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Notations. For a square matrix, Tr(·) denotes the trace operator. For a function g : R → R and a
matrix A ∈ Rm×n, define g(A) : Rm×n → Rm×n, where g(A)ij = g(aij).

A Two perspectives of generalization bounds and consistency analyses

Firstly, we want to highlight the complementary roles of the two perspectives. Recall that our
goal is to find a predictor f̂n learned from finite training data that achieves the minimal true regret
Reg0/1(f̂n). In the following, we will decompose the regret appropriately for clear discussions.

For generalization analyses, the true regret can be decomposed into the following terms w.r.t. the 0/1
loss.

Reg0/1(f̂n) = R0/1(f̂n)−R∗0/1 =

[
R0/1(f̂n)− inf

g∈F
R0/1(g)

]
︸ ︷︷ ︸

estimation error

+

[
inf
g∈F

R0/1(g)−R∗0/1
]

︸ ︷︷ ︸
approximation error

,
(1)

where F is the constrained function class that real learning algorithms utilize. For a given distribution
P (x,y) and a specific measure, R∗0/1 is fixed. Besides, infg∈F R0/1(g) depends on the size of F and

is fixed for a given F . Thus, in this case, the original goal becomes to minimize R0/1(f̂n) as possible
as it can. In Section 4.1, we present the generalization error bounds of the learning algorithms to
provide learning guarantees for R0/1(f̂n) through bounding the surrogate risk Rφ(f̂n).1 However,
these error bounds cannot exactly tell the size of the gap between R0/1(f̂n) and Rφ(f̂n).

Consistency analyses aim to answer the question whether the (0/1) expected risk of the learned
function converges to the Bayes risk [1, 2], i.e., when n → ∞, Rφ(f̂n) → R∗φ =⇒ R0/1(f̂n) →
R∗0/1. If a loss is consistent, a regret bound [1, 3] as follows is preferable. Namely, for all measurable

function f (including f̂n) and valid joint distribution P (x,y), the following holds:

R0/1(f)−R∗0/1 ≤ ψ
−1(Rφ(f)−R∗φ), (2)

where ψ is an invertible function such that for any sequence (θi) in [0, 1], ψ(θi)→ 0 if and only if
θi → 0 [1]. Prior work [3] shows that ψ−1(θ) = O(c

√
c)
√
θ with logistic and exponential loss in

MLR. Besides, when learning in the real setting (with finite data), the surrogate regret of f̂n can be
decomposed into the following two terms w.r.t. the surrogate loss.

Rφ(f̂n)−R∗φ =

[
Rφ(f̂n)− inf

g∈F
Rφ(g)

]
︸ ︷︷ ︸

estimation error

+

[
inf
g∈F

Rφ(g)−R∗φ
]

︸ ︷︷ ︸
approximation error

,
(3)

where the estimation error is due to finite data size, and the approximation error is due to the choice
of F . Notably, the consistency analysis [1] neglects these two errors since it allows P (y|x) known in
the infinite data setting and assumes that the hypothesis class F is over all measurable functions.

In summary, consistency can provide valuable insights for learning from infinite data (or data of
relatively large n w.r.t. c) with an unconstrained hypothesis class, while generalization bounds can
offer more insights for learning from finite data with a constrained hypothesis class.

Note that, there is another way that consistency can also explain the finite-sample effect for consistent
losses, which results in a 0/1 excess risk bound (forAu2 ) that depends onO(c

√
c) and nearlyO(n−

1
4 ).

This is obtained by combining the regret bound in Eq.(2) with ψ−1(θ) = O(c
√
c)
√
θ [3] and the

same analysis framework as performed in Theorems 1 and 2 to upper bound the estimation error in
Eq.(3). In contrast, by combination of Eq.(1) and Theorem 1, this paper obtains a 0/1 excess risk
bound (for Au2) which depends on O(c) and nearly O(n−

1
2 ). Therefore, in terms of c and n, our

result (for Au2) is tighter than that obtained by the aforementioned way and the main claim of the
paper remains.

1Notably, this requires that the surrogate lossLφ strictly upper bounds the 0/1 lossL0/1 to makeR0/1 ≤ Rφ.

3



B Generalization Analyses

B.1 Proof of Lemma B.1

Lemma B.1 (The properties of surrogate losses). Assume that the base (convex) loss `(z) is ρ-
Lipschitz continuous and bounded by B. Then, the following holds for the extremely imbalanced
distribution.

(1) Lpa(f(x),y) in Eq. (6) is ρ-Lipschitz w.r.t. the first argument and bounded by B.

(2) Lu2(f(x),y) in Eq. (8) is ρ
√
c

c−1 -Lipschitz w.r.t. the first argument and bounded by c
c−1B.

(3) Lu3(f(x),y) in Eq. (9) is
√

2ρ-Lipschitz w.r.t. the first argument and bounded by 2B.

(4) Lu4
(f(x),y) in Eq. (10) is ρ

√
c-Lipschitz w.r.t. the first argument and bounded by cB.

Besides, the following holds for the balanced distribution.

(1) Lpa(f(x),y) in Eq. (6) is
√
2ρ√
c

-Lipschitz w.r.t. the first argument and bounded by B.

(2) Lu2
(f(x),y) in Eq. (8) is 4ρ

c
√
c
-Lipschitz w.r.t. the first argument and bounded by 4

cB.

(3) Lu3
(f(x),y) in Eq. (9) is both 2ρ√

c
-Lipschitz w.r.t. the first argument and bounded by 2B.

(4) Lu4(f(x),y) in Eq. (10) is both 2ρ√
c
-Lipschitz w.r.t. the first argument and bounded by 2B.

Proof. (a) For the surrogate pairwise loss Eq. (6), ∀f1, f2 ∈ F , the following holds:

|Lpa(f1,y)− Lpa(f2,y)|

=

∣∣∣∣ 1

|S+
y ||S−y |

∑
p∈S+

y

∑
q∈S−y

`(f1p − f1q )− 1

|S+
y ||S−y |

∑
p∈S+

y

∑
q∈S−y

`(f2p − f2q )

∣∣∣∣
≤ 1

|S+
y ||S−y |

∑
p∈S+

y

∑
q∈S−y

|`(f1p − f1q )− `(f2p − f2q )| (|a+ b| ≤ |a|+ |b|)

≤ 1

|S+
y ||S−y |

∑
p∈S+

y

∑
q∈S−y

ρ|f1p − f1q − f2p + f2q | (`(u) is ρ− Lipschitz)

≤ ρ
[

1

|S+
y ||S−y |

∑
p∈S+

y

∑
q∈S−y

|f1p − f1q − f2p + f2q |2
]1/2

(Jense′s Inequality)

≤ ρ
[

1

|S+
y ||S−y |

∑
p∈S+

y

∑
q∈S−y

{
|f1p − f2p |2 + |f1q − f2q |2

}]1/2
(|a− b|2 ≤ a2 + b2)

= ρ

[
1

|S+
y ||S−y |

{
|S−y |

∑
p∈S+

y

|f1p − f2p |2 + |S+
y |
∑
q∈S−y

|f1q − f2q |2
}]1/2

≤ ρ
[

max{|S+
y |, |S−y |}

|S+
y ||S−y |

c∑
j=1

|f1j − f2j |2
]1/2

=
ρ√

min{|S+
y |, |S−y |}

‖f1 − f2‖

= ♥

≤ ρ‖f1 − f2‖ (1 ≤ min{|S+
y |, |S−y |} ≤

c

2
).
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As for all distributions, the inequality 1 ≤ min{|S+
y |, |S−y |} ≤ c

2 always holds. Next, we consider
two extremely cases in the following.

As for extremely imbalanced distributions, we have min{|S+
y |, |S−y |} = 1. Then, we have ♥ ≤

ρ‖f1 − f2‖.

As for balanced distributions, we have min{|S+
y |, |S−y |} = c

2 . Then, we have ♥ ≤
√
2ρ√
c
‖f1 − f2‖.

Besides, it is easy to check that Lpa is bounded by B for all distributions.

(b) For the surrogate univariate loss Lu2(f(x),y), ∀f1, f2 ∈ F , the following holds:

|Lu2(f1,y)− Lu2(f2,y)|

=
∣∣∣ 1

|S+
y ||S−y |

c∑
j=1

`(yjf
1
j )− 1

|S+
y ||S−y |

c∑
j=1

`(yjf
2
j )
∣∣∣

≤ 1

|S+
y ||S−y |

c∑
j=1

|`(yjf1j )− `(yjf2j )| (|a+ b| ≤ |a|+ |b|)

≤ 1

|S+
y ||S−y |

c∑
j=1

ρ|yjf1j − yjf2j | (`(z) is ρ− Lipschitz)

≤ ρc

|S+
y ||S−y |

[
1

c

c∑
j=1

|f1j − f2j |2
]1/2

(Jensen′s Inequality)

=
ρ
√
c

|S+
y ||S−y |

‖f1 − f2‖

= ♣

≤ ρ
√
c

c− 1
‖f1 − f2‖ (c− 1 ≤ |S+

y ||S−y | ≤
c2

4
).

First, as for all distributions, the inequality c − 1 ≤ |S+
y ||S−y | ≤ c2

4 holds. Similarly, we consider
two extremely cases in the following.

As for extremely imbalanced distributions, we have |S+
y ||S−y | = c − 1. Then, we have ♣ ≤

ρ
√
c

c−1‖f
1 − f2‖, where is the biggest case for its Lipschitz constant. Besides, it is easy to check that

Lu2
is bounded by c

c−1B.

As for balanced distributions, we have |S+
y ||S−y | = c2

4 . Then, we have ♣ ≤ 4ρ
c
√
c
‖f1 − f2‖. Besides,

it is easy to check that Lu2
is bounded by 4

cB.

(c) For the surrogate univariate loss Lu3
(f(x),y), ∀f1, f2 ∈ F , the following holds:

|Lu3
(f1,y)− Lu3

(f2,y)|

=
∣∣∣∑p∈S+

y
[`(y1pf

1
p )− `(y2pf2p )]

|S+
y |

+

∑
q∈S−y [`(y1qf

1
q )− `(y2qf2q )]

|S−y |

∣∣∣
≤
∑
p∈S+

y
|`(f1p )− `(f2p )|
|S+

y |
+

∑
q∈S−y |`(−f

1
q )− `(−f2q )|

|S−y |
(|a+ b| ≤ |a|+ |b|)

≤
∑
p∈S+

y
ρ|f1p − f2p |
|S+

y |
+

∑
q∈S−y ρ|f

1
q − f2q |

|S−y |
(`(z) is ρ− Lipschitz)

≤ ρ
[∑

p∈S+
y
|f1p − f2p |2

|S+
y |

]1/2
+ ρ

[∑
q∈S−y |f

1
q − f2q |2

|S−y |

]1/2
(Jensen′s Inequality)

≤
√

2ρ

[∑
p∈S+

y
|f1p − f2p |2

|S+
y |

+

∑
q∈S−y |f

1
q − f2q |2

|S−y |

]1/2
(
√
a+
√
b ≤

√
2(a+ b))
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≤
√

2ρ

[∑c
j=1 |f1j − f2j |2

min{|S+
y |, |S−y |}

]1/2
= F

≤
√

2ρ‖f1 − f2‖ (1 ≤ min{|S+
y |, |S−y |} ≤

c

2
).

As for all distributions, 1 ≤ min{|S+
y |, |S−y |} ≤ c

2 always holds. Similarly, we consider two
extremely cases as follows.

As for extremely imbalanced distributions, we have min{|S+
y |, |S−y |} = 1. Then, we have F ≤√

2ρ‖f1 − f2‖, where is the biggest case for its Lipschitz constant.

As for balanced distributions, we have min{|S+
y |, |S−y |} = c

2 . Then, we have F ≤ 2ρ√
c
‖f1 − f2‖.

Besides, it is easy to check that Lu3
is bounded by 2B in both cases.

(d) For the surrogate univariate loss Lu4(f(x),y), ∀f1, f2 ∈ F , the following holds:

|Lu4(f1,y)− Lu4(f2,y)|

=
∣∣∣ 1

min{|S+
y |, |S−y |}

c∑
j=1

`(yjf
1
j )− 1

min{|S+
y |, |S−y |}

c∑
j=1

`(yjf
2
j )
∣∣∣

≤ 1

min{|S+
y |, |S−y |}

c∑
j=1

|`(yjf1j )− `(yjf2j )| (|a+ b| ≤ |a|+ |b|)

≤ 1

min{|S+
y |, |S−y |}

c∑
j=1

ρ|yjf1j − yjf2j | (`(z) is ρ− Lipschitz)

≤ ρc

min{|S+
y |, |S−y |}

[
1

c

c∑
j=1

|f1j − f2j |2
]1/2

(Jensen′s Inequality)

=
ρ
√
c

min{|S+
y |, |S−y |}

‖f1 − f2‖

= ♠

≤ ρ
√
c‖f1 − f2‖ (1 ≤ min{|S+

y |, |S−y |} ≤
c

2
).

For all distributions, the inequality 1 ≤ min{|S+
y |, |S−y |} ≤ c

2 always holds. Similarly, we consider
two extremely cases.

As for extremely imbalanced distributions, we have min{|S+
y |, |S−y |} = 1. Then, we have ♠ ≤

ρ
√
c‖f1 − f2‖, where is the biggest case for its Lipschitz constant. Besides, it is easy to check that

Lu2
is bounded by cB.

As for balanced distributions, we have min{|S+
y |, |S−y |} = c

2 . Then, we have ♠ ≤ 2ρ√
c
‖f1 − f2‖.

Besides, it is easy to check that Lu2
is bounded by 2B.

B.2 Proof of Lemma 1

Lemma 1 (The relationship between true and surrogate losses). For the ranking loss and its surrogate
losses, the following inequalities hold:

L0/1
r (f(x),y) ≤ Lpa(f(x),y) ≤ Lu3

(f(x),y) ≤ Lu4
(f(x),y) ≤ (c− 1)Lu2

(f(x),y), (4)

min{|S+
y |, |S−y |}Lu2

(f(x),y) ≤ Lu3
(f(x),y) ≤ max{|S+

y |, |S−y |}Lu2
(f(x),y). (5)

Besides, note that Lu2
cannot strictly upper bound L0/1

r and Lpa, i.e.,

L0/1
r (f(x),y) � Lu2

(f(x),y), Lpa(f(x),y) � Lu2
(f(x),y).
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Proof. For some widely-used base surrogate loss functions (e.g., the exponential, logistic or hinge
loss), it can be easily verified that `(fp − fq) ≤ `(fp) + `(−fq). Thus, the following holds for the
first inequality:

L0/1
r (f(x),y) ≤ Lpa(f(x),y)

=
1

|S+
y ||S−y |

∑
(p,q)∈S+

y ×S−y

`(fp(x)− fq(x))

≤ 1

|S+
y ||S−y |

∑
(p,q)∈S+

y ×S−y

[
`(fp(x)) + `(−fq(x))

]

=
1

|S+
y ||S−y |

[
|S−y |

∑
p∈S+

y

`(ypfp(x)) + |S+
y |
∑
q∈S−y

`(yqfq(x))

]
= Lu3

(f(x),y).

Besides, for the first inequality, the following holds:

L0/1
r (f(x),y) ≤ L0/1

r (sgn ◦ f(x),y)

=
1

|S+
y ||S−y |

∑
p∈S+

y

∑
q∈S−y

[[sgn(fp(x)) ≤ sgn(fq(x))]]

=
1

|S+
y ||S−y |

[
|S−y |

∑
p∈S+

y

[[sgn(fp(x)) 6= 1]] + |S+
y |
∑
q∈S−y

[[sgn(fq(x)) 6= −1]]−

{ ∑
p∈S+

y

[[sgn(fp(x)) 6= 1]]

}{ ∑
q∈S−y

[[sgn(fq(x)) 6= −1]]

}]

≤ 1

|S+
y ||S−y |

[
|S−y |

∑
p∈S+

y

[[sgn(fp(x)) 6= 1]] + |S+
y |
∑
q∈S−y

[[sgn(fq(x)) 6= −1]]

]

=

∑
p∈S+

y
[[sgn(fp(x)) 6= 1]]

|S+
y |

+

∑
q∈S−y [[sgn(fq(x)) 6= −1]]

|S−y |

≤
∑
p∈S+

y
`(ypfp(x))

|S+
y |

+

∑
q∈S−y `(yqfq(x))

|S−y |
= Lu3

(f(x),y)

≤
max{|S+

y |, |S−y |}
|S+

y ||S−y |

c∑
j=1

`(yjfj(x))

=
1

min{|S+
y |, |S−y |}

c∑
j=1

`(yjfj(x))

= Lu4
(f(x),y)

≤ c− 1

|S+
y ||S−y |

c∑
j=1

`(yjfj(x)) (
c

2
≤ max{|S+

y |, |S−y |} ≤ c− 1)

= (c− 1)Lu2
(f(x),y).

Therefore, we can get the first inequality.

For the second inequality, we can get it from the following definitions of Lu2 and Lu3 :

Lu3 =

∑
p∈S+

y
`(ypfp(x))

|S+
y |

+

∑
q∈S−y `(yqfq(x))

|S−y |

=
1

|S+
y ||S−y |

[
|S−y |

∑
p∈S+

y

`(ypfp(x)) + |S+
y |
∑
q∈S−y

`(yqfq(x))

]
,

7



Lu2
=

1

|S+
y ||S−y |

c∑
j=1

`(yjfj(x)).

Hence, we can get the inequality:
min{|S+

y |, |S−y |}Lu2
(f(x),y) ≤ Lu3

(f(x),y) ≤ max{|S+
y |, |S−y |}Lu2

(f(x),y).

In addition, it is easy to verify that Lu2 cannot strictly upper bound L0/1
r and Lpa, where the proof is

omitted here.

B.3 Proofs of Lemma 2 and Theorem 1, 2 and B.2

Lemma 2 (The relationship between true and surrogate expected risks). For any f ∈ F and any
distribution P , the following inequalities hold:

Rpr0/1(f) ≤ Rr0/1(f) ≤ Rpa(f) ≤ Ru3
(f) ≤ Ru4

(f) ≤ (c− 1)Ru2
(f), (6)

Rr0/1(f) � Ru2
(f), Rpa(f) � Ru2

(f). (7)

Proof. It is straightforward to apply Lemma 1 to get the results, which is omitted here.

Following [4], we also give the base theorem used in the subsequent generalization analysis, as
follows.
Theorem B.1 (The base theorem for generalization analysis [4]). Assume the loss function Lφ :
Rc × {−1,+1}c → R+ is µ-Lipschitz continuous w.r.t. the first argument and bounded by M .
Besides, (1) and (2) in Assumption 1 are satisfied. Then, for any δ > 0, with probability at least 1− δ
over the draw of an i.i.d. sample S of size n, the following generalization bound holds for all f ∈ F :

Rφ(f) ≤ R̂S(f) + 2
√

2µ

√
cΛ2r2

n
+ 3M

√
log 2

δ

2n
. (8)

B.3.1 Proof of Theorem 1

Theorem 1 (Learning guarantee of Au2 for extremely imbalanced distribution (worst case)). Assume
the loss Lφ = (c− 1)Lu2

, where Lu2
is defined in Eq. (8). Besides, Assumption 1 holds and suppose

P is extremely imbalanced. Then, for any δ > 0, with probability at least 1− δ over S, the following
generalization bound holds for all f ∈ F:

Rr0/1(f) ≤ Rpa(f) ≤ (c− 1)Ru2
(f) ≤ (c− 1)R̂u2

S (f) + 2
√

2ρc

√
Λ2r2

n
+ 3Bc

√
log 2

δ

2n
. (9)

Proof. Since Lφ = (c− 1)Lu2 , we can get its Lipschitz constant (i.e. ρ
√
c) and bounded value (i.e.

cB) from (2) in Lemma B.1. Then, applying Theorem B.1, we can get that, for any δ > 0, with
probability at least 1− δ over S, the following generalization bound holds for all f ∈ F :

Rφ(f) = (c− 1)Ru2(f) ≤ (c− 1)R̂u2

S (f) + 2
√

2ρc

√
Λ2r2

n
+ 3Bc

√
log 2

δ

2n
. (10)

Besides, from Lemma 2, we can get the inequality Rr0/1(f) ≤ Rpa(f) ≤ (c− 1)Ru2
(f). Thus, we

can get this theorem.

B.3.2 Proof of Theorem 2

Theorem 2 (Learning guarantee of Au3 for extremely imbalanced distribution (worst case)). Assume
the loss Lφ = Lu3

, where Lu3
is defined in Eq. (9). Besides, Assumption 1 holds and suppose P

is extremely imbalanced. Then, for any δ > 0, with probability at least 1− δ over S, the following
generalization bound holds for all f ∈ F:

Rr0/1(f) ≤ Rpa(f) ≤ Ru3(f) ≤ R̂u3

S (f) + 4ρ

√
cΛ2r2

n
+ 6B

√
log 2

δ

2n
. (11)

8



Proof. Since Lφ = Lu3 , we can get its Lipschitz constant (i.e.
√

2ρ) and bounded value (i.e. 2B)
from (3) in Lemma B.1. Then, applying Theorem B.1 and the inequality Rr0/1(f) ≤ Rpa(f) ≤
Ru3

(f) from Lemma 2, we can get this theorem.

B.3.3 Proof of Theorem B.2

Theorem B.2 (Learning guarantee of Au4 for extremely imbalanced distribution (worst case)).
Assume the loss Lφ = Lu4

, where Lu4
is defined in Eq. (10). Besides, Assumption 1 holds and

suppose P is extremely imbalanced. Then, for any δ > 0, with probability at least 1− δ over S, the
following generalization bound holds for all f ∈ F:

Rr0/1(f) ≤ Rpa(f) ≤ Ru4
(f) ≤ R̂u4

S (f) + 2
√

2ρc

√
Λ2r2

n
+ 3cB

√
log 2

δ

2n
. (12)

Proof. SinceLφ = Lu4
, we can get its Lipschitz constant (i.e. ρ

√
c) and bounded value (i.e. cB) from

(4) in Lemma B.1. Then, applying Theorem B.1 and the inequality Rr0/1(f) ≤ Rpa(f) ≤ Ru4
(f)

from Lemma 2, we can get this theorem.

B.4 Proofs of Theorem 3 and B.3

B.4.1 Proof of Theorem 3

Theorem 3 (Learning guarantee of Auk , k = 1, 2, 3, 4 for balanced distribution (best case)). Assume
the loss Lφ = 2Lu1 = c

2Lu2 = Lu3 = Lu4 , where they are defined in Section 3.1. Besides,
Assumption 1 holds and suppose P is balanced. Then, for any δ > 0, with probability at least 1− δ
over S, the following generalization bound holds for all f ∈ F:

Rr0/1(f) ≤ Rpa(f) ≤ Ru3(f) =
c

2
Ru2(f) ≤ c

2
R̂u2

S (f) + 4
√

2ρ

√
Λ2r2

n
+ 6B

√
log 2

δ

2n
, (13)

where 2R̂u1

S (f) = c
2 R̂

u2

S (f) = R̂u3

S (f) = R̂u4

S (f).

Proof. For balanced distributions, it is easy to verify that 2Lu1
= c

2Lu2
= Lu3

= Lu4
and thus

2Ru1(f) = c
2Ru2(f) = Ru3(f) = Ru4(f) and 2R̂u1

S (f) = c
2 R̂

u2

S (f) = R̂u3

S (f) = R̂u4

S (f). In the
following, we take Au2 for example.

Since Lφ = c
2Lu2 , we can get its Lipschitz constant (i.e. 2ρ√

c
) and bounded value (i.e. 2B) from the

balanced case in Lemma B.1. Then, applying Theorem B.1 and the inequality Rr0/1(f) ≤ Rpa(f) ≤
c
2Ru2

(f), we can get this theorem.

Similarly, we can get the same learning guarantee for Au1 , Au3 and Au4 .

B.4.2 Proof of Theorem B.3

Theorem B.3 (Learning guarantee of Apa for balanced distribution (best case)). Assume the loss
Lφ = Lpa, where Lpa is defined in Eq. (6). Besides, Assumption 1 holds and suppose P is balanced.
Then, for any δ > 0, with probability at least 1− δ over S, the following generalization bound holds
for all f ∈ F:

Rr0/1(f) ≤ Rpa(f) ≤ R̂paS (f) + 4ρ

√
Λ2r2

n
+ 3B

√
log 2

δ

2n
. (14)

Proof. Since Lφ = Lpa, we can get its Lipschitz constant (i.e.
√
2ρ√
c

) and bounded value (i.e. B) from
the balanced case in Lemma B.1. Then, applying Theorem B.1 and the inequality Rr0/1(f) ≤ Rpa(f)

from Lemma 2, we can get this theorem.
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B.5 Proofs of Theorem B.5, B.6 and B.7

As for the in-between cases of imbalance, indeed it is highly nontrivial to consider a continuous
changing imbalance level of the distribution when instances may have different numbers of positive
labels, and we leave it as an important future direction.

Nevertheless, our framework can be applied to the cases where each instance has the same number of
positive labels, denoted as cp. min{cp,c−cp}

c directly reflects the imbalance level of the distribution.
Note that the extremely imbalanced case (cp = 1 or cp = c− 1) and the balanced one (cp = c/2) are
included.

First we give the following definition.

Definition 2 (Instance-wise cp-imbalanced distribution). For a distribution P for MLC, it is said to
be instance-wise cp-imbalanced if for any (x,y) sampled from P , |S+

y | = cp always holds.2

For the clarity of following discussions, here we denote cmin = min{cp, c− cp}.

B.5.1 Proof of Theorem B.5

Theorem B.5 (Learning guarantee ofApa for cp-imbalanced distribution). Assume the lossLφ = Lpa,
where Lpa is defined in Eq. (6). Besides, Assumption 1 holds and suppose P is cp-imbalanced. Then,
for any δ > 0, with probability at least 1− δ over S, the following generalization bound holds for all
f ∈ F:

Rr0/1(f) ≤ Rpa(f) ≤ R̂paS (f) +
2
√

2ρ
√
cmin

√
cΛ2r2

n
+ 3B

√
log 2

δ

2n
. (15)

Proof. Since Lφ = Lpa, we can get its Lipschitz constant (i.e. ρ√
cmin

) and bounded value (i.e. B)
following the same analysis technique in Lemma B.1. Then, applying Theorem B.1 and the inequality
Rr0/1(f) ≤ Rpa(f) from Lemma 2, we can get this theorem.

B.5.2 Proof of Theorem B.6

Theorem B.6 (Learning guarantee of Au2 for cp-imbalanced distribution). Assume the loss Lφ =
(c− cmin)Lu2 , where Lu2 is defined in Eq. (8). Besides, Assumption 1 holds and suppose P is cp-
imbalanced. Then, for any δ > 0, with probability at least 1− δ over S, the following generalization
bound holds for all f ∈ F:

Rr0/1(f) ≤ Rpa(f) ≤ (c− cmin)Ru2
(f) ≤ (c− cmin)R̂u2

S (f) +
2
√

2ρc

cmin

√
Λ2r2

n
+

3Bc

cmin

√
log 2

δ

2n
.

(16)

Proof. Since Lφ = (c−cmin)Lu2 , we can get its Lipschitz constant (i.e. ρ
√
c

cmin(c−cmin)
) and bounded

value (i.e. cB
cmin(c−cmin)

) following the same analysis technique in Lemma B.1. Then, applying
Theorem B.1, we can get that, for any δ > 0, with probability at least 1− δ over S, the following
generalization bound holds for all f ∈ F :

Rφ(f) = (c− cmin)Ru2(f) ≤ (c− cmin)R̂u2

S (f) +
2
√

2ρc

cmin

√
Λ2r2

n
+

3Bc

cmin

√
log 2

δ

2n
. (17)

Besides, based on Lemma 1 and the expected risk definition, we can get the inequality Rr0/1(f) ≤
Rpa(f) ≤ (c− cmin)Ru2(f). Thus, we can get this theorem.

2In this paper we call cp-imbalanced distribution (or dataset) for short.

10



B.5.3 Proof of Theorem B.7

Theorem B.7 (Learning guarantee ofAu3 for cp-imbalanced distribution). Assume the lossLφ = Lu3 ,
where Lu3

is defined in Eq. (9). Besides, Assumption 1 holds and suppose P is cp-imbalanced. Then,
for any δ > 0, with probability at least 1− δ over S, the following generalization bound holds for all
f ∈ F:

Rr0/1(f) ≤ Rpa(f) ≤ Ru3
(f) ≤ R̂u3

S (f) +
4ρ
√
cmin

√
cΛ2r2

n
+ 6B

√
log 2

δ

2n
. (18)

Proof. Since Lφ = Lu3 , we can get its Lipschitz constant (i.e.
√
2ρ√
cmin

) and bounded value (i.e. 2B)
following the same analysis technique in Lemma B.1. Then, applying Theorem B.1 and the inequality
Rr0/1(f) ≤ Rpa(f) ≤ Ru3(f) from Lemma 2, we can get this theorem.

C Consistency Analyses

Recall that the ranking loss and the partial ranking loss are defined as

L0/1
r (f(x),y) =

∑
(p,q)∈S+

y ×S−y [[fp(x) ≤ fq(x)]]

|S+
y ||S−y |

, (19)

and

L0/1
pr (f(x),y) =

1

|S+
y ||S−y |

∑
(p,q)∈S+

y ×S−y

[
[[fp(x) < fq(x)]] +

1

2
[[fp(x) = fq(x)]]

]
, (20)

respectively. For generality, following [3, 2], we do not specify the penalties in the losses at beginning.
Recall that the general ranking loss is defined as

L0/1
gr (f(x),y) = αy

∑
(p,q)∈S+

y ×S−y

[
[[fp(x) ≤ fq(x)]]

]
, (21)

where αy is a positive penalty, and the general partial ranking loss is in a similar form of

L0/1
gpr(f(x),y) = αy

∑
(p,q)∈S+

y ×S−y

[
[[fp(x) < fq(x)]] +

1

2
[[fp(x) = fq(x)]]

]
. (22)

The commonly used ranking loss and partial ranking loss are the spacial cases of Eq. (21) and Eq. (22)
with αy = 1

|S+
y ||S−y |

respectively. Also, recall that the general reweighted univariate surrogate loss is
defined as follows:

Lu(f(x),y) =

c∑
j=1

([[yj = +1]]β+
y + [[yj = −1]]β−y )`(yjfj(x)), (23)

where β+
y and β−y are positive penalties. All univariate surrogate losses mentioned in the main text

are spacial cases of Eq. (23), respectively.

Let BL(x, P (y|x)) denote the set of the Bayes predictors of a loss L given a data point x and a
conditional distribution P (y|x). Remarkably, a sufficient and necessary condition (called multi-label
consistency [2]) for a surrogate loss to be (Fisher) consistent w.r.t. the (partial) ranking loss is
presented in the following Lemma C.1.
Lemma C.1 (Multi-label consistency [2]). A surrogate loss L is consistent w.r.t. a 0/1 loss L0/1,
including the general ranking loss in Eq. (21) and the general partial ranking loss in Eq. (22), if and
only if ∀x and P (y|x), BL(x, P (y|x)) ⊂ BL0/1(x, P (y|x)).

For convenience, we define

∆rk
pq =

∑
y:yp=sr,yq=sk

αyP (y|x), and ∆r
p =

∑
y:yp=sr

αyP (y|x) = ∆r+
pq + ∆r−

pq ,∀p 6= q, (24)

where r, k ∈ {+,−} and s+ = +1 and s− = −1. The following Lemma C.2 characterizes the set of
the Bayes predictors w.r.t. the general ranking loss in Eq. (21) and the general partial ranking loss in
Eq. (22).
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Lemma C.2 (Bayes predictor of (partial) ranking loss [2]). For all x and P (y|x), the set of Bayes
predictors w.r.t. the general ranking loss in Eq. (21) is given by

B
L

0/1
gr

(x, P (y|x)) = {f : ∀1 ≤ p < q ≤ c, fp > fq if ∆+−
pq > ∆−+pq ; , fp 6= fq if ∆+−

pq = ∆−+pq ; fp < fq otherwise},
(25)

and the set of Bayes predictors w.r.t. the general partial ranking loss in Eq. (22) is given by

B
L

0/1
gpr

(x, P (y|x)) = {f : ∀1 ≤ p < q ≤ c, fp > fq if ∆+−
pq > ∆−+pq ; fp < fq if ∆+−

pq < ∆−+pq }.
(26)

Similarly to Eq. (24), we define

φ+p =
∑

y:yp=+1

β+
y P (y|x) and φ−p =

∑
y:yp=−1

β−y P (y|x). (27)

The following Lemma C.3 characterizes the set of the Bayes predictors w.r.t. the general reweighted
univariate surrogate loss in Eq. (23) with `(z) = e−z or `(z) = ln(1 + e−z).

Lemma C.3 (Bayes predictor of Eq. (23) with exponential or logistic loss). For all x and P (y|x),
the set of Bayes predictors w.r.t. the general reweighted univariate surrogate loss in Eq. (23) with
`(z) = e−z or `(z) = ln(1 + e−z) is given by3

B`Lu
(x, P (y|x)) = {f : ∀1 ≤ j ≤ c, fj = C ln

φ+j

φ−j
if φ+j φ

−
j > 0; fj = +∞ if φ−j = 0; fj = −∞ if φ+j = 0},

(28)

where C = 1
2 if `(z) = e−z and C = 1 if `(z) = ln(1 + e−z).

The following Lemma C.4 and Lemma C.4 characterize the set of the Bayes predictors w.r.t. the
general reweighted univariate surrogate loss in Eq. (23) with `(z) = (max{0, 1− z})2 and `(z) =
max{0, 1− z}, respectively.

Lemma C.4 (Bayes predictor of Eq. (23) with squared hinge loss). For all x and P (y|x), the
set of Bayes predictors w.r.t. the general reweighted univariate surrogate loss in Eq. (23) with
`(z) = (max(0, 1− z))2 is given by

B`Lu
(x, P (y|x)) = {f : ∀1 ≤ j ≤ c, fj =

φ+j − φ
−
j

φ+j + φ−j
}. (29)

Lemma C.4 (Bayes predictor of Eq. (23) with hinge loss). For all x and P (y|x), the set of Bayes
predictors w.r.t. the general reweighted univariate surrogate loss in Eq. (23) with `(z) = max(0, 1−z)
is given by

B`Lu
(x, P (y|x)) = {f : ∀1 ≤ j ≤ c, fj = 1 if φ+j > φ−j ; fj = −1 if φ+j < φ−j }. (30)

The proof of Lemma C.3, Lemma C.4 and Lemma C.4 are presented in Appendix C.1. Combining
the Lemma C.1, Lemma C.2, Lemma C.3 and Lemma C.4, we have the following sufficient and
necessary condition for the general reweighted univariate surrogate loss in Eq. (23) with `(z) = e−z

or `(z) = ln(1+e−z) or `(z) = (max{0, 1−z})2 to be consistent, as summarized in Proposition C.1.

Proposition C.1 (Sufficient and necessary condition for the consistency of Eq. (23) w.r.t. Eq. (22) with
exponential, logistic or squared hinge loss; proof in Appendix C.2). The general reweighted univariate
surrogate loss in Eq. (23) with `(z) = e−z or `(z) = ln(1 + e−z) or `(z) = (max{0, 1 − z})2 is
consistent w.r.t. the general partial ranking loss in Eq. (22) if and only if for all x and P (y|x), we
have

∀1 ≤ p < q ≤ c, φ+p φ−q − φ−p φ+q > 0 if ∆+
p ∆−q −∆−p ∆+

q > 0;φ+p φ
−
q − φ−p φ+q < 0 if ∆+

p ∆−q −∆−p ∆+
q < 0.

(31)
3Because

∑
y P (y|x) = 1 for any x and we assume that the penalties are positive, then ∀1 ≤ j ≤ c,

φ+
j + φ−j > 0.
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Note that it takes additional efforts to check the consistency of a new surrogate loss according to
Lemma C.1 or Proposition C.1, because one has to enumerate all possible conditional distributions.
For the general loss in Eq. (23), we present more intuitive characterization that only involves the
penalties in Theorem 4 and Proposition 1, considering different base losses.
Theorem 4 (Necessary condition for the consistency of Eq. (23) w.r.t. Eq. (22) with exponential,
logistic or squared hinge loss; proof in Appendix C.3). A general reweighted univariate surrogate
loss in Eq. (23) with `(z) = e−z , `(z) = ln(1 + e−z) or `(z) = (max{0, 1 − z})2 is consistent
w.r.t. the general partial ranking loss in Eq. (22) only if ∃τ > 0, β+

y β
−
y = τα2

y for all y such that
1− c ≤

∑
1≤j≤c yj ≤ c− 1.

Note that, when c ≤ 3, the penalties of Lu1
, Lu3

and Lu4
may coincide with that of Lu2

up to a
multiplicative constant. When c ≥ 4, it is straightforward to construct counter examples that violate
the necessary condition in Theorem 4 and obtain the following Corollary 1.
Corollary 1 (Inconsistency of Lu1

, Lu3
and Lu4

w.r.t. Eq. (20) with exponential, logistic or
squared hinge loss; proof in Appendix C.4). If c ≥ 4, Lu1 , Lu3 and Lu4 with `(z) = e−z or
`(z) = ln(1 + e−z) or `(z) = (max{0, 1 − z})2 are inconsistent w.r.t. the partial ranking loss in
Eq. (20).

Based on Lemma C.1 and Lemma C.4, we further show the inconsistency of the general reweighted
univariate loss in Eq. (23) w.r.t. the general partial ranking loss in Eq. (22) with hinge loss. Note that
this includes the inconsistency of Lu1

, Lu3
and Lu4

w.r.t. Eq. (20).
Proposition 1 (Inconsistency of Eq. (23) w.r.t. Eq. (22) with hinge loss; proof in Appendix C.5). The
general reweighted univariate surrogate loss in Eq. (23) with `(z) = max{0, 1− z} are inconsistent
w.r.t. the general partial ranking loss in Eq. (22), for all positive penalties αy, β+

y and β−y .

An immediate conclusion from Corollary 1 and Proposition 1 is thatLu1 , Lu3 andLu4 are inconsistent
w.r.t. the ranking loss in Eq. (19) because B

L
0/1
r

(x, P (y|x)) ⊂ B
L

0/1
pr

(x, P (y|x)) [2]. Compared
to existing work [3, 2], although Theorem 4 and Proposition 1 are negative, this paper considers
surrogate losses in a more general reweighted form, i.e. Eq. (23), which may be of independent
interest.

C.1 Proofs of Lemma C.3, Lemma C.4 and Lemma C.4

According to Eq. (23), the conditional risk for the general reweighted univariate surrogate loss in
Eq. (23) is:

R(f |x) =
∑
y

P (y|x)Lu(f(x),y)

=
∑
y

P (y|x)

c∑
j=1

([[yj = +1]]β+
y + [[yj = −1]]β−y )`(yjfj),

=
∑
y

c∑
j=1

([[yj = +1]]β+
y + [[yj = −1]]β−y )P (y|x)`(yjfj),

=

c∑
j=1

 ∑
y:yj=+1

β+
y P (y|x)`(fj) +

∑
y:yj=−1

β−y P (y|x)`(−fj)


=

c∑
j=1

[
φ+j `(fj) + φ−j `(−fj)

]
. (32)

C.1.1 Proof of Lemma C.3.

Proof. Because
∑

y P (y|x) = 1 for any x and we assume that the penalties are positive, then
∀1 ≤ j ≤ c, φ+j + φ−j > 0. Note that both the exponential loss and logistic loss are strictly
monotonically decreasing functions.

According to Eq. (32), if φ+j = 0, then φ−j 6= 0 and f∗j (x) = +∞. If φ−j = 0, then φ+j 6= 0 and
f∗j (x) = −∞. We now discuss the case where φ+j φ

−
j > 0.
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For the exponential loss `(z) = e−z , we consider g(z) = ae−z + bez for a > 0 and b > 0. It
achieves its minima at z∗ = 1

2 ln a
b . To see this, just take the gradient up to the second order and get

g′(z) = −ae−z + be−z, g′′(z) = ae−z + be−z. (33)

Since ∀z, g′′(z) > 0. Therefore g(z) is convex. Let g′(z∗) = 0⇒ z∗ = 1
2 ln a

b .

For the logistic loss `(z) = ln(1 + e−z), we consider g(z) = a ln(1 + e−z) + b ln(1 + ez) for a > 0
and b > 0. It achieves its minima at z∗ = ln a

b . To see this, just take the gradient up to the second
order and get

g′(z) =
−ae−z

1 + e−z
+

bez

1 + ez
, g′′(z) =

(a+ b)ez

(1 + ez)2
> 0. (34)

Since ∀z, g′′(z) > 0. Therefore g(z) is convex. Let g′(z∗) = 0⇒ z∗ = ln a
b . Combining all cases

together completes the proof.

C.1.2 Proof of Lemma C.4

Proof. According to Eq. (32), the conditional risk of the squared hinge loss `(z) = (max{0, 1−z})2
is

R(f |x) =

c∑
j=1

[
φ+j (max{0, 1− fj})2 + φ−j (max{0, 1 + fj})2

]
. (35)

Consider g(z) = a(max{0, 1 − z})2 + b(max{0, 1 + z})2 for a ≥ 0, b ≥ 0 and a + b > 0. If
z < −1, then g(z) = a(1− z)2 > 4a. If z > 1, then g(z) = b(1 + z)2 > 4b. If −1 ≤ z ≤ 1, then
g(z) = (a + b)z2 + 2(b − a)z + (a + b), which is convex. The minima is achieved at z∗ = a−b

b+a ,
which satisfies −1 ≤ z∗ ≤ 1. The value of g(z∗) is 4ab

a+b ≤ min{4a, 4b}, which means that it is the
global minima. Applying this to all 1 ≤ j ≤ c completes the proof.

C.1.3 Proof of Lemma C.4

Proof. According to Eq. (32), the conditional risk of the hinge loss `(z) = max{0, 1− z} is

R(f |x) =

c∑
j=1

[
φ+j max{0, 1− fj}+ φ−j max{0, 1 + fj}

]
. (36)

Consider g(z) = amax{0, 1 − z} + bmax{0, 1 + z} for a ≥ 0, b ≥ 0 and a + b > 0. If z < −1,
then g(z) = a(1 − z) > 2a. If z > 1, then g(z) = b(1 + z) > 2b. If −1 ≤ z ≤ 1, then
g(z) = a+ b+ (b− a)z. If b > a, then z∗ = −1 and g(z∗) = 2a < 2b, which means that it is the
global minima. If b < a, then z∗ = 1 and g(z∗) = 2b < 2a, which means that it is the global minima.
If b = a, then whatever z is g(z) = 2a. Applying this to all 1 ≤ j ≤ c completes the proof.

C.2 Proof of Proposition C.1

Proof. First, note that ∀p 6= q,∆+
p + ∆−p = ∆+

q + ∆−q =
∑

y αyP (y|x) > 0, ∆+−
pq − ∆−+pq =

∆+
p −∆+

q , and

∆+
p ∆−q −∆−p ∆+

q = ∆+
p

[∑
y

αyP (y|x)−∆+
q

]
−

[∑
y

αyP (y|x)−∆+
p

]
∆+
q =

[∑
y

αyP (y|x)

]
(∆+

p −∆+
q ).

Therefore, we have ∀p < q,

∆+−
pq > ∆−+pq ⇔ ∆+

p > ∆+
q ⇔ ∆+

p ∆−q −∆−p ∆+
q > 0,

and
∆+−
pq < ∆−+pq ⇔ ∆+

p < ∆+
q ⇔ ∆+

p ∆−q −∆−p ∆+
q < 0.

According to Lemma C.3, when `(z) = e−z or `(z) = ln(1 + e−z), ∀f ∈ B`Lu
(x, P (y|x)), if

φ+j φ
−
j > 0, we have fj = C ln

φ+
j

φ−j
, where C is a constant. Therefore, ∀1 ≤ p < q ≤ c, if φ+p φ

−
p > 0
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and φ+q φ
−
q > 0, then fp > fq ⇔ φ+p φ

−
q − φ−p φ+q < 0 and fp > fq ⇔ φ+p φ

−
q − φ−p φ+q < 0. It is

easy to check this also holds if φ+p φ
−
p = 0 or φ+q φ

−
q = 0. Note that we do not need to consider the

cases where φ+p = φ+q = 0 or φ−p = φ−q = 0 because they imply ∆+
p ∆−q −∆−p ∆+

q = 0. Combining
with Lemma C.1, we complete the proof for the logistic loss and exponential loss.

According to Lemma C.4, when `(z) = (max{0, 1− z})2, ∀f ∈ B`Lu
(x, P (y|x)), 1 ≤ j ≤ c, fj =

φ+
j −φ

−
j

φ+
j +φ−j

. Therefore, ∀1 ≤ p < q ≤ c, fp > fq ⇔
φ+
p −φ

−
p

φ+
p +φ−p

>
φ+
q −φ

−
q

φ+
q +φ−q

⇔ φ+p φ
−
q − φ−p φ+q < 0 and

fp > fq ⇔
φ+
p −φ

−
p

φ+
p +φ−p

<
φ+
q −φ

−
q

φ+
q +φ−q

⇔ φ+p φ
−
q − φ−p φ+q < 0. Combining with Lemma C.1, we complete

the proof for the squared hinge loss.

C.3 Proof of Theorem 4

Proof. For convenience, for all p 6= q, we define

φrkpq =
∑

y:yp=sr,yq=sk

([[yp = +1]]β+
y + [[yp = −1]]β−y )P (y|x), (37)

where r, k ∈ {+,−} and s+ = +1 and s− = −1. Note that for all p 6= q, φ++
pq = φ++

qp and
φ−−pq = φ−−qp according to the definition. For all 1 ≤ p < q ≤ c, we have

φ+p φ
−
q − φ−p φ+q = (φ++

pq + φ+−pq )(φ−+qp + φ−−qp )− (φ−+pq + φ−−pq )(φ++
qp + φ+−qp )

= φ++
pq φ

−+
qp + φ+−pq φ

−+
qp + φ+−pq φ

−−
qp − φ−+pq φ+−qp − φ−+pq φ++

qp − φ−−pq φ+−qp , (38)

and similarly

∆+
p ∆−q −∆−p ∆+

q = (∆++
pq + ∆+−

pq )(∆−+qp + ∆−−qp )− (∆−+pq + ∆−−pq )(∆++
qp + ∆+−

qp )

= ∆++
pq ∆−+qp + ∆+−

pq ∆−+qp + ∆+−
pq ∆−−qp −∆−+pq ∆+−

qp −∆−+pq ∆++
qp −∆−−pq ∆+−

qp .
(39)

For simplicity, we say a y is nontrivial if it satisfies 1 − c ≤
∑

1≤j≤c yj ≤ c − 1. Assume the
consistency holds. We prove that ∃τ > 0, β+

y β
−
y = τα2

y for all nontrivial y. The proof consists of
two main steps.

Step 1: We first prove that, for all 1 ≤ p < q ≤ c, there exists τ > 0, β+
y β
−
y = τα2

y for all y such
that ypyq = −1. According to Proposition C.1, ∀x and P (y|x),

∀p < q, φ+p φ
−
q − φ−p φ+q > 0 if ∆+

p ∆−q −∆−p ∆+
q > 0;φ+p φ

−
q − φ−p φ+q < 0 if ∆+

p ∆−q −∆−p ∆+
q < 0.

We simply consider the cases where P (y|x) = 0 for all y such that yp = yq. According to Eq. (38)
and Eq. (39), we get

φ+p φ
−
q − φ−p φ+q = φ+−pq φ

−+
qp − φ−+pq φ+−qp

=
∑

y:yp=+1,yq=−1
y′:y′p=+1,y′q=−1

β+
y β
−
y′P (y|x)P (y′|x)−

∑
y:yp=−1,yq=+1

y′:y′p=−1,y
′
q=+1

β+
y β
−
y′P (y|x)P (y′|x),

(40)

and

∆+
p ∆−q −∆−p ∆+

q = ∆+−
pq ∆−+qp −∆−+pq ∆+−

qp

=
∑

y:yp=+1,yq=−1
y′:y′p=+1,y′q=−1

αyαy′P (y|x)P (y′|x)−
∑

y:yp=−1,yq=+1

y′:y′p=−1,y
′
q=+1

αyαy′P (y|x)P (y′|x).

(41)

We proceed by contradiction and consider two cases. Recall that we assume αy > 0 and β+
y β
−
y > 0

for all nontrivial y. Suppose that there exists τ3 > 0, τ4 > 0, τ3 6= τ4, β+
y β
−
y = τ3α

2
y 6= τ4α

2
y and

β+
y′β
−
y′ = τ4α

2
y′ 6= τ3α

2
y′ for some y 6= y′ with ypyq = −1 and y′py

′
q = −1.
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Case 1.1: yp 6= y′p. Without loss of generality, let yp = +1 and y′p = −1. Accordingly, we get

yq = −1 and y′q = +1. Let P (y|x) =

√
β+

y′β
−
y′√

β+
y β
−
y +

√
β+

y′β
−
y′

and P (y′|x) =

√
β+
y β
−
y√

β+
y β
−
y +

√
β+

y′β
−
y′

. Note

that P (y|x) + P (y′|x) = 1. According to Eq. (41), we have

∆+
p ∆−q −∆−p ∆+

q = α2
yP (y|x)2 − α2

y′P (y′|x)2 =
β+
y β
−
y β

+
y′β
−
y′

(
√
β+
y β
−
y +

√
β+
y′β
−
y′)

2

(
1

τ4
− 1

τ3
) 6= 0,

but according to Eq. (40), we have

φ+p φ
−
q − φ−p φ+q = β+

y β
−
y P (y|x)2 − β+

y′β
−
y′P (y′|x)2 = 0,

which is a contrary to Proposition C.1.

Case 1.2: yp = y′p. Without loss of generality, let yp = y′p = −1, then yq = y′q = +1. Consider
y′′p such that y′′p = +1, y′′q = −1. Then according to the Case 1.1, there exists τ , such that

τ =
β+
y β
−
y

α2
y

=
β+

y′′β
−
y′′

α2
y′′

=
β+

y′β
−
y′

α2
y′

, which is a contrary.

Combining the Case 1.1 and Case 1.2 together, for all 1 ≤ p < q ≤ c, there exists τ > 0,
β+
y β
−
y = τα2

y for all y such that ypyq = −1.

Step 2: Note that the values of τ in Step 1 may depend on p and q. Now we prove that there exists
a universal τ for all 1 ≤ p < q ≤ c. For any nontrivial y 6= y′, we can find 1 ≤ p < q ≤ c and
1 ≤ p′ < q′ ≤ c such that ypyq = −1 and y′p′y

′
q′ = −1. We consider four cases.

Case 2.1: Two pair of indices match, namely, p = p′, q = q′. We have proven that
β−y β

+
y

α2
y

=
β−
y′β

+

y′

α2
y′

in Step 1.

Case 2.2: No index matches for c ≥ 4, namely, p 6= p′, q 6= q′, p 6= q′, p′ 6= q. We can construct y′′

such that y′′p = yp, y′′q = yq, y′′p′ = y′p′ , y
′′
q′ = y′q′ and get

β−y β
+
y

α2
y

=
β−
y′′β

+

y′′

α2
y′′

=
β−
y′β

+

y′

α2
y′

according to

Step 1.

Case 2.3: Only one pair of indices match and the corresponding labels are the same for c ≥ 3.
Without loss of generality, suppose p = 1, q = p′ = 2, q′ = 3 and y2 = +1, y′2 = +1. It implies
that y1 = −1 and y′3 = −1. Suppose y3 = −1, then y2y3 = y′2y

′
3 = −1. Suppose y3 = +1, no

matter which label y′1 is, either y1y2 = y′1y
′
2 = −1 or y1y3 = y′1y

′
3 = −1. We get

β−y β
+
y

α2
y

=
β−
y′β

+

y′

α2
y′

according to Step 1.

Case 2.4: Only one pair of indices match and the corresponding labels are not the same for c ≥ 3.
Without loss of generality, suppose p = 1, q = p′ = 2, and q′ = 3 and y2 = +1, y′2 = −1. We
have y1 = −1, y′3 = +1. Similarly to Case 3, no matter which labels y3 and y′1 are, we have either

y1y2 = y′1y
′
2 = −1 or y1y3 = y′1y

′
3 = −1 or y2y3 = y′2y

′
3 = −1, and get

β−y β
+
y

α2
y

=
β−
y′β

+

y′

α2
y′

according

to Step 1.

Combining Case 2.1, Case 2.2, Case 2.3 and Case 2.4 together, we obtain that for all nontrivial

y 6= y′,
β−y β

+
y

α2
y

=
β−
y′β

+

y′

α2
y′

.

C.4 Proof of Corollary 1

Proof. We consider a multi-label classification problem with c ≥ 4 labels. Let y satisfy y1 = +1, and
yj = −1 for all 2 ≤ j ≤ c, and y′ satisfy y′1 = y′2 = +1, and y′j = −1 for all 3 ≤ j ≤ c. According
to the definition of the partial ranking loss in Eq. (20), we have αy = 1

c−1 and αy′ = 1
2(c−2) .

In Lu1 , according to the definition, we have β+
y = β+

y′ = β−ŷ = β−y′ = 1
c . It is easy to check that

β+
y β
−
y

α2
y

= (c−1)2
c2 6= 4(c−2)2

c2 =
β+

y′β
−
y′

α2
y′

for all c ≥ 4.
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In Lu3 , according to the definition, we have β+
y = 1, β+

y′ = 1
2 , β−y = 1

c−1 , and β−y′ = 1
c−2 . It is easy

to check that
β+
y β
−
y

α2
y

= c− 1 6= 2(c− 2) =
β+

y′β
−
y′

α2
y′

for all c ≥ 4.

In Lu4 , according to the definition, we have β+
y = 1, β+

y′ = 1
2 , β−y = 1, and β−y′ = 1

2 , for all c ≥ 4.

It is easy to check that
β+
y β
−
y

α2
y

= (c− 1)2 6= (c− 2)2 =
β+

y′β
−
y′

α2
y′

.

According to Theorem 4 and Proposition C.1, the above surrogate losses are not consistent w.r.t. the
partial ranking loss in Eq. (20).

C.5 Proof of Proposition 1

Proof. We consider a multi-label classification problem with c = 2 labels. Let

y1 = (+1,+1),y2 = (+1,−1),y3 = (+1,−1),y4 = (−1,−1).

Given a data point x, let 0 < ε <
β+
y1

β+
y1

+max{β−y2
,β−y3
} . Consider a conditional distribution such that

P (y2|x)P (y3|x) > 0, αy2
P (y2|x) 6= αy3

P (y3|x), P (y2|x) + P (y3|x) = ε, P (y1|x) = 1 − ε
and P (y4|x) = 0. On one hand, we get

∆+
1 −∆+

2 = αy2P (y2|x)− αy3P (y3|x) 6= 0, (42)

which implies f1 6= f2 for any f ∈ B
L

0/1
gpr

(x, P (y|x)) according to Lemma C.2. On the other hand,
we get

φ+1 − φ
−
1 = β+

y1
P (y1|x) + β+

y2
P (y2|x)− β−y3

P (y3|x)− β−y4
P (y4|x)

> β+
y1
P (y1|x)− β−y3

P (y3|x)

> β+
y1

(1− ε)− β−y3
ε

= β+
y1

(1−
β+
y1

β+
y1 + max{β−y2 , β

−
y3}

)− β−y3

β+
y1

β+
y1 + max{β−y3 , β

−
y3}

=
β+
y1

(max{β−y2
, β−y3
} − β−y3

)

β+
y1 + max{β−y2 , β

−
y3}

≥ 0, (43)

which means that ∀f ∈ B`Lu
(x, P (y|x)), f1 = −1 according to Lemma C.4. Similarly,

∀f ∈ BLu(x, P (y|x)), f2 = −1 = f1. Therefore, B`Lu
(x, P (y|x)) 6⊂ BL0/1(x, P (y|x)), which

completes the proof combining with Lemma C.1.

D Dataset Details

The detailed statistics of the used dataset is given in Table 1. These datasets can be downloaded from
http://mulan.sourceforge.net/datasets-mlc.html and http://palm.seu.edu.cn/zhangml/

E Additional Experimental Results

The complete experimental results (with standard deviations) are summarized in Table 2.

Besides, the computational costs of all five algorithms on benchmark datasets are shown in Fig. 1.
From Fig. 1, we can observe that Apa with the pairwise loss is much slower than the other four
algorithms with the univariate loss, especially when the label space is large. Note that the CPU time
is plotted in the log scale in Figure 1.

We illustrate the instance-wise class imbalances of the benchmark datasets in Fig. 2. From Fig.2, we
can observe that the real datasets are highly imbalanced, which is similar to the extremely imbalanced
case.
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Table 1: Basic statistics of the benchmark datasets.

Dataset #Instance #Feature #Label Domain

emotions 593 72 6 music
image 2000 294 5 images
scene 2407 294 6 images
yeast 2417 103 14 biology
enron 1702 1001 53 text
rcv1-subset1 6000 944 101 text
bibtex 7395 1836 159 text
corel5k 5000 499 374 images
mediamill 43907 120 101 video
delicious 16105 500 983 text(web)

Table 2: Ranking loss (mean± std) of all five algorithms on benchmark datasets. On each dataset,
the top two algorithms are highlighted in bold and the top one is labeled with †.

Dataset Apa Au1 Au2 Au3 Au4

emotions 0.1511± 0.0175† 0.1538± 0.0219 0.1587± 0.0198 0.1530± 0.0193 0.1616± 0.0202
image 0.1625± 0.0089† 0.1642± 0.0132 0.1653± 0.0153 0.1645± 0.0159 0.1678± 0.0056
scene 0.0696± 0.0031† 0.0809± 0.0083 0.0821± 0.0029 0.0768± 0.0082 0.0806± 0.0025
yeast 0.1766± 0.0078† 0.1768± 0.0093 0.1785± 0.0090 0.1767± 0.0086 0.1816± 0.0084
enron 0.0682± 0.0030† 0.0724± 0.0022 0.0696± 0.0011 0.0698± 0.0027 0.0715± 0.0038
rcv1-subset1 0.0361± 0.0015† 0.0418± 0.0005 0.0392± 0.0003 0.0368± 0.0003 0.0391± 0.0005
bibtex 0.0516± 0.0014 0.0545± 0.0018 0.0551± 0.0024 0.0401± 0.0694† 0.0538± 0.0020
corel5k 0.1081± 0.0021 0.1091± 0.0004 0.1099± 0.0016 0.1063± 0.0019† 0.1096± 0.0010
mediamill 0.0395± 0.0011 0.0402± 0.0005 0.0412± 0.0001 0.0389± 0.0006† 0.0405± 0.0010
delicious - 0.0960± 0.0010 0.0974± 0.0007 0.0946± 0.0002† 0.0978± 0.0008

To further study the effect of the label size (i.e. c), we conduct experiments with Au2 and Au3 on
the semi-synthetic datasets with randomly selected c on the delicious datasets. The imbalances of
the semi-synthetic datasets are shown in Fig. 4 and the experimental results are illustrated in Fig. 3.
Then, we can observe that Au3 would probably perform better than Au2 when the label size c is
larger, which confirms our theoretical findings.

Furthermore, to study whether the upper bound for the generalization error can reflect on the true
generalization error reasonably well, we conduct experiments on the semi-synthetic delicious datasets,
where the results are summarized in Table 3. From Table 3, we can have the following observations.

• On one hand, the surrogate expected pairwise risk Rpa can usually reflect the true (or 0/1)
expected risk Rr0/1 reasonably well. Further, the tighter Rpa and PUB (i.e., the probabilistic
upper bound) are usually associated with better Rr0/1.4 This is because that the tighter PUB,
which is allowed to be bigger than 1, probably suggests tighter Rpa, which usually indicates
better Rr0/1.

• On the other hand, we can observe that the PUB values are somehow large, which are bigger
than 1 and might not reflect the expected riskRr0/1 reasonably well. Despite this limitation, it
can still offer insights into these learning algorithms — when comparing algorithms, tighter
PUB probably suggests better performance and it might be more reasonable to compare the
order of dependent variables rather than the absolute values. Besides, advanced techniques
(e.g., local Rademacher complexity [5]) might provide more reasonable PUB.

4Note that we use the error bounds for the worst case which holds on all distribution. Besides, it might be
better to employ the distribution dependent one.
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Figure 1: Computational costs of all five algorithms on benchmark datasets.
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Figure 2: The illustration of the instance-wise class imbalance of each dataset.
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Figure 3: The performance effect w.r.t. the number of class.
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Figure 4: The illustration of the instance-wise class imbalance of the semi-synthetic datasets with
randomly selected c labels based on the delicious dataset.
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Table 3: The quantitative results about the risks and error bounds on semi-synthetic delicious datasets
with randomly selected label size (i.e., 5, 10 ,..., 120). The algorithms are run on the corresponding
best hyper-parameters, where f denotes the returned hypothesis of the algorithms. “PUB” denotes
the corresponding probabilistic upper bound of the algorithms and we set δ = 0.01 in the error
bounds. Note that here we take the validation error as a surrogate of the generalization error, which is
reasonable. On each dataset, the best ones w.r.t. Rr0/1, Rpa and PUB are highlighted in bold.

datasets 5 10 20 50 80 100 120

Apa
Rr0/1(f) 0.180 0.183 0.114 0.094 0.084 0.080 0.081
Rpa(f) 0.376 0.388 0.271 0.235 0.211 0.203 0.200

PUB 10.80 38.09 39.59 123.6 131.1 344.9 395.1

Au2

Rr0/1(f) 0.193 0.186 0.111 0.097 0.087 0.083 0.083
Rpa(f) 0.517 0.401 0.264 0.242 0.231 0.236 0.203
Ru2(f) 0.487 0.271 0.128 0.065 0.042 0.034 0.023

PUB 215.2 106.2 378.4 1341 1836 2183 4685

Au3

Rr0/1(f) 0.181 0.182 0.112 0.096 0.084 0.080 0.081
Rpa(f) 0.373 0.390 0.264 0.239 0.208 0.200 0.200
Ru3(f) 0.871 0.991 0.787 0.798 0.731 0.713 0.712

PUB 66.53 75.64 82.18 260.0 275.7 287.5 326.4
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