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A Datasets604

For our experiments, we utilized two distinct dataset combinations to support both the training and605

evaluation phases of our methodology.606

The dataset tables provide a comprehensive summary of the key characteristics of each dataset,607

including the number of samples, the primary pathology—glaucoma (G), diabetic retinopathy (DR),608

age-related macular degeneration (AMD), or multiple different diseases (Multiple)—the imaging609

center, which is either disc (D) or macula (M), field of view (FOV), geographic region, and image610

resolution.611

A.1 Diffusion and Pretraining Datasets612

The first combination involved non-annotated datasets used for training the RLAD model and613

pretraining segmentation models, as summarized in Table 7.614

Dataset # Samples Primary Pathology Image Center FOV (→) Region Resolution (px)
UZLF [53] 184 G D 30 Belgium 1444!1444
GRAPE [47] 81 G M 50 China 1444!1444
MESSIDOR [48] 67 DR M 45 France 1444!1444
PAPILA [50] 78 G D 30 Spain 1444!1444
MAGHREBIA [49] 69 – M, D 30 Maghreb 1444!1444
ENRICH 111 G D 45 Belgium 1958!2196
1000images [54] 973 Multiple D 30 China 3000x3152
DDR [55] 12 519 DR M 45 China 1728x2592
EYEPACS [56] 88 702 DR M 45 United States VAR
G1020 [57] 1020 G M 45 Germany 2423x3004
IDRID [58] 516 DR M 50 India 2848x4288
ODIR [59] 8000 Multiple M 45 China 1296x1936

Table 7: Summary of Datasets Used for Pretraining and RLAD Training. This table lists the
datasets used for pretraining segmentation models and training the RLAD framework. Key attributes
include the number of samples, primary pathologies, imaging center type, field of view (FOV),
geographic region, and resolution.

A.2 Segmentation Datasets615

The second combination comprised AV-annotated datasets, which were employed for training seg-616

mentation models on downstream tasks (Table 8) and for evaluating their performance (Table 9).617

Datasets annotated specifically for this study are marked with †, while those introduced and annotated618

as part of this work are marked with →.

Dataset # Samples Primary Pathology Image Center FOV (→) Region Resolution (px)
UZLF [53] 184 G D 30 Belgium 1444!1444
GRAPE† [47] 81 G M 50 China 1444!1444
MESSIDOR† [48] 67 DR M 45 France 1444!1444
PAPILA† [50] 78 G D 30 Spain 1444!1444
MAGHREBIA† [49] 69 – M, D 30 Maghreb 1444!1444
ENRICH↑ 111 G D 45 Belgium 1958!2196

Table 8: Summary of Datasets Used for Downstream Segmentation Training. This table lists the
annotated datasets used for training segmentation models in downstream tasks. Attributes include
the number of samples, primary pathologies, imaging center type, field of view (FOV), geographic
region, and resolution. Datasets marked with † were annotated specifically for this work, and those
marked with → were both introduced and annotated here.
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Dataset # Samples Primary Pathology Image Center FOV (→) Region Resolution (px)

Local UZLF-test [53] 56 G D 30 Belgium 1444!1444
LES-AV [16] 20 G D 30 Belgium 1444!1444

External

HRF [69] 45 DR, G M 45 Germany 2336!3504
INSPIRE [9, 62] 15 – D 30 USA 1444!1444

FIVES† [45] 75 DR, G, AMD M 45 China 1444!1444
UNAF [9, 63] 15 DR D 30 Paraguay 2056!2124

OOD

AV-WIDE† [52] 26 – D Ultra wide USA 829!1531
IOSTAR [64] 30 – M 45 Netherlands 1024!1024

DRIVE [65, 66] 40 DR M 45 Netherlands 584!565
RVD [10] 1270 – VAR 30 – 1800x1800

TREND † [46] 48 H M 30 Montenegro 2560x2560
MBRSET† [51] 30 DR, G, AMD M 30 Brazil 1444!1444

Table 9: Summary of Datasets Used for Segmentation Benchmark Evaluation. This table
categorizes datasets into in-domain (Local), near-domain (External), and out-of-domain (OOD)
groups for evaluating segmentation performance. Attributes include the number of samples, primary
pathologies, imaging center type, field of view (FOV), geographic region, and resolution. Datasets
marked with † were annotated specifically for this work, and those marked with → were both introduced
and annotated here.

B Training Hyperparameters620

All experiments were conducted on 4 Nvidia A100 (40G) GPUs using bfloat16 precision. In each621

training the AdamW optimizer [83] and the Cosine Annealing scheduler [84] were uniformly applied.622

Beyond these constants, each training was characterized by its own distinct set of hyperparameters.623

RLAD Training: comprised 84,000 training steps, with a learning rate 1e→ 4 and and a batch size624

of 12.625

Segmentation Models Pretraining: comprised 1 training epoch, with a learning rate 1.5e→ 4 and626

and a batch size of 128.627

Segmentation Models Finetuning: comprised 200 training epochs, with a learning rate 4e → 4.628

Other hyperparameters varied based on the backbone and are described in Table 10.629

Backbone # Epochs # Batch Size Learning Rate ω

DinoV2small [71] 200 12 4e→ 4 1.0
RETFound [72] 200 12 4e→ 4 0.1
SwinV2tiny [73] 200 12 4e→ 4 0.1
SwinV2large [73] 200 2 4e→ 4 0.1

Table 10: Hyperparameters for the segmentation downstream task finetuning.

C Additional Quantitative Results630

In addition to the metrics reported in the main paper, we report Intersection over Union (IoU) and631

centerline Dice score (clDice) for SwinV2Large + RLAD versus the open -souce models. IoU measures632

the ratio of the intersection to the union of the predicted and ground truth segmentation masks,633

providing an additional evaluation of segmentation performance. The IoU is computed separately634

for arteries (A) and veins (V), and we report the average IoU across both classes (IoUA + IoUV )/2.635

This metric complements the Dice score by offering a stricter evaluation of overlap, particularly for636

challenging cases with smaller or less distinct structures. Table 13 shows that our model outperform637

all open-source baseline for both clDice and IoU across all datasets, except the DRIVE where VascX638

[70] get higher IoU performance.639
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Backbone External OOD
HRF INSPIRE FIVES UNAF AV-WIDE IOSTAR DRIVE RVD TREND MBRSET

clDice IoU clDice IoU clDice IoU clDice IoU clDice IoU clDice IoU clDice IoU clDice IoU clDice IoU clDice IoU
Little W-Net [7] 53.3 41.5 70.7 55.6 71.9 59.0 68.5 52.5 41.1 28.1 26.6 19.3 59.7 44.4 32.1 22.2 51.9 36.9 35.2 34.6
Automorph [34] 76.7† 63.3† 71.5 55.3 72.1 57.9 66.3 49.9 49.9 33.9 52.3 38.4 77.3† 64.1† 31.6 22.6 65.3 50.4 62.0 47.8
VascX [70] 73.1 61.0 75.3 60.0 79.1 67.6 74.3 57.9 49.7 34.1 49.0 35.6 75.9 63.5 39.7 28.1 69.6 56.4 73.4 58.3
LUNet [9] 72.8 58.1 76.4 64.9 82.6 75.9 76.7 59.5 65.5 53.4 52.1 40.2 71.3 55.4 36.1 22.4 69.6 55.9 64.0 48.0
SwinV2Large + RLAD (Our) 81.1 67.5 83.0 65.5 86.9 77.7 78.3 61.4 73.2 55.7 73.0 59.8 80.3 62.9 49.1 33.0 77.9 63.8 86.8 76.0

Table 13: Additional RLAD Results. Quantitative comparison of SwinV2Large + RLAD versus open
source models. Performance is the average clDice/IoU for artery and vein. † indicates data leakage
during training.

D Additional Ablation Results640

Additional ablation results on the impact of the scale of the generated samples using clDice score are641

shown in Table 11. It shows that using more RLAD-generated samples also increased the average642

OOD performance for the clDice score.643

# Gen AV-WIDE IOSTAR DRIVE RVD TREND MBRSET OOD
0.5K 70.9 67.5 79.6 46.2 75.9 83.7 70.6
1.5K 70.9 68.2 79.6 46.8 76.0 84.0 70.9
7.2K 70.9 69.0 79.7 46.6 76.2 84.2 71.1

Table 11: Quantity of Generated Data. We evaluate the impact of increasing RLAD’s generated
data on performance, reporting clDice scores for each OOD dataset and their average performance.

E Impact of the Layout Extractor644

RLAD is trained on an approximation of the layout extracted by a deep learning model, rather than645

relying on a ground truth conditioning. This enables RLAD to learn a distribution pω(xt↑1|⊋layout, xt)646

instead of pω(xt↑1|layout, xt), allowing the model to adapt to noisy conditioning. Consequently,647

RLAD exhibits a degree of robustness to the errors typically made by the layout extractor. Figure 6648

illustrates this with intentionally corrupted images, generated by applying a random masking strategy.649

While the extracted blood vessels are impacted by the corruption, the final images generated by650

RLAD remain relatively unaffected, provided the density of the masks is limited. This robustness651

aligns with the known limitations of current retinal blood vessel segmentation models. Thus, we652

assume that the performance of the Layout Extractor remains a relatively unimportant factor (for653

small performance differences), given that its limitations will be mitigated by the diffusion model.654

F Additional Qualitative Results655

In Figure 5, we display some additional qualitative examples of our model compared to a SwinV2large656

baseline and a SOTA open-source model LUNet. We can see that our model more accurately segment657

the blood vessels of the DRIVE and TREND datasets.658

G Vascular Parameters Estimation659

Vascular parameters were estimated using the PVBM toolbox [17], including area (Area), tortuosity660

indices (TI, TOR), length (LEN), branching angles (BA), key vascular points (SPoints, EPoints,661

BPoints), fractal dimensions (D0, D1, D2, SL), and retinal metrics (CRAE/CRVE, AVR). Parameters662

were evaluated on OOD datasets by computing Pearson correlations between ground-truth and663

estimated values, with final scores representing averages across datasets and vascular structures664

(arteries/veins).665
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Figure 5: Qualitative Example on the Seg-
mentation Downstream Task. Comparing our
model’s AV segmentation to a SwinV2large [73]
trained on the UZLF dataset and SOTA model
LUNet [9], showcasing its superior performance
across diverse fundus images.

Vascular Little W-Net Automorph VascX LUNet OurParameters

Area 55.7 73.2 69.9 61.3 71.4
TI 46.3 61.3 62.9 59.3 71.7
TOR 45.6 53.9 61.7 60.6 68.8
LEN 56.8 69.3 68.9 68.5 75.5
BA 24.3 45.5 44.8 38.6 51.5
SPoints 41.6 56.4 56.7 55.4 62.2
EPoints 53.7 70.1 71.3 68.3 77.7
BPoints 39.4 55.3 55.8 53.1 65.2
D0 56.0 59.8 65.3 61.6 69.0
D1 60.9 68.3 73.2 72.7 80.7
D2 48.7 54.1 58.7 60.8 70.0
SL 48.8 53.8 54.3 59.0 63.6
CREH 55.1 66.0 66.8 69.9 75.8
CREK 52.1 65.5 62.1 67.4 75.0
AVRH 66.7 74.3 78.9 78.2 81.0
AVRK 31.4 41.9 44.1 47.4 52.9
Average 48.9 60.5 61.4 62.2 69.5

Table 12: RLAD Vascular Parameters Results.
Quantitative comparison of SwinV2Large + RLAD
(Our) versus open-source models. Performance
is reported as the average Pearson correlation co-
efficient in estimating vascular parameters across
OOD datasets.

AVCorrupted
Image

RLAD
Output

Figure 6: Impact of the layout extractor.
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