so1  Appendix: Enhancing Retinal Vessel Segmentation Generalizationvia
sz Layout-Aware Generative Modelling
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sos A Datasets

605 For our experiments, we utilized two distinct dataset combinations to support both the training and
606 evaluation phases of our methodology.

607 The dataset tables provide a comprehensive summary of the key characteristics of each dataset,
608 including the number of samples, the primary pathology—glaucoma (G), diabetic retinopathy (DR),
609 age-related macular degeneration (AMD), or multiple different diseases (Multiple)—the imaging
610 center, which is either disc (D) or macula (M), field of view (FOV), geographic region, and image
611 resolution.

612 A.1 Diffusion and Pretraining Datasets

613 The first combination involved non-annotated datasets used for training the RLAD model and
614 pretraining segmentation models, as summarized in Table[7]

Dataset # Samples Primary Pathology Image Center FOV (°) Region Resolution (px)
UZLF [53] 184 G D 30 Belgium 1444x1444
GRAPE [47] 81 G M 50 China 14441444
MESSIDOR [48] 67 DR M 45 France 1444x1444
PAPILA [50] 78 G D 30 Spain 14441444
MAGHREBIA [49] 69 - M, D 30 Maghreb 1444x1444
ENRICH 111 G D 45 Belgium 1958x2196
1000images [54] 973 Multiple D 30 China 3000x3152
DDR [55] 12519 DR M 45 China 1728x2592
EYEPACS [56] 88 702 DR M 45 United States VAR
G1020 [57] 1020 G M 45 Germany 2423x3004
IDRID [58] 516 DR M 50 India 2848x4288
ODIR [59] 8000 Multiple M 45 China 1296x1936

Table 7: Summary of Datasets Used for Pretraining and RLAD Training. This table lists the
datasets used for pretraining segmentation models and training the RLAD framework. Key attributes
include the number of samples, primary pathologies, imaging center type, field of view (FOV),
geographic region, and resolution.

615 A.2 Segmentation Datasets

616 The second combination comprised AV-annotated datasets, which were employed for training seg-

17 mentation models on downstream tasks (Table [8) and for evaluating their performance (Table[9).

s18  Datasets annotated specifically for this study are marked with t, while those introduced and annotated
as part of this work are marked with *.

Dataset # Samples Primary Pathology Image Center FOV (°) Region Resolution (px)
UZLF [53] 184 G D 30 Belgium 14441444
GRAPE [47] 81 G M 50 China 1444x1444
MESSIDOR' [48] 67 DR M 45 France 1444x1444
PAPILAT [50] 78 G D 30 Spain 1444x1444
MAGHREBIAT [49] 69 - M, D 30 Maghreb 1444x1444
ENRICH" 111 G D 45 Belgium 1958%2196

Table 8: Summary of Datasets Used for Downstream Segmentation Training. This table lists the
annotated datasets used for training segmentation models in downstream tasks. Attributes include
the number of samples, primary pathologies, imaging center type, field of view (FOV), geographic
region, and resolution. Datasets marked with T were annotated specifically for this work, and those
marked with * were both introduced and annotated here.
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Dataset # Samples Primary Pathology Image Center FOV (°) Region Resolution (px)

Local UZLF-test [53] 56 G D 30 Belgium 1444x1444
LES-AV [16] 20 G D 30 Belgium 1444x1444
HREF [69] 45 DR, G M 45 Germany 2336x3504
INSPIRE [9]l62] 15 - D 30 USA 1444x1444
External  FIVES' [45] 75 DR, G, AMD M 45 China 1444x1444
UNAF [9/[63] 15 DR D 30 Paraguay 2056x2124
AV-WIDE' [52] 26 - D Ultra wide USA 829x1531
IOSTAR [64] 30 - M 45 Netherlands 1024%x1024
DRIVE [65!166] 40 DR M 45 Netherlands 584%565
(010))] RVD [10] 1270 - VAR 30 - 1800x1800
TREND ' [46] 48 H M 30 Montenegro 2560x2560
MBRSET' [51] 30 DR, G, AMD M 30 Brazil 1444x1444

Table 9: Summary of Datasets Used for Segmentation Benchmark Evaluation. This table
categorizes datasets into in-domain (Local), near-domain (External), and out-of-domain (OOD)
groups for evaluating segmentation performance. Attributes include the number of samples, primary
pathologies, imaging center type, field of view (FOV), geographic region, and resolution. Datasets
marked with T were annotated specifically for this work, and those marked with * were both introduced
and annotated here.

e20 B Training Hyperparameters

621 All experiments were conducted on 4 Nvidia A100 (40G) GPUs using bfloat16 precision. In each
622 training the AdamW optimizer [83] and the Cosine Annealing scheduler [[84] were uniformly applied.
623 Beyond these constants, each training was characterized by its own distinct set of hyperparameters.

624 RLAD Training: comprised 84,000 training steps, with a learning rate 1e — 4 and and a batch size
625 of 12.

626 Segmentation Models Pretraining: comprised 1 training epoch, with a learning rate 1.5e — 4 and
627 and a batch size of 128.

628 Segmentation Models Finetuning: comprised 200 training epochs, with a learning rate 4e — 4.
629 Other hyperparameters varied based on the backbone and are described in Table

Backbone # Epochs # Batch Size Learning Rate )\
DinoV2gman [71] 200 12 de — 4 1.0
RETFound [72] 200 12 4e — 4 0.1
SwinV24ny [73] 200 12 de —4 0.1
SwinV2yge 73] 200 2 4e — 4 0.1

Table 10: Hyperparameters for the segmentation downstream task finetuning.

ss0 C Additional Quantitative Results

631 In addition to the metrics reported in the main paper, we report Intersection over Union (IoU) and
e32  centerline Dice score (clDice) for SWinV2p e + RLAD Versus the open -souce models. IoU measures
633 the ratio of the intersection to the union of the predicted and ground truth segmentation masks,
634 providing an additional evaluation of segmentation performance. The IoU is computed separately
ess for arteries (A) and veins (V), and we report the average IoU across both classes (IoU 4 + IoUy) /2.
636 This metric complements the Dice score by offering a stricter evaluation of overlap, particularly for
637 challenging cases with smaller or less distinct structures. Table|13|shows that our model outperform
638 all open-source baseline for both clDice and IoU across all datasets, except the DRIVE where VascX
639 [70] get higher IoU performance.
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Backbone External 00D

HRF INSPIRE FIVES UNAF AV-WIDE IOSTAR DRIVE RVD TREND MBRSET

clDice IoU |clDice IoU |cIDice IoU |clDice IoU |cIDice IoU |clDice IoU |clDice IoU |clDice IoU |clDice IoU |cIDice IoU
Little W-Net [7] 533 415 | 70.7 55.6| 719 59.0| 68.5 52.5| 41.1 28.1| 26.6 193] 59.7 444 | 32.1 222| 519 369| 352 346
Automorph [34] 7677 63.37| 71.5 553| 72.1 57.9| 663 49.9| 49.9 339| 52.3 1384|7737 64.1T| 31.6 22.6| 653 504| 62.0 478
VascX [70] 73.1 61.0| 753 60.0| 79.1 67.6| 743 57.9| 49.7 34.1| 49.0 35.6| 759 63.5| 39.7 28.1| 69.6 56.4| 73.4 583
LUNet [9] 72.8 58.1 | 76.4 649| 82.6 759| 76.7 59.5| 655 534| 52.1 40.2| 713 554 | 36.1 22.4| 69.6 559| 64.0 48.0

SWiNV2iarge 1 rLAD (Our) 811 67.5 | 83.0 65.5| 869 77.7| 783 61.4| 732 55.7| 73.0 59.8| 803 629 | 49.1 33.0| 779 63.8| 868 76.0

Table 13: Additional RLAD Results. Quantitative comparison of SwinV2p e + RLAD VErsus open
source models. Performance is the average clDice/IoU for artery and vein. T indicates data leakage
during training.

D Additional Ablation Results

Additional ablation results on the impact of the scale of the generated samples using cIDice score are
shown in Table[IT, It shows that using more RLAD-generated samples also increased the average
OOD performance for the clDice score.

# Gen AV-WIDE IOSTAR DRIVE RVD TREND MBRSET OOD

0.5K 70.9 67.5 79.6  46.2 75.9 83.7 70.6
1.5K 70.9 68.2 79.6  46.8 76.0 84.0 70.9
7.2K 70.9 69.0 79.7  46.6 76.2 84.2 71.1

Table 11: Quantity of Generated Data. We evaluate the impact of increasing RLAD’s generated
data on performance, reporting clDice scores for each OOD dataset and their average performance.

E Impact of the Layout Extractor

RLAD is trained on an approximation of the layout extracted by a deep learning model, rather than

relying on a ground truth conditioning. This enables RLAD to learn a distribution pg (z;—1 \la/y\out, xt)
instead of pp(z:_1[layout, x;), allowing the model to adapt to noisy conditioning. Consequently,
RLAD exhibits a degree of robustness to the errors typically made by the layout extractor. Figure [f]
illustrates this with intentionally corrupted images, generated by applying a random masking strategy.
While the extracted blood vessels are impacted by the corruption, the final images generated by
RLAD remain relatively unaffected, provided the density of the masks is limited. This robustness
aligns with the known limitations of current retinal blood vessel segmentation models. Thus, we
assume that the performance of the Layout Extractor remains a relatively unimportant factor (for
small performance differences), given that its limitations will be mitigated by the diffusion model.

F Additional Qualitative Results

In Figure[5] we display some additional qualitative examples of our model compared to a SwinV2large
baseline and a SOTA open-source model LUNet. We can see that our model more accurately segment
the blood vessels of the DRIVE and TREND datasets.

G Vascular Parameters Estimation

Vascular parameters were estimated using the PVBM toolbox [17]], including area (Area), tortuosity
indices (TT, TOR), length (LEN), branching angles (BA), key vascular points (SPoints, EPoints,
BPoints), fractal dimensions (DO, D1, D2, SL), and retinal metrics (CRAE/CRVE, AVR). Parameters
were evaluated on OOD datasets by computing Pearson correlations between ground-truth and
estimated values, with final scores representing averages across datasets and vascular structures
(arteries/veins).
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Vascular

Little W-Net Automorph VascX LUNet Our

Parameters

Area 55.7 73.2 69.9 613 714
TI 46.3 61.3 629 593 717
TOR 45.6 53.9 61.7 60.6 68.8
LEN 56.8 69.3 68.9 685 755
BA 24.3 45.5 448 38.6 51.5
SPoints 41.6 56.4 56.7 554 62.2
EPoints 53.7 70.1 713 683 717
BPoints 39.4 553 558 53.1 65.2
DO 56.0 59.8 653 61.6 69.0
D1 60.9 68.3 732 727 80.7
D2 48.7 54.1 58.7 60.8 70.0
SL 48.8 53.8 543 59.0 63.6
CREq 55.1 66.0 66.8 699 758
CREk 52.1 65.5 62.1 674 1750
AVRy 66.7 74.3 789 782 81.0
AVRg 314 41.9 44.1 474 529
“Average | 489 605 614 622 69.5

Table 12: RLAD Vascular Parameters Results.
Quantitative comparison of SWinV2p e + RLAD
(Our) versus open-source models. Performance

Figure 5: Qualitative Example on the Seg- is reportc?d as Fhe average Pearson correlation co-
mentation Downstream Task. Comparing our efficient in estimating vascular parameters across
model’s AV segmentation to a SWinV2jye [73] OOD datasets.

trained on the UZLF dataset and SOTA model

LUNet [9]], showcasing its superior performance

across diverse fundus images.

~
-~
.
.
_
\
T
.
.
-

o
£

/
)

)

Y\l\\\

cmmmmmg

~
-

Corrupted RLAD

Image ] Output
Figure 6: Impact of the layout extractor.
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