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A METHODS

A.1 FIXED-POINTS AND LINEARIZATION

We study several RNN architectures and we will generically denote their n-dimensional hidden state
and d-dimensional input at time ¢ as h; and x;, respectively. The function that applies hidden state
update for these networks will be denoted by F', so that h, = F'(h;_1,x;). The N output logits are
a readout of the final hidden state, y = Why + b. We will denote the readout corresponding to the
ith neuron by r;, fort =1,..., N.

We define a fixed point of the hidden-state space to satisfy the expression h* = F(h*,x). This
definitions of fixed-points is inherently x-dependent. In this text, we focus on fixed points when
X = Xavg, Where X,,, is defined to be the average input of the system. Since the natural datasets we
consider in this work generally have a large vocabulary of words and the input of the system is one-
hot encoded, for those datasets we will make the approximation X,y ~ 0. We will also be interested
in finding points in hidden state space that only satisfy this fixed point relation approximately, i.e.
h* ~ F(h*,x). The slowness of the approximate fixed points can be characterized by defining a

loss function ¢ := 1 |h — F(h, X)||§ Throughout this text we use the term fixed point to include
these approximate fixed points as well.

Expanding around a given hidden state and input, (h¢, x¢), the first-order approximation of F is

ht ~ F(heaxe) + Jl’CC|(he’xe) (htfl - he) + Jinp‘(he xe) (Xt - Xe) ) (2)
where we have defined the recurrent and input Jacobians as J{%°(h, x) := % and Jj;p (h,x) :=

%, respectively. If we expand about a fixed point h* ~ F'(h*, x = 0), the effect of an input x;

on the hidden state h7>; can be approximated by (J™¢)7~*J"Px,. Writing the eigendecomposition,
Jree = RAL, with L = R~!, we have

(Ire) TPy, = RATTILI™x, = > r AL ] I, 3)

a=1
where A is the diagonal matrix containing the (complex) eigenvalues, Ay > Ay > --- > A, that
are sorted in order of decreasing magnitude; r, are the columns of R; and EHT are the rows of L.

The magnitude of the eigenvalues of J™ correspond to a time constant 7, =

_ 1 ;
ogla] ‘ The time

constants, 7,, approximately determine how long and what information the system remembers from
a given input.

We find fixed points by minimizing a function which computes the magnitude of the displacement
F(h, x4) — h resulting from applying the update rule at point h. That is, we numerically solve

o1
ming o [ — F (B, XI5 - )

We seed the minimization procedure with hidden states visited by the network while processing test
examples. To better sample the region, we also add some isotropic Gaussian noise to the initial
points.

A.2 DIMENSIONALITY MEASURES

Here we provide details regarding the measures used to determine both the dimensionality of our
hidden-state and fixed-point manifolds. When we discuss the dimensionality of a set of points,
we will mean their intrinsic dimensionality. Roughly, this is the dimensionality of a manifold that
summarizes the discrete data points, accounting for the fact said manifold could be embedded in a
higher-dimensional space in a non-linear fashion. For example, if the discrete points lie along a one-
dimensional line that is non-linearly embedded in some two-dimensional space, then the measure of
intrinsic dimensionality should be close to 1.

Let X = {X3,..., X} bethe set of M points X for I = 1,..., M for which we wish to measure
the dimensionality. In this text, X is either a set of hidden-states or a set of fixed points and each
X7 € R™ is a point in hidden-state space. To determine an accurate measure of dimensionality, we
use the following measures:
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e Variance explained threshold. Let 1 > ps > ... > p, be the eigenvalues from PCA
(i.e. the variances) on X. A simple measure of dimensionality is to threshold the number
of PCA dimensions needed to reach a certain percentage of variance explained. For low
number of classes, this threshold can simply be set at fixed values 90% or 95%. However,
we would expect such threshold to breakdown as the number of classes increase, so we also
use an N-dependent threshold of N/(N + 1)%.

e Global participation ratio. Again using PCA on X as above, the participation ratio (PR)
is defined to be a scalar function of the eigenvalues:
2
(Ximy i)

. 5
dic1 /112 ©)

Intuitively, this is a scalar measure of the number of “important” PCA dimensions.

PR :=

e Local participation ratio. Since PCA is a linear mapping, both of the above measures
will fail if the manifold is highly non-linear. We thus implement a local PCA as follows:
we choose a random point and compute its k£ nearest neighbors, then perform PCA on this
subset of k£ + 1 points. We then calculate the participation ratio on the eigenvalues of the
local PCA using equation 5. We repeat the process over several random points, and then
average the results. This measure is dependent upon the hyperparameter k.

o MLE measure of intrinsic dimension (Levina & Bickel, 2005). This is a nearest-neighbor
based measure of dimension. For a point X7, let Ty (X[) be the Euclidean distance to its
kth nearest neighbor. Define the scalar quantities

-1
M k—1
. 1 . . 1 T (X1)
T M;mk( 0y XD k—l;ogTj(XI) ©

This measure is also dependent upon the number of nearest neighbors k.

e Correlation Dimension (Procaccia & Grassberger, 1983; Camastra & Vinciarelli, 2002).
Define the scalar quantity

N
Cn(r) = ﬁz S 1{1Xr - Xyl < 7). @

I=1J=I+1

Then, plotting log C(r) as a function of logr, the correlation dimension is found by
estimating the slope of the linear part of the plot.

We plot these dimensionality measures used on synthetic categorical data for class sizes N = 2
to 10 in Figure 6. Despite their simplicity, we find the 95% variance explained threshold and the
global participation ratio to be the best match to what is theoretically predicted, hence we use these
measures in the main text and in what follows.

B MODELS AND TRAINING

The three architectures we study are specified below, with W and b respectively representing train-
able weight matrices and bias parameters, and h; denoting the hidden state at timestep ¢. All other
vectors (c, g, r, i, f) represent intermediate quantities; o (-) represents a pointwise sigmoid nonlin-
earity; and f(-) is either the ReLU or tanh nonlinearity.

Update-Gate RNN (UGRNN)

c = f(Whh,_; + Wx, + b°)

hy=g-h 1 +(1-g)-c
t o ) g:U(Wghhtﬂ +ngxt+bg+bfg)

(®)

Gated Recurrent Unit (GRU)

C

F(W (- h; ) + W%, + b°)
hy=g-hy_1+(1-g)c g = o(Wh, ;| + W&x, + be +b/9) ©)
r=o(Whh,_; + W™k, + b")
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Figure 6: Various dimensionality measures as a function of number of classes, N, for the categorical synthetic
data. Specifically, Left: the hidden state space and Right: the fixed point space dimensionality. This is for
an f5 of 5 x 10~* and each datapoint is an average over 10 initializations. The dotted black line shows the
predicted dimensionality of a regular (N — 1)-simplex.

Long-Short-Term-Memory (LSTM)
hy = f(c;) - o(W"™h + W"x + b")
Ct Ct = ft - Ct—1 + i- U(W‘:hflt,1 + Wx + bc)

h; = | _ : : . (10)
h; i=o(Whh + Wi*x + b')

f = o(Whh + Wix + bf + b/9)

With the natural datasets, we form the input vectors x; by using a (learned) 128-dimensional em-
bedding layer. These UGRNNs and GRUs have hidden-state dimension n = 256, while the LSTMs
have hidden-state dimension n = 512. For the synthetic datasets, due to their small vocabulary size,
we simply pass one-hot encoded inputs in the RNN architectures, i.e. we use no embedding layer.
For UGRNNs and GRU, we use a hidden-state dimension of n = 128, while for LSTMs we use a
n = 256-dimensional hidden-state.

The model’s predictions (logits for each class) are computed by passing the final hidden state hp
through a linear layer. In the synthetic experiments, we do not add a bias term to this linear readout
layer, chosen for simplicity and ease of interpretation.

We train the networks using the ADAM optimizer (Kingma & Ba, 2014) with an exponentially-
decaying learning rate schedule. We train using cross-entropy loss with added ¢ regularization,
penalizing the squared /5 norm of the network parameters. Natural experiments use a batch size of
64 with initial learning rate = 0.01, clipping gradients to a maximum value of 30; the learning
rate decays by 0.9984 every step. Synthetic experiments use a batch size of 128, initial learning rate
n = 0.1, and a gradient clip of 10; the learning rate decays by 0.9997 every step.

C NATURAL DATASET DETAILS

We use the following text classification datasets in this study:

e The Yelp reviews dataset (Zhang et al., 2015) consists of Yelp reviews, labeled by the
corresponding star rating (1 through 5). Each of the five classes features 130,000 training
examples and 10,000 test examples. The mean length of a review is 143 words.

e The Amazon reviews dataset (Zhang et al., 2015) consists of reviews of products bought
on Amazon.com over an 18-year period. As with the Yelp dataset, these reviews are labeled
by the corresponding star rating (1 through 5). Each of the five classes features 600,000
training examples and 130,000 test examples. The mean length of a review is 86 words.

e The DBPedia ontology dataset (Zhang et al., 2015) consists of titles and abstracts of
Wikipedia articles in one of 14 non-overlapping categories, from DBPedia 2014. Cat-
egories include: company, educational institution, artist, athlete, office holder, mean of
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transportation, building, natural place, village, animal, plant, album, film, and written work.
Each class contains 40,000 training examples and 5,000 testing examples. We use the ab-
stract only for classification; mean abstract length is 56 words.

e The AG’s news corpus (Zhang et al., 2015) contains titles and descriptions of news articles
from the web, in the categories: world, sports, business, sci/tech. Each category features
30,000 training examples and 1,900 testing examples. We use only the descriptions for
classification; the mean length of a description is 35 words.

e The GoEmotions dataset (Demszky et al., 2020) contains text from 58,000 Reddit com-
ments collected between 2005 and 2019. These comments are labeled with the following 27
emotions: admiration, approval, annoyance, gratitude, disapproval, amusement, curiosity,
love, optimism, disappointment, joy, realization, anger, sadness, confusion, caring, excite-
ment, surprise, disgust, desire, fear, remorse, embarrassment, nervousness, pride, relief,
grief. The mean length of a comment is 16 words.

Two main characteristics distinguish these datasets: (i) whether there is a notion of order among
the class labels, and (ii) whether labels are exclusive. The reviews datasets, Amazon and Yelp, are
naturally ordered, while the labels in the other datasets are unordered. All of the datasets besides
GoEmotions feature exclusive labels; only in GoEmotions can two or more labels (e.g., the emotions
anger and disappointment) characterize the same example. In addition to the standard five-class
versions of the ordered datasets, we form three-class subsets by collecting reviews with 1, 3, and 5
stars (excluding reviews with 2 and 4 stars).

We build a vocabulary for each dataset by converting all characters to lowercase and extracting the
32,768 most common words in the training corpus. Tokenization is done by TensorFlow TF.Text
WordpieceTokenizer.

D SYNTHETIC DATASET DETAILS

In this appendix we provide many additional details and results from our synthetic datasets. Al-
though these datasets represent significantly simplified settings compared to their realistic coun-
terparts, often the results from training RNNs on the synthetic and natural datasets are strikingly
similar.

D.1 CATEGORICAL DATASET

For the categorical synthetic dataset used in Section 3.1, we generate phrases of L words, draw-
ing from a word bank consisting of N + 1 words, W = {evids, . ..,evidy, neutral}. Each word
W € W has an N-dimensional vector of integers associated with it, w"' = {w}V, ..., wl¥}
with w/V € Z for all i = 1,...,N. The word “evid;” has score defined by wg’v‘di = 1 and
w;“di = 0 for i # j. Meanwhile, the word “neutral” has w"""™ = 0 for all j. Additionally, each
phrase has a corresponding score s that also takes the form of an N-dimensional vector of integers,
s = {s1,...,8n}. A phrase’s score is equal to the sum of scores of the words contained in said
phrase,s = >, Ephrase w'V. The phrase is then assigned a label corresponding to the class with the

maximum score, y = argmax(s).

In the main text we analyze synthetic datasets where phrases are drawn from a uniform distribution
over all possible scores, s. To do so, we enumerate all possible scores a phrase of length L can
produce as well as all possible word combinations that can generate a given score. It is also possible
to build phrases by drawing each word from a uniform distribution over all words in W. In practice,
we find all results on synthetic datasets have minor quantitative differences when comparing these
two methods, but qualitatively the results are the same.*

As highlighted in the main text, after training on this synthetic data we find the explored hidden-
state space to resemble a regular (N — 1)-simplex. This holds for a large range ¢ values relative to
the natural datasets. In Figure 7, we plot the (global) participation ratio, defined in equation 5, as a
function of the number of classes, V.

“We have also analyzed the same synthetically generated data for variable phrase lengths. The qualitative
results focused on in this text did not change in this setting.
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Figure 7: How the dimensionality and accuracy of categorical synthetic data changes as a function of ¢2
regularization. Each datapoint is an average over 10 initializations. Left: Hidden state space dimensionality
(global participation ratio) and Right: test accuracy as a function of number of classes, NV, for the unordered
synthetic data for several different values of ¢>. The dotted black line shows the predicted regular (N — 1)-
simplex dimensionality.

In addition to the hidden states forming a simplex, we observe the N readout vectors are approxi-
mately equal magnitude and are aligned along the N vertices of said (N — 1)-simplex. In Figure 8,
we plot several measures on the readout vectors that support this claim that we now discuss. We
find the readout vectors to have very close to the same magnitude (Fig. 8, left panel). The angle
(in degrees) between a pair of vectors that point from the center of a (N — 1)-simplex to two of its
vertices is

180 1
Otheory = — X arccos (_N1> . (11)

For example, for a regular 2-simplex, i.e. an equilateral triangle, this predicts an angle between
readout vectors of 120 degrees. The distribution of pairwise angles between readout vectors is
plotted the center panel of Figure 8. Lastly, if the readouts lie entirely within the (N — 1)-simplex,
all N of them should live in the same R™ 1 subspace. To measure this, define r’ to be projection
of r; into the subspace formed by the other N — 1 readout vectors, i.e. the span of the set {r; | j =
1,...,N;j # i}. We then define the subspace percentage, A, as follows,

1 el
A::N; (12)

[rille

If all the readouts lie within the same R ! subspace, then A = 1. The right panel of Figure 8
shows that in practice A = 1 for the synthetic data with ¢, regularization parameter of 5 x 1074,

Why a Regular (N — 1)-Simplex? Here we propose an intuitive scenario that leads the network’s
hidden states to form a regular (N — 1)-simplex. To classify a given phrase correctly, the network
must learn to keep track of the value of the N-dimensional score vector s. One way this can be
done is follows: Let the network’s hidden state live in some RV dimensional subspace. Within
this subspace, let the N readout vectors be orthogonal and have equal magnitude. Furthermore,
define a Cartesian coordinate system to have basis vectors aligned with the /N readouts, with z; the
coordinate along the direction of readout r;. Then, the coordinates within this subspace encodes
the components of the /N-dimensional score vector s: the evidence word ‘evid; moves you along
the coordinate direction 7 some fixed amount and so s; o z;. Note the subspace of R" explored
by hidden states has a finite extent, since the phrases are of finite length. This subspace can be
further subdivided into regions corresponding to different class labels: if z; > z; for all j # 4 then
h-r; > h-r; and the phrase is classified as Class 7. The left panel of Figure 9 shows an example
of the 3-dimensional subspace for N = 3.

The important step that gets us from a subspace of R to the regular (N — 1)-simplex is the presence
of the softmax layer used when calculating loss. Since this function normalizes the scores, it is only

14



Under review as a conference paper at ICLR 2021

2.6 1 180 1.000 A
o ° ._‘\'_‘\\'/\
L 244 2 P
3 < 150 | S
c v <
222 g 2 0.995 -
= s 1201 a
@] i (=
& 20 o e
x
1.8- 90 - 0.990 -
r T T T 1 T T T T 1 r T T T 1
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
N (# of Classes) N (# of Classes) N (# of Classes)

Figure 8: Readout (RO) measures as a function of the number of classes, N for synthetic categorical data.
All data collected over 10 random initializations at an £2 of 5 x 10~*. Left: Magnitude, with the line being
the median and filled in area being 10th and 90th percentile. Center: Pairwise angle, again with median
being the solid line with filled in 10th and 90th percentiles (the variance in angles is very low, so this is
almost indistinguishable from the line itself). Black dotted line is theoretical simplex angle. Right: Subspace
percentage, A, as defined in equation 12.
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Figure 9: Left: Full space of possible scores as a subspace of R®. Right: Two-dimensional space resulting
from projecting out the (1, 1, 1) direction of the R® subspace, forming a regular 2-simplex.

the relative size of the components of s that matters. Removing the dependence on the absolute
score values corresponds to projecting onto the RY~1 subspace orthogonal to the N-dimensional
ones vector, (1,1,...,1). This projection results in an (N — 1)-simplex with the readouts aligned
with the vertices. A demonstration of this procedure for N = 3 is shown in Figure 9.

D.2 ORDERED DATASET

As alluded to in the main text, we try two renditions of ordered synthetic data. The details of both
are given below. The first relies on a ground truth of only a sentiment score, while the second
classifies based on both sentiment and neutrality. Although the first is simpler and still bears many
resemblances to natural data (i.e. Yelp and Amazon), we find the second to be a better match overall.

Sentiment Only Synthetic Data The first synthetic data for ordered datasets is very similar into
that of the categorical sets with a minor difference in the word bank and how phrases are assigned
labels. For N-class ordered datasets, the word bank always consists of only three words W =
{good, bad, neutral }. We now take the word and phrase scores to be 1-dimensional and waOd =41,
whd = —1, and wi*¥ = (. We then subdivide the range of possible scores s into N equal regions,
and a phrase is labeled by the region which its score fall into. Given the above definitions, the range
of scores is [—L, L], and so for the N = 3, with labels {Positive, Negative, Neutral}, we define

some threshold sy = L/3. Then a label y is assigned as follows:

Positive s > sy,
y = ¢ Neutral  |s]| < sy, (13)
Negative s < —sy,
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Figure 10: Synthetic ordered data for N = 2. Left: Final hidden states for 600 test samples, colored by their
label, with a few example hidden states trajectories shown explicitly. The initial state hg is shown as a black
square, and the three thick solid lines are the three readouts, colored by their respective class. Center: The
hidden deflections from the three words in the vocabulary, with the average deflection of each shown as a solid
line. Right: Fixed points, colored by their predicted label. The inset shows the variance explained.

Meanwhile, for N = 5, one could draw the region divisions at the score values
{-3L/5,—L/5,L/5,3L/5}. Similar to the categorical data above, in the main text we draw phrases
from a uniform distribution over all possible scores.

The N = 2 case corresponds to sentiment analysis, and its hidden state space, word deflections, and
fixed point manifold are plotted in Figure 10.°> The dynamics of this system qualitatively match the
natural dataset analyzed in Maheswaranathan et al. (2019). Briefly, the sentiment score is encoded
in the hidden state’s position along a one-dimensional line, aligned with the readouts which point
in opposite directions. The word ‘good‘ ("bad’) moves you along this line along the ’Positive’
(’Negative’) readout, increasing the corresponding logit value.

The simplest ordered dataset beyond binary sentiment analysis is that of NV = 3, and a plot showing
the final hidden states, deflections, and fixed-point manifold is shown in top row of Figure 11. In the
bottom row, we show the same plots for N = 5. In both cases, the hidden-state trajectories move
away from hg onto a curve embedded in 2d plane, with the curve bent around the origin of said
plane. The NN readout vectors are evenly fanned out in the 2d plane, which subdivides the curve into
N regions corresponding to each of the IV classes. The curve subdivisions reflect the ordering of the
score subdivisions, for N = 3 we see ‘Neutral’ lying in between ‘Positive’ and ‘Negative’ and for
N = 5 the stars are ordered from 1 to 5.

In contrast to categorical data, the word deflection Ah, are highly varied and have a strong depen-
dence on a state’s location in hidden-state space. On average, the words ‘good’ and ‘bad’ move the
hidden state further left/right along the curve. Although Ah; for the word ‘neutral’ is on average
smaller, it tends to move the hidden state along the ‘Neutral’ or ‘3 Star‘ readout. These dynamics
are how the network encodes the relative count of ‘good’ and ‘bad’ words in a phrase that ultimately
determines the phrase’s classification. We show the fixed points in the far right panel of Figure 11.
For N = 3, the fixed point manifold mostly resembles that of a one-dimensional bent line attractor,
with a small region that is two-dimensional along the ‘Neutral‘ readout. For N = 5, the fixed point
manifold is much more planar. Thus, the N = 3 case exhibits very similar dynamics to that of the
line attractor studied in Maheswaranathan et al. (2019), the attractor is now simply subdivided into
three regions due to the readout vector alignments.

Sentiment and Neutrality Synthetic Data Instead of classifying a phrase based off a single senti-
ment score, our second ordered synthetic model classifies a phrase based off of two scores that track
the sentiment and intensity of a given phrase. We draw from an enhanced word bank consisting of
W = {awesome, good, okay, bad, awful, neutral }. We take the two-dimensional word score to have
components corresponding to (sentiment, intensity) where positive (negative) sentiment scores cor-
respond to positive (negative) sentiment and positive (negative) intensity scores correspond to high

>The N = 2 ordered dataset is equivalent to the N = 2 categorical dataset. Intuitively, ‘good‘ and ‘bad‘ can
be though of evidence vectors for the classes ‘Positive‘ and ‘Negative‘, respectively. Just like the categorical
classification, whichever of these evidence words appears the most in a given phrase will be the phrase’s label.
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Figure 11: Synthetic ordered data for N = 3 (top row) and N = 5 (bottom row). Left: Final hidden states
for 600 test samples, colored by their label, with a few example hidden states trajectories shown explicitly. The
initial state ho is shown as a black square, and the three thick solid lines are the three readouts, colored by
their respective class. Center: The hidden deflections from the three words in the vocabulary, with the average
deflection of each shown as a solid line. Right: Fixed points, colored by their predicted label. The inset shows
the variance explained.

(low) emotion. The word score values we use are
waveseme — (9 1) wed = (1,-1/2), wo = (0,-2), (14a)
Wbad — (_17 _1/2) , Wawful — (_27 1) , Wneutral — (07 O) . (14b)

As with the other synthetic models, we sum all word scores across a phrase to arrive at a phrase’s
sentiment and intensity score, (s,7). We then assign the phrase a label y based off the following
criterion:

Three Star ¢ < 0 and |i| > |s|, otherwise:

Five Star ¢>0ands > 0,

y= < FourStar ¢ <0ands >0, (15)

Two Star i< 0ands <0,

One Star 7>0ands <0.
Thus we see that scores with negative (low) intensity where the intensity magnitude is greater than
the sentiment magnitude are classified as ‘Three Star’, i.e. it is a neutral phrase. Otherwise, phrases
with low intensity that are the less extreme reviews are classified as either “Two Star’ or ‘Four Star’
based on their sentiment. Finally, phrases with high intensity are labeled either ‘One Star’ or ‘Five
Star’, again based on their sentiment.

D.3 MULTI-LABELED DATASET

Here we provide details of the synthetic multi-labeled dataset, that corresponds to natural dataset
GoEmotions in Section 3.3 of the main text. Let us introduce this by taking the N = 2 as an explicit
example, where each phrase can have up to two labels. We draw from a word bank consisting of
W = {good,, bad;, good,, bady, neutral }, where

wheutral _ (O, 0) , weoody (17 O) , whadi — (—1, 0) , (16a)

Wg00d2 — (0, 1) , Wbad2 — (07 _1) X (16b)
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Figure 12: Synthetic multi-labeled example with N = 3. Left: A few example hidden states trajectories.
Inset: variance explained over 600 hidden state examples. Center: Deflections from a given word input.
Right: Fixed points (average word) and variance explained over fixed points.

We then classify each phrase with two labels, individually based on the score vector components s;
and so. Namely,

a7

Positive; s7 >0, Positives  s9 > 0,
y1 = Y2 =

Negative; s1 <0, Negative, s9 < 0.

Thus there are four possible combinations of labels. For this synthetic datasets, we generate phrases
by uniformly drawing words one-by-one from V. Generalization of the above construction to an
arbitrary number of possible labels N is straightforward: one simply adds additional N-dimension
score vectors w&°°% and w for each possible label i = 1, ..., N and then uses the N components
of the score to assign the IV labels, y;, individually.

The results after training a network on the N = 2 dataset are shown in the main text in Figure 5,
and results for N = 3 are shown in Figure 12. Again, we see the explored hidden-state space to be
low-dimensional, but notably it now resembles a three-dimensional cube. This is certainly a large
departure from the N = 8 categorical dataset, from which we expect a (seven-dimensional) regular
7-simplex. Instead, what we see here is the “outer product” of three N = 2 ordered datasets. That
is, we expect a single N = 2 ordered dataset (i.e. binary sentiment analysis) to have a hidden-state
space that resembles a line attractor. As one might expect, tasking the network with analyzing three
such sentiments at once leads to three line attractors that are orthogonal to one another, forming a
cube. This is supported in the center panel of Figure 5, where we see the various sentiment evidences
are orthogonal from one another.

E ADDITIONAL RESULTS ON NATURAL DATASETS

E.1 AG NEWS
This subsection contains two figures: Figures 13 and 14 complement Figure 1 in the main text;

the main text figure showed the manifolds learned by an LSTM on both 3- and 4-class AG News
datasets; the figures in this appendix show corresponding manifolds learned by a GRU and UGRNN.

E.2 DBPEDIA 3-CLASS AND 4-CLASS CATEGORICAL PREDICTION

Like AG News, DBPedia Ontology is a categorical classification dataset. We show results for net-
works trained on 3- and 4-class subsets of this dataset in Figures 15, 16, and 17.

E.3 YELP 5-CLASS STAR PREDICTION

Figures 19, 18, and 20 show the fixed-point manifolds associated with a GRU, LSTM and UGRNN,
respectively, trained on 5-class and 3-class Yelp dataset. These reviews are naturally five star; we
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Figure 13: Trajectories, individual-word deflections, fixed-point manifolds, and eigenmodes learned by a GRU
on the 3- and 4-class AG News task. Note the similarity between this manifold and that learned by the LSTM,
described in the main text Figure 1. The words we use to generate the deflections are sox, bankruptcy, military,
and computer.
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Figure 14: Trajectories, deflections, fixed-point manifolds, and eigenmodes learned by a UGRNN on 3- and
4-class AG News. Notice that in the 4-class case, unlike for GRUs or LSTMs, the UGRNN seems to always
learn a square manifold. This is likely due to correlations in the input data (see Figure 29 for details).
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Figure 16: GRU on four-class subset of the DBPedia ontology dataset

create a 3-class subset by removing examples labeled with 2 and 4 stars. These figures complement
Figure 1 in the main text.
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Figure 18: LSTM on five-class and three-class Yelp

E.4 AMAZON 5-CLASS AND 3-CLASS STAR PREDICTION

As another example of an ordered dataset, Figures 21, 22, and 23 show results for networks trained
on a 3-class and 5-class subsets of Amazon reviews. These reviews are naturally five star; we create
a 3-class subset by removing examples labeled with 2 and 4 stars.

E.5 3-cLASS GOEMOTIONS

In addition to the 2 class variant presented in the main text, we also trained a 3 class version of the
GoEmotions dataset. We filtered the dataset to just include the following three classes: “admiration”,
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Figure 20: UGRNN on five-class and three-class Yelp

“approval”, and “annoyance” (these were selected as they were the classes with the largest number
of examples). These results are presented in Figure 24. For this network, despite having three
classes, we find that the fixed points are largely two dimensional (Fig. 24a). The timescales of the
eigenvalues of the Jacobian computed at these fixed points have two slow modes (Fig. 24b), which
overlap with the two modes (Fig. 24c); thus we have a roughly 2D plane attractor. However, the
participation ratio (Fig. 24d) indicates that the dimensionality of this attractor is slightly higher than
the 2D case shown in Fig. 5. We suspect that these differences are due to the strong degree of class
imbalance present in the GoEmotions dataset. There are very few examples with multiple labels, for
any particular combination of labels. In synthetic multi-labeled data (which is class balanced), we

see much clearer 3D structure when training a 3 class network (Fig. 12).
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Figure 21: LSTM on five-class and three-class Amazon
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Figure 22: GRU on five-class Amazon

F THE EFFECT OF {5 REGULARIZATION: COLLAPSE, CONTEXT, AND
CORRELATIONS

Regularizing the parameters of the network during training can have a strong effect on the dimension
of the resulting dynamics. We describe this effect first for the datasets with ordered labels, Yelp and
Amazon reviews. We penalize the squared /o-norm of the parameters, adding the term A||0||3 to the
cross-entropy prediction loss; A is the {5 penalty and 6 are the network parameters.

Collapse: Figure 25 shows the performance of the LSTM, GRU, and UGRNN as a function of the
{5 penalty. As the ¢5 penalty is varied, the test accuracy usually decreases gradually; however, at
a few values, the accuracy takes a large hit. The first two of these jumps correspond to a decrease
in the dimension of the integration manifold from 2D and 1D and then 1D to OD. The resulting 1D
manifold is shown, for the example of a GRU on the Amazon dataset in Figures 26. The effects of
collapse on the other architectures for the ordered datasets are identical.

23



Under review as a conference paper at ICLR 2021

Amazon
5-class
g1
2 )
N
1.5 P M1
~ ~ K oL I e e I
H EN om. 3 : <
@] 0 a [ o
a 8 QEJ HEY oy
T O R ©
2 ————+-0
-2 0 2 12345
3-class PC #1 Eigenmode
5 5 ‘1
5 & I e e it |
~ g0 L 10
H* ~ 1 58 Tiveii 2
0 # N m. D o]
8 V,f\ (] o 0 /L t 0 e D E 8
5| o .
H ® 0
_s5 100 L———++0
-5 0 5 -3 0 3 _5 0 5 Eigenmode
PC #1 APC #1 PC #1
Figure 23: UGRNN on five-class Amazon
() 4 5 b () @ 5
<1 o 10 1 =
w < Q ©
Q 2 o o ] 52
RIS R )
@ 0 1. 5 E @ 3 MMM & 1
Dim.~ = o | oy~ 0T
£
2 s 1 20 1 20 20+ .
- Eigenmode Eigenmode 10 10
PC #1 5 penalty

Figure 24: Analyzing networks trained on a 3-class version of the GoEmotions dataset. (a) Approximate
fixed points (gray circles) and readout vectors. Inset shows the variance explained by the different principal
components. The dynamics are (largely) 2D. (b) Across these fixed points, we see two slow time constants.
(c) The eigenvectors aligned with the slow modes are aligned with the top PCA subspace. (d) Across networks
trained with different amounts of regularization, we see the dimensionality (measured by participation ratio) is
between 2 and 3, which reduces to less than two as the regularization penalty is increased.

When the regularization is sufficient to collapse the manifold to a 1D line, the dynamics are quite
similar to the 1D line attractors studied in Maheswaranathan et al. (2019). A single accumulated
valence score is tracked by the network as it moves along the line; this tracking occurs via a single
eigenmode with a time constant comparable to the average document length, aligned with the fixed-
point manifold. The difference between the binary- and 5-class line-attractor networks are largely
in the way the final states are classified; in the 5-class case, the line attractor is divided into sections
based largely on the angle the line makes with the readout vector of each class.

The collapse to a 0D manifold with a higher ¢5 penalty is most strikingly seen in the recurrent
Jacobian spectra at the fixed points (Figure 27). Here there are no modes which remember activity
on the timescale of the mean document length. Given this lack of integration, it is unclear how these
networks are achieving accuracies above random chance.

Context: While the focus of this study has been on how networks perform integration, it is clear
from the plots in Figure 25 that the best-performing models are doing more than just bag-of-words
style integration. When the order of words in the sentence is shuffled, these models take a hit in
accuracy. Interestingly, when the /5 coefficient is increased from the smallest values we use, the
contextual effects are the first to be lost: the model’s accuracy on shuffled and ordered examples
becomes the same.

Understanding precisely how contextual processing is carried out by the network is an interesting di-
rection for future work. It is important to show, however, that the basic two-dimensional integration
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Figure 26: Geometry of a GRU trained on the five-class Amazon dataset, which due to high ¢ penalty A
(here A = 0.72) has collapsed to a 1D manifold, rather than the 2D manifolds seen in higher-performing
models with lower /5 penalty. This 1D collapse is seen in all models, in both the Yelp and Amazon datasets.
Note the similarity of this fixed-point manifold to the line-attractor dynamics identified (in binary sentiment
classification) in Maheswaranathan et al. (2019).
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Figure 27: Jacobian spectra at an arbitrary fixed point of networks, trained on Yelp, with sufficiently high £»-
regularization penalty X to force the classification manifold to collapse to zero-dimensional (above, ALstm =
0.268, Agru = 0.1, Aucrnn = 0.268). These spectra display no modes which can integrate information on the
timescale of document length, i.e. no modes with close to unit magnitude.

GRU

Figure 28: Fixed-point manifolds and predictions for RNNs trained on five-class Yelp with lower £2 penalties
than used in the main text. These networks outperform bag-of-words models and suffer a performance hit upon
shuffling the test sentences, indicating an ability to process context (through a mechanism which we have not
studied in this paper). The key point is: though these manifolds clearly extend into more than two dimensions
(as indicated by the PCA explained-variance insets, the classes are nearly separable just by using the top two
principal components. Thus, the mechanisms we identify in the main text still seem to underlie the operations
of these networks, with contextual processing occurring on top of this integration.
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Figure 29: Fixed-point manifolds of LSTM, GRU, and UGRNN trained on 4-class AG News, with sufficiently
high /> regularization penalty A to collapse the manifold from a tetrahedron to a square (above, Arstm = 0.3,
Agru = 0.1, Aucrnn = 0.3). Across 10 random seeds per architecture, we observe the vertex of the fixed-point
square corresponding to the Sports category always opposite to either the Business or Sci/Tech categories. This
fact reflects correlations among the classes, shown in Figure 30. Insets: Variance explained by dimension after
PCA projection, showing the 2D nature of the manifold.

mechanism we have presented in the main text still underlies the dynamics of the networks which
are capable of handling context. To show this, we plot in Figure 28 the fixed point manifold, colored
by the predicted class. As with the models which are not order-sensitive, the classification of the
fixed points depends largely on their top two coordinates (after PCA projection). This is the case
even though the PCA explained variance clearly shows extension of the dynamics into higher di-
mensions. It is thus likely that, similarly to how Maheswaranathan & Sussillo (2020) found that the
contextual-processing mechanism was a perturbation on top of the integration dynamics for binary
sentiment classification, the same is true for more finely-grained sentiment classification.

Correlations: As might be expected, increasing /> regularization also causes collapse in models
trained on categorical classification tasks. For example, as shown in Figure 29, the tetrahedral
manifold seen in 4-class AG News networks becomes a square at higher values of /o, collapsing from
three dimensions to two. That is, instead of class labels corresponding to vertices of a tetrahedron,
when the /5 regularization is increased, these labels correspond to the vertices of a square.

Interestingly, in the the collapse to a square, we find that—regardless of architecture and across
10 random seeds per architecture — the ordering of vertices around the square appears to reflect
correlations between classes. Up to symmetries, the only possible ordering of vertices around the
square are: (i) World — Sci/Tech — Business — Sports, (ii) World — Sci/Tech — Sports —
Business, and (iii) World — Sports — Sci/Tech — Business. In practice, we observe that most of
the time (26 out of 30 trials), order (iii) appears; otherwise, order (i) appears. We never observe
order (ii).

To show how this ordering arises from correlations between class labels, we train a bag-of-words
model on the full 4-class dataset. Taking the most common 5000 words in the vocabulary, we plot,
in Figure 30, the changes in each logit due to these words. As the figure shows, for most pairs of
classes there is a weak negative correlation between the evidence for the pair. However, between the
classes “Sports” and “Business”, there is a strong negative correlation (R=-0.81); between “Sports”
and “Sci/Tech”, there is a slightly weaker negative correlation (R=-0.61). Stated another way, words
which constitute positive evidence for “Sports” are likely to constitute negative evidence for “Busi-
ness” and/or “Sci/Tech”. This matches with the geometries we observe in practice, where “Sports”
and “Business” readouts are ‘repelled’ most often, and otherwise “Sports” and “Sci/Tech” are re-
pelled.
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Figure 30: Correlations between evidence, provided by individual tokens, for the four classes present in the
AG News dataset. The most significant correlations, seen in the middle column, are the negative correlations
between the category pairs {Sports, Business} and {Sports, Sci/Tech}. These correlations influence the geom-
etry of networks trained with sufficiently high /2 penalty to collapse the manifold to a square (see Figure 29).
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