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ABSTRACT

The learning-based video compression method has made significant progress in
recent years, exhibiting promising compression performance compared with tra-
ditional video codecs. However, prior works have primarily focused on advanced
compression architectures while neglecting the rate control technique. Rate con-
trol can precisely control the coding bitrate with optimal compression perfor-
mance, which is a critical technique in practical deployment. To address this is-
sue, we present a fully neural network-based rate control system for learned video
compression methods. Our system accurately encodes videos at a given bitrate
while enhancing the rate-distortion performance. Specifically, we first design a
rate allocation model to assign optimal bitrates to each frame based on their vary-
ing spatial and temporal characteristics. Then, we propose a deep learning-based
rate implementation network to perform the rate-parameter mapping, precisely
predicting coding parameters for a given rate. Our proposed rate control system
can be easily integrated into existing learning-based video compression methods.
Extensive experiments show that our approach can achieve accurate rate control
with only 2% average bitrate error. Better yet, our method achieves nearly 10%
bitrate savings compared to various baseline methods.

1 INTRODUCTION

In recent years, video content has come to account for almost 80% of all internet traffic (Cisco,
2020). Therefore, it is crucial to design efficient video compression methods for video storage
and transmission. Traditional video coding standards such as AVC (Wiegand et al., 2003), HEVC
(Sullivan et al., 2012), and VVC (Ohm & Sullivan, 2018) have been manually designed over the past
few decades based on block-partition, linear discrete cosine transform (DCT), and other methods.

Recently, there has been a growing interest in learning-based video compression methods. Existing
methods (Lu et al., 2019; Agustsson et al., 2020; Hu et al., 2021; Lu et al., 2022; Sheng et al., 2022;
Li et al., 2021; Shi et al., 2022; Li et al., 2022a; Xiang et al., 2023; Li et al., 2023) typically employ
deep neural network to achieve motion compensation and residual/condition coding and optimize
all the modules in the End-to-End compression framework.

Most existing learning-based video compression methods have not yet integrated rate control, a
technique commonly used in practical applications. Traditional codecs use rate control to align the
size of the encoded bitstream more closely with the target bitrate. This approach also boosts overall
compression efficiency by allocating appropriate bitrates to various frames.

Unfortunately, for many of current learning-based video compression methods, the learned codecs
are still primarily optimized under a single R-D trade-off point (fixed λ). While some approaches can
implement variable bitrate coding in a single model (Choi et al., 2019; Yang et al., 2020a; Cui et al.,
2021; Rippel et al., 2021; Li et al., 2022a), they require multiple rounds of compression to search for
suitable coding parameters (usually the λ parameter) to attain the desired bitrate. Additionally, even
if we implement variable bitrate coding for rate control directly, existing learned video compression
techniques fail to comprehensively address the issue of rate allocation during the rate control process,
resulting in suboptimal compression efficiency.
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One possible solution is to adopt traditional rate control methods, but these methods depend on
empirical mathematical models to fit the relationship between bitrate and coding parameters, which
may not be suitable for learning-based video compression methods. Moreover, traditional video
codecs use pre-defined weights for rate allocation, without taking into account spatial and temporal
content characteristics. Hence, it is necessary to develop a new rate control system for learned video
compression methods.

Therefore, in this paper, we propose the first fully deep learning-based rate control system for learned
video compression. Our proposed system is composed of two key components: a rate allocation net-
work and a rate implementation network. Specifically, for a given bitrate budget of a video sequence,
the rate allocation network will extract the corresponding spatiotemporal features to allocate the op-
timal bitrate for each frame according to its importance. Then the rate implementation network
predicts proper coding parameters, such as the trade-off parameter λ in our method, for each frame
to achieve its target bitrate. Finally, we can precisely encode the video sequences at the given target
bitrate. Meanwhile, thanks to the content adaptive rate allocation, we can further improve the overall
video compression performance. Our proposed method is general and can be easily integrated with
the existing video compression methods. To demonstrate the effectiveness of the proposed method,
we apply our approach to four baseline methods Lu et al. (2019); Hu et al. (2021); Li et al. (2021);
Shi et al. (2022) and perform extensive experiments on commonly used video benchmark datasets.
Experimental results show that our approach can achieve accurate rate control with only 2% average
bitrate error. Furthermore, the proposed method further brings nearly 10% bitrate saving compared
to the baseline methods.

Our contributions are summarized below:

• We propose a general rate control approach for the learning-based video compression meth-
ods consisting of a rate allocation network and a rate implementation network. To the best
of our knowledge, this is the first fully neural network-based rate control approach for
learned video compression.

• Our plug-and-play rate control technique is simple but effective, achieving improved com-
pression performance and accurate rate control on different learned video codecs.

2 RELATED WORKS

2.1 VIDEO COMPRESSION

Over the past decades, traditional video compression standards such as H.264(AVC) (Wiegand et al.,
2003), H.265(HEVC) (Sullivan et al., 2012) and H.266(VVC) (Ohm & Sullivan, 2018) have been
developed based on hybrid coding frameworks. The core modules, including inter-frame prediction,
transformation, quantization, and entropy coding, have been well exploited to improve compression
efficiency. By incorporating the rate control module, traditional coding standards can effectively
ensure that the output bitrate closely matches the target bitrate, making them extensively applicable
in diverse practical scenarios.

In recent years, deep learning-based video compression methods have evolved rapidly, showing
promising results (Lu et al., 2019; Lin et al., 2020; Yang et al., 2020b; Hu et al., 2020; Yang et al.,
2021; Hu et al., 2021; Li et al., 2021; Yang et al., 2022; Chang et al., 2022; Lin et al., 2022; Mentzer
et al., 2022; Sheng et al., 2022; Li et al., 2022a; 2023). Lu et al. (2019) proposed a full learning-based
video compression method DVC. It was based on a hybrid coding framework, in which all modules
were replaced with deep learning to implement an end-to-end training process. To obtain a more
accurate predicted frame, Lin et al. (2020) proposed using multi-frame information to predict the
current reference frame. Agustsson et al. (2020) designed the scale-space flow to effectuate a more
efficient alignment of the reference frame onto the current frame to be encoded. Yang et al. (2022)
proposed an in-loop frame prediction method to predict the target frame in a recursive manner and
achieve accurate prediction. Chang et al. (2022) proposed using the way of double-warp to derive
the optical flow required for motion compensation by integrating the incremental and extrapolated
optical flows. Besides, to enhance the residual coding performance, Hu et al. (2021) proposed to
perform motion compensation and residual coding in the feature domain. Li et al. (2021) replaced
the residual subtraction computation with a conditional coding strategy.
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2.2 RATE CONTROL

Rate control is a highly beneficial tool in video coding, particularly in bandwidth-limited scenarios.
In traditional video coding standards, rate control methods establish a mapping between the bitrate
and encoding parameters and achieve the specified bitrate with minimal error.

There has been extensive research on rate control for traditional video coding standards, such as the
R-Q (Ma et al., 2005; Liang et al., 2013), R-ρ (Wang et al., 2013; Liu et al., 2010), and R-λ (Li
et al., 2014; 2016) models. Both the R-Q and R-ρ models use the quantization parameter (QP) as the
most critical factor determining the bitrate. The R-Q model establishes the relationship between the
bitrate and the QP, using a quadratic function for fitting. The R-ρ model establishes the relationship
between the bitrate and the percentage of zero values in the quantization coefficient ρ and models it
as a linear function. However, with the development of various tools in traditional coding standards,
QP is no longer the decisive factor in determining the bitrate.

To search for a more robust mathematical model for controlling the rate, Li et al. (2014) proposed
to establish a mapping between the bitrate and the slope λ of the rate-distortion (R-D) curve. Based
on the fitting results of a large amount of data, the R-D relationship conforms to a hyperbolic model,
and the relationship between R and λ can be expressed as the derivative of the R-D relationship (Li
et al., 2014). For various types of video content, the corresponding R-λ model exhibits varying
fitting parameters. Thus, in order to accommodate different content, the fitting parameters of the R-λ
model must be updated dynamically during the encoding process using a method similar to gradient
descent. Thanks to its precise rate control effect, the R-λ model is still utilized in traditional video
coding standards. Additionally, some research has explored using learning-based methods in the
rate control of traditional codecs. These methods (Hu et al., 2018; Mao et al., 2020) employ neural
networks or reinforcement learning to predict the optimal quantization parameters in traditional
codecs for each frame or coding unit. These methods are designed for traditional coding frameworks
and may not be applicable to deep learning-based video coding schemes.

For learned video compression, Li et al. (2022b) proposed a rate control scheme for learned video
compression similar to the traditional method. They attempted to establish an R-D-λ analytical
mathematical model, using the hyperbolic functions in Li et al. (2014) for approximation in order
to achieve the mapping between rate and input variable rate parameter of the compression model.
Besides, they also modeled the inter-frame dependency relationship as linear to derive the optimal
rate allocation. Nevertheless, empirical mathematical models are derived from statistical analysis
of large amounts of coding data of traditional codecs, and may not be applicable to learning-based
video compression methods, thereby failing to achieve sufficiently accurate rate control. Xu et al.
(2023) proposed a pixel-level rate allocation method that utilizes back-propagation through gradient
ascent to find the optimal allocation strategy. However, this method needs multiple iterations and is
unable to address the allocation approach in scenarios with a limited bitrate.

3 METHODOLOGY

3.1 SYSTEM FRAMEWORK

Let X = {X1, X2, ..., Xt, Xt+1} denote a video sequence, where Xt represents a frame at time t.
It is known that the existing learned video codecs are usually optimized by rate-distortion trade-off,
i.e., R + λD. Here, R,D represent the rate and distortion. λ is the trade-off hyper-parameter. To
enable continuous and precise rate control, the video codec should be capable of achieving variable
bit rates through a single model. Therefore, we enhance the existing learned video codecs Lu et al.
(2019); Hu et al. (2021); Li et al. (2021); Shi et al. (2022) with the off-the-shelf variable bitrate
solution Lin et al. (2021) as our baseline methods in our proposed rate-control framework.

In rate control, considering the need to handle multiple levels of bitrates, we use the symbol R with
subscripts s, mg, and t to denote the sequence level, mini group of pictures (miniGoP) level, and
frame level bitrates, respectively. Bitrates with a superscript hat represent the actual encoded bitrates,
while symbols without a superscript denote target bitrates. Fig. 1 shows the encoding process for
the frame Xt using our rate control strategy. We start by feeding consecutive video frames into
the rate allocation network, assigning each frame the optimal rate allocation weight based on its
spatial-temporal characteristics. Frames with larger weights are allocated with more bitrate and vice
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Figure 1: Figure (a) is an overview of our proposed neural rate control framework. Based on the
given target bitrate Rs and input frames, the rate allocation network produces target bitrate Rt for
the current frame Xt. Then the rate implementation module builds a mapping between bitrate Rt

and coding parameter λt, which is used for the learned video codec to encode Xt. Figure (b) is the
visualization of our proposed two-level rate allocation strategy.

versa. According to the sequence-level target bitrate Rs and remaining bitrate budget, we apply a
two-level rate allocation to determine the target bitrate Rt for Xt. Next, the rate implementation
network maps Rt to the predicted λt for encoding Xt. The learned codec then compresses Xt using
λt, allowing precise rate control.

3.2 RATE ALLOCATION NETWORK

As shown in Fig. 1, our system allocates bitrates at two levels, namely the miniGoP level and
the frame level. For the current frame Xt, the corresponding miniGoP includes a set of frames
{Xi, Xi+1, ..., Xt, ..., Xi+Nm−1}. Nm denotes the length of a miniGoP. During the miniGoP level
rate allocation process, we first allocate bitrate to each miniGoP based on a uniform weight ratio in
the following way,

Rmg =
Rs × (Ncoded + SW )− R̂s

SW
×Nm

(1)

where Rmg is the target bitrate for the current miniGoP, Rs is the target average bitrate for the
whole video sequence, Ncoded represents the number of frames that have been encoded, R̂s is the
total bitrate already consumed by the current encoding sequence. SW refers to the sliding window
size, which is used to ensure a smoother bitrate transition for each miniGoP during the encoding
process. We set SW to 40 in our implementation.

As for the frame-level rate allocation within a miniGoP, we employ weights generated by the weight
estimation network based on the spatiotemporal characteristics of the frames in this miniGoP. The
allocation equation is shown in equation 2,

Rt =
Rmg − R̂mg∑i+Nm−1

j=t wj

× wt (2)

where Rt refers to the target bitrate required for frame Xt, R̂mg represents the bitrate already con-
sumed when encoding the current miniGoP, and wt denotes the rate allocation weight obtained from
the weight estimation network for Xt. After that, we can get the target bitrate for the current frame
Xt to achieve optimal rate allocation given the overall target bitrate Rs. After the t-th frame is
encoded, the actual encoded rate R̂t will be updated in the buffer for the calculation of R̂s and R̂mg .

Fig. 2 (a) shows the structure of our proposed weight estimation network. We use a lightweight
network architecture by using several convolution and MLP networks. The convolution network ex-
tracts spatiotemporal features from a set of temporal consecutive frames, while the full connection
network modulates the features extracted by the convolution network based on information obtained
from the encoded results. Specifically, the input of the model consists of the frames in the current
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Figure 2: The network structure of the weight estimation network and rate implementation network.

miniGoP, as well as the frames (Xi−1, Xi+Nm
) before and after the current miniGoP. We use the

convolution network to extract the corresponding spatiotemporal features Ft. Besides, we further
introduce the critical statistical information from the previous time step, including the bitrate R̂i−1,
distortion D̂i−1 and the λi−1, along with the target bitrate for the current miniGoP. Here, we use the
MLP networks to extract the corresponding feature vector, which is fused with features Ft through
channel-wise multiplication. Finally, the fused features are refined by the Resblocks and fully con-
nected layers to generate the weights [ωi, ..., ωt, ..., ωi+Nm−1] for each frame in a miniGoP.

The purpose of including the input Xi−1, its encoding results and Rmg is to account for the influence
of the previous reference frame on the current miniGoP. If Xi−1 is a relatively high-quality frame,
then a lower bit rate will be used to encode the front part of the current miniGoP, and the overall
quality will not decrease significantly due to the high-quality reference frame.

3.3 RATE IMPLEMENTATION NETWORK

The rate implementation network aims to build a mapping between rate R and coding parameter
λ. Hence, one straightforward solution is to use MLP layers to model this relationship. However,
considering the variable video content, this straightforward solution may not work well. In our
implementation, we formulate the mapping as a regression problem conditioned on the content of
the current frame to be coded and the encoding results of the previous frame.

Fig. 2 (b) shows the detailed architecture for our rate implementation network. In our proposed
approach, we further introduce the content information from the current frame and statistical coding
information from the previous frame to achieve content-adaptive R-λ mapping. Specifically, the
current frame Xt and the difference map between Xt and the previous reconstructed frame X̂t−1

are used as inputs to the convolution network. After several convolutions and the average pooling,
the image feature vector V⃗img is obtained. Meanwhile, the statistical coding information from the
previous frame including the actual bitrate R̂t−1, the distortion D̂t−1 and the estimated coding
parameter λt−1 are fed into an MLP network to produce the feature vector V⃗t−1.

Due to the varying content of videos, the different input bitrates for different content in the rate
implementation network may lead to similar output λ. Therefore, we implement a normalization
module to normalize the input bitrate for better prediction accuracy. We fuse vectors V⃗img and V⃗t−1

to produce the normalization parameter (µ, θ) to modulate the original feature V⃗R from input target
bitrate Rt in Equation 3, where V⃗ ′

R represents the normalized feature and will be used to predict the
coding parameter λt for the current frame Xt.

V⃗ ′
R =

V⃗R − µ

θ
(3)

3.4 TRAINING STRATEGY

Step-by-Step Training. Our method consists of multiple distinct modules, each with different train-
ing objectives and interdependent relationships. The training of the rate allocation network relies
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Figure 3: The R-D (rate-distortion) performance on HEVC Class B, Class C, Class D, Class E, UVG,
and MCL JCV datasets. Ours(DVC+RC), Ours(FVC+RC) and Ours(AlphaVC+RC) represent the
methods integrated with our proposed rate control framework on DVC (Lu et al., 2019), FVC (Hu
et al., 2021), DCVC (Li et al., 2021) and AlphaVC (Shi et al., 2022) baselines, respectively.

on an accurate rate implementation network. Therefore, we propose a step-by-step training strategy.
First, we train a variable rate learned video compression method based on the modulated methods
in Lin et al. (2021). The variable rate approach can be used for different baseline methods like DVC
(Lu et al., 2019), FVC (Hu et al., 2021) DCVC (Li et al., 2021) and AlphaVC (Shi et al., 2022). We
follow the default settings to train the variable rate learned codecs.

Then, we fix the parameters of the learned video codec and only train the rate implementation
network to achieve a precise mapping model from the target rate to the encoding parameter λ.
Specifically, the rate implementation network (RI) predicts coding parameters λt for the t-th frame
based on the target bit rate Rt. Our aim is to minimize the error between the target bitrate Rt

and actually encoded bitrate R̂t, which is obtained by the learned codec C(·) using the predicted
coding parameters λt. Therefore, the loss function for training the rate implementation network is
formulated in the following way,

LRI = ((Rt − R̂t)/Rt)
2, where R̂t = C(λt) = C(RI(Rt)) (4)

Finally, in the third step, we only train the rate allocation network while keeping the other parts of
the model fixed. For the rate allocation network, it allocates weights for the frames in a miniGoP
based on the frames within the miniGoP and its adjacent frames. During the training procedure,
considering the error propagation effect when encoding multiple consecutive P frames, the loss
function of the rate allocation network includes the rate-distortion loss of frames in n miniGoPs
and the neighboring frames. Therefore, the loss LRA for training the rate allocation network is
formulated in the following way,

LRA =

t+n∗Nm∑
i=t

Ri + λgDi (5)

Where Ri and Di represent the rate and distortion for frame Xi. n denotes the number of miniGoPs,
and λg denotes the global lambda for training the current miniGoP. During the training stage, we
randomly select a value for λg and pre-encode one frame of the miniGoP using this value. The
corresponding bitrate is then set as the target bitrate for training the rate allocation network.
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Table 1: The relative bitrate error ∆R (%) and the BD-rate gain results (%) on the testing datasets.

Dataset ∆R (%) ↓ BD-rate (%) ↓
DVC FVC DCVC AlphaVC DVC FVC DCVC AlphaVC

HEVC B 1.35 1.88 2.32 3.68 -10.99 -9.59 -5.88 -10.76
HEVC C 1.18 1.06 1.94 1.54 -10.63 -8.26 -4.42 -11.00
HEVC D 1.91 2.44 2.11 1.67 -12.17 -6.90 -3.80 -8.94
HEVC E 1.11 1.86 1.33 1.19 -18.28 -20.03 -9.24 -33.90

UVG 2.82 2.86 2.80 0.61 -11.61 -12.33 -7.34 -12.28
MCL JCV 2.79 2.62 2.95 1.17 -8.78 -9.37 -5.68 -8.69

Average 1.86 2.12 2.24 1.64 -12.08 -11.08 -6.06 -14.26

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training Datasets. For training the rate implementation network, we used the Vimeo-90k dataset
(Xue et al., 2019), containing 89,800 video clips. For the rate allocation network, we selected the
BVI-DVC dataset (Ma et al., 2021) to leverage the rate-distortion loss of multiple frames. This
dataset includes 800 video sequences of various resolutions, each with 64 frames. We trained the
network using randomly cropped 256×256 patches from these video sequences.

Evaluation Datasets. We tested the performance of our algorithm on the HEVC standard test
sequences (Class B, C, D, E) (Wiegand et al., 2003). This HEVC dataset contains 16 videos with
diverse content characteristics and resolutions. Following the evaluation settings in the existing
learned codecs, we also included the UVG (Mercat et al., 2020) and MCL JCV (Wang et al., 2016)
datasets in our experiments. For all baseline models and our proposed rate control methods, we set
the GOP size to 100 during the evaluation stage.

Evaluation Metrics To evaluate compression performance on the benchmark datasets, we used Peak
Signal-to-Noise Ratio (PSNR) against bits per pixel (bpp) as metrics. We also employed the BD-
rate metric (Bjontegaard, 2001) for overall compression performance comparison. For assessing
the accuracy of rate control, we utilized the relative bitrate error. This error, ∆R, is defined as
∆R = |Rs − R̂s|/Rs, representing the discrepancy between the actual bitrate R̂s produced by the
codec and the target bitrate Rs.

Implementation Details We reimplemented the DVC (Lu et al., 2019), FVC (Hu et al., 2021),
DCVC (Li et al., 2021) and AlphaVC (Shi et al., 2022) as our baseline models. Since our method
primarily focuses on rate control for P frames, we have excluded the condition I frame from Al-
phaVC (Shi et al., 2022). We employed the method in Lin et al. (2021) to enable continuous variable
rate for these baseline methods. Other state-of-the-art learned video compression methods can also
be integrated with our proposed rate control approach. In terms of our rate implementation network,
we randomly selected variable rate parameters for encoding and input the resulting bitrate as the
target bitrate for training. As for the rate allocation network, we set n = 2 and updated parameters
by computing the rate-distortion loss of two consecutive miniGoPs along with their previous and
subsequent frames. Both networks were trained over 200,000 steps, with a batch size of 4. The
learning rate starts at 1e-4, reducing to 1e-5 after 120,000 steps. The training times for the rate im-
plementation and allocation networks are about 10 hours and 1 day, respectively. During inference
for the first P frame, we use a default rate and distortion value (R = 1, D = 0) to indicate the
preceding I-frame had a high rate and low distortion. For subsequent P frames, we use the rate and
distortion of the previously coded frame.

4.2 EXPERIMENTAL RESULTS

Performance Fig. 3 provides the rate-distortion performance over the evaluation datasets for dif-
ferent compression methods. For the baseline models, we assessed compression performance at
four λ points, namely λs = {256, 512, 1024, 2048}. And the corresponding actual bitrate in each
sequence was set as the target bitrate for our proposed rate control based video compression system.
Therefore, we had a fair comparison with the baseline method at the same bitrate level.
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It can be observed that our rate control framework achieves a bitrate that is relatively close to that of
the baseline method using fixed λ encoding. This indicates that our method can enable precise rate
control. Quantitative results are shown in Table 1. The proposed method achieves an average 1% ∼
3% rate error when compared with the target bitrate in different baseline methods and datasets.

Furthermore, our method can also bring an overall improvement in compression performance. The
BD-rate savings are also presented in Table 1 and it is noted that our method achieves nearly 10% bi-
trate savings on average when compared with baseline methods. In particular, for Class E sequences
with predominantly static scenes, our method attains more significant performance gains by adjust-
ing the bitrate allocation, leading to 9% to 33% bitrate savings. The reason is that our rate control
method allocates more bitrates to the important frames, which has a huge influence on the quality
of subsequent reconstructed frames. In contrast, most existing frameworks use the same weights for
each frame and may suffer from the cumulative error problem.

4.3 ABLATION STUDIES

Rate Implementation Accuracy To further show the accuracy of the proposed rate implementation
network, we provide the bpp for each frame of HEVC Class B BaseketballDrive Sequence in Fig. 4.
Here, we do not use the rate allocation network and allocate each frame in sequence with the same
target bitrate. The results indicate that our method is able to encode each frame with very low bit rate
errors. In detail, we set 0.05 bpp as the target bpp for each frame in the sequence. The corresponding
actual average coding bitrate is 0.0499 and the average relative bitrate error is 0.21%.

Effectiveness of Rate Allocation The rate allocation network considers the spatiotemporal charac-
teristics of different frames for optimal rate allocation and improves compression performance at
a given bitrate. To validate our rate allocation approach, we conducted an experiment using fixed
bitrates for each frame. e. As shown in Fig. 6, removing the rate allocation network (Ours w/o RA)
significantly reduced the overall compression performance, indicating that uniform bitrate allocation
across frames is suboptimal.

To further observe the role of rate allocation networks, Fig. 7 displays the variation in PSNR and
bpp of different frames during the encoding process. The network mitigates quality degradation
by dynamically adjusting bitrates for sequences of P frames, thus improving frame quality and
minimizing cumulative errors. It can be observed that the rate allocation network adaptively assigns
two high-quality frames in a miniGoP at the initial stage, while only one is given in the later stage.

Analysis for Traditional Rate Control In order to compare our method with the traditional rate
control method based on empirical mathematical models presented in Li et al. (2022b), we utilized
the same variable rate model on DVC (Lu et al., 2019) and reimplemented their method. We con-
ducted experiments on HEVC Class C and D datasets under the GOP size of 100. Li’s method (Li
et al., 2022b) resulted in bitrate errors of 7.72% and 8.43% for Class C and D respectively, with
performance decreases of 3.92% and 1.01%. In contrast, our method achieved significantly lower
bitrate errors of only 1.18% and 1.91%, with performance gains of 10.63% and 12.17% respectively.
Fig. 5 illustrates the frame-by-frame bitrate errors of our method and the hyperbolic R-λ model on
one HEVC Class C sequence. Our proposed rate implementation network achieves significantly
smaller rate errors. Since the traditional method requires dynamic parameter updates of the hyper-
bolic model during the encoding process to achieve effective prediction, it exhibits substantial rate
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errors at the initial encoding stage. In contrast, our method can achieve accurate prediction including
the initial stages of encoding.

Effectiveness of Different Components Fig. 6 displays the further analysis of our rate allocation
network. We first assessed the training loss, as defined in Equation 5. This loss function includes
R-D (rate-distortion) losses for frames within two miniGoPs. For comparison, we also conducted ex-
periments using fewer frames, specifically one miniGoP for training losses (denoted as Ours(N=1)).
The results show that using R-D losses from more frames leads to notably enhanced performance
improvements.

We also analyze the inputs for the rate allocation network. Experimental results show that omitting
coding data (distortion, bitrate, etc) from the previous reference frame and the target bitrate for the
current miniGoP (denoted as Ours w/o reference) leads to a 3.09% decrease in RD performance.
Besides, reducing a miniGoP to 2 frames also lowers RD performance (Ours 2 frames). Conversely,
increasing a miniGoP to 8 frames doubles both the parameters in the weight estimation network and
training time, but only slightly improves RD performance by 0.12%. Hence, setting the miniGoP
size to 4 represents a more optimal balance.

For the rate implementation network, we demonstrate the effectiveness of the normalization oper-
ation and the input frame information. Without normalization, using fully connected networks to
predict coding parameters increases average rate errors on DVC (Lu et al., 2019) for HEVC Classes
B, C, D, and E to 1.87%, 1.51 %, 2.69%, and 3.09%, respectively. As for the frame information,
eliminating coding data from the reference frame causes training instability and hampers effective
rate control. Removing the residual image increases average rate errors for HEVC Class B, C, D,
and E datasets to 3.56%, 2.43%, 2.85%, and 3.96%.

Running Time and Model Complexity Our rate control framework adds operations only to the en-
coder, keeping the decoder’s complexity unchanged from the original model. The rate allocation and
implementation networks have 443K and 564K learnable parameters, respectively. When encoding
a 1080P sequence, the inference times for these networks are just 2.95ms and 2.32ms, respectively.

5 CONCLUSIONS AND FUTURE WORKS

In this paper, we present the first fully deep learning-based rate control scheme for learned video
codec. Our method consists of a rate implementation network and a rate allocation network to
achieve precise rate control on several benchmark datasets using various baseline methods. Fur-
thermore, thanks to the optimal bitrate allocation, we can further improve the overall compression
performance at the target bitrate level. Our method is agnostic to the existing learning-based video
compression method and only requires a small additional computational overhead on the encod-
ing side. In the future, we will extend our rate control framework for bidirectional B-frame video
compression or multiple reference frames video compression.
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A MORE EXPERIMENTAL RESULTS ON RATE CONTROL

In Table 2, 3, 4 and 5, we provide the per sequence rate-distortion (R-D) performance and relative
bitrate error on HEVC Class B, Class C, Class D, and Class E datasets.

B ADDITIONAL RESULTS FOR ABLATION STUDY AND ANALYSIS

In this section, we provide more results for the analysis of rate control accuracy and the effectiveness
of the rate allocation network.

Rate Control Accuracy Fig. 4 shows the bpp for each frame in HEVC Class B Cactus sequence
and HEVC Class D BasketballPass sequence. The target bitrate for cactus sequence is 0.15 bpp.
The actual average coding bitrate is 0.1486 bpp and the average relative bitrate error is 0.93%. In
addition, The target bitrate for BasketballPass sequence is 0.12 bpp. The average coding bitrate is
0.1205 and the average relative bitrate error is 0.45%.

Effectiveness of Rate Allocation Fig. 9 and 10 show the variation in PSNR and bpp of different
frames during the encoding process. The red line represents the target bitrate. We also provide some
comparison of the subjective quality of the reconstructed frame in Fig. 11.

Table 2: R-D performance and rate control accuracy on HEVC Class B dataset

Sequence DVC Ours(DVC+RC) FVC Ours(FVC+RC)
Bpp PSNR Bpp PSNR ∆R% Bpp PSNR Bpp PSNR ∆R%

BasketballDrive

0.07 31.47 0.08 32.13 3.41 0.05 32.14 0.05 32.37 0.51
0.09 32.55 0.09 33.07 2.92 0.06 33.18 0.07 33.58 2.37
0.12 33.63 0.13 33.93 2.05 0.09 34.12 0.09 34.38 3.19
0.17 34.53 0.17 34.62 0.07 0.12 34.89 0.12 34.98 0.24

BQTerrace

0.07 28.91 0.07 29.60 2.08 0.05 29.64 0.05 29.81 0.43
0.09 29.91 0.09 30.61 2.97 0.07 30.66 0.08 31.01 3.40
0.13 30.97 0.14 31.37 1.92 0.12 31.76 0.12 32.06 4.70
0.21 31.98 0.21 32.18 1.56 0.19 32.75 0.19 32.85 2.72

Cactus

0.06 30.09 0.06 30.55 0.96 0.04 30.52 0.04 30.61 2.96
0.08 31.04 0.08 31.50 1.38 0.05 31.37 0.05 31.75 2.51
0.11 31.98 0.11 32.29 0.05 0.08 32.31 0.08 32.56 2.18
0.16 32.81 0.16 33.01 0.38 0.13 33.24 0.13 33.40 2.60

Kimono1

0.06 32.74 0.06 33.11 0.11 0.04 33.80 0.04 33.91 0.81
0.08 34.22 0.08 34.49 0.99 0.06 35.03 0.06 35.30 0.24
0.10 35.63 0.11 35.83 0.54 0.08 36.22 0.08 36.33 0.97
0.14 36.78 0.14 36.78 1.70 0.11 37.17 0.11 37.20 2.26

ParkScene

0.07 29.59 0.07 29.90 1.89 0.04 30.21 0.04 30.36 2.71
0.09 30.75 0.09 31.38 1.36 0.06 31.26 0.06 31.66 2.09
0.13 31.97 0.13 32.47 0.44 0.10 32.46 0.10 32.87 0.17
0.19 33.11 0.19 33.46 0.20 0.15 33.69 0.15 33.91 0.46
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Figure 8: The rate control result (Bpp) of each frame for Class B Cactus and Class D BasketballPass
sequences, respectively. The red line is the target bpp for every frame.
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Table 3: R-D performance and rate control accuracy on HEVC Class C dataset

Sequence DVC Ours(DVC+RC) FVC Ours(FVC+RC)
Bpp PSNR Bpp PSNR ∆R% Bpp PSNR Bpp PSNR ∆R%

BasketballDrill

0.08 29.31 0.08 29.94 0.32 0.06 30.31 0.06 30.43 1.06
0.10 30.39 0.10 30.89 0.92 0.08 31.48 0.08 31.88 0.38
0.13 31.44 0.13 31.68 1.32 0.11 32.54 0.11 32.80 0.87
0.19 32.33 0.18 32.44 0.85 0.15 33.37 0.15 33.58 0.39

BQMall

0.10 28.31 0.10 28.94 2.67 0.07 29.48 0.07 29.68 0.45
0.12 29.32 0.12 29.81 1.30 0.10 30.69 0.10 31.13 1.67
0.16 30.24 0.16 30.46 0.55 0.14 31.82 0.14 32.10 1.02
0.23 30.88 0.23 31.11 0.85 0.20 32.71 0.20 32.87 0.11

PartyScene

0.14 25.25 0.14 25.75 1.66 0.12 26.12 0.12 26.34 1.78
0.18 25.96 0.18 26.39 0.31 0.17 27.26 0.17 27.70 1.28
0.26 26.51 0.25 26.76 1.60 0.25 28.43 0.25 28.69 1.07
0.35 26.91 0.35 27.06 0.57 0.34 29.23 0.34 29.36 0.02

RaceHorses

0.14 27.64 0.14 28.18 2.05 0.10 28.41 0.11 28.57 1.96
0.18 28.74 0.19 28.99 2.90 0.15 29.64 0.16 29.78 3.76
0.26 29.76 0.25 29.75 0.36 0.24 30.78 0.24 30.74 0.27
0.36 30.52 0.36 30.43 0.67 0.34 31.53 0.35 31.49 0.85

Table 4: R-D performance and rate control accuracy on HEVC Class D dataset

Sequence DVC Ours(DVC+RC) FVC Ours(FVC+RC)
Bpp PSNR Bpp PSNR ∆R% Bpp PSNR Bpp PSNR ∆R%

BasketballPass

0.09 29.30 0.10 30.06 9.74 0.07 30.49 0.08 30.99 6.56
0.12 30.35 0.12 30.97 7.07 0.10 31.81 0.10 32.38 5.15
0.16 31.53 0.15 31.70 1.78 0.14 33.07 0.14 33.23 1.20
0.21 32.46 0.21 32.58 0.07 0.19 34.11 0.19 34.30 1.46

BlowingBubbles

0.11 27.18 0.11 27.73 1.18 0.08 27.87 0.08 28.20 1.44
0.14 28.23 0.14 28.86 0.98 0.11 29.07 0.12 29.63 4.37
0.19 29.31 0.19 29.58 2.05 0.17 30.38 0.16 30.61 2.53
0.27 30.21 0.27 30.45 0.99 0.24 31.43 0.24 31.58 0.12

BQSquare

0.11 25.03 0.12 25.73 0.51 0.08 26.26 0.09 26.63 2.46
0.15 25.78 0.15 26.66 1.12 0.13 27.54 0.13 27.88 4.44
0.20 26.56 0.20 26.99 0.15 0.20 28.80 0.20 28.91 2.20
0.29 27.08 0.29 27.32 0.67 0.28 29.66 0.28 29.81 0.85

RaceHorses

0.16 27.23 0.16 27.66 1.34 0.13 28.51 0.14 28.71 2.41
0.21 28.43 0.22 28.86 2.03 0.19 29.90 0.19 30.22 2.17
0.30 29.78 0.29 29.86 0.81 0.28 31.44 0.27 31.34 0.61
0.41 30.81 0.41 30.82 0.03 0.39 32.50 0.39 32.51 1.07

Table 5: R-D performance and rate control accuracy on HEVC Class E dataset

Sequence DVC Ours(DVC+RC) FVC Ours(FVC+RC)
Bpp PSNR Bpp PSNR ∆R% Bpp PSNR Bpp PSNR ∆R%

KristenAndSara

0.03 33.75 0.03 34.84 0.68 0.02 34.60 0.02 35.48 1.78
0.04 34.77 0.04 35.58 1.56 0.03 35.56 0.03 36.59 1.66
0.05 35.84 0.05 36.62 1.11 0.04 36.64 0.04 37.17 1.72
0.07 36.91 0.07 37.44 0.71 0.05 37.62 0.05 38.13 0.21

FourPeople

0.04 33.44 0.04 34.43 1.67 0.02 34.01 0.02 34.51 2.25
0.04 34.60 0.04 35.17 2.96 0.03 35.07 0.03 35.45 3.95
0.06 35.71 0.06 36.22 1.25 0.04 36.07 0.04 36.48 3.54
0.08 36.83 0.08 37.35 1.22 0.06 37.10 0.06 37.52 1.98

Johnny

0.03 34.29 0.03 35.07 0.30 0.02 35.09 0.02 36.20 2.16
0.04 35.27 0.04 36.10 0.73 0.03 36.01 0.03 37.12 1.57
0.05 36.25 0.05 37.15 0.69 0.03 37.00 0.03 37.43 1.34
0.07 37.31 0.07 37.83 0.38 0.05 37.97 0.05 38.38 0.10
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Figure 9: The variation of PSNR and bpp during the encoding process for HEVC Class C Race-
Horses sequence. w/o RA denotes the encoding results obtained without the rate allocation network.
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Figure 10: The variation of PSNR and bpp during the encoding process for HEVC class E Johnny
sequence. Ours w/o RA denotes the encoding results obtained without the rate allocation network.
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Figure 11: Visual quality comparison between our approach with and without rate allocation (RA)
network.
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