? ✗
(Efroni’22a) ✗ ✓ ✗ ✓ ✗ ✓

Table 1: Comparison to Prior Works for learning Ex-BMDP Latent Dynamics

a “noisy TV”: i.e., the agent can control whether or not some source of temporally-correlated noise
is observable. This is allowed in our version of the Ex-BMDP formulation, but is not allowed if
e must be fully inferable from x. One prior work, Wu et al. (2024), also (implicitly) removes the
block restriction on the exogenous state e. That work extends Ex-BMDP representation learning
to the partially-observed state setting, with the assumption that the observation history within some
known window is sufficient to infer the latent state s. However, Wu et al. (2024) does not provide
any sample-complexity guarantees. Wang et al. (2022) and Kooi et al. (2023) consider similar
settings with continuous controllable latent state. However, the proposed methods require explicitly
modeling the exogenous noise state e, and there are no sample complexity guarantees. Trimponias
& Dietterich (2023) considers the sample-efficiency of reward-based reinforcement learning in Ex-
BMDPs assuming known endogenous and exogenous state encoders; however, it does not address
the sample complexity of the representation learning problem.

2.2 REPRESENTATION LEARNING FOR BLOCK MDPS AND LOW-RANK MDPS

The Ex-BMDP framework can be considered as a generalization of the Block MDP framework
(Dann et al., 2018; Du et al., 2019). Like the Ex-BMDP setting, the Block MDP setting models
environments where the observed state space X of the overall MDP is much larger than an action-
dependent latent state space S. Some works in the Block MDP framework (Mhammedi et al., 2023;
Misra et al., 2020) also allow for nondeterministic latent state transitions: that is st+1 ∼ Ts(st, at).
However, unlike the Ex-BMDP setting, there is no exogenous latent state e ∈ E or exogenous
dynamics Te: the observation is simply sampled as xt ∼ Q(st). In other words, the Block MDP
setting does not allow for time correlated noise outside of the modelled latent state s. Therefore,
even when stochastic latent-state transition are allowed, any time-correlated noise must be captured
in S , and so impacts the sample complexity (which is typically polynomial in |S|).
The Low-Rank MDP framework can also be considered as an extension the Block MDP framework,
but is an orthogonal extension to the Ex-BMDP framework. In Low Rank MDPs, there exist func-
tions ϕ : X ×A → Rd and µ : X → Rd, such that Pr(xt+1 = x′|xt = x, at = a) = ϕ(x, a)Tµ(x′).
The sample complexity depends only polynomially on d and logarithmically on the size of the func-
tion classes for the state encoders ϕ and µ; it should not depend explicitly on |X |. Works under this
framework include Agarwal et al. (2020); Uehara et al. (2022) and Cheng et al. (2023). Other works
in the Low Rank MDP framework use a reward signal and only explicitly learn part of the represen-
tation (the encoder ϕ), including Mhammedi et al. (2023) and Jiang et al. (2017); see Mhammedi
et al. (2023) for a recent, thorough comparison of these works. Note that while BMDPs can be
formulated as low-rank MDPs with d = |S|, this does not hold for Ex-BMDPs: the rank of the
transition probabilities on X depends on |E| – as noted by Efroni et al. (2022b).

3 NOTATION AND ASSUMPTIONS

• The Ex-BMDP, M , has observation space X , with discrete endogenous states S that
have deterministic, controllable dynamics, and possibly continuous exogenous states E
with nondeterministic dynamics that do not depend on actions. Concretely, we have
that st+1 = T (st, at), where T is a deterministic function, and et+1 ∼ Te(et). Let
xt ∼ Q(st, et), for xt ∈ X , st ∈ S, et ∈ E , with the block assumption on S. That is, a
given x ∈ X can be emitted only by one particular s ∈ S, which we define as ϕ∗(xt) = st.
We assume that M is accessed in one continuous trajectory. The initial endogenous state is
an arbitrary sinit ∈ S, and the initial exogenous state einit ∼ πinit

E , where πinit
E ∈ P(E).

• The exogenous dynamics on E are irreducible and aperiodic, with stationary distribution
πE . There is a known upper bound t̂mix on the mixing time tmix, where (as defined in
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Levin & Peres (2017) and elsewhere) tmix := tmix(1/4), where tmix(ϵ) is defined such that:

∀e ∈ E , ∥Pr(et+tmix(ϵ) = e′|et = e)− πE(e
′)∥TV ≤ ϵ. (2)

This assumption bounds how “temporally correlated” the noise in the Ex-BMDP is: it
ensures that the exogenous noise state et at time t is relatively unlikely to affect et+t̂mix

.

• We have a known upper bound on the number of endogenous latent states, N ≥ |S|.
Additionally, we assume that all endogenous latent states can be reached from one another
in at most D steps, for some finite D (note that we do not assume that all pairs of states
in S can be reached from one another in exactly D steps). We assume that there is a
known upper bound on this diameter: D̂ ≥ D. Trivially, if all endogenous latent states are
reachable from one another then D ≤ N − 1, so if a tighter bound is not available then we
can use D̂ := N − 1. (In fact, it is not very important to use a tight bound here: D̂ does
not appear in the asymptotic sample complexity.)

• There is an encoder hypothesis class F : X → {0, 1}, with realizablity for one-vs-rest
classification of endogenous states. That is,

∀s ∈ S, ∃f ∈ F : ∀x ∈ X , f(x) = 1ϕ∗(x)=s. (3)

In other words, for every latent state s ∈ S , there is some function f ∈ F such that
f(x) = 1 if and only if ϕ∗(x) = s.

• The algorithm has access to a training oracle for F , which, given two finite multi-sets D0

and D1 each with elements from X , returns a classifier f ∈ F . The only requirement that
we have for this oracle is that, if there exist any classifiers F∗ ⊂ F , such that, for f∗ ∈ F∗,
∀x ∈ D0, f∗(x) = 0 and ∀x ∈ D1, f∗(x) = 1, then the oracle will return some member
of F∗. Note that an optimizer that minimizes the 0-1 loss on D0 ∪ D1 will satisfy this
requirement. However, it is not strictly necessary to minimize the 0-1 loss in particular.

• General notation: Let M(A) be the set of all multisets of the set A. Let ⊥ represent an
undefined value. For lists x, y, let x · y represent their concatenation: that is, [a, b] · [c, d] =
[a, b, c, d]. For multisets A and B, let A ⊎ B be their union, where their multiplicities are
additive. Let % be the modulo operator, so that a%b ≡ a (mod b) and 0 ≤ a%b ≤ b− 1.

4 ALGORITHM

The STEEL algorithm is presented in full in Appendix A; in this section, we give a high-level
overview of the algorithm, and present bounds on its sample-complexity. We state the sample-
complexity and correctness of STEEL in the following theorem, which is proved in Appendix B.

Theorem 1. For an Ex-BMDP M = ⟨X ,A,S, E ,Q, T, Te, πinit
E ⟩ starting at an arbitrary endoge-

nous latent state sinit ∈ S , with |S| ≤ N , where the exogenous Markov chain Te has mix-
ing time at most t̂mix, and where all states in S are reachable from one another in at most D̂
steps; and corresponding encoder function class F such that Equation 3 holds, the algorithm
STEEL(M,F , N, D̂, t̂mix, δ, ϵ) will output a learned endogenous state space S ′, transition model
T ′, and encoder ϕ′, such that, with probability at least 1− δ,

• |S ′| = |S|, and under some bijective function σ : S → S ′, it holds that

∀s ∈ S, a ∈ A : σ(T (s, a)) = T ′(σ(s), a), and, (4)

• Under the same bijection σ,

∀s ∈ S, Pr
x∼Q(s,e),

e∼πE

(ϕ′(x) = σ(ϕ∗(x))) ≥ 1− ϵ, (5)

where πE is the stationary distribution of Te.

Furthermore, the number of steps that STEEL executes on M scales as:

O∗
(
ND|S|2|A| · log |F|

δ
+ |S||A|t̂mix · log

N |F|
δ

+
|S|2D

ϵ
· log |F|

δ
+
|S|t̂mix

ϵ
· log |F|

δ

)
,

where O∗(f(x)) := O(f(x) log(f(x))).
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1. â = [D] 2. â = [L] 3. â = [L, U] 4. â = [L, U, R] 5. â = [L, U, D] 6. â = [L, R, U]

7. â = [L, R, R] 8. â = [L, R, D] 9. â = [L, L, R, D] 10. â = [U, D, D] 11. â = [U, D, R, U]
12. â = [U, D, R,

U, L, D]

Figure 1: STEEL discovers the latent dynamics S and T by iteratively adding cycles to the learned
dynamics graph. In this simple example, the initially-unknown “true” dynamics consist of 6 states
arranged in a grid, where the agent can move (U)p, (D)own, (L)eft, or (R)ight. STEEL takes 12
iterations to discover the full dynamics: each pane corresponds to an iteration, and shows the still-
unknown parts of the dynamics graph in grey, the already-known parts of the dynamics graph in
black, and the cycle being explored in red. States are represented as circles and transitions as arrows.

We now present a high-level overview of STEEL. The algorithm proceeds in three phases. In the
first phase, the algorithm learns the transition dynamics; in the second phase, it collects additional
samples of observations of each latent state in S; in the final phase, the encoder ϕ′ is learned.

STEEL Phase 1: Learning latent dynamics. In the first phase, STEEL constructs a learned latent
state space S ′ and learned transition dynamics T ′ by iteratively adding cycles to the known transition
graph. At each iteration, a sequence of actions â is chosen such that, starting anywhere in the known
T ′, taking the actions in â is guaranteed to traverse a transition not already in T ′. (We explain the
process of constructing â below.)

STEEL then takes the actions in â repeatedly, collecting a sequence of observations xCF . Because
the transitions in T are deterministic, this sequence of transitions must eventually (after at most
|S||â| steps) enter a cycle of latent states, of length ncyc|â|, for some ncyc ≤ |S|. Because â was
chosen to always escape the known transitions in T ′, this cycle cannot be contained in T ′, so adding
the states and transitions of the new cycle to S ′ and T ′ is guaranteed to expand the known dynamics
graph by at least one edge: this process will discover the full transition dynamics after at most |S||A|
iterations. See Figure 1 for an example of how STEEL constructs S ′ and T ′ by adding cycles to the
dynamics. Throughout this process, STEEL also collects a dataset D(s) ∈ M(X ) for each newly-
discovered latent state s ∈ S ′, so that each observation in D(s) has latent state s. The observations
within each datasetD(s) are collected at least t̂mix steps apart from one another, so they are near-i.i.d.

Constructing â. To ensure that â always escapes the known transition graph given by T ′, at each
iteration, STEEL uses a recurrent procedure to construct â. At the beginning of this procedure, â is
initialized as empty, and a set of latent states B is initialized with all of the learned states in S ′. At
each step of the procedure, B represents the set of known states s ∈ S ′ that can be reached by starting
at any arbitrary state s′ ∈ S ′ and taking the action sequence given by the partially-constructed action
list â, following the known dynamics in T ′. At each step, STEEL chooses a state s ∈ B, and plans
the shortest path from s to any unknown transition in T ′. The corresponding sequence of actions, â′,
is then appended to â, and B is updated by replacing each state b ∈ B with the state that results from
starting at b and taking the sequence of actions â′, according to the learned partial transition function
T ′. If this path reaches an unknown transition in T ′, then b is removed from B and not replaced. By
construction, we know that the state s will be removed, so B will shrink by at least one state at each
step of the process. By the end, B is empty, and we are guaranteed that taking action sequence â
from any state in S ′ will lead to an unknown transition in T ′, as desired. Note that at each step, the
shortest distance to an unknown transition has length at most D + 1, and the procedure continues
for at most |S| steps, so |â| ≤ |S ′| · (D + 1).

Identifying latent states.At each iteration, to identify the distinct latent states in the cycle, STEEL
uses a subroutine called CycleFind. CycleFind additionally collects the datasets D(s) for each
newly-discovered latent state. CycleFind itself has two phases:
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n’cyc = 4; ncyc = 3: D0 and D1 contain the same latent states

n’cyc = 3; ncyc = 3: D1 contains only the red latent state; D0 does not contain this latent state

Figure 2: CycleFind determines the period of the cycle in xCF . See Section 4 under “CycleFind
Phase 1.” We show the sequence xCF sampled from M : specifically, we show every |â|’th obser-
vation, where the same actions â are taken between each one. The observations’ latent states are
color-coded as red, blue, and green: a pattern repeats every 3|â| steps, so ncyc = 3. D1 consists of
the first observation in each (n′

cyc|â|)-cycle, and D0 the other observations taken between executions
of â. (Spans of length ≥ t̂mix are skipped to ensure certain subsets of the datasets are near-i.i.d.)

CycleFind Phase 1: Finding the cycle’s periodicity. To identify the latent states in the cycle in
xCF , CycleFind first determines cycle’s period, ncyc|â|. To find ncyc, CycleFind tests all possible
values of ncyc from N to 1, in decreasing order. To check whether some candidate value, n′

cyc, is in
fact ncyc, CycleFind constructs two datasets, D0 and D1 from xCF = [x1, ...]. These datasets are
constructed so that if n′

cyc = ncyc, then D1 contains observations of only one controllable latent state
s, and D0 contains no observations of s. Therefore, if one attempts to train a classifier f to perfectly
distinguish all observations in D0 from those in D1, then such a classifier is unlikely to exist in F
if n′

cyc > ncyc, but is guaranteed to exist if n′
cyc = ncyc, by the realizability assumption. In this way,

CycleFind uses the training oracle to determine ncyc.

Specifically, the datasets used are (see Figure 2 for illustration.):

D0 := {xt̄mix+(2t̄mix+n′
cyc|â|)i+j·|â|+offs.| i ∈ {0, ..., k − 1}, j ∈ {1, ..., n′

cyc − 1}} (6)

D1 := {x(2t̄mix+n′
cyc·|â|)i+offs.| i ∈ {0, ..., k − 1}} (7)

where t̄mix := ⌈t̂mix/(n
′
cyc · |â|)⌉ · n′

cyc · |â| is t̂mix rounded up to the nearest multiple of n′
cyc · |â|; the

number of samples needed for D1 is k (which depends on log(|F |), log(δ), and other parameters);
and offs. := max((N − 1) · |â|, t̂mix) is a constant offset to ensure that the Ex-BMDP endogenous
state has entered the terminal cycle induced by â, and that the exogenous state has mixed.

To see why D1 and D0 are perfectly distinguishable only if n′
cyc = ncyc, consider the sequence

of repeated latent states that compose the cycle, [scyc
0 , ..., scyc

ncyc·|â|−1]. If we only consider every
|â|’th state in the cycle, then the resulting sequence, [scyc

0 , scyc
|â| , ..., s

cyc
(ncyc−1)·|â|], cannot contain any

repeated states.4 Therefore,
∀n,m, n ≡ m (mod ncyc)⇔ ϕ∗(x|â|n+offs.) = ϕ∗(x|â|m+offs.), (8)

and in particular, if n′
cyc = ncyc, then n ≡ m (mod n′

cyc) ⇔ ϕ∗(x|â|n+offs.) = ϕ∗(x|â|m+offs.).
Then, through modular arithmetic, we can conclude that D1 contains observations of only one latent
state of the cycle, while D0 contains observations of all of the other latent states.

4Otherwise, due to the deterministic dynamics and repeated application of the same actions â, the en-
dogenous dynamics would immediately enter an even shorter cycle the first time a state is repeated in
[scyc

0 , scyc
|â|, ..., s

cyc
(ncyc−1)·|â|], implying a shorter period.
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Meanwhile, if n′
cyc > ncyc, then for each observation in D1, there is a corresponding observation in

D0 with the same latent state, that is nearly-identically and independently distributed (i.e, they are
collected ≥ t̂mix steps apart). In particular, consider the (unknown) subset D(j′)

0 ⊆ D0, defined as:

D
(j′)
0 := {xt̄mix+(2t̄mix+n′

cyc|â|)i+j′·|â|+offs.| i ∈ {0, ..., k − 1}} (9)

where j′ := (−⌈t̂mix/(n
′
cyc · |â|)⌉ · n′

cyc − 1)%ncyc + 1. From arithmetic and applying Equation 8,

we see that all observations in D
(j′)
0 and all observations in D1 have the same endogenous latent

state. Additionally, all observations in D
(j′)
0 and D1 are collected at least t̂mix steps apart.

CycleFind Phase 2: Identifying latent states in the cycle. Once ncyc is known, CycleFind
can identify the latent states which re-occur every ncyc|â| steps in xCF . These latent states are
not necessarily distinct from each other, and may also have been discovered already in a previous
iteration of CycleFind. Therefore, CycleFind extracts from xCF datasets D′

i for each position in the
cycle: i ∈ {0, ..., ncyc|â| − 1}. CycleFind also uses datasets D(s) collected in previous iterations
representing the already-discovered states in S ′. CycleFind determines whether two datasets (either
collected in this call to CycleFind, or collected in previous calls) represent the same latent state by
attempting to learn a classifier f ∈ F that distinguishes them: if they both consist of near-i.i.d.
samples of the same latent state, then it is highly unlikely that such a classifier exists.

To ensure the near-i.i.d. property “well enough,” we only need that samples are separated by t̂mix
steps within each individualD′

i; and that, when trying to distinguish two datasetsD′
i,D′

j which were
both collected during this round of CyceFind, there are two (sufficiently large) subsets ofD′

i andD′
j

respectively such that all samples in the two subsets are collected at least t̂mix steps apart – ensuring
this second condition only doubles the number of samples we must collect. Thus, we do not need
to “wait” t̂mix steps between collecting each usable sample from xCF ; rather, we collect a usable
sample for each latent state once for every roughly 2max(t̂mix, ncyc|â|) steps. This is why t̂mix does
not appear in the largest term (in |S|) of our asymptotic sample complexity.

If it is determined that some Di represents a newly-discovered latent state, then a new state s′ is
inserted into S ′ and D′(s′) is initialized as Di. Once all states in [scyc

0 , ..., scyc
ncyc·|â|−1] have been

identified, the action sequence â can be used to add them to the learned transition dynamics T ′.

STEEL Phase 2: Collecting additional samples to train encoder.5 Once we have the complete
latent dynamics graph, the determinism of the latent dynamics allows us to use open-loop planning
to efficiently re-visit each latent state, in order to collect enough samples to learn a highly-accurate
encoder. Note that we can navigate to any arbitrary latent state in D steps, so we can visit every
latent state in |S|D steps. STEEL collects datasets D(s) for each latent state s where, within each
D(s), the samples are collected at least t̂mix steps apart: therefore, it can add one sample to each
dataset D(s) at worst roughly every max(|S|D, t̂mix) steps.

STEEL Phase 3: Training the encoder. Finally, STEEL trains the encoder. Specifically, for each
latent state s ∈ S ′, it trains a binary classifier fs ∈ F to distinguish D(s) from ⊎s′∈S′\{s}D(s′). To
ensure that only the correct binary classifier, fσ(ϕ∗(x))(x), returns 1, we ensure that each fs has an
accuracy of 1−ϵ/|S| on each latent state. We guarantee the accuracy of each classifier on each latent
state separately and apply a union bound: note that because we use a union bound here, we do not
need the samples in different datasets D(s), D(s′) to be independent, which is why we are able to
collect samples more frequently that every t̂mix steps. Finally, we define ϕ′(x) := argmaxs fs(x).

5 SIMULATION EXPERIMENTS

We test the STEEL algorithm on two toy problems: an infinite-horizon environment inspired by
the “combination lock” environment from Efroni et al. (2022b), and a version of the ”multi-maze”

5In some scenarios, one might not need to learn an encoder at all. Note that the latent state s of the agent is
known at the last environment timestep t of Phase 1 of STEEL. At this point, the full latent dynamics are already
known. Thus, if the agent is “deployed” only once, immediately after training such that the latent state does
not reset, then one could keep track of s in an entirely open-loop manner while planning or learning rewards,
without ever needing to use an encoder. In this case, the sample complexity terms involving ϵ disappear.
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(a) Combination Lock Environment
Latent Dynamics
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(b) Multi-Maze Environment
Latent Dynamics
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Figure 3: Visualisations of the simulation experiment environments. For both environments, we
show the ground-truth latent dynamics T (in the case of the combination lock, we show an arbitrary
instance of T , for some [a∗0, ...a

∗
K−1]), and an example transition in the observed space X .

environment from Lamb et al. (2023). In our combination lock environment, A = {0, 1}, S =
{0, ..,K − 1}, and there is some sequence of “correct” actions [a∗0, ...a

∗
K−1], such that T (i, a∗i ) =

i + 1, but T (i, 1 − a∗i ) = 0. In other words, in order to progress through the states, the agent must
select the correct next action from the (arbitrary) sequence [a∗0, ...a

∗
K−1]; otherwise, the latent state

is reset to 0. The observation space X = {0, 1}L, where L ≫ K. Some arbitrary subset of size K
of the components in X are indicators for each latent state in S: that is, ∀i ∈ S,∃j ∈ {0, ..., L−1} :
(xt)j = 1 ↔ st = i. The other L − K components in X are independent two-state Markov
chains with states {0,1}, each with different arbitrary transition probabilities (bounded such that no
transition probability for any of the two-state chains is less than 0.1). Because each component is
time-correlated, they all must be contained in E , so |E| = 2L−K . In the multi-maze environment,
the agent learns to navigate a four-room maze (similar to the one in Sutton et al. (1999)) using
actions A = {Up, Down, Left, Right}. The latent state space has size |S| = 68. However, the
observation x ∈ X in fact consists of nine copies of this maze, each containing a different apparent
“agent.” Eight of these “agents” move according to random actions: the true controllable agent is
only present in one of the mazes. Because the eight distractor mazes can be in any configuration
and have temporally-persistent state, we have that |E| = 688. For both environments, we use the
hypothesis class F := {(x → (x)i|i ∈ {0,dim(X ) − 1}}. In other words, the hypothesis class
assumes that for each latent state s, there is some component of i of the observations such that
ϕ∗(x) = s if and only if (x)i = 1. The two environments are visualized in Figure 3 .

There are four sources of potential variability in these simulation experiments: (1) the random ele-
ments of the environments’ dynamics, Te, Q, and einit; (2) the starting latent state sinit; (3) steps in
Algorithm 1 that allow for arbitrary choices (e.g., the choice of action â = [a] in the first invocation
of CycleFind); and (4) the parameters of the environment, such as the “correct” action sequence
[a∗0, ...a

∗
K−1] in the combination lock. STEEL is designed in such a way that, with high probability

(i.e., if the algorithm succeeds), no choice that the algorithm makes in terms of control flow or ac-

Combo. Lock Combo. Lock Combo. Lock
(K = 20) (K = 30) (K = 40) Multi-Maze

Fixed Env. Accuracy 20/20 20/20 20/20 20/20
Fixed Env. Steps 1886582±0 4286241±0 7914856±0 41003875±0

Variable Env. Accuracy 20/20 20/20 20/20 20/20
Variable Env. Steps 2.00·106 4.78·106 9.59·106 4.13·107

±1.28·105 ±4.36·105 ±1.13·106 ±1.11·106

Table 2: Success rate and number of steps taken for STEEL on both simulation environments. For
all experiments, we set δ = ϵ = .05. For the combination lock experiments, we set L = 512, and
use the (intentionally loose) upper bounds N = D̂ = K + 10 (= |S|+ 10) and t̂mix = 40. For the
multi-maze environment, we use N = D̂ = 80 (> |S| = 68), and t̂mix = 300. See Appendix D for
how we chose the (loose) bounds t̂mix ≥ tmix.
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tions will depend on exogenous noise.6 Therefore, if we hold (2-4) constant, we expect the number
of environment steps taken to be constant, regardless of the exogenous noise. To verify this, we test
both environments for 20 simulations, in both a “fixed environment” setting with (2-4) held con-
stant, and a “variable environment” setting with (2-4) set randomly. We test the combination lock
environment with latent states K ∈ {20, 30, 40}. We measure the success rate in exactly learning
ϕ∗(x) and T (up to permutation) and the number of steps taken. Results are shown in Table 2.

STEEL correctly learned the latent dynamics T and optimal encoder ϕ∗ in every simulation run;
and we verify that the step counts do not depend on exogenous noise. In the combination lock
experiments for large K, which are hard exploration problems, the total step counts were many
orders of magnitude smaller than either the size of the observation space (≈ 10154); or the reciprocal-
probability of a uniformly-random policy navigating from state 0 to state K − 1 (≈ 1012 for K =
40). This shows that STEEL is effective at learning latent dynamics for hard exploration problems
under high-dimensional, time-correlated noise. For the multi-maze experiment (which is not a hard
exploration task), STEEL took a few orders of magnitude greater steps than reported in Lamb et al.
(2023) or Levine et al. (2024) for the same environment (≈ 103 − 104 steps). However, unlike
these prior methods, STEEL is guaranteed to discover the correct encoder with high probability;
this requires the use of conservative bounds when defining sample counts d, nsamp. cyc. and nsamp. in
Algorithms 1 and 2, and in making other adversarial assumptions in the design of the algorithm that
ensure that it is correct and sample-efficient even in pathological cases. Additionally, note that the
encoder hypothesis class F used in this experiment has no spatial priors. By contrast, Lamb et al.
(2023) choose a neural-network encoder for this environment with strong spatial priors that favor
focusing attention on a single maze, using sparsely-gated patch encodings (and Levine et al. (2024)
use this same network architecture in order to compare to Lamb et al. (2023)) – this difference in
priors over representations may also account for some of the gap in apparent sample efficiency.

In Appendix F, we present an additional set of experiments on a family of tabular Ex-BMDPs which
are known to be particularly challenging to “multistep inverse” methods, such as those proposed by
Lamb et al. (2023) and Levine et al. (2024). We find that, for sufficiently large instances of these
environments, STEEL can in fact empirically outperform these prior “practical” methods.

6 LIMITATIONS AND CONCLUSION

A major limitation of STEEL that may constrain its real-world applicability is its strict determinism
assumption on T . In the episodic setting, Efroni et al. (2022b) can get away with allowing rare devi-
ations from deterministic latent transitions (no more often on average than once every 4|S| episodes)
because the environment resets “erase” these deviations before they can propagate for too long. By
contrast, in the single-trajectory setting, the STEEL algorithm is fragile to even rare deviations in
latent dynamics; ameliorating this issue may require significant changes to the algorithm.

A second barrier to practical applicability of STEEL is the need for an optimal training oracle for
F . While this is tractable for, e.g., linear models (with the realizability assumption ensuring linear
separability), it becomes computationally intractable for anything much more complicated. How-
ever, this kind of assumption is common in sample-complexity results; and could be worked around
in adapting STEEL to practical settings.7

Two additional limitations to our work are the assumption of reachability of all endogenous latent
states s ∈ S, and the requirement that an upper-bound on the mixing time of the exogenous noise
be known a priori. However, in Appendix E, we argue that these assumptions are in fact necessary,
for any algorithm in the single-trajectory, no-resets Ex-BMDP setting.

Finally, the core assumption that S is finite and small is of course a major limitation: sample-
efficient reinforcement learning in combinatorial and continuous state spaces is a broad area of
ongoing and future work. Despite these limitations, STEEL represents what we hope is an important
contribution to representation learning in scenarios where resetting the environment during training
is not possible, and observations are impacted by high-dimensional, time-correlated noise.

6This property is theoretically important because it ensures that the decision to collect a given observation
is independent of all previous observations, given the ground truth dynamics and initial latent state.

7Similarly to how Efroni et al. (2022b) adapts PPE to practical settings in their experimental section.
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A FULL ALGORITHM

The STEEL algorithm is presented here in full as Algorithm 1, with a major subroutine, CycleFind,
split out as Algorithm 2.

Algorithm 1: STEEL
Input: Access to Ex-BMDP M , access to training oracle for function class F , knowledge of upper

bounds N , D̂, t̂mix, parameters δ, ϵ.
Initialize learned latent state set S ′, initially empty;
Initialize table of collected datasets for each latent state: D : S ′ →M(X );
Initialize learned latent dynamics: T ′ : (S ′ ∪ {⊥})×A → (S ′ ∪ {⊥}). (When a state s is added to S ′,

we initially set ∀a ∈ A, T (s, a) := ⊥. Also, we set ∀a ∈ A, T (⊥, a) := ⊥ as a permanent
definition.);
// Phase 1: Discover latent dynamics T.
Chose arbitrary a ∈ A;
S ′,D, T ′, scurr. ← CycleFind([a],S ′,D, T ′); // Special case for first iteration
while ∃s ∈ S ′, a ∈ A : T ′(s, a) := ⊥ do

Initialize B ← S ′, and initialize action list â← [ ];
while B non-empty do

Chose arbitrary s ∈ B;
B ← B \ {s};
Let â′ := a minimum-length sequence of actions such that
T ′(T ′(T ′(...T ′(s, â′

0), â
′
1), â

′
2), ..., â

′
|â′|−1) = ⊥. (This can be found using

Dijkstra’s algorithm.);
â← â · â′;
B ← {s′′ ∈ S ′ | ∃ s′ ∈ B : T ′(T ′(T ′(...T ′(s′, â′

0), â
′
1), â

′
2), ..., â

′
|â′|−1) = s′′};

S ′,D, T ′, scurr. ← CycleFind(â,S ′,D, T ′);
// Phase 2: Collect additional latent samples to train encoder.

Let d := ⌈ 3|S
′| ln(16|S′|2|F|/δ)

ϵ
⌉;

while ∃s ∈ S ′ : |D(s)| < d do
Let C := {s ∈ S ′||D(s)| < d ∧ s ̸= scurr.};
Use T ′ to plan a cycle of actions ā starting at scurr. that visits all states C and then returns to scurr., by

greedily applying Dijkstra’s algorithm repeatedly;
If |ā| < t̂mix, use T ′ to extend ā by repeatedly inserting the shortest-length self-loop of some state

visited in ā into ā until |ā| ≥ t̂mix ;
Execute all actions in ā once without collecting data;
while ∀s ∈ C : |D(s)| < d do

for a in ā0, ..., ā|ā|−1 do
Take action a on M ;
scurr. ← T ′(scurr., a);
if scurr. is being visited for the first time in this execution through ā then

Let xcurr. := the observed state of M ;
D(scurr.)← D(scurr.) ⊎ {xcurr.};

// Phase 3: Train latent state encoder ϕ′.
for s ∈ S ′ do

Let D0 := ⊎s′∈S′\{s}D(s′); D1 := D(s);
Apply training oracle to distinguish D0 from D1, yielding fs ∈ F ;

return S ′, T ′, and ϕ′(x) := argmaxs fs(x);

B PROOFS

B.1 STEEL

Here, we explain the STEEL algorithm (Algorithm 1), and prove the correctness of Theorem 1.
STEEL proceeds in three phases: in the first phase, we learn a tabular representation of the endoge-
nous latent states S and associated dynamics T of the Ex-BMDP. For each s ∈ S , we also begin to
collect a dataset D(s), where for each x ∈ D(s), we have that ϕ∗(x) = s, and additionally where
all samples in D :=

⋃
s∈S D(s) were collected from the Ex-BMDP M at least t̂mix time steps apart.
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Algorithm 2: CycleFind Subroutine
Input: Action list â; current learned state set S ′, datasets D, and transition dynamics T ′. Also, access to

Ex-BMDP M , access to training oracle for function class F , knowledge of upper bounds N , t̂mix,
and D̂, and parameters δ, ϵ.

// Phase 1: find length of cycle, ncyc · |â|.

Let nsamp. cyc. :=

⌈
ln

(
δ

4|A|·N·(N−1)·|F|

)/
ln

(
9
16

) ⌉
;

Let cinit := (2t̂mix + 3N · |â| − 2) · nsamp. cyc. − t̂mix −N · |â|+ 1 +max((N − 1) · |â|, t̂mix);
Collect a sequence of observation xCF := [x1, ...xcinit ] from M by taking the actions in â repeatedly in a

loop, for a total of cinit actions. (Action âi% |â| is taken after observing xi.);
Let x̄i := xi·|â|+max((N−1)·|â|,t̂mix)

;
Initialize ncyc ← 1; // Default value if no other n′

cyc is ncyc
for n′

cyc in [N, N-1...,3,2] do
Let q := ⌈t̂mix/(n

′
cyc · |â|)⌉, r := q · n′

cyc, k := ⌊ cinit+r·|â|−max((N−1)·|â|,t̂mix)
2r·|â|+n′

cyc·|â|
⌋;

Let D0 := {x̄r+(2r+n′
cyc)i+j | i ∈ {0, ..., k − 1}, j ∈ {1, ..., n′

cyc − 1}};
Let D1 := {x̄(2r+n′

cyc)i
| i ∈ {0, ..., k − 1}};

Apply training oracle to distinguish D0 from D1, yielding f ∈ F ;
if (∀x ∈ D0, f(x) = 0 and ∀x ∈ D0, f(x) = 1) then

ncyc ← n′
cyc;

break;
// Phase 2: Assemble datasets for observations from cycle, identify

new latent states, and update S ′, D, and T ′.

Let nsamp. :=

⌈
ln

(
δ

4|A|·N4·(D̂+1)·|F|

)/
ln

(
9
16

) ⌉
;

Let c := 2 · ncyc · |â| ·
(
(nsamp. − 1) ·

⌈
t̂mix

|â|·ncyc

⌉
+ 1

)
+ t̂mix +max((N − ncyc) · |â|, t̂mix);

Extend the sequence of observation xCF to length at least c by taking the actions â repeatedly in a loop on
M , for max(0, c− cinit) additional steps, so that xCF = [x1, ...xc];

Let n0 := max((N − ncyc) · |â|, t̂mix) , n′
0 := n0 + (nsamp. − 1) · |â| · ncyc ·

⌈
t̂mix

|â|·ncyc

⌉
+ |â| · ncyc + t̂mix;

∀i ∈ {0, ..., ncyc · |â| − 1}, Let:
D′

i =
{
xj |∃k ∈ {0, ..., nsamp. − 1}, ∃ offset ∈ {n0, n

′
0} :

j = k · |â| · ncyc ·
⌈

t̂mix

|â| · ncyc

⌉
+ offset + (i− offset)%(ncyc · |â|

}
;

for i ∈ {0, ..., ncyc · |â| − 1} do
Initialize StateAlreadyFound? ← False;
for s ∈ S ′ do

Let D0 := D(s); D1 := D′
i;

Apply training oracle to distinguish D0 from D1, yielding f ∈ F ;
if not (∀x ∈ D0, f(x) = 0 and ∀x ∈ D0, f(x) = 1) then

scyc
i ← s;

(Optionally; and only if D(s) was not initialized or modified already during this call to
CycleFind:) D(s)← D(s) ⊎ D′

i;
StateAlreadyFound? ← True;
break;

if not StateAlreadyFound? then
Insert new state s′ into S ′;
D(s′)← D′

i;
scyc
i ← s′;

for i ∈ {0, ..., ncyc · |â| − 1} do
T ′(scyc

i , ai%|â|)← scyc
(i+1)%(|â|·ncyc)

;
scurr. := scyc

max(c,cinit)%(ncyc·|â|);
return S ′,D, T ′, scurr.;
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Then, in the second phase, we use the learned dynamics model T ′ to efficiently collect additional
samples for each learned latent state s ∈ S ′ and add them to D(s), until |D(s)| ≥ d, where:

d := ⌈3|S
′| ln(16|S ′|2|F|/δ)

ϵ
⌉. (10)

Finally, in the third phase, we use D to learn an encoder ϕ′, which approximates ϕ∗ with high
probability when the exogenous state e of the Ex-BMDP is sampled from its stationary distribution
πe.

STEEL relies on the CycleFind subroutine, which is described in detail and proven correct in Section
B.1.1. This subroutine is given a list of actions â and the previously-learned states S ′, datasets D,
and dynamics T ′. It identifies and collects samples of all latent states in some state cycle which
is traversed by taking the actions â repeatedly, and also identifies the latent state transitions in this
cycle.

We restate Theorem 1 here:
Theorem 1. For an Ex-BMDP M = ⟨X ,A,S, E ,Q, T, Te, πinit

E ⟩ starting at an arbitrary endoge-
nous latent state sinit ∈ S , with |S| ≤ N , where the exogenous Markov chain Te has mix-
ing time at most t̂mix, and where all states in S are reachable from one another in at most D̂
steps; and corresponding encoder function class F such that Equation 3 holds, the algorithm
STEEL(M,F , N, D̂, t̂mix, δ, ϵ) will output a learned endogenous state space S ′, transition model
T ′, and encoder ϕ′, such that, with probability at least 1− δ,

• |S ′| = |S|, and under some bijective function σ : S → S ′, it holds that

∀s ∈ S, a ∈ A : σ(T (s, a)) = T ′(σ(s), a), and, (4)

• Under the same bijection σ,

∀s ∈ S, Pr
x∼Q(s,e),

e∼πE

(ϕ′(x) = σ(ϕ∗(x))) ≥ 1− ϵ, (5)

where πE is the stationary distribution of Te.

Furthermore, the number of steps that STEEL executes on M scales as:

O∗
(
ND|S|2|A| · log |F|

δ
+ |S||A|t̂mix · log

N |F|
δ

+
|S|2D

ϵ
· log |F|

δ
+
|S|t̂mix

ϵ
· log |F|

δ

)
,

where O∗(f(x)) := O(f(x) log(f(x))).

For the sake of our proof, we will treat the ground-truth properties of the Ex-BMDP, such as the
latent dynamics T , as (unknown, arbitrary) fixed quantities, not as random variables. Similarly, we
will treat the initial latent state sinit as an arbitrary but fixed quantity, rather than a random variable.
Furthermore, in the proof, we will treat decisions that are specified (implicitly or explicitly) as
“arbitrary” in Algorithms 1 and 2 (such as the choice of the action â = [a] in the first invocation of
CycleFind, or the choice of “shortest” paths in cases of ties when Dijkstra’s algorithm is used) as
being made deterministically, such as by a pseudorandom process – crucially, we require that these
choices are made in a way that does not depend of the observations of the Ex-BMDP.

This leaves the exogenous noise transitions Te, the emission function Q, and the initial exogenous
latent state einit as the only sources of randomness in the algorithm. We notate the sample space
over these three processes together as Ω. Throughout the algorithm, we will ensure that decisions
such as control flow choices, choices of actions, and choices of how to assemble datasets, are made
deterministically, independently of Ω, with high probability. That is, unless the algorithm fails, these
decisions will be fully determined by s0, T , and algorithm parameters. While whether or not the
algorithm fails will depend (solely) on Ω, we will ultimately bound the total probability of failure as
less that δ by union bound, so that at each step in the proof, we can treat the algorithm’s choices as
statistically independent of Ω.

STEEL begins by repeatedly applying the CycleFind subroutine. CycleFind identifies a cycle in the
latent dynamics T of the Ex-BMDP, and collects observations of the states in that cycle. In Phase 1
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of STEEL, throughout these application of CycleFind, the algorithm maintains a representation of
the learned Ex-BMDP “so far”, in the form of an incomplete set of learned states S ′, learned latent
dynamics T ′ : (S ′ ∪ {⊥})×A → (S ′ ∪ {⊥}), and a table of datasets corresponding to each latent
state D : S ′ →M(X ).
We first describe the CycleFind subroutine in detail:

B.1.1 CYCLEFIND SUBROUTINE

Here, we describe CycleFind, and prove its correctness. CycleFind accepts as input a list of actions
â := [â0, ..., â|â|−1], and the Ex-BMDP M starting at an arbitrary state x0. CycleFind also takes
the representation of the learned Ex-BMDP “so far”, in the form S ′, D and T ′. We assume that, for
each s ∈ S ′ all of the previously-observed observations in D(s) were collected with gaps of at least
t̂mix steps between them. Also, we assume that ∀s ∈ S ′, |D(s)| ≥ nsamp., where, in terms of the
upper bounds N ≥ |S| and t̂mix ≥ tmix, and total failure probability δ,

nsamp. :=

⌈
ln

(
δ

4|A| ·N4 · (D̂ + 1) · |F|

)/
ln

(
9

16

)⌉
. (11)

CycleFind first proceeds to take the actions â0, ..., â|â|−1 repeatedly in a loop. CycleFind then uses
this collected sequence of observations (which may need to be extended by cycling through â for
additional iterations) to learn new states and update S ′, D, and T ′.

We will show that sequence of latent states visited by CycleFind is eventually periodic; that is, it
guaranteed to eventually get stuck in a cycle of latent states, with a period in the form ncyc · |â|, for
some ncyc ≤ N . The goal of CycleFind is to:

1. Identify the period of this cycle. (That is, determine ncyc.)
2. Use this period to extract from the sequence of observed states some new multisets of ob-

servations D′
i ∈ M(X ) for i ∈ {0, ..., ncyc · |â| − 1}, which each contain only one unique

latent state, corresponding to the position i in the cycle. These multisets will only con-
tain observations collected at least t̂mix timesteps apart, so will be close-to-i.i.d. samples.
(Depending on ncyc, we may need to perform additional cycles of data collection at this
step.)

3. Identify which of these multisets D′
i have the same latent states that have been previously

identified in S ′, and which have a new latent state, and determine among the new multisets
which ones have the same latent states to each other, and which are distinct. This allows us
to update S ′ andD with the new samples fromD′

i, while maintaining the property that ∀s ∈
S ′,∀x, x′ ∈ D(s), ϕ∗(x) = ϕ∗(x′), and ∀s, s′ ∈ S ′,∀x ∈ D(s), x′ ∈ D(s′), ϕ∗(x) ̸=
ϕ∗(x′).) We also update the learned transitions T ′.

4. Return the updated learned state set S ′, datasets D, transition function T ′, and the current
latent state of M , scurr. ∈ S ′.

Specifically, CycleFind has the following property:
Proposition 1. For any action sequence â of length at most (D + 1)N , there exists at least one
sequence of ground-truth states in S, [scyc∗0 , scyc∗1 , ..., scyc∗|â|·ncyc−1], for some ncyc ≤ N , such that
∀i ∈ {0, 1, ..., |â| · ncyc − 1}, T (scyc∗i , âi%|â|) = scyc∗(i+1)%(|â|·ncyc)

. Given a sequence of actions
â, learned partial state set S ′, transition dynamics T ′, and datasets D which meet the following
inductive assumptions:

• There exists an injective mapping σ−1 : S ′ → S such that

∀s ∈ S ′, a ∈ A, T ′(s, a) = ⊥ ∨ σ−1(T ′(s, a)) = T (σ−1(s), a) (12)

and additionally,
∀s ∈ S ′,∀x ∈ D(s), ϕ∗(x) = σ−1(s). (13)

• ∀s ∈ S ′, |D(s)| ≥ nsamp.; and for each s, the samples in D(s) were all sampled from M

at least t̂mix steps apart. Additionally, the choice to add any sample x to D(s) was made
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fully deterministically (as a function of T , sinit., the timestep t at which x was collected,
and algorithm parameters), and independently of the random processes captured by Ω.

• The choice of action sequence â is similarly fully deterministic and independent of Ω.

then, with probability at least:

1− δ

2 · |A| ·N (14)

CycleFind will return updated S ′, D, T ′, and scurr. which meet the same inductive assumptions, and
for which additionally:

• The image of the updated S ′(new), σ
−1(S ′(new)) is a (non-strict) superset of σ−1(S ′), which

additionally includes all unique states in some [scyc∗0 , scyc∗1 , ..., scyc∗|â|·ncyc−1].

• The transition matrix T ′
(new) is a (non-strict) superset of the old transition matrix T ′ (in the

sense that its domain is now S ′(new) ⊇ S ′(old), and if T ′
(old)(s, a) ̸= ⊥ then T ′

(new)(s, a) ̸=
⊥), and T ′

(new) additionally includes the transitions corresponding to the cycle; that is:

∀i ∈ {0, ..., |â| · ncyc − 1},∃s, s′ ∈ S ′ :σ−1(s) = scyc∗i ∧ σ−1(s′) = scyc∗(i+1)%(|â|·ncyc)
∧

T ′
(new)(s, âi%|â|) = s′.

(15)

• The final observation x sampled by CycleFind from M is such that σ−1(scurr.) = ϕ∗(x).

Additionally, CycleFind will take at most:

max
(
(2t̂mix + 3N · |â| − 2) · nsamp. cyc. −N · |â|, 2 · (t̂mix + |S| · |â| − 1) · nsamp. + 1

)
+max(N · |â| − |â| − t̂mix, 0) + 1 actions,

(16)

where nsamp. is defined in Equation 11 and nsamp. cyc. is defined in Equation 18.

Proof. Determining ncyc:

CycleFind initially takes cinit actions, where, in terms of the upper bounds N ≥ |S| and t̂mix ≥ tmix,

cinit := (2t̂mix + 3N · |â| − 2) · nsamp. cyc. − t̂mix −N · |â|+ 1 +max((N − 1) · |â|, t̂mix), (17)

where

nsamp. cyc. :=

⌈
ln

(
δ

4|A| ·N · (N − 1) · |F|

)/
ln

(
9

16

)⌉
. (18)

CycleFind first takes action â0, then â1, then â2, etc, until taking action â|â|−1, at which point it
repeats the process starting at â0, for a total of cinit steps. The observation after each of these actions
is recorded as xCF := [x1, ..., xcinit ]. Let sCF := [s1, ..., scinit ] be the (initially unknown) latent states
corresponding to these observations; that is, ϕ∗(x) for each x in xCF . (For indexing purposes, x0

and s0 will refer to the observation and latent state, respectively, of the Ex-BMDP before the first
action was taken by CycleFind. However, these will not be used by the algorithm.)

First, we show that sCF must in fact end in a cycle of period ncyc · |â|, for some ncyc ≤ N . Let
sper. consist of every |â|’th element in sCF starting at an offset m := max(0, t̂mix − (N − 1) · |â|);
that is, sper. := [sm, sm+|â|, sm+2|â|, ..., sm+⌊(cinit−m)/|â|⌋|â|]. Note that the evolution from one
state to the next in sper. is deterministic, because it is caused by the same sequence of actions,
[âm% |â|, â(m+1)% |â|, ..., â(m+|â|−1)% |â|], being taken after each state. That is, if sm+i·|â| = s and
sm+j·|â| = s and sm+(i+1)·|â| = s′, then sm+(j+1)·|â| = s′. As a consequence, if sm+i·|â| = s,
and the next occurrence of the latent state s in the sequence sper. is sm+(i+t)·|â| = s, then all
subsequent states in the sequence sper. will consist of repetitions of the sequence of sm+(i+1)·|â|
through sm+(i+t)·|â|.
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Then sper. must consist of some sequence of ‘transient’ latent states which occur only once at the
beginning of the sequence, followed by a repeated cycle. Because these states never re-occur, the
transient part lasts length ntrn ≤ N − 1.

Then, the period of the cycle is ncyc, where ntrn + ncyc ≤ N . Note that the cycle in sper. contains
no repeated states. (Otherwise, the span between the first two repetitions of a state in the cyclic
sequence in sper. will itself repeat indefinitely, so we can analyse this smaller cycle as the cycle of
length ncyc.)

There is a corresponding cycle in sCF , of length ncyc · |â|. To see this, note that for all i ≥ ntrn,
we have that sm+i|â| = sm+i|â|+ncyc·|â|. Furthermore, for all j in {0, ...|â| − 1}, the sequence of
actions taken between sm+i|â| and sm+i|â|+j is the same as the sequence of actions taken between
sm+i|â|+ncyc·|â| and sm+i|â|+j+ncyc·|â|. Therefore sm+i|â|+j = sm+i|â|+j+ncyc·|â|. Thus, for any gen-
eral i′ ≥ ntrn|â| (which always can be written as i′ = i|â|+ j) we have that sm+i′ = sm+i′+ncyc·|â|.
However, this cycle may contain repeated states.

In order to avoid the transient part of sCF , and to prevent sampling observations with ex-
ogenous noise that is correlated to samples taken in previous iterations of CycleFind, we skip
the first max((N − 1) · |â|, t̂mix) transitions in sCF . For convenience, we will let s̄i :=
si·|â|+max((N−1)·|â|,t̂mix)

, and similarly x̄i := xi·|â|+max((N−1)·|â|,t̂mix)
. Note that the sequence

[s̄0, s̄1, ...] is equivalent to sper. after skipping the first N − 1 ≥ ntrn. elements of the sequence.

Because the cycle in sper. contains no repeated states, we have that

∀i, j ∈ N, s̄i = s̄j ⇔ i ≡ j (mod ncyc) (19)

In order to find ncyc, we test the hypothesis that ncyc = n′
cyc, for each n′

cyc ∈ {N, ..., 2}, in order,
until we identify ncyc. If none of the tests pass, then we know that ncyc = 1. The test for each
hypothesis ncyc = n′

cyc has a zero false-negative rate. Consequently, the loop will always end before
ncyc > n′

cyc, so at each iteration, it must always be the case that ncyc ≤ n′
cyc. A failure can only

occur if the test that ncyc = n′
cyc has a false positive, when in fact ncyc < n′

cyc.

Each test proceeds as follows:

• Let q := ⌈t̂mix/(n
′
cyc · |â|)⌉ and r := q · n′

cyc.

• Let k := ⌊ cinit+r·|â|−max((N−1)·|â|,t̂mix)
2r·|â|+n′

cyc·|â|
⌋

• Let D0 := {x̄r+(2r+n′
cyc)i+j | i ∈ {0, ..., k − 1}, j ∈ {1, ..., n′

cyc − 1}}.

• Let D1 := {x̄(2r+n′
cyc)i
| i ∈ {0, ..., k − 1}}.

• Use the training oracle to try to learn to distinguish D0 from D1, yielding f ∈ F .

• If ncyc = n′
cyc, then,

– Note that, because ncyc|r

∀i ∈ N, (2r + n′
cyc)i ≡ 0 (mod ncyc), (20)

but

∀i ∈ N, j ∈ {1, ..., n′
cyc − 1},

r + (2r + n′
cyc)i+ j ≡ j ̸≡ 0 (mod ncyc),

(21)

– Consequently, by Equation 19, all elements of D1 will have the same latent state, and
none of the elements of D0 have this latent state. By realizability, f will have 100%
accuracy on the training set. (This is the “true positive” case of the test.)

• Conversely, if ncyc < n′
cyc, there is only a small chance that any classifier f will have 100%

accuracy on the training set.
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– Define j′ as the (unknown) value j′ := (−r − 1)%ncyc +1. Noting, by assumption,
that ncyc < n′

cyc, we have that j′ ∈ {1, .., n′
cyc − 1}. Then, ∀i ∈ {0, ..., k − 1}, we

have that x̄r+(2r+n′
cyc)i+j′ ∈ D0, while x̄(2r+n′

cyc)i
∈ D1. However, we also have that:

r + (2r + n′
cyc)i+ j′ ≡ (2r + n′

cyc)i (mod ncyc) (22)

which by Equation 19 implies that

s̄r+(2r+n′
cyc)i+j′ = s̄(2r+n′

cyc)i
. (23)

– Now, we can define D
(j′)
0 ⊆ D0 as

D
(j′)
0 := {x̄r+(2r+n′

cyc)i+j′ | i ∈ {0, ..., k − 1}}. (24)

– Fix any arbitrary classifier f ′ ∈ F .
– In order for f ′ to have 100% accuracy on the training set, we must have f ′(x) = 1 for

all x ∈ D1, and f ′(x) = 0 for all x ∈ D
(j′)
0 .

– Note that all observations in D1⊎D(j′)
0 are collected at least tmix steps apart from one

another. (Specifically, x̄r+(2r+n′
cyc)i+j′ is collected (r+ j′) · |â| ≥ r · |â| ≥ tmix steps

after x̄(2r+n′
cyc)i

, and (r+n′
cyc− j′) · |â| ≥ r · |â| ≥ tmix steps before x̄(2r+n′

cyc)(i+1).)

– Because, additionally, D(j′)
0 and D1 are defined independently of Ω, by Lemma 1 we

have:

∀t ∈{t′|x̄t′ ∈ D1 ⊎D
(j′)
0 },

ps − 1/4 ≤ Pr(f ′(x̄t) = 1|(D1 ⊎D
(j′)
0 )<t, ϕ

∗(x̄t) = s) ≤ ps + 1/4
(25)

where (D1 ⊎D
(j′)
0 )<t refers to the samples in D1 ⊎D

(j′)
0 collected before x̄t and:

∀s ∈ S, ps := Pr(f ′(x) = 1|x ∼ Q(s, e), e ∼ πE). (26)

Then, by Equation 26, the probability that f ′ returns 1 on all samples in D1, and 0 on
all samples in D

(j′)
0 is at most:

Πk−1
i=0 (ps̄(2r+n′

cyc)i
+ 1/4) ·Πk−1

i=0 (1− (ps̄r+(2r+n′
cyc)i+j′ − 1/4)). (27)

By Equation 23, this is:

Πk−1
i=0 (ps̄(2r+n′

cyc)i
+ 1/4) ·Πk−1

i=0 (1− (ps̄(2r+n′
cyc)i
− 1/4)). (28)

Rearranging gives us:

FPR(f ′) ≤ Πk−1
i=0 (−p2s̄(2r+n′

cyc)i
+ ps̄(2r+n′

cyc)i
+ 5/16). (29)

Because ∀p, −p2 + p+ 5/16 ≤ 9/16, we can upper-bound this as:

FPR(f ′) ≤ Πk−1
i=0 (−p2s̄(2r+n′

cyc)i
+ ps̄(2r+n′

cyc)i
+ 5/16) ≤

(
9

16

)k

(30)

– As a uniform convergence bound:

FPR(f) ≤ |F|
(

9

16

)k

(31)

• Finally, we take a union bound over all values of n′
cyc. To do this, we must lower bound k

for all values of n′
cyc. First, note that

t̂mix +N |â| − 1 ≥ t̂mix + n′
cyc|â| − 1 ≥ r|â| (32)
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Then:

k = ⌊ (t̂mix +N · |â| − 1) · (2 · nsamp. cyc. − 1) +N · |â| · nsamp. cyc. + r · |â|
2r · |â|+ n′

cyc · |â|
⌋

≥ ⌊r · |â| · (2 · nsamp. cyc. − 1) +N · |â| · nsamp. cyc. + r · |â|
2r · |â|+N · |â| ⌋

≥ ⌊nsamp. cyc.⌋
≥ nsamp. cyc..

(33)

So we have that, by union bound over all values of n′
cyc:

FPR(f) ≤ (N − 1)|F|
(

9

16

)nsamp. cyc.

(34)

Collecting D′
i:

We now know that sCF eventually enters a cycle of length ncyc · |â|, where ncyc is known. This is
the latent-state cycle [scyc∗0 , scyc∗1 , ..., scyc∗|â|·ncyc−1] mentioned in Proposition 1.

Depending on the value of ncyc, we might now need to extend xCF (and, respectively sCF ) by
making additional loops through â, until the length of xCF is at least c, where:

c := 2 · ncyc · |â| ·
(
(nsamp. − 1) ·

⌈
t̂mix

|â| · ncyc

⌉
+ 1

)
+ t̂mix +max((N − ncyc) · |â|, t̂mix). (35)

This will entail taking an additional max(c − cinit, 0) steps on M . Note that in the worst case, this
means that CycleFind takes a total of at most:

max(cinit, c) ≤ max
(
(2t̂mix + 3N · |â| − 2) · nsamp. cyc. −N · |â|,

2 · (t̂mix + |S| · |â| − 1) · nsamp. + 1
)

+max(N · |â| − |â| − t̂mix, 0) + 1 actions.

(36)

We now define how to collect two datasets for each position in the cycle in sCF , DA
i and DB

i for
each i ∈ {0, ..., ncyc · |â| − 1}. Specifically we take:

DA
i =

{
xj |∃k ∈ {0, ..., nsamp. − 1} :

j = k ·
(
|â| · ncyc ·

⌈
t̂mix

|â| · ncyc

⌉)
+ n0 + (i− n0)%

(
ncyc · |â|

)} (37)

where we let
n0 := max((N − ncyc) · |â|, t̂mix), (38)

and

DB
i =

{
xj |∃k ∈ {0, ..., nsamp. − 1} :

j = k ·
(
|â| · ncyc ·

⌈
t̂mix

|â| · ncyc

⌉)
+ n′

0 + (i− n′
0)%

(
ncyc · |â|

)} (39)

where

n′
0 := n0 + (nsamp. − 1) ·

(
|â| · ncyc ·

⌈
t̂mix

|â| · ncyc

⌉)
+ |â| · ncyc + t̂mix. (40)

Note that, because we know that sCF enters a cycle of length ncyc · |â| after at most (N−ncyc) · |â| ≤
n0 transitions, we have that,

∀i, j ≥ n0, i ≡ j (mod ncyc · |â|)→ si = sj . (41)
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Figure 4: Illustration of the sampling procedure for datasets D′
i. The first goal is to ensure that

for each cycle position i, the samples in D′
i are sampled tmix steps apart from each other, and are

therefore nearly i.i.d. We also want to ensure that for any pair of cycle positions i, j, there is a large
subset of D′

i that only contains samples retrieved at least tmix steps apart from some large subset of
D′

j . (This second goal is meant to guarantee that if D′
i and D′

j represent the same latent state, then
it is unlikely that any classifier exists than can separate the two subsets perfectly, which would be
strictly necessary to perfectly separate D′

i and D′
j). However, it is not necessary for all samples in

∪iDi to be collected tmix steps apart. Therefore, we collect an observation of each cycle position
i ∈ {0, ncyc · |â|}, all together, every t̂mix steps (rounded up to the cycle period). We continue until
nsamp observations of each position are collected; then wait t̂mix steps and collect nsamp additional
observations of each cycle position. This process ensures that D′

i and D′
j contain complementary

subsets DA
i and DB

j , each with at least nsamp samples, such all samples in DA
i ∪ DB

j are near-i.i.d.

Therefore, because:

k ·
(
|â| · ncyc ·

⌈
t̂mix

|â| · ncyc

⌉)
+ n0 + (i− n0)%

(
ncyc · |â|

)
≡ i (mod ncyc · |â|) (42)

(and a similar equivalence holds for n′
0), we have that, for any fixed i, all observations in DA

i ⊎ DB
i

must share the same latent state. Also, for any fixed i, all observations in DA
i and DB

i are collected
at least t̂ steps apart. Additionally, DA

i and DB
i are defined solely in terms of ncyc and â, and so

the selection of samples to put in these sets only depends on the sequence of latent states s that the
Ex-BMDP traverses, and is therefore defined deterministically and independently of of Ω (assuming
ncyc is correctly determined). We therefore define

D′
i := DA

i ⊎ DB
i , (43)

and note that all elements in this set both share the same latent state and were collected at least t̂
steps apart from one another.

Additionally, for any fixed pair i, j, all observations in DA
i ⊎ DB

j are collected at least t̂ steps apart
from one another.

Using the c samples in xCF , this allows us to construct DA
i and DB

i , for each i ∈ {0, ncyc · |â| − 1},
where |DA

i | = |DB
i | = nsamp.. See Figure 4 for an illustration of the sampling procedure.

Identifying new latent states from D′:

At this point, each set D′
i consists of observations of a single latent state s, but two such sets D′

i
and D′

j may represent the same latent state, and D′
i may contain the same latent state as some

previously-collected D(s) for some s ∈ S ′.
In order to identify the newly-discovered latent states to add to S ′, and appropriately update D(·)
and T ′, we proceed as follows:

• For i ∈ {0, ..., ncyc · |â| − 1}:
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– For each s ∈ S ′, use the training oracle to learn a classifier f ∈ F , with D0 := D(s)
and D1 := D′

i. If f can distinguish D0 from D1 with 100% training set accuracy, then
we conclude (with high probability) that D(s) and D′

i represent two different latent
states. Otherwise, we conclude that D(s) and D′

i both represent the same latent state.
– If D′

i is identified as representing some already-discovered latent state s ∈ S ′ then
discard D′

i. (Or, we can update D(s) by merging the samples in D′
i into it; this choice

does not affect our analysis – however, we should avoid doing this if D(s) was either
defined, or already updated, during this call of CycleFind: this is because two datasets
D′

i and D′
j from the same iteration of CycleFind may contain observations that were

sampled fewer than t̂mix steps apart from each other, which would break the inductive
assumption on D(s) if they are both merged into D(s).) Record this latent state s as:

scyc
i := s (44)

– Otherwise, if D′
i does not represent the any latent state s ∈ S ′, then D′

i (and D′′
i )

represents a newly-discovered state. We update S ′ by inserting a new state s′ into it,
and update D(s) by associating s′ with D′

i :

S ′ ← S ′ ∪ {s′}
D(s′) := D′

i

(45)

Finally, we also record this new latent state as :

scyc
i := s′ (46)

• To analyse the success rate of using the training oracle to determine if a given D(s) and D′
i

represent the same latent state, consider the following:

– If D(s) and D′
i contain different latent states, then f will be able to distinguish D0

from D1, deterministically, with 100% accuracy on the training set (due to our realiz-
ability assumption.)

– Otherwise, D(s) and D′
i both contain samples entirely of the same latent state, s.

Then, either:

* The latent state s was identified before the current run of the CycleFind subroutine.
Therefore, some subset of samples D′

0 ⊆ D0 = D(s) were added to D(s) before
the current run of CycleFind, such that |D′

0| ≥ nsamp. Let D′
1 := D1 = D′

i, and
note also that all samples in D′

0 ⊎D′
1 were collected at least t̂mix steps apart from

one another. (This is by inductive hypothesis forD(s), by construction forD′
i, and

by the fact that each run of CycleFind starts by “wasting” at least t̂mix steps.)
* The latent state s was identified during the current run of CycleFind, such that
D(s) = D′

j for some j < i. Then let D′
0 := DA

j ⊆ D0 and D′
1 := DB

i ⊆ D1.
Note that |D′

0|, |D′
1| ≥ nsamp., and all observations in D′

0 ⊎D′
1 were collected at

least t̂mix steps apart from one another.
* In either case, the choice of samples to include in D′

0 ⊎D′
1 was made determinis-

tically and independently of Ω (by construction and/or assumption).
We define ps as in Equation 72. Note that the samples in D′

0 and D′
1 were observed at

least t̂mix steps apart, at deterministically-chosen timesteps. Then Lemma 1 is applica-
ble, and we have that the probability that an arbitrary f ′ ∈ F returns 1 on all samples
from D1 ⊇ D′

1; and also returns 0 on all samples from D0 ⊇ D′
0 is at most:

(ps + 1/4)nsamp. · (1− (ps − 1/4))nsamp. =

(−p2s + ps + 5/16)nsamp. ≤
(

9

16

)nsamp. (47)

As a uniform convergence bound, we then have that:

FPR(f) ≤ |F|
(

9

16

)nsamp.

(48)
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• Note that at all iterations, |S ′| ≤ |S|, so we train at most |S|·ncyc · |â| classifiers. Therefore,
by union bound, the total failure rate is bounded by:

Pr(fail) ≤ |S| · ncyc · |â| · |F|
(

9

16

)nsamp.

(49)

• Note that the states scyc
i now represent the latent states associated with the cyclic part of

xCF . Because we know the actions in the cycle, we can use this information to update
T ′. Specifically, ∀i ∈ {0, 1, ..., |â| · ncyc − 1}, the action taken after scyc

i and before
scyc
(i+1)%(|â|·ncyc)

is âi%|â|. We can then update:

T ′(scyc
i , ai%|â|)← scyc

(i+1)%(|â|·ncyc)
(50)

Return the updated S ′,D, and T ′, as well as scurr.:

Returning the updated S ′,D, and T ′ is straightforward. Note that the choice to assign or merge a
given D′

i in to a given D(s) depends only on the latent states s in the datasets, and so is independent
of Ω.

We have then shown that, if CycleFind succeeds, then states [scyc
0 , .., scyc

ncyc·|â|−1], have been added
to S ′, if they were not present already. These states correspond to the states in the cycle
[scyc∗0 , .., scyc∗ncyc·|â|−1], and the corresponding transitions have been added to T ′; furthermore, the
datasets D(s) have been updated appropriately.

To determine the learned latent state of the Ex-BMDP M after CycleFind is run, simply note that
this is equivalently the state corresponding to the observation xc, which we know belongs to dataset
D′

c%(ncyc |̇â|)
. We then know that this observation must have the same latent state as the rest of

D′
c%(ncyc |̇â|)

; that is, the observation scyc
c%(ncyc·|â|).

The total failure rate for the CycleFind algorithm can be bounded by union bound from the failure
rates of Parts 1 and 3 of the algorithm; that is, Equations 34 and 49. That is:

Pr(fail) ≤ (N − 1) · |F|
(

9

16

)nsamp. cyc.

+ |S| · ncyc · |â| · |F|
(

9

16

)nsamp.

≤ (N − 1) · |F| δ

4|A|N(N − 1)|F| +N3 · (D + 1) · |F| δ

4|A|N4(D̂ + 1)|F|

≤ δ

2|A| ·N .

(51)

All claims of Proposition 1 have therefore been proven.

B.1.2 STEEL PHASE 1

Note that given a fixed â, there might be multiple different state cycles that could be discovered
by CycleFind. However, only one will actually be discovered, depending on the state that the Ex-
BMDP starts in as well as the not-yet-discovered parts of the state dynamics. For example, consider
an Ex-BMDP A := {L,R}, S := {1̂, 2̂} with the following latent dynamics:

1̂ 2̂

R

RL L

If we set â := [L], then, depending on the initial state, CycleFind will either collect samples of 1̂
and discover its self-loop transition, or collect samples of 2̂ and discover its self-loop transition.

In order to learn the complete latent dynamics of the Ex-BMDP, we maintain a representation T ′ of
the partial transition graph that has been discovered so far, and iteratively apply CycleFind using, at
each step, an action sequence â that is guaranteed to produce a cycle that is not entirely contained in
the partial graph discovered so far.
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Note that this is not as simple as choosing a sequence of actions that leads to an unknown state
transition from the final latent state of the Ex-BMDP reached in the previous iteration of CycleFind.
For example, consider the following partially-learned latent state dynamics (with A := {L,R}):

1̂ 2̂

3̂4̂

R

R

RR
L

L

LL

Here, the only unknown transition from an known state is the effect of the ‘R’ action from 4̂. Suppose
we know from the previous iteration of CycleFind that the current latent state of the Ex-BMDP is
scurr. = 3̂. Naively, it might seem as if running CycleFind with â = [R,R] would learn some new
transition dynamics or states, because it would navigate through the unknown transition. However,
this might not be the case in fact. In particular, the ‘R’-transition from 4̂ might only be visited
transiently. For example, suppose the full latent dynamics of the Ex-BMDP are as follows (with the
currently unknown parts shown in gray):

1̂ 2̂

3̂4̂5̂

6̂

R

R

RR

L

L

LLR

L

R

L

Then, if we run CycleFind with â = [R,R], it will converge to a cycle between the nodes 1̂ and 2̂:

1̂ 2̂

3̂4̂5̂

6̂

R

R

RR

L

L

LLR

L

R

L

RR

R

R R

R

Note that the states (1̂ and 2̂) and associated transitions that CycleFind converges on were already
explored, so we learn no new information from this application of CycleFind.

Instead, at each iteration, we design â so that no cycle of the actions â can be entirely contained
within the currently-known partial transition graph. We show that the length of the resulting â is at
most (D + 1)|S|.
We proceed as follows. Note that in the first iteration, before any latent states are known, we can
simply use â = [a] for some arbitrary a ∈ A. Otherwise, we use the following algorithm:

• Initialize B with all of the previously-learned latent states (that is, B ← S ′.)
• While B is non-empty:

– Remove some latent state s from B.
– Use Dijkstra’s algorithm to compute a shortest path in the partial transition graph that

starts at s and ends at any not-yet-defined transition. (that, is, any transition for which
T ′(·, ·) = ⊥). ( Note this must be possible. Otherwise, because all states can reach
each other in the full latent dynamics, if there were no such undiscovered edge in the
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same connected component as s, then we would know that we have already found the
complete latent dynamics.) Also note that the shortest path through such an edge can
have length at most D + 1, simply because:

* The length of the shortest path from s to the state with the undefined edge in the
full transition graph T is at most D.

* Suppose that some transition on this shortest path is missing in the partial transition
graph T ′. Concretely, let d be the first state along this path such that the transition
out of it is missing. Then, we have a path from s to d of length less than D, and
we know that d is itself missing a transition. Then d can be used in place of the
original state with the undefined edge: it has a missing transition, and it is at most
D steps, in T ′, from s.

– Let â′ be the list of actions on the path we have found from s through an undefined
edge. Note that taking actions â′ from s will result in taking an unknown transition,
and that |â′| ≤ D + 1.

– Replace B with the set of states that can result from starting at any state s′ ∈ B
and then taking actions â′, according to the learned partial transition graph T ′. For
a given s′ ∈ B, if this path leads to an unknown transition, do not insert any state
corresponding to s′ into the new B .

– Concatenate â′ to the end of â.

Note that at every iteration, |B| decreases by at least 1, so the algorithm runs for at most |S ′| iter-
ations, so the final length of â is at most (D + 1)|S ′|. Also note that, by construction, taking all
actions in â will traverse an unknown transition at some point, starting at any latent state that has
been learned so far. As a consequence, any cycle traversed by taking â repeatedly must involve at
least one transition (and possibly some states) that are not yet included in the partial transition graph.
Therefore, applying CycleFind using an â constructed in this way is guaranteed to learn at least one
new transition. Therefore, to fully learn the transition dynamics, we must apply CycleFind at most
|A| · |S| times.

Also, note that the process of constructing â at each iteration depends only on the partial latent
dynamics model T ′, which in turn depends only on the choices of â in previous invocations of
CycleFind, and ultimately these depend only on the starting latent state sinit and the ground-truth
dynamics T . Therefore â is at every iteration independent of Ω, as required by Proposition 1.

Then, assuming CycleFind succeeds at each invocation, by the end of Phase 1, STEEL will have
discovered the complete state set S and transition function T , up to permutation.

B.1.3 STEEL PHASE 2

In the next phase, once we have completely learned T ′ (that is, once there are no state-action pairs
s ∈ S ′, a ∈ A for which T ′(s, a) is undefined), we collect additional samples of each latent state,
until the total number of samples collected for each is at least d, where:

d := ⌈3|S
′| ln(16|S ′|2|F|/δ)

ϵ
⌉. (52)

We can leverage the fact that we now have a complete latent transition graph as well as knowledge
of the current latent state scurr. from the last iteration of CycleFind.

To do this, we proceed as follows:

• Use T ′ to plan a sequence of actions ā such that:

– t̂mix ≤ |ā| ≤ max(|S| ·D, t̂mix +D), and
– Taking the actions in ā starting at scurr. traverses a cycle. That is,

T ′(T ′(T ′(...T ′(scurr., ā0), ā1), ā2), ..., ā|ā|−1)) = scurr. (53)

and,
– Taking the actions in ā starting at scurr. visits all latent states in s ∈ S ′ \ {scurr.} such

that |D(s)| < d at least once.
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Note that planning such a sequence ā always must be possible. For example, starting
at scurr., we can greedily plan a route to the nearest as-of-yet-unvisited latent state s ∈
S ′ \{scurr.} such that |D(s)| < d and repeat until all such states have been visited, and then
navigate back to scurr.. This takes at most |S ′| · D steps. If this sequence has length less
than t̂mix, then we can insert a self-loop at any state in the sequence (such as the state with
the shortest self-loop) and repeat this self-loop as many times as necessary until |ā| ≥ t̂mix.
Because all self-loops are of length at most D + 1, this can “overshoot” by at most D, so
we have that |ā| ≤ max(|S| ·D, t̂mix +D).

• Execute the actions in ā on M once without collecting data, in order to ensure that within
each set D(s), the newly-collected observations are collected at least t̂mix steps after obser-
vations added in previous phases of STEEL.

• Repeatedly take the actions ā on M , collecting the observation of each latent state s the
first time in the cycle that it is visited and inserting the observation into D(s), until ∀s ∈
S ′, |D(s)| ≥ d. Note that for a given latent state s, we collect observations of s exactly
|ā| steps apart. Because |â| ≥ t̂mix, this ensures that the observation added to D(s) are
collected at least t̂mix steps apart. Because each D(s) will already contain at least one
sample (from CycleFind), this process will take at most d− 1 iterations.

• Note that if for some state s ∈ S ′, |D(s)| reaches d during some iteration of taking the
actions ā, then for the next iteration, we can re-plan a shorter ā that does not necessar-
ily visit s. However, when we do this, we must execute the newly-planned cycle ā once
without collecting data, in order to ensure that all observation added to any particular D(s)
are collected at least t̂mix steps apart. This could require at most |S| additional iterations
through some ā.

This process will ensure that ∀s ∈ S ′, |D(s)| ≥ d, in at most

(d− 1 + |S|) ·max(D + t̂mix, |S| ·D) steps. (54)
Also, note that all samples collected during this phase are sorted into the appropriate dataset D(s)
entirely by open-loop planning on T ′, so the choice of samples in each D(s) remains independent
of Ω, and, in principle, can be a deterministic function of sinit.

B.1.4 STEEL PHASE 3

Finally, for each learned latent state s ∈ S ′, we train a classifier fs to distinguish D0 :=
⊎s′∈S′\{s}D(s′) from D1 := D(s). This set of classifiers allows us to perform one-versus-rest
classification to identify the latent state of any observation x, by defining:

ϕ′(x) := argmax
s

fs(x). (55)

Along with the learned transition dynamics T ′, this should be a sufficient representation of the latent
dynamics.

We want to guarantee that when the exogenous state e of the Ex-BMDP is at equilibrium (that is, is
sampled from its stationary distribution), for any latent state s, if x ∼ Q(s, e), then the probability
that fs(x) = 1 and, ∀ s′ ̸= s, f(s′) = 0 is at least 1 − ϵ. By union bound, we can do this by
ensuring that the accuracy of each classifier fs, on each latent state s′ ∈ S, is at least 1− ϵ/|S|. By
realizability, we know that ∀s, there exists some classifier f∗

s ∈ F for which f∗
s (s) = 1 iff ϕ∗(x) =

s. Therefore, we need to upper-bound the probability that ∃ f ′ ∈ F , for which ∀x ∈ D1, f(x) = 1
and ∀x ∈ D0, f(x) = 0, but for which either

Pr
x∼Q(s,e);e∼π

(f ′(x) = 0) ≥ ϵ

|S| (56)

Or, for any s′ ̸= s,
Pr

x∼Q(s′,e);e∼π
(f ′(x) = 1) ≥ ϵ

|S| . (57)

For all s, all samples in D(s) are collected at least tmix samples apart at timesteps chosen determin-
istically and independently of Ω. Therefore, for any single fixed classifier f ,we can use Lemma 2
and the fact that ∀s, |D(s)| ≥ d to bound the false-positive rates in Equations 56 and 57 as:

Pr

(
∀x ∈ D(s), f ′(x) = 1

∧
Pr

x∼Q(s,e);e∼π
f ′(x) = 0 ≥ ϵ

|S|

)
≤ 8e−

ϵ·d
3|S| . (58)
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and, ∀s′ ∈ S ′ \ {s},

Pr

(
∀x ∈ D(s′), f ′(x) = 0

∧
Pr

x∼Q(s′,e);e∼π
f ′(x) = 1 ≥ ϵ

|S|

)
≤ 8e−

ϵ·d
3|S| . (59)

Taking the union bound bound over s and all latent states s′ ∈ S ′ \ {s} gives a total false positive
rate for learning f ′ as fs as:

FPR(f ′, s) ≤ 8|S|e− ϵ·d
3|S| . (60)

Taking the union bound over all f ∈ F gives:

FPR(fs) ≤ 8|S||F|e− ϵ·d
3|S| . (61)

Finally, taking the union bound over each classifier fs gives:

FPR ≤ 8|S|2|F|e− ϵ·d
3|S| . (62)

B.1.5 BOUNDING THE OVERALL FAILURE RATE AND SAMPLE COMPLEXITY

Here, we bound the overall failure rate of the STEEL algorithm. We do this by separately bounding
the failure rate of the first phase of the algorithm (the repeated applications of CycleFind) and the
final phase of the algorithm, the learning of classifiers fs. We let each of these failure rates be at
most δ/2. Therefore, we must have, over the at most |S| · |A| iterations of CycleFind, a failure rate
of at most

δ

2
≥ |S| · |A| · Pr(CycleFind Fails). (63)

This is satisfied by Proposition 1 (noting that N ≥ |S|). The number of samples needed for these
|S| · |A| iterations of CycleFind, each with |â| ≤ |S| · (D + 1), is (by Equation 36) at most:

|S| · |A| ·
(
max

(
(2t̂mix + 3N · |S| · (D + 1)− 2) · nsamp. cyc. −N · |S| · (D + 1),

2 · (t̂mix + |S|2 · (D + 1)− 1) · nsamp. + 1
)

+max((N − 1) · |S| · (D + 1)− t̂mix, 0) + 1

) (64)

Which is upper-bounded by:

|S| · |A| ·
(
max

(
(2t̂mix + 3N · |S| · (D + 1)− 2) · nsamp. cyc.,

2 · (t̂mix + |S|2 · (D + 1)− 1) · nsamp.

+ 2 +max((N − 1) · |S| · (D + 1)− t̂mix, 0)
)) (65)

where nsamp. is given by Equation 11 and nsamp. cyc. is given by Equation 18. Meanwhile, the overall
failure rate of the second phase is at most

δ

2
≥ 8|S|2|F|e− ϵ·d

3|S| . (66)

Solving for d in Equation 66 gives:

3|S| ln(16|S|2|F|/δ)
ϵ

≤ d. (67)

Which is indeed satisfied by Equation 52, given that the structure of the latent dynamics were cor-
rectly learned using CycleFind in the first phase of the algorithm, so that |S ′| = |S|.
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By Equation 54, we then know that the number of samples needed for this phase is at most:

max(D + t̂mix, |S| ·D) ·
(
⌈3|S| ln(16|S|

2|F|/δ)
ϵ

⌉ − 1 + |S|
)
. (68)

Combining the number of samples over both phases and simplifying gives us an overall upper-bound
of the number of required samples of:

max(D + t̂mix, |S| ·D)·
(
3|S| ln(16|S|2|F|/δ)

ϵ
+ |S|

)
+

|S| · |A| ·
(
max

(
(2t̂mix + 3N · |S| · (D + 1)− 2)·

(ln
(
4|A| ·N · (N − 1) · |F|/δ

)
/ ln(16/9) + 1),

2 · (t̂mix + |S|2 · (D + 1)− 1)·
(ln
(
4|A| ·N4 · (D̂ + 1) · |F|/δ

)
/ ln(16/9) + 1)

+ 2 +max((N − 1) · |S| · (D + 1)− t̂mix, 0)
))

(69)

This gives us a big-O sample complexity of (using that D̂ ≤ N and |S| ≤ N ):

O
(
|S|2 ·N ·D · |A| · (log |A|+ log(N) + log |F|+ log(1/δ))+

|S| · |A| · t̂mix · (log |A|+ log(N) + log |F|+ log(1/δ))+

|S|2 ·D · (1/ϵ) · (log(|S|) + log |F|+ log(1/δ))+

|S| · t̂mix · (1/ϵ) · (log(|S|) + log |F|+ log(1/δ))
) (70)

Using the notation O∗(f(x)) := O(f(x) log(f(x))), we can write this as:

O∗
(
ND|S|2|A| · log |F|

δ
+ |S||A|t̂mix · log

N |F|
δ

+
|S|2D

ϵ
· log |F|

δ
+
|S|t̂mix

ϵ
· log |F|

δ

)
. (71)

Therefore, we have shown that, with high probability, STEEL returns (up to permutation) the correct
latent dynamics for the Ex-BMDP, and a high-accuracy latent-state encoder ϕ′, within the sample-
complexity bound stated in Theorem 1. This completes the proof.

C USEFUL LEMMATA

Lemma 1. Consider an Ex-BMDP M = ⟨X ,A,S, E ,Q, T, Te, πinit
E ⟩ starting at an arbitrary latent

endogenous state sinit ∈ S . Let Ω represent the sample space of the three sources of randomness in
M : that is, Te, Q, and the initial exogenous latent state einit. Assume that all actions on M are
taken deterministically and independently of Ω. Let f ∈ X → {0, 1} be a fixed arbitrary function,
and for each s ∈ S let

ps := Pr(f(x) = 1|x ∼ Q(s, e), e ∼ πE). (72)

where πE is the stationary distribution of Te. Consider a trajectory sampled from this Ex-BMDP de-
noted as xtraj := x′

0, x
′
1, x

′
2..., with endogenous latent states straj := s′0, s

′
1, s

′
2... (so that s′0 = sinit),

and exogenous states etraj := e′0, e
′
1, e

′
2... . Then, for any fixed t1, t2 ∈ N, selected independently of

Ω, where t2 − t1 ≥ tmix, we have that:

ps − 1/4 ≤ Pr(f(x′
t2) = 1|x′

≤t1 , s
′
t2 = s) ≤ ps + 1/4, (73)

where x′
≤t1

denotes the observations in the trajectory xtraj up to and including x′
t1 .

Note that this does not necessarily hold if t1, t2 depend on Ω.
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Proof. From the definition of mixing time:

∀e ∈ E , ∥Pr(e′t2 = ·|e′t1 = e)− πE∥TV ≤
1

4
. (74)

Then,

∀e ∈ E ,
∣∣∣Pr(f(x) = 1|x ∼ Q(s′t2 , e′), e′ ∼ πE)− Pr

x∼Q(s′t2
,e′t2

)
(f(x) = 1|e′t1 = e)

∣∣∣ ≤ 1

4
. (75)

Because e′t2 depends on x′
≤t1

only through e′t1 , we have:∣∣∣Pr(f(x) = 1|x ∼ Q(s′t2 , e′), e′ ∼ πE)− Pr
x∼Q(s′t2

,e′t2
)
(f(x) = 1|x′

≤t1)
∣∣∣ ≤ 1

4
. (76)

Then by Equation 72, ∣∣∣ps′t2 − Pr
x∼Q(s′t2

,e′t2
)
(f(x) = 1|x′

≤t1)
∣∣∣ ≤ 1

4
, (77)

which directly implies Equation 73. Note that this is does not hold if t1 and t2 can depend on Ω. For
example, if we define t2 := (min t such that f(x′

t) = 0 and t ≥ t1 + tmix), then trivially Equation
73 may not apply.

Lemma 2. Consider an irreducible, aperiodic Markov chain Te on states E with mixing time tmix
and stationary distribution πE , and an arbitrary function f : E → {0, 1}. Suppose Pre∼πE (f(e) =
1) ≤ 1−ϵ. Consider a fixed sequence of N timesteps t1, ..., tN , where ∀i, ti− ti−1 ≥ tmix. Now, for
a trajectory e0, ..., etN sampled from the Markov chain, starting at an arbitrary e0, we have that:

Pr(

N⋂
i=1

f(eti) = 1) ≤ 8e−
ϵ·N
3 . (78)

Proof. Define ϵ′ as:
ϵ′ := Pr

e∼πE
(f(e) = 0). (79)

Note that we know that ϵ′ ≥ ϵ. Now, fix any i ≥ tmix. Let M i denote the linear operator on state
distributions corresponding to taking i steps of the Markov chain: that is, M iπ gives the distribution
after i time steps. Also, let Π be the linear operator defined as:

Ππ :=

(∫
e ∈E

π(e)de

)
πe. (80)

Define the linear operator ∆i as:
∆i := M i −Π. (81)

By linearity and noting that both M i and Π are stochastic operators, we have that, for any π,∫
e∈E

(∆iπ)(e)de = 0. (82)

Also, from the definition of mixing time, we have, for any function π:

∥∆iπ∥1 ≤
1

2
∥π∥1. (83)

(To see this, for any e ∈ E consider the unit vector e⃗. Then, note that:

∥∆ie⃗∥1 = 2 · ∥πe −M ie⃗∥TV ≤
1

2
. (84)

Then, for any π, we have:

∥∆iπ∥1 = ∥
∫
e∈E

π(e)∆ie⃗ de∥1 ≤
∫
e∈E
|π(e)|∥∆ie⃗∥1de ≤

1

2
∥π∥1.) (85)
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Because πe is a stationary distribution of M i, we also have that:

∆iπe = (|M i −Π)πe = πe − πe = 0. (86)

Additionally, let Γ be the linear operator defined as:

Γπ :=

∫
e∈E

π(e)f(e)e⃗ de (87)

In other words, (Γπ)(e) := f(e) · π(e). One useful fact about this operator is that, for any function
π0 such that

∫
e∈E π0(e)de = 0, we have that∫

e∈E
(Γπ0)(e)de ≤

1

2
∥π0∥1. (88)

(To see this, note that we have:∫
e∈E

(Γπ0)(e)de+

∫
e∈E

((I − Γ)π0)(e)de = 0, (89)

and also that, because Γπ0 and (I − Γ)π0 are nonzero for disjoint e’s:

∥Γπ0∥1 + ∥(I − Γ)π0)∥1 = ∥π0∥1. (90)

Then, we also have: ∣∣∣ ∫
e∈E

(Γπ0)(e)de
∣∣∣ ≤ ∥Γπ0∥1, (91)

and ∣∣∣ ∫
e∈E

(Γπ0)(e)de
∣∣∣ = ∣∣∣ ∫

e∈E
((I − Γ)π0)(e)de

∣∣∣ ≤ ∥(I − Γ)π0∥1. (92)

Combining these equations and inequalities yields Equation 88.)

Now, consider the operator M iΓ. This operator, when applied to a probability distribution π, yields
the (unnormalized) probability density that results from applying Te to e′ i times, where e′ is sampled
from π conditioned on f(e′) = 1. More precisely, it is the density of e ∼ T i

e (e
′), scaled down by

the probability that f(e′) = 1. In other words, it is given by:

(M iΓπ)(e) = p(ei = e|e ∼ T i
e (e

′) ∧ f(e′) = 1 ∧ e′ ∼ π) · Pr
e′∼π

(f(e′) = 1). (93)

Now, consider any vector v. Note that v always can be uniquely decomposed as follows:

v := aπe + bv̄ where
∫
e∈E

v̄(e)de = 0 and ∥v̄∥1 = 1 and b ≥ 0. (94)

(Specifically, we must set a :=
∫
e∈E v(e)de and b := ∥v − aπe∥1 and v̄ := (v − aπe)/b.)

Assume that v is such that a ≥ 0. Now, consider the equation:

v′ = M iΓv (95)

If we consider the above decomposition, we have:

a′πe + b′v̄′ = M iΓ(aπe + bv̄) (96)

Note that this can be re-written as:

a′πe + b′v̄′ = ΠΓ(aπe + bv̄) + ∆iΓ(aπe + bv̄). (97)

Note that by Equation 80, the image of Π can be written in the form a′πe, while, by Equation 82,
the image of ∆i can be written as b′v̄, where b′ and v̄ are constrained as in Equation 97. Then, we
have (using Equation 80):

a′ =

∫
e ∈E

(Γ(aπe + bv̄))(e)de = a

∫
e ∈E

(Γπe))(e)de+ b

∫
e ∈E

(Γv̄))(e)de (98)

and:
b′ = ∥∆iΓ(aπe + bv̄)∥1 ≤ a∥∆iΓπe∥1 + b∥∆iΓv̄∥1. (99)
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Now, from Equation 98, we have:

a′ = a

∫
e ∈E

(Γπe)(e)de+ b

∫
e ∈E

(Γv̄)(e)de

≤ a

∫
e ∈E

(Γπe)(e)de+
b

2
∥v̄∥1 (by Equation 88)

≤ a(1− ϵ′) +
b

2
∥v̄∥1 (by Equation 79)

≤ a(1− ϵ′) +
b

2
(by definition of v̄)

(100)

And, from Equation 99, we have:

b′ ≤ a∥∆iΓπe∥1 + b∥∆iΓv̄∥1
≤ a∥∆i(I − (I − Γ))πe∥1 + b∥∆iΓv̄∥1
≤ a∥∆iπe∥1 + a∥∆i(I − Γ)πe∥1 + b∥∆iΓv̄∥1
≤ a∥∆i(I − Γ)πe∥1 + b∥∆iΓv̄∥1 (by Equation 86)

≤ a

2
∥(I − Γ)πe∥1 +

b

2
∥Γv̄∥1 (by Equation 83)

≤ aϵ′

2
+

b

2
∥Γv̄∥1 (by Equation 79)

≤ aϵ′

2
+

b

2
∥v̄∥1 (by Equation 90)

≤ aϵ′

2
+

b

2
(by definition of v̄.)

(101)

We can summarize these results as: [
a′

b′

]
≤
[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
a
b

]
. (102)

where there “≤” sign applies elementwise. Also, because the elements of this matrix are all non-
negative, we have: [

x′

y′

]
≤
[
x
y

]
=⇒

[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
x′

y′

]
≤
[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
x
y

]
. (103)

Now, let πt1 represent the probability distribution of the Markov chain at timestep t1, and πtN+tmix

be the probability distribution at timestep tN + tmix. Applying Equation 93 repeatedly gives us that:

M tmixΓM tN−tN−1ΓM tN−1−tN−2Γ ...M t2−t1Γπt1 =

πtN+tmix · Pr(f(et1) = 1) · Pr(f(et2) = 1|f(et1) = 1) ...

Pr(f(etN−1
) = 1| ∩N−2

i=1 f(eti) = 1) · Pr(f(etN ) = 1| ∩N−1
i=1 f(eti) = 1)

(104)

This gives us that:∫
e∈E

(M tmixΓM tN−tN−1Γ ...M t2−t1Γπt1)(e)de = Pr(∩Ni=1f(eti) = 1) (105)

where the right-hand side is the probability that we are ultimately trying to bound.

Now, let v0 := πt1 ; for 1 ≤ i ≤ N−1, let vi := M ti+1−tiΓM ti−ti−1Γ...Γπt1 ; and finally let vN :=
M tmixΓM tN−tN−1Γ...Γπt1 . Let ai and bi represent the components a and b in the decomposition
given in Equation 94 of vi. Note that:

aN=

∫
e∈E

(M tmixΓM tN−tN−1Γ ...M t2−t1Γπt1)(e)de= Pr(∩Ni=1f(eti) = 1). (106)

Also, note that ∀j ∈ [1, N ], we have that vj = M iΓvj−1, for some i ≥ tmix. Therefore, by Equation
102, [

ai
bi

]
≤
[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
ai−1

bi−1

]
. (107)
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(Additionally, each ai represents a probability, and so ai ≥ 0, so Equation 102 is applicable.) Now,
due to the relation shown in Equation 103, we can apply this inequality recursively:[

ai
bi

]
≤
[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
ai−1

bi−1

]∧[
ai−1

bi−1

]
≤
[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
ai−2

bi−2

]
=⇒[

ai
bi

]
≤
[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
ai−1

bi−1

]∧
[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
ai−1

bi−1

]
≤
[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
1− ϵ′ 1

2
ϵ′

2
1
2

] [
ai−2

bi−2

]
=⇒[

ai
bi

]
≤
[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
ai−1

bi−1

]
≤
[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
1− ϵ′ 1

2
ϵ′

2
1
2

] [
ai−2

bi−2

]
(108)

So that we have: [
aN
bN

]
≤
([

1− ϵ′ 1
2

ϵ′

2
1
2

])N [
a0
b0

]
. (109)

The matrix
[
1− ϵ′ 1

2
ϵ′

2
1
2

]
has eigenvalues ( 3

2−ϵ′)±
√

ϵ′2+ 1
4

2 ; we can use the closed-form solution to the

Nth power of an arbitrary 2 × 2 matrix given by Williams (1992) to exactly write this upper-bound
on aN :

aN ≤
[ ( 32 − ϵ′) +

√
ϵ′2 + 1

4

2

N

1√
ϵ′2 + 1

4

[
1− ϵ′ − ( 3

2−ϵ′)−
√

ϵ′2+ 1
4

2
1
2

]T

−

 ( 32 − ϵ′)−
√
ϵ′2 + 1

4

2

N

1√
ϵ′2 + 1

4

[
1− ϵ′ − ( 3

2−ϵ′)+
√

ϵ′2+ 1
4

2
1
2

]T ] [
1
b0

]
.

Where we are also using that πt1 is a normalized probability distribution, so a0 = 1. Simplifying:

aN ≤
[ ( 32 − ϵ′) +

√
ϵ′2 + 1

4

2

N

1√
ϵ′2 + 1

4

1

4
− 3ϵ′

2
+

√
ϵ′2 + 1

4

2
+

b0
2



−

 ( 32 − ϵ′)−
√
ϵ′2 + 1

4

2

N

1√
ϵ′2 + 1

4

1

4
− 3ϵ′

2
−

√
ϵ′2 + 1

4

2
+

b0
2

]

This gives us:

aN ≤
[ ∣∣∣∣∣∣

( 32 − ϵ′) +
√
ϵ′2 + 1

4

2

∣∣∣∣∣∣
N

1√
ϵ′2 + 1

4

∣∣∣∣∣∣14 − 3ϵ′

2
+

√
ϵ′2 + 1

4

2
+

b0
2

∣∣∣∣∣∣
+

∣∣∣∣∣∣
( 32 − ϵ′)−

√
ϵ′2 + 1

4

2

∣∣∣∣∣∣
N

1√
ϵ′2 + 1

4

∣∣∣∣∣∣14 − 3ϵ′

2
−

√
ϵ′2 + 1

4

2
+

b0
2

∣∣∣∣∣∣
] (110)

Note that because πt1 is a normalized probability distribution, we have that b0 is at most 2 (with
this maximum achieved when πt1 has disjoint support from πe.) Numerically one can see that, for
ϵ′ ∈ [0, 1],

−.7 <
1

4
− 3ϵ′

2
+

√
ϵ′2 + 1

4

2
≤ .5 (111)

−1.9 <
1

4
− 3ϵ′

2
−

√
ϵ′2 + 1

4

2
≤ 0 (112)

32



Published as a conference paper at ICLR 2025

Additionally, we can bound 1√
ϵ′2+ 1

4

≤ 2. Then this gives us:

aN ≤
[
4

∣∣∣∣∣∣
( 32 − ϵ′) +

√
ϵ′2 + 1

4

2

∣∣∣∣∣∣
N

+ 4

∣∣∣∣∣∣
( 32 − ϵ′)−

√
ϵ′2 + 1

4

2

∣∣∣∣∣∣
N ]

(113)

Because, for ϵ′ ∈ [0, 1],
∣∣∣∣ ( 3

2−ϵ′)−
√

ϵ′2+ 1
4

2

∣∣∣∣ < ∣∣∣∣ ( 3
2−ϵ′)+

√
ϵ′2+ 1

4

2

∣∣∣∣, and using Equation 106, we can

bound:

Pr(

N⋂
i=1

f(eti) = 1) ≤ 8

 ( 32 − ϵ′) +
√
ϵ′2 + 1

4

2

N

(114)

This bound is clearly somewhat unwieldy; to obtain a more manageable bound, it is helpful to
consider the asymptotic behavior near ϵ′ = 0. Letting δ := Pr(

⋂N
i=1 f(eti) = 1), we have:

ln δ ≤ ln 8 +N ln
( 32 − ϵ′) +

√
ϵ′2 + 1

4

2
(115)

For ϵ′ small, we have ϵ′2 ≪ 1
4 , so

√
ϵ′2 + 1

4 ≈ 1
2 . Then:

ln δ ≲ ln 8 +N ln

(
1− ϵ′

2

)
(116)

Then, using the standard approximation ln(1− x) ≈ −x gives us:

ln δ ≲ ln 8− Nϵ′

2
. (117)

This approximation would give us δ ≲ 8e−
Nϵ′
2 . However, while this holds approximately for small

ϵ′, it does not hold exactly. Despite this, it does suggest a form for our final bound. If we try 8e−
Nϵ′
3 ,

we find that it holds that:

( 32 − ϵ′) +
√
ϵ′2 + 1

4

2
≤ e−

ϵ′
3 on the interval 0 ≤ ϵ′ ≤ 0.44. (118)

Combining with Equation 114, this implies that

δ ≤ 8e−
Nϵ′
3 on the interval 0 ≤ ϵ′ ≤ 0.44. (119)

For very large ϵ′, we can use a much simpler bound on Pr(
⋂N

i=1 f(eti) = 1). Recall that:

δ = Pr

(
N⋂
i=1

f(eti) = 1

)
=Pr

(
f(etN ) = 1

∣∣∣∣∣
N−1⋂
i=1

f(eti) = 1

)

·Pr
(
f(etN−1

) = 1

∣∣∣∣∣
N−2⋂
i=1

f(eti) = 1

)
· ...
·Pr(f(et2) = 1|f(et1) = 1) · Pr(f(et1) = 1)

(120)

However, because ∀i, ti − ti−1 ≥ tmix, we have that:

∀i > 1, Pr

f(eti) = 1

∣∣∣∣∣
i−1⋂
j=1

f(etj ) = 1

 ≤ Pr
e∼πe

(f(e) = 1) +
1

4
=

5

4
− ϵ′ (121)

Combining these equations gives us:

δ ≤
(
5

4
− ϵ′

)N−1

· Pr(f(et1) = 1)

≤
(
5

4
− ϵ′

)N−1

=

(
5

4
− ϵ′

)−1(
5

4
− ϵ′

)N

≤ 8

(
5

4
− ϵ′

)N
(122)
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Where we used that ϵ′ ≤ 1 in the last step. Finally, it holds that:(
5

4
− ϵ′

)
≤ e−

ϵ′
3 on the interval 0.37 ≤ ϵ′ ≤ 1. (123)

This then implies that:
δ ≤ 8e−

Nϵ′
3 on the interval 0.37 ≤ ϵ′ ≤ 1. (124)

Combining with Equation 119, we have that

∀ϵ′ ∈ [0, 1], Pr

(
N⋂
i=1

f(eti)

)
≤ 8e−

Nϵ′
3 (125)

Because ϵ′ ≥ ϵ, we have:

Pr

(
N⋂
i=1

f(eti)

)
≤ 8e−

Nϵ′
3 ≤ 8e−

Nϵ
3 . (126)

which was to be proven.

D UPPER-BOUNDING MIXING TIMES FOR EXAMPLES

Here, we prove that the values of t̂mix used in the simulation experiments are in fact (somewhat
loose) upper bounds on the true mixing times of Te for these environments. While in practice, the
true mixing times would not be known a priori, it is important for the validity of our examples that
the true tmix is in fact ≤ t̂mix.

We use the following following well-known fact:

For distributions A := A1 ⊗A2 ⊗ ...⊗An and B := B1 ⊗ B2 ⊗ ...⊗ Bn:

∥A − B∥TV ≤
n∑

i=1

∥Ai − Bi∥TV (127)

First, we deal with the combination lock experiment. We can write the transition matrix for any
arbitrary two-state Markov chain as [

1− ϵ0 ϵ1
ϵ0 1− ϵ1

]
(128)

where 0 ≤ {ϵ0, ϵ1} ≤ 1. Note that in our particular example, we have 0.1 ≤ {ϵ0, ϵ1} ≤ 0.9.

This matrix has eigenvalues 1 and 1 − ϵ0 − ϵ1, and the stationary distribution (the eigenvector
corresponding to the eigenvalue 1) is

π∞ := [ϵ1/(ϵ0 + ϵ1), ϵ0/(ϵ0 + ϵ1)]
T . (129)

Using the closed-form formula for the n’th power of a two-state Markov Chain given by Williams
(1992), we have:([

1− ϵ0 ϵ1
ϵ0 1− ϵ1

])n

=
1

ϵ0 + ϵ1

[[
ϵ1 ϵ1
ϵ0 ϵ0

]
− (1− ϵ0 − ϵ1)

n

[
−ϵ0 ϵ1
ϵ0 −ϵ1

]]
(130)

To compute the mixing time, we compute the state distribution πn, n timesteps after each starting
state: ([

1− ϵ0 ϵ1
ϵ0 1− ϵ1

])n [
1
0

]
=

1

ϵ0 + ϵ1

[
ϵ1 + (1− ϵ0 − ϵ1)

nϵ0
ϵ0 − (1− ϵ0 − ϵ1)

nϵ0

]
(131)

and, ([
1− ϵ0 ϵ1
ϵ0 1− ϵ1

])n [
0
1

]
=

1

ϵ0 + ϵ1

[
ϵ1 − (1− ϵ0 − ϵ1)

nϵ1
ϵ0 + (1− ϵ0 − ϵ1)

nϵ1

]
(132)
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Note that the TV distance between either of these distributions and the stationary distribution π is at
most

∥πn − π∞∥TV ≤
|(1− ϵ0 − ϵ1)|n max(ϵ0, ϵ1)

(ϵ0 + ϵ1)
≤ |(1− ϵ0 − ϵ1)|n. (133)

The parameters {ϵ0, ϵ1} for each two-state Markov chain are chosen uniformly at random, such that
0.1 ≤ {ϵ0, ϵ1} ≤ 0.9. Therefore, 0 ≤ |(1 − ϵ0 − ϵ1)| ≤ 0.8. Then, for any individual chain, we
have:

∥πn − π∞∥TV ≤ |(1− ϵ0 − ϵ1)|n ≤ 0.8n (134)

In the combination lock experiments, there are up to L = 512 of these noise Markov chains; the
probability distribution over the exogenous noise E is the product distribution over these chains.
Then we use Equation 127 to bound the total TV distance for the chain Te to its stationary distribu-
tion πE ; that is:

∥πtotal
n − πE∥TV ≤ 512 · 0.8n. (135)

Then, by the definition of mixing time, we have:

tmix ≤ minn, such that 512 · 0.8n ≤ 1

4
(136)

Which gives us:

tmix ≤
⌈− log(2048)

log(0.8)

⌉
= 35. (137)

So the value that we use in the experiment, t̂mix = 40, is a valid upper bound.

For the multi-maze experiment, the exogenous noise state consists of eight identical mazes, with
agents moving uniformly at random in each of them. Unlike the “combination lock” example, where
the individual components of the exogenous noise are conditioned on parameters ϵ0, ϵ1, which can
vary, in the multi-maze example the individual mazes always represent instances of exactly the same,
specific Markov chain. Let the transition matrix of this chain be M , with stationary distribution πM .
Then, by Equation 127, for the whole exogenous state Te, we have:

tmix =minn, such that ∀s0, ∥(Te)ns0 − πE∥ ≤
1

4

=minn, such that ∀s(1)0 , s
(2)
0 , ...s

(8)
0 ,
∥∥∥Mns

(1)
0 ⊗Mns

(2)
0 ⊗ ...⊗Mns

(8)
0 −

πM ⊗ πM ⊗ ...⊗ πM

∥∥∥ ≤ 1

4

≤minn, such that ∀s0,
8∑

i=1

∥Mns0 − πM∥ ≤
1

4

=minn, such that ∀s0, ∥Mns0 − πM∥ ≤
1

32

(138)

Which is to say that tmix for the entire exogenous noise chain is upper-bounded by tmix(1/32)
for the individual maze chain M . Furthermore, while the state space for the entire chain is of size
|E| = 688, the individual maze chain M operates on a state of size 68. This is small enough that
it is tractable to exactly compute tmix(1/32) for M using numerical techniques. We performed the
computation (source code is provided with the supplementary materials), and found that

minn, such that ∀s0, ∥Mns0 − πM∥ ≤
1

32
= 293. (139)

Therefore, for the full exogenous noise chain Te, we have that tmix ≤ 293. Then the value that we
use in the experiment, t̂mix = 300, is a valid upper bound.
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E DISCUSSION OF ASSUMPTIONS

In this section, we argue that two major assumptions of the STEEL algorithm are necessary as-
sumptions. In other words, if we remove these assumptions, then, we argue, achieving similar
guarantees to our algorithm would become effectively impossible for any algorithm to accomplish
in the single-trajectory, no-resets Ex-BMDP setting (at least without making additional assumptions
to compensate). These assumptions are (1) reachability: the assumption that all endogenous states
s ∈ S are reachable from one another in T ; and (2) the availability of a known upper bound on the
exogenous state mixing time tmix.

E.1 REACHABILITY

Here, we argue that any algorithm for single-trajectory, no-resets representation learning of Ex-
BMDPs must necessarily make a reachability assumption: that all endogenous latent states must be
reachable from one another. At a high level, we argue that, if all latent states are not reachable from
one another, then an algorithm must visit states in a particular order in order to explore the entire
dynamics with a single trajectory. However, because the latent dynamics are not known a priori, it
is impossible for an algorithm to guarantee that it visits states in the appropriate order.

More formally, recall that the reachability assumption is that for any pair of latent states s1, s2, there
exists both a path from s1 to s2 and a path from s2 to s1. Consider any Ex-BMDP M where this
condition does not hold, such that |A| ≥ 2, and any learning algorithm A. Firstly, if there is any pair
of states s1 and s2 where neither can reach the other, then clearly a single trajectory is insufficient to
learn the Ex-BMDP, because it cannot visit both s1 and s2. Therefore, we restrict to the case where,
for each pair of states, either both are reachable from each other, or (without loss of generality) s2
is reachable from s1 but s1 is not reachable from s2.

Consider every edge (s, a, s′) of the state transition graph defined by the state transition function
T . If, for all such edges, s is reachable from s′, then the reachability assumption holds on the
entire dynamics (because all single “steps” are invertible by some sequence of actions, so for any
pair s1, s2, the path from s1 to s2 implies the existence of a path from s2 to s1). Therefore, if
reachability does not hold, then there exists some edge (s, a, s′) such that s is not reachable from
s′. Now, consider the first time that the algorithm A encounters the state s. Regardless of the details
of A, there must exist some action a′ such that, on this first encounter, the probability of A taking
action a′ is at least 1/|A|.
Therefore, if a′ = a, then probability that the algorithm A never revisits s, and so never takes any
other action from s apart from a′, is at least 1/|A|. Then, with substantial probability, the algorithm
A never explores the |A| − 1 other possible transitions from s, and cannot possibly learn the full
dynamics of the Ex-BMDP. (To be more precise, the algorithm’s output will not depend at all on
the ground-truth value of T (s, a′′) for a′′ ∈ A \ {a}, and so is highly unlikely to return the correct
values for these transitions on arbitrary Ex-BMDPs.)

Alternatively, if a′ ̸= a, then consider the alternative Ex-BMDP M ′, which is identical to M in
every way (in terms of dynamics, exogenous state, emission function, etc.), except that the effects
of actions a and a′ on the latent state s are swapped. Note that before first encountering the latent
state s, the MDPs M and M ′ will produce identically-distributed sequences of observations, so the
algorithm A will behave identically on them, and have identical internal memory/state. Then, when
first encountering s, the algorithm M on A will take action a′ with substantial probability, and then
transition to s′ and be unable to revisit s.

Therefore, for any Ex-BMDP M that violates reachability, any algorithm A is either likely to fail
on M , or to fail on a slightly-modified version of M . In any case, no such algorithm will be able to
succeed with high probability on any general class of Ex-BMDPs that does not require reachability.

E.2 KNOWN UPPER BOUND ON THE MIXING TIME tMIX

Here, we argue that the assumption that an upper bound on the mixing time is provided is also
necessary. We argue that:
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1. Any general, provably sample-efficient algorithm for learning, with high probability, an
Ex-BMDP from a single trajectory must necessarily require an upper bound on the mixing
time of the exogenous noise to be provided a priori (unless some other information about
the exogenous noise is provided.)

2. The runtime of any algorithm for learning an Ex-BMDP must, in the worst case, include
some term that scales at least linearly with the mixing time of the exogenous noise.

At a high level, we argue that, with a single trajectory, it can be impossible to distinguish between
a static exogenous dynamics (i.e., where only one exogenous state exists) and an extremely slow-
mixing exogenous dynamics, in time sublinear in the mixing time. For any proposed algorithm that
does not have access to a bound on the mixing time, and any Ex-BMDP with a single exogenous
state (that is, a Block MDP), we can construct an extremely slow-mixing Ex-BMDP that behaves
identically to the Block MDP with substantial probability during the entire duration of the runtime
of the learning algorithm, but which at equilibrium has a quite different distribution of observations.
This will make the learned encoder fail on the Ex-BMDP at equilibrium.

More precisely, to show (1): suppose the converse is true: that there exists some algorithm A that
learns Ex-BMDP latent dynamics and state encoders, which is not provided any upper-bound on the
mixing time of the exogenous noise of the Ex-BMDP, or any other information about the exogenous
noise distribution. We assume that A can learn the correct endogenous dynamics, as well as an
encoder with accuracy (for every endogenous state, under the stationary exogenous distribution)
of at least 1 − ϵ, with probability at least 1 − δ, for small values of ϵ and δ. Then, consider any
Ex-BMDP M1 and related parameterized family of Ex-BMDPs M2(γ),M3(γ) with the following
properties:

• M1 has N endogenous latent states s1, ..., sN with some transition function T , a single
exogenous latent state e1, and an emission function Q(s, e1). (In other words, M1 is any
Block MDP).

• M2(γ) has the same endogenous states and transition probabilities as M1, but has two
exogenous latent states e1, e2. The state e1 transitions to e2, and e2 transitions to e1, each
with probability γ. Note that the stationary distribution of the exogenous state is uniform
over e1 and e2. We also assume that the initial exogenous state distribution is uniform
over e1 and e2. Regardless of γ, the emission function of M2(γ) is defined such that
∀si,QM2

(si, e1) = QM1
(si, e1).

• M3(γ) is identical to M2(γ), except that its emission function is defined as
∀si,QM3

(si, e1) := QM1
(si, e1), but ∀si,QM3

(si, e2) := QM2
(s(i+1)%N , e2). In other

words, when the exogenous state is equal to e2, the emission distributions for the endoge-
nous states are permuted in M3 compared to M2.

We also assume that the encoder hypothesis class can represent the inverses of QM1
, QM2

, and
QM3

. However, note that by construction, any fixed encoder ϕ(·) which has accuracy at least 1− ϵ
on M2(γ) (for every endogenous state, under the stationary exogenous distribution) can only have
accuracy at most 0.5 + ϵ on M3(γ), because, when the exogenous state is e2, any time that the
encoder returns the correct latent state for M2(γ), it will return the incorrect latent state for M3(γ).8

Now, consider what happens when we run the algorithm A on M1. The number of environment
steps that A takes on M1 forms some distribution; let t be the 90’th percentile of this distribution,
so that with probability 0.9, A stops sampling before step t.

Now, we can set γ := 1 − 0.91/t, so that, with probability 0.9, the endogenous state of M2(γ) or
M3(γ) do not change before step t. Therefore, by union bound, on M2(γ) or M3(γ), if the initial
exogenous state is e1, then with probability at least 0.8, the exogenous state will stay constant at e1

8There is some nuance involved here: note that for an encoder ϕ to achieve a high accuracy, it only needs
to approximate σ(ϕ∗(·)) under some choice of permutation σ. However, we know that for any si, s(i+1)%N ∈
S, the ϕ which is highly accurate on M2(γ) must map all observations in the support of QM2(si, e1) and
QM2(s(i+1)%N , e2) to two distinct codes, each with marginal probability at least 1−2ϵ. Therefore, this ϕ will
map at least 0.5 − ϵ of the observations sampled from QM3(si, e) for e ∼ πE to one latent state, and at least
another 0.5 − ϵ of the observations sampled from this distribution to a different latent state. Then under any
choice of perturbation σ, the accuracy of ϕ(·) on M3 can be at most 0.5 + ϵ.
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up to timestep t, and the algorithm A, seeing exactly the same distribution of observations as if the
MDP was M1, will halt before timestep t.

Considering the 50% probability that the exogenous state starts at e1, this gives at least a 40%
chance that A applied to M2(γ) or M3(γ) never encounter the exogenous state e2. In this case, the
distribution of encoders output by A should be the same for the two Ex-BMDPs: let this distribution
be G. (That is, G is the conditional distribution of encoders output by A when applied to M2(γ) or
M3(γ), given that A never encounters e2.) However, because A fails on M2(γ) with probability at
most δ, we can conclude that at least (1− 0.4−1δ) of the encoders from the distribution G represent
successes of A on M2(γ).

Because A on M3(γ) also draws from G with probability at least 0.4, we can conclude that at least
0.4−δ of the time, A on M3(γ) produces an encoder that is highly accurate on M2(γ). As discussed
above, any encoder that is highly-accurate on M2(γ) cannot be highly accurate on M3(γ), so A must
fail on M3 with substantial probability.

Therefore, we can conclude that for any algorithm A that has no “hint” about the exogenous dynam-
ics (such as knowing the mixing time), there exists some γ such that A cannot possibly succeed with
high probability on both M2(γ) and M3(γ).

To show point (2), simply note that in this construction, in order to ensure that e2 is observed
with probability (1 − δ), an algorithm must observe at least the first ⌈log(2δ)/ log(1 − γ)⌉
timesteps. Meanwhile, the mixing time of the two-state Markov chain exogenous state is given
by ⌈−1/ log2(1 − 2γ)⌉. For a fixed δ and as γ approaches 0, the ratio between these quantities
approaches a constant: therefore, the number of steps required to ensure that e2 is observed with
high probability is linear in the mixing time.

F DOUBLE-PRIME LOOP EXPERIMENTS

In this section, we present additional experiments which demonstrate that, on some types on Ex-
BMDPs, the STEEL algorithm can empirically outperform the algorithms proposed in Lamb et al.
(2023) and Levine et al. (2024), which do not have sample-complexity guarantees. We show that
there are certain structures of Ex-BMDP latent dynamics which are difficult for these prior methods
to learn efficiently, but on which STEEL performs well. Specifically, we look at a family of “double-
prime loop” tabular Ex-BMDPs which are discussed by Levine et al. (2024). First, though, we
describe the algorithms proposed by Lamb et al. (2023) and Levine et al. (2024), and motivate why
certain dynamics structures such as “double-prime loops” present a challenge to these methods.

F.1 BACKGROUND

F.1.1 AC-STATE AND ACDF ALGORITHMS

Lamb et al. (2023) and Levine et al. (2024) both propose algorithms to learn endogenous state
encoders in the Ex-BMDP framework.

Lamb et al. (2023) first proposed the AC-State algorithm, which aims to learn an encoder ϕ : X →
N, such that, under some one-to-one permutation σ, σ(ϕ(x)) = ϕ∗(x). To accomplish this task,
AC-State optimizes ϕ using a multistep inverse dynamics objective.

Specifically, in the theoretical treatment, AC-State tries to find the encoder ϕ which optimizes the
following objective:

L(ϕ) := min
g∈N×N×N→P(A)

E
k∼{1,...,K}

E
(xt,at,xt+k)∼D

− log
(
g
(
ϕ(xt), ϕ(xt+k), k

)[
at
])

ϕAC-State := argmin
L(ϕ)=minϕ′ L(ϕ′)

|Range(ϕ)|
(140)

In other words, the loss L(ϕ) is minimized on tuples (xt, at, xt+k) sampled from a trajectory, con-
sisting of an observation xt, the following action at, and the observation k steps in the future, xt+k.

The encoder ϕ(x) is trained to retain any information about the observations ϕ(xt) and ϕ(xt+k) that
is useful for predicting at. Specifically, an inverse-dynamics model g is simultaneously trained with
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ϕ to predict at given ϕ(xt), ϕ(xt+k), and k. The loss L(ϕ) is then taken as the minimum loss for ϕ
over all such functions g.

However, note that, based on this loss function alone, the identity encoder ϕ(x) := x achieves the
minimum possible value of L(ϕ).9 Therefore, in order to filter exogenous information, the final
encoder returned by AC-State is the minimal range encoder that minimizes the loss function.

Lamb et al. (2023) claims that, if the data D is collected by a policy π(x) that only depends on x
through ϕ∗(x) (that is, the policy ignores exogenous noise); and the maximum segment length K is
at least the endogenous dynamics diameter D; and the endogenous dynamics are deterministic, then
the final encoder ϕAC-State returned will correctly encode the endogenous latent state (in the limit of
infinite data; and with sufficient function approximation).

When applied in practice, ϕ and g are learned neural networks, and a vector quantization bottleneck
is used to restrict the range of ϕ (so the output of ϕ is a quantized vector, rather than an integer.)

Levine et al. (2024) subsequently show that, in some cases, the AC-State objective in Equation 140
is not sufficient to learn a correct latent state encoder of an Ex-BMDP, even with unbounded amounts
of data. Levine et al. (2024) identify specific flaws in the proofs of Lamb et al. (2023), and propose
a modified loss function to address these flaws. In particular,

1. The maximum segment length K required to correctly learn the endogenous encoder must
in some cases be larger than D; a corrected upper bound on the necessary segment length
of 2D2 +D is given.

2. If the endogenous dynamics are periodic, then the multistep inverse objective can be in-
sufficient, for any choice of K. Levine et al. (2024) then propose to add an auxiliary loss
function to the loss in Equation 140, namely a latent forward dynamics loss:

Lforward(ϕ) := min
h∈N×A→P(N)

E
(xt,at,xt+1)∼D

− log
(
h
(
ϕ(xt), at

)[
ϕ(xt+1)

])
. (141)

This loss term enforces that the transitions in the learned endogenous latent state space are
deterministic; Levine et al. (2024) prove that enforcing this constraint is sufficient, when
combined with the multistep inverse loss, to ensure that a correct endogenous representa-
tions are learned even when the endogenous latent dynamics are periodic. Levine et al.
(2024) name the AC-State algorithm with this modified loss function ACDF.

Note that because D is in general unknown a priori, K must be treated as a hyperparameter of
the algorithm, so point (1) above is primarily of theoretical interest, but may aid in setting this
hyperparameter if there is some prior knowledge of D.

So far, we have only described the learning objectives of the two proposed algorithms: now, we
address how these algorithms collect the trajectory from which the tuples (xt, at, xt+k) are sampled.
Recall that a condition on the correctness of AC-State (and ACDF) is that the data-collection policy
does not depend on the noise in the observation, but only on the endogenous latent state. This
condition naturally raises the question of how exactly an algorithm intended to discover ϕ∗ can take
actions that depend only on ϕ∗(x), without already knowing ϕ∗ in the first place.

Lamb et al. (2023) performs experiments using two data-collection policies: (1). a uniformly ran-
dom policy, which meets the condition simply by ignoring the observation x entirely; and (2) a
goal-seeking policy, which aims to maximize latent state coverage. For the latter policy, the data
is collected simultaneously with training ϕ, and the partially-trained encoder ϕt is used to (imper-
fectly) filter out exogenous noise and plan in (an approximation of) the endogenous latent space.
Lamb et al. (2023) explicitly acknowledge that this bootstrapping approach breaks the condition
that the action at depends only on the true endogenous state ϕ∗(xt), which is necessary in their
proof of the correctness of their algorithm. Despite this, they observe that the approach seems to
work well empirically. Meanwhile, Levine et al. (2024) only use uniformly random actions in their
experiments.

For now, we will assume that data is collected under a uniformly-random policy. We will return to
discussing the latent-state-coverage maximizing approach proposed by Lamb et al. (2023) later, in
Section F.3.

9Assuming X is countable.
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Figure 5: Latent dynamics of DoublePrime(11, 13).

F.1.2 DOUBLE-PRIME LOOPS

To specifically demonstrate that K ≈ O(D2) can be necessary to learn a correct encoder, even
when a forward dynamics loss is also being used, Levine et al. (2024) give a concrete example. This
example is the family of tabular “double-prime loop” Ex-BMDPs. For any two primes p, q, with
p < q, let the Ex-BMDP DoublePrime(p, q) be defined as follows:

• S =
{
0, 1, ..., (q − 1), 0′, 1′, ..., (q − 1)′

}
; A = {0, 1}; E = {e0}.

• X = S; Q(s, e0) = s; Te(e0) = e0.
• The endogenous latent state transition function T is defined as:

T (s, a) =


(s+ 1)% q if s ∈ {1, ..., q − 1} or (s = 0 and a = 0)

((s+ 1)% q)′ if s ∈ {1′, ..., (q − 1)′} or (s = 0′ and a = 0)

(q − p+ 1)′ if (s = 0 and a = 1)

(q − p+ 1) if (s = 0′ and a = 1).

(142)

In other words, DoublePrime(p, q) is a noise-free Ex-BMDP, where all of the dynamics are de-
terministic, and the latent state s is directly observed as x. The dynamics consist of two connected
loops, each of q states. The actions are generally ignored and the agent continues to progress through
a loop, except for in states 0 and 0′, where taking the action 1 transports the agent to the other loop,
at position q − p+ 1. As an example, the dynamics of DoublePrime(11, 13) are shown in Figure 5.

There is also a related family of “single-prime loop” Ex-BMDPs. Let SinglePrime(p, q) be defined
as (borrowing notation from Levine et al. (2024)):

• S =
{
0∗, 1∗, ..., (q − 1)∗

}
; A = {0, 1}; E = {e0}; Te(e0) = e0.

• X =
{
0, 1, ..., (q − 1), 0′, 1′, ..., (q − 1)′

}
.

• Q(s∗, e0) =
{
s with probability 1/2

s′ with probability 1/2.

• The endogenous latent state transition function T is defined as:

T (s∗, a) =

{
((s+ 1)% q)∗ if s ∈ {1∗, ..., (q − 1)∗} or (s = 0∗ and a = 0)

(q − p+ 1)∗ if (s = 0∗ and a = 1).
(143)

In other words, SinglePrime(p, q) has the same observation space X and action space A as
DoublePrime(p, q), but fewer controllable latent states. In SinglePrime(p, q), when the agent is
at latent state st = i∗, either the observation xt = i or the observation xt = i′ is emitted, each with
probability 0.5. The agent progreses through the loop of latent states regardless of actions, except
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Figure 6: Latent dynamics of SinglePrime(11, 13).

in latent state 0∗, where taking action 1 transitions the latent state to (q − p + 1)∗. (See Figure
6 for an example.) Note that if we ignore the distinction between the observations i and i′, then
DoublePrime(p, q) and SinglePrime(p, q) appear to have identical observed dynamics.

Let ϕDP (x) := x be the optimal encoder for DoublePrime(p, q), and

ϕSP (x) := i∗ if x = i or x = i′ (144)

be the optimal encoder for SinglePrime(p, q).

Levine et al. (2024) show that, on the Ex-BMDP DoublePrime(p, q) under a uniformly random
behavioral policy, in the limit of infinite training data, the encoders ϕDP and ϕSP have exactly the
same loss under the loss function in Equation 140, with K ≤ (q − 1)p. Note that if p and q are
close, then (q − 1)p ≈ D2/4. Because Equation 140 prefers the smallest-range encoder among
encoders with identical losses, this means that AC-State will incorrectly return ϕSP (which only
has q distinct outputs, rather than 2q.). Futhermore, the forward-dynamics loss suggested by Levine
et al. (2024) does not help in this case: it will be zero for both encoders under data generated by
DoublePrime(p, q).

It is important to note that SinglePrime(p, q) and DoublePrime(p, q) have truly distinct controllable
latent dynamics: in DoublePrime(p, q), given sufficient lead-time, the agent can (eventually) control
whether it is in state 1′ or 1 at a future time step, while an agent in SinglePrime(p, q) can never
control this. Therefore, AC-State is making an error if it returns ϕSP rather than ϕDP .

Levine et al. (2024) only considers the case of unlimited data, and only introduces the double-prime
loop Ex-BMDPs to make the point that the hyperparameter K must be set very high in some cases.
Here, however, we will also show empirically that, even when using a carefully-tuned and very large
value of K, AC-State and ACDF can take many samples to correctly learn these dynamics.

F.1.3 TABULAR EXPERIMENTS IN LEVINE ET AL. (2024)

Levine et al. (2024) empirically compare AC-State (Lamb et al., 2023) to their proposed ACDF
method, and empirically explore the effect of the hyperparameter K. To do so from a purely
statistical perspective (i.e., controlling for differences in optimization), in one set of experiments,
Levine et al. (2024) perform tests on small tabular Ex-BMDPs, including SinglePrime(3, 5) and
DoublePrime(3, 5).10 For these experiments, the final learned ϕAC-State (or ϕACDF) is found by ex-
haustively computing the losses in Equations 140 and 141 on all possible encoders ϕ ∈ X →
{0, ..., |X | − 1} (up to a relabeling perturbation of the output). For each encoder ϕ, the multistep
inverse model g (and, for ACDF, the forward model h) is estimated as a tabular function based on

10The experiment in Levine et al. (2024) on SinglePrime(3, 5) is on a slightly different variant of the MDP
from what is presented here: the controllable latent dynamics are the same, but the noise is time-correlated.
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the collected data:

g(s, s′, k)[a] :=
# of instances of (xt,at,xt+k) such that ϕ(xt)=s;at=a; and ϕ(xt+k)=s′

# of instances of (xt,at,xt+k) such that ϕ(xt)=s and ϕ(xt+k)=s′ . (145)

However, due to overfitting, this tabular definition of g, if used naively, would always lead to the
identity encoder ϕ(x) := x having the lowest empirical loss, regardless of the true latent encoder.
Therefore, Levine et al. (2024) collect two trajectories for each experiment, and uses one to fit g and
h for each possible encoder ϕ, and the other to evaluate the loss on each ϕ in order to determine
the final output encoder ϕAC-State (or ϕACDF). We will call these sets of tuples the fitting set and
optimization set, repectively.

Because the number of possible encoders grows very quickly with |X |, Levine et al. (2024) limit
these experiments to very small tabular Ex-BMDPs, with |X | ≤ 10.

With this background out of the way, we describe our experiments:

F.2 EXPERIMENTS

F.2.1 SETUP

Given that Levine et al. (2024) describe how learning the correct latent state encoder for
DoublePrime(p, q) using a multistep-inverse loss requires taking into account specific long-duration
dependencies between states, we hypothesized that learning such an encoder using multistep-inverse
methods may be considerably less sample-efficient that doing so using STEEL, particularly for large
p and q. We therefore adapted the tabular Ex-BMDP experimental setup from the released code of
Levine et al. (2024) and tested the algorithms head-to-head.

However, for large p and q, the process of exhaustively searching all possible encoders (that is, all
partitions of 2q elements) quickly becomes intractable. Therefore, we restricted the hypothesis space
of encoders to only include the two hypotheses ϕSP and ϕDP . Note that this modification makes
the learning task strictly “easier.” For a fair comparison, we also restricted the hypothesis class for
STEEL to the minimum-possible set of “one-versus-rest” classifiers that would ensure realizability
for both DoublePrime(p, q) and SinglePrime(p, q). In particular, this is 3q classifiers f ∈ F : for
each i ∈ {0, ..., 1− q}, F includes a hypothesis which distinguishes i from all other observations, a
hypothesis which distinguishes i′ from all other observations, and a hypothesis which distinguishes
i or i′ from all other observations.

We make the following further modifications to the experimental protocol from Levine et al. (2024):

• When assessing the “minimum-range” minimal loss encoder as in Equation 140, Levine
et al. (2024) include an empirical “fudge factor”: their protocol returns the minimum-
range encoder that achieves a loss within 0.1% of the true minimum loss over all possible
encoders. We found that even without this fudge factor, the multistep-inverse methods
were still heavily biased towards returning ϕSR, when applied either to SinglePrime(p, q);
or to DoublePrime(p, q) with too-small K or too-few samples. This observation has a
simple statistical explanation: if, in the “infinite sample” limit, Pr(at|st = i, st+1 = j) =
Pr(at|st = i′, st+1 = j′), then fitting g(i, j, k) to both samples of (xt = i, at, xt+k = j)
and samples of (xt = i′, at, xt+k = j′) from the “fitting set” will lead to a higher-quality
multistep inverse model g, and therefore lower loss on the “optimization set”, compared to
using only the (smaller number of) samples of (xt = i, at, xt+k = j) alone. We therefore
remove the fudge factor entirely, and in fact return ϕGR in the case of exact numerical ties.

• Because the forward-model loss in Equation 141 is zero for both ϕSR and ϕGR for any
dataset collected from DoublePrime(p, q), we do not use it in our experiments: that is,
we regard AC-State and ACDF as equivalent in this setting, and refer to AC-State alone
from here onward. (Technically, the forward model loss would help identify the correct
encoder ϕSR in data generated from SinglePrime(p, q). However, as mentioned above,
ϕSR is already returned essentially “by default” by AC-State, so this loss term turns out to
be unnecessary.)

• To better match the spirit of “learning an Ex-BMDP from a single trajectory”, we collect
the “fitting” and “optimization” sets from one single trajectory, one after the other, with
each corresponding to half of the trajectory: we regard the total sample complexfity as the
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length of the entire trajectory. Within of these two sub-trajectories, we collect all available
tuples (xt, at, xt+k) for all k ≤ K. There are therefore slightly fewer tuples with k = K
than with k = 1: we weight all tuples equally in the loss (rather than weighting all values
of k equally; Lamb et al. (2023) is unclear about the “correct” behavior here, and it is not
theoretically important).

• Based on Equation 145, g(s, s′, k)[a] can be zero, which, by Equation 140, can lead to
an infinite loss on a sample in the “optimization” set. In order to avoid this, Levine et al.
(2024) set g(s, s′, k)[a] to an arbitrary floor value of 10−7. As a more principled and scale-
invariant solution, we use standard Laplace (“add-one”) smoothing when fitting g.

We empirically compare the sample-efficiency of STEEL to AC-State on these problems with
(p, q) = (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), and (41, 43).

In our comparison, we run each algorithm under the “best” choice of hyperparameters. For AC-
State, the conduct a large hyperparameter search to find the optimal K, while for STEEL, we
simply choose a single set of hyperparameters that will succeed on both DoublePrime(p, q) and
SinglePrime(p, q) based on our prior knowledge of the problems. Specifically:

• For AC-State, for each tested value of (p, q), we first collect 20 validation trajectories of
DoublePrime(p, q) (under a uniformly random policy), for increasing dataset sizes starting
at T = 100 steps. At each tested dataset size T , we compute the optimal ϕAC-State for
each of the 20 trajectories, with each possible value of K from K = 1 to K = 50, 000.
We first repeatedly increase the dataset size T by factors of 10. Once we first identify a
T = 10m such that, for at least some K, AC-State correctly returns ϕAC-State = ϕDP for all
20 trajectories, we then test with T = {2·10m−1, 3·10m−1, ..., 9·10m−1}. At the earliest of
these timesteps at which, for some K, a correct encoder is learned for all 20 trajectories, we
record the median such K as the “tuned” value Kopt of this hyperparameter. (See Figure 7
for the results of the hyperparameter search.) At this point, we perform the actual test:
we evaluate the success rate of AC-State on DoublePrime(p, q), using only K = Kopt,
for values of T starting at T = 10m−1 and increasing by increments of 10m−1, on 20 new
trajectories for each tested dataset size. We stop when this test-time accuracy reaches 20/20
on trajectories from DoublePrime(p, q), at some Tmax. Finally, we verify that AC-State can
also consistently, correctly learn ϕSP on data from SinglePrime(p, q) with K = Kopt and
a trajectory length of Tmax, for 20 trajectories. (This always held in practice.11)

• For STEEL, we set N = D̂ = 2q (to match the maximum number of states in
DoublePrime(p, q) or SinglePrime(p, q)); t̂mix = 1 (because neither DoublePrime(p, q)
nor SinglePrime(p, q) have time-correlated noise); ϵ = 0.49 (because, due to the simple
emission distributions Q of SinglePrime and DoublePrime, a 51% encoder accuracy on
each latent state implies a 100% encoder accuracy); and δ = 0.05. We test for 20 trials
each of SinglePrime(p, q) and DoublePrime(p, q). All of these tests returned the correct
encoders, so the only metric we needed to consider was the number of environment steps
taken for each run.

F.2.2 RESULTS

Our top-line results are reported in Table 3.Our first reported statistic is the “Max Steps”: the number
of environment steps at which all 20 out of 20 tested trajectories for each of DoublePrime(p, q) and
SinglePrime(p, q) returned the correct encoder. (For STEEL, this is simply the maximum steps taken
over all 40 trajectories; for AC-State, this is the Tmax discovered in the test-time search described
in the previous section.) We see that, while for small instances (|S| ≤ 14) of DoublePrime(p, q),
AC-State is more sample-efficient than STEEL, STEEL scales efficiently to larger instances of the
problem.

11We avoided more extensive testing with SinglePrime(p, q), both because, as discussed above, AC-State
tends to “default” to returning the encoder ϕSP , which is correct for SinglePrime(p, q); and also because
the deterministic dynamics of DoublePrime(p, q) allowed us to take some computational “shortcuts” when
evaluating the loss function in Equation 140 on data from DoublePrime(p, q) for very large K, which were not
possible for SinglePrime(p, q). This made more exhaustive experimentation on DoublePrime(p, q) significantly
more tractable than it would be on SinglePrime(p, q).
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Figure 7: Results from the hyperparameter search for the maximum-step-count parameter K in
Equation 140. The objective is to find a K which leads to a high success rate in learning the correct
latent state encoder for DoublePrime(p, q), for the lowest possible number of environment steps.

44



Published as a conference paper at ICLR 2025

(p, q) (3,5) (5,7) (11,13) (17,19) (29,31) (41,43)
Max Steps for STEEL 5.97 · 104 1.49 · 105 9.07 · 105 2.60 · 106 1.10 · 107 2.83 · 107

Max Steps for AC-State 4 · 103 4 · 104 1 · 106 8 · 106 1 · 108 5 · 108
Max Steps: (AC-State / STEEL) ≈ 0.07 ≈ 0.3 ≈ 1 ≈ 3 ≈ 9 ≈ 18

Median Steps (STEEL, DoublePrime) 2.50 · 104 7.48 · 104 5.23 · 105 1.08 · 106 1.74 · 106 3.29 · 106

Median Steps (AC-State, DoublePrime) 3 · 103 3 · 104 8 · 105 7 · 106 9 · 107 5 · 108
Median Steps: (AC-State / STEEL) ≈ 0.1 ≈ 0.4 ≈ 1.5 ≈ 6 ≈ 50 ≈ 150

Table 3: Comparison of the empirical sample complexity of STEEL and AC-State on prime-loop
MDPs. See text of Section F.2.2.

Further, we noticed an interesting trend in the data. AC-State tended to transition very abruptly
from learning the wrong encoder on all tests of DoublePrime to learning the correct encoder on all
tests as T increased (as can be observed in the hyperparameter search in Figure 7). By contrast, the
distribution of steps taken for STEEL on DoublePrime(p, q) was highly skewed: most trials took
significantly fewer than the maximum observed number of steps. We therefore also compare the
median number of steps taken to learn a correct encoder for DoublePrime(p, q). For STEEL, this
is computed as simply the median length of the 20 DoublePrime(p, q) trajectories tested. For AC-
State, it is the first timestep T in the test-time search where AC-State with K = Kopt learns a correct
encoder for at least 10 of the 20 trajectories. Here, we find that, especially for large (p, q), STEEL’s
advantage over AC-State becomes even more pronounced.

F.3 EXPLORATION POLICIES WITH AC-STATE

So far, we have only compared STEEL to AC-State, where AC-State uses a uniformly random
exploration policy. This may seem unfair: STEEL takes decidedly nonrandom actions, and Lamb
et al. (2023) proposes an active exploration method for AC-State (albeit, as mentioned in Section
F.1.1 above, a method without strict theoretical grounding).

However, there is reason to believe that exploration policies similar to the one proposed by Lamb
et al. (2023) would be unlikely to help correctly identify the dynamics of DoublePrime(p, q).

To start with, the stated goal of the the exploration policy in Lamb et al. (2023) is to “achieve
high coverage of the control-endogenous state space.” A natural question to ask is: how poorly do
uniformly random policies perform at achieving this goal? To quantify this, we examined the state
coverage for a single 106-step trajectory on DoublePrime(41, 43), and computed the ratio of the
state visitation of the most-visited state to the state visitation of the least-visited state. Surprisingly,
this was ≈ 2. In other words, DoublePrime is not a hard exploration problem, and so techniques
designed to improve state coverage would seem to be unlikely to provide much of a benefit over a
uniformly random policy.

Still, we will now examine the specific exploration technique proposed by Lamb et al. (2023). At a
high level, the technique proceeds as follows:

• Throughout data collection, the agent maintains an approximate version of the encoder
ϕ′ obtained by optimizing the AC-State loss (Equation 140), and an approximate transi-
tion function T ′, obtained through counting. The algorithm also maintains state visitation
counts for each of the learned latent states encoded by ϕ′.

• At the start of each round of exploration (time t), the agent selects a goal learned-latent
state sg , with probability inversely proportional to the visitation count. The agent then
takes a single random action at, and then, starting at time t + 1, plans shortest-path to sg ,
and computes the number of steps k′ it will take to get to sg . Then, the agent proceeds to
navigate to sg in a closed-loop manner, using both ϕ′ and T ′. After k′ steps, regardless of
whether sg is reached, a new goal is set, and the process starts over.

• The encoder ϕ is only trained on the tuples (xt, at, xt+k′+1) which begin with a random
action and end with a goal state.

We performed experiments of a version of this algorithm adapted for our tabular setting, on the
DoublePrime environments. Here, we explain the modifications we made to this exploration al-
gorithm from Lamb et al. (2023) for our tests. Examining the original algorithm, we immediately
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(p, q) (3,5) (5,7) (11,13) (17,19) (29,31)
Max Steps (AC-State, DoublePrime, Uniform Policy) 4 · 103 4 · 104 1 · 106 8 · 106 1 · 108

Max Steps (AC-State, DoublePrime, Exploration) 8 · 103 6 · 104 2 · 106 2 · 107 2 · 108
Median Steps (AC-State, DoublePrime, Uniform Policy) 3 · 103 3 · 104 8 · 105 7 · 106 9 · 107

Median Steps (AC-State, DoublePrime, Exploration) 6 · 103 4 · 104 2 · 106 2 · 107 2 · 108

Table 4: Comparison of the empirical sample complexity of AC-State on the DoublePrime(p, q)
environments, with and without active exploration. (Note that we did not perform a final comparison
for p = 41, q = 43, because the hyperparameter search for the active exploration policy (see Figure
8) with a maximum K of 50000 did not rule out a Kopt > 50000, so we could not fairly tune
this hyperparameter for the active exploration policy. We were unable to perform a hyperparameter
search with K > 50000 due to technical limitations.)

notice an issue: the encoder is only trained with segments of length k = k′ +1, which (assuming ϕ′

and T ′ are anywhere close to accurate) will only scale linearly with D. However, properly learning
the encoder for the DoublePrime environments requires examining longer segments of trajectories
than the diameter of the dynamics graph. Therefore, in order adapt this exploration method to the
setting we consider, we eliminate this feature of the algorithm and train ϕ on the entire collected
trajectory, as in Equation 140.

Furthermore, we give the exploration method what should be a large, unnatural advantage, by plan-
ning, choosing goals, and assessing state visitation on the true ground truth dynamics T , with the
ground-truth state encoder ϕ. This represents what should be the “best possible” case for the algo-
rithm. It also enables us to test in this setting without having to optimize ϕ′ continuously during data
collection, and to assess many values of the hyperparameter K (which would impact the intermedi-
ate encoder ϕ′) simultaneously on a single collected trajectory.

In our implementation, we reset the state visitation counts between collecting the “fitting” and “opti-
mization” portions of the trajectory, in order to ensure that they are distributed in the same way. We
also take uniformly random actions in cases where both actions produce a path of the same length
to the goal. Otherwise, we simply take the shortest available path to the goal state, and, when it is
reached, pick a new goal and take one random action.

Hyperparameter search results are shown in Figure 8, and top-line results are shown in Table 4.
We see in Table 4 that AC-State with the active exploration method seems to slightly underperform
random exploration on the DoublePrime(p, q) environments, requiring slightly more samples to find
the correct encoder, for all values of (p, q) that were tested.12 While it is not immediately obvious
why we see this gap, these results support our initial hypothesis that, because the DoublePrime en-
vironments are well-explored by uniformly random policies, techniques designed to improve latent
state coverage are not helpful in improving AC-State’s performance on these environments.

F.4 DISCUSSION

It is important to note that the DoublePrime environments are not hard-exploration environments,
nor do they have any time-correlated noise, nor do they have rich observations. In fact, adding
time-correlated noise or rich observations would likely only scale the sample-complexity of STEEL
on these environments only modestly (linearly in t̂mix and log(|F|)). Rather, STEEL outperforms
AC-State on large instances of these environments because the environments’ transition dynamics
are arranged in a way that is in a sense “adversarial” to multistep-inverse methods. By contrast,
because STEEL has well-understood sample-complexity that applies for any transition graph struc-
ture (as long as the reachability assumption holds), we do not expect that any such “adversarial”
environments to exist for STEEL.

12However, note that because we only tested trajectory lengths T at particular values as described in Section
F.2.1, some of these performance differences may appear exaggerated: for example, the difference between a
trajectory length of 1 · 106 and 2 · 106 must be interpreted with the understanding that no trajectory lengths
between 1 · 106 and 2 · 106 were tested.
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Figure 8: Results from the hyperparameter search for the maximum-step-count parameter K for
DoublePrime(p, q), using the active exploration policy described in Section F.3.

47


	Introduction
	Related Works
	Representation Learning for Ex-BMDP and Exo-MDPs
	Representation Learning for Block MDPs and Low-Rank MDPs

	Notation and Assumptions
	Algorithm
	Simulation Experiments
	Limitations and Conclusion
	Full Algorithm
	Proofs
	STEEL
	CycleFind Subroutine
	STEEL Phase 1
	STEEL Phase 2
	STEEL Phase 3
	Bounding the overall failure rate and sample complexity


	Useful Lemmata
	Upper-bounding mixing times for examples
	Discussion of assumptions
	Reachability
	Known upper bound on the mixing time t mix

	Double-Prime Loop Experiments
	Background
	AC-State and ACDF algorithms
	Double-Prime Loops
	Tabular Experiments in Levine et al. (2024)

	Experiments
	Setup
	Results

	Exploration policies with AC-State
	Discussion


