
A Components for Environments

A.1 Components for the Craft Environment

In this section, we describe the components (i.e., logical formulae encoding pre/post-conditions for
each option) that we use for the craft environment. First, recall that the domain-specific language that
encodes the set of components for the craft environment is

C := get R | use T | use W
R := wood | iron | grass | gold | gem
T := bridge | axe | ladder
W := factory | workbench | toolshed

Also, the set of possible artifacts (objects that can be made in some workshop using resources or
other artifacts) in the craft environment is

A = { bridge, axe, plank, stick, ladder } .

We define the following features:

• Zone: z = i indicates the agent is in zone i

• Boundary: bi,j = b indicates how zones i and j are connected, where

b ∈ {connected,water, stone, not adjacent}

• Resource: ρi,r = n indicates that there are n units of resource r in zone i

• Workshop: ωi,r = b, where b ∈ {true, false}, indicates whether there exists a workshop r
in zone i

• Inventory: ιr = n indicates that there are n objects r (either a resource or an artifact) in
the agent’s inventory

We use z−, b−, ρ−, ω−, ι− and z+, b+, ρ+, ω+, ι+ to denote the initial state and the final state for a
component, respectively. Now, the logical formulae for each component are defined as follows.

(1) “get r” (for any resource r ∈ R). First, we have the following component telling the agent to
obtain a specific resource r:

∀i, j . (z− = i ∧ z+ = j)⇒ (b−i,j = connected)

∧ (ρ+j,r = ρ−j,r − 1) ∧ (ι+r = ι−r + 1) ∧Q.

Here, Q refers to the conditions that the other fields of the abstract state stay the same—i.e.,

(b+ = b−) ∧ (ω+ = ω−) ∧ (ι+\r = ι−\r)

∧ (ρ+\(j,r) = ρ−\(j,r)),

where ι\r means all the other fields in ι except ιr, and similarly for ρ\(j,r). In particular Q addresses
the frame problem from classical planning.

(2) “use r” (for any workshop r ∈ W). Next, we have a component telling the agent to use a
workshop to create an artifact. To do so, we introduce a set of auxiliary features to denote the number
of artifacts made in this component: mo = n indicates that n units of artifact o is made. The set of
artifacts that can be made at workshop r is denoted as Ar, and the number of units of ingredient q
needed to make 1 unit of artifact o is denoted as ko,q, where q ∈ R ∪A; note that {Ar} and {ko,q}
come from the rule of the game.

16

Then, the logical formula for “use r” is

∀i, j . (z− = i ∧ z+ = j)⇒ (b−i,j = connected)

∧ (wj,r = true) ∧

(∑
o∈Ar

mo ≥ 1

)
∧

∑
o/∈Ar

mo = 0

∧

(
∀q ∈ R, ι+q = ι−q −

∑
o∈Ar

ko,qmo

)

∧

(
∀q ∈ A, ι+q = ι−q −

∑
o∈Ar

ko,qmo +mq

)

∧

(
∀o ∈ Ar, ¬

(∧
q

ι+q ≥ ko,q

))
∧Q,

where

Q = (b+ = b−) ∧ (ω+ = ω−) ∧ (ρ+ = ρ−).

This formula reflects the game setting that when the agent uses a workshop, it will make artifacts
until the ingredients in the inventory are depleted.

(3) “use r” (r = bridge/axe/ladder). Next, we have the following component for telling the agent to
use a tool. The formula for this component encodes the logic of zone connectivity. In particular, it is

∀i, j . (z− = i ∧ z+ = j)⇒ (b−i,j = water/stone)

∧ (b+i,j = connected) ∧ (ι+r = ι−r − 1)

∧
(
∀i′, j′, (b+i′,j′ = connected)⇒(

(b−i′,j′ = connected) ∨ X
))

∧
(
∀i′, j′, (b+i′,j′ 6= connected)⇒ (b+i′,j′ = b−i′,j′)

)
∧Q,

where

X = (b−i′,i = connected ∨ b−i′,j = connected)

∧ (b−j′,i = connected ∨ b−j′,j = connected)

Q = (ω+ = ω−) ∧ (ρ+ = ρ−) ∧ (ι+\r = ι−\r).

A.2 Components for Box World

In this section, we describe the components for the box world. They are all of the form “get k”, where
k ∈ K is a color in the set of possible colors in the box world. First, we define the following features:

• Box: bk1,k2 = n indicates that there are n boxes with key color k1 and lock color k2 in the
map

• Loose key: `k = b, where b ∈ {true, false}, indicates whether there exists a loose key of
color k in the map

• Agent’s key: ιk = b, where b ∈ {true, false}, indicates whether the agent holds a key of
color k

As in the craft environment, we use b−, `−, ι− and b+, `+, ι+ to denote the initial state and the final
state for a component, respectively. Since the configurations of the map in the box world can only
contain at most one loose key, we add a cardinality constraint Card(`) ≤ 1, where Card(·) counts the
number of features that are true.

17

Then, the logical formula defining the component “get k” is

X ∨ Y,
where

X = `−k ∧ ι
+
k ∧ (Card(l+) = 0) ∧ (b+ = b−)

Y = (Card(ι−) = 1) ∧ ι+k ∧ ¬ι
−
k ∧ (l+ = l−)∧(

∀k1 . ι−k1 ⇒
(
(b+k,k1 = b−k,k1 − 1) ∧ (b+\(k,k1) = b−\(k,k1))

))
In particular, X encodes the desired behavior when the agent picks up a loose key k, and Y encodes
the desired behavior when the agent unlocks a box to get key k.

B Experimental Details

B.1 Benchmarks

2D-craft. In this domain, a map is a 10× 10 grid, where each grid cell is either empty or contains a
resource (e.g., wood), obstacle (e.g., water), or workshop. The agent can only observe cells within the
distance of 2 units. Since the environment is static, any previously observed cells remain visible. We
follow the same approach as in prior work [3] to encode and preprocess the observations: each grid
cell is first encoded using a one-hot encoding representing its content (with an entry for unobserved
cells); then the preprocessing step extracts the 5× 5 grid around the current position of the agent as
the fine-scale features, and also an aggregated 5× 5 grid of coarse-scale features which is aggregated
over a 25× 25 region from the original map (after padding) via max pooling. The flattened version
of these features are the inputs to the policy networks in our approach and the baselines. More details
can be found in [3] and its code repository. The test set we use contains tasks with 10 types of goals:
get wood, get iron, get grass, get gold, get gem, build plank, build stick, build bridge, build axe, and
build ladder. To make the test set more challenging, we include more (15 tasks) from the two hardest
goals: get gold and get gem. These goals involve potentially longer horizons to achieve. The rest
of the goals are in equal proportion. All our results are averaged over the test set (averaged across
different types of goals). This setup follows prior work [3, 62].

For the MLP model architectures, we follow the prior work that originally introduced 2D-craft [3]; in
particular, we adopt their model architecture for the actor and critic networks in both our approach
and the baselines. We train our hallucinator to operate on state features (e.g. the counts of gems); it
takes the state features of the observation as input and predicts the state features of the full map.

Box-world. In this domain, a map is a 12×12 grid with locks and boxes. The agent can only observe
cells within the distance of 3 units. As in 2D-craft, since the environment is static, any previously
observed cells remain visible. For encoding the observations, each grid cell is encoded using a
one-hot encoding representing its content (with an entry for unobserved cells). Following [76], we
use a one-layer CNN with 32 kernels of size 3× 3 to preprocess the map across all approaches before
feeding into the policy networks. The test set contains 40 tasks with the number of boxes in the path
to the goal varying between 1 to 4; these difficulty levels are in equal proportion.

Ant-craft. This domain is the same as 2D-craft, except that the agent is replaced with a MuJoCo
ant [53], a simulated four-legged robot. We consider a simplified setup where we only model the
movements of the ant; the ant directly picks up resources, use tools, and use workshops when it is at
the appropriate grid cell (e.g., we do not model the mechanics of grabbing).

B.2 Training

We train our models on an NVIDIA GeForce GTX 1080 Ti GPU. The actor-critic training of our
approach takes around a day on 2D-craft (400K episodes), 12 hours on box-world (200K episodes),
and a day for fine-tuning ant-craft (40K episodes). We use the Adam optimizer [45] with a learning
rate of 0.002. We use a batch size of 10 episodes.

B.3 Ablations

Here, we provide more detail on the two ablations without a learned hallucinator.

18

Optimistic synthesizer. The optimistic synthesizer considers the unobserved parts of the world to be
in any possible configuration. If a program can achieve the goal under any one of these configurations,
this program is considered to be correct. The optimistic synthesizer chooses the shortest program
considered to be correct in this optimistic sense. For example, if the goal of the task is “get gem”, and
there is some unobserved grid cells in the current zone, then an optimistic synthesizer will always
synthesize the simplest program “get gem”. This baseline also demonstrates the importance of using
a hallucinator, instead of a heuristic such as pure optimism.

Random hallucinator. The random hallucinator randomly predicts the configuration of the unob-
served parts of the world. In our experiments, the hallucinator directly predicts the abstract state
features, so the random hallucinator simply predicts random values for each entry of the state features
(e.g., number of wood in zone 1) under the condition that it does not conflict with existing observa-
tions (e.g., predicting number of wood in zone 1 to be 1 when there are already 2 woods observed in
zone 1). The purpose of this ablation is to demonstrate the importance of using a learned hallucinator.

C Additional Related Work

Program synthesis. There has been a long line of work on program synthesis, which targets the
problem of how to automatically synthesize a program that satisfies a given specification [55, 58,
28, 73, 31]. More broadly, recent work has explored learning neural network models to predict the
program [17, 10, 14, 13, 5], as well as using neural models to guide synthesis [44, 54, 78, 7, 23,
21, 15, 51, 22]. There has also been work leveraging program synthesis to improve performance in
image and natural language domains [19, 20, 68, 75, 65, 35, 12]. In contrast, our work uses program
synthesis to guide reinforcement learning.

Task and motion planning (TAMP). TAMP is a hierarchical planning approach that uses high-level
task planning and low-level motion planning [42, 26]. TAMP by itself does not handle partial
observability; recent work has proposed extensions to address this challenge. For instance, [52]
learns a full symbolic program to handle all possible cases—this program tends to be very complex
(with many branches) and hence hard to learn. In contrast, our approach learns a simple straight
line program that is most likely to solve the task and then replans if needed. Furthermore, [52] only
handles discrete partial observations, whereas our approach does not have this restriction. Next, [43]
performs planning in the belief space, which is more similar to our strategy. However, they make
the significantly stronger assumption that a structured representation of belief space is available; in
particular, they assume a probability distribution over the abstract state space is provided. In general,
such a distribution can be difficult to obtain—most deep generative models are unable to explicitly
provide the distribution over abstract states; instead, they provide either samples (e.g., GANs and
VAEs) or probabilities of given states (e.g., normalizing flows; VAEs can provide a lower bound). As
a consequence, it would be difficult to apply this approach to our environments.

D Additional Analysis

D.1 Stand-alone evaluations

Hallucinator. We perform additional experiments that measure the prediction accuracy of our trained
hallucinator for 2D-craft. We measure accuracy in two ways. The first is the percentage of cases
where the predicted state features match the ground truth state features in every entry of the state
feature (e.g. the number of zones is an entry, the number of wood in zone 1 is an entry). We call this
the “whole” accuracy. The second is the percentage of entries that are correctly predicted, treating
each entry of the state feature separately. We call this the “individual” accuracy. We measure accuracy
on the test set at different number of steps into the episode. The results are shown in Table 3. As
can be seen, the learned hallucinator can correctly predict many entries of the state features, but
rarely predicts the whole state features perfectly. This result is due to the intrinsic randomness in the
distribution P (s | o). Note that accuracy increases with the number of steps into the episodes since
the agent has explored more of the map later in the episodes.

Executor. We measure the success rate of the learned executor in our approach at achieving a given
component. We evaluate on the test set of 2D-craft environment, focusing on components from the
oracle programs. The success rate is 93.8% (so the failure rate is 6.2%). The most common failure
cases are that the agent gets stuck in some local region of the map. Note that since the program for

19

Table 3: Standalone accuracy of the hallucinator
Step Whole acc. Individual acc.

0 0.0% 70.9%
20 4.5% 82.9%
40 4.8% 85.5%

0 100 200 300 400
episodes (*1000)

0.0

0.2

0.4

0.6

0.8

1.0

av
g_

re
wa

rd
s

(a)

0 100 200 300 400
episodes (*1000)

50

60

70

80

90

100

av
g_

fin
ish

_t
im

es
(b)

Ours
Oracle
NN_full
WM_full

Figure 7: Training curves for the 2D-craft environment, comparing our approach with baselines
trained on fully observed environments. (a) The average reward on the test set over the course of
training. (b) The average number of steps taken to complete the tasks on the test set. We run all the
training with 5 different random seeds, and report the mean and standard error of each metric. We
show our approach (“Ours”), program guided agent (“Oracle”), end-to-end neural policy trained on
fully observed maps (“NN-full”), and world models trained on fully observed maps (“WM-full”).

each task typically includes more than one component, this 6.2% failure rate will result in >6.2%
failure rate in completing the tasks.

D.2 Baselines trained with fully observed maps

In our experiments, we use the programs synthesized from the fully observed maps for training the
executor in our approach. This approach avoids repeatedly running the MaxSAT synthesizer during
training, which helps speed up training. To ensure this additional information is not responsible for
the performance of our approach compared with the non-program-guided baselines, we perform an
additional experiment that trains the baselines in fully observed environments. Figure 7 shows results
for the 2D-craft environment. As can be seen, our approach continues to significantly outperform the
non-program-guided baselines. These results show that providing fully observed map information
during training is not the reason our approach outperforms the baselines.

D.3 Non deterministic environment

We perform an additional experiment to study how our approach works when the environment is
non-deterministic. We create a non-deterministic version of 2D-craft, where each action has 20%
chance of failing (when a move action fails, the agent move to a random direction; when a use action
fails, the action becomes a no-op). Table 4 shows the results. As can be seen, all the approaches take
a longer time to solve tasks in these non-deterministic environments, but our approach continues to
significantly outperform the non-program-guided baselines and perform comparably to the oracle.
For the non-program guided baselines, the ratio of test tasks successfully solved does not change
significantly, likely because they fail to solve the challenging tasks even when the environment is
deterministic.

E Additional Examples

20

Table 4: Performance on the test set for the non-deterministic version of 2D-craft
Avg. reward Avg. finish step

End-to-end 0.22 (0.02) 83.3 (1.8)
World models 0.20 (0.01) 83.6 (0.7)

Ours 0.47 (0.03) 73.1 (1.2)
Oracle 0.50 (0.03) 69.9 (1.6)

(a) (b) (c) (d)

Figure 8: Example behavior of our policy in a task with the goal of getting gem. (a) The start state.
The agent initially hallucinates that there is a gem in the same zone, thus starts with a simple program
“get gem”. (b) After several steps, the agent observes a grass and a toolshed. Hallucinating based on
these new observations, the agent synthesizes a new program that builds a ladder to get gem (which
requires grass and toolshed). (c) After several more steps, the agent observes some water and iron. It
re-synthesizes a new program that builds a bridge to cross water. This is a correct program for this
task. (d) The final state. The agent executes the program and successfully get the gem.

(a) (b)

Figure 9: Example behavior of our policy in a task with the goal of getting gold. (a) The start state.
By hallucinating based on the current observations, the agent correctly synthesizes a program that
builds and uses a bridge to get to the other zone and get gold. (b) The final state.

(a) (b) (c)

Figure 10: Example behavior of our policy in a task with the goal of getting gold. (a) The start state.
Based on its hallucinations, the agent synthesizes a program that builds and uses a ladder to get a gold
in the other zone. However, there is not enough resources and facilities to make a ladder in this map.
(b) The intermediate state when the agent re-synthesizes a new program. With more observations, the
agent changes the program to building and using an axe instead, which is a feasible solution in this
map. (c) The final state.

21

(a) (b) (c) (d)

Figure 11: Example behavior of our policy in a task with the goal of getting gem. (a) The start state.
The agent starts with a simple program “get gem”. (b) After several steps, the agent observes a grass
and a wood. Hallucinating based on these new observations, the agent synthesizes a new program
that builds a ladder to get gem (which requires grass and wood). (c) During its search for workbench,
the agent observes all the resources for building an axe. Therefore, it re-synthesizes a new program
that builds a axe to cross the stone boundary. This is a correct program for this task. (d) The final
state. The agent executes the program and successfully get the gem.

22

	Introduction
	Motivating Example
	Problem Formulation
	Model Predictive Program Synthesis
	Learning Algorithm
	Experiments
	Benchmarks
	Baselines
	Implementation Details
	Results

	Conclusion
	Components for Environments
	Components for the Craft Environment
	Components for Box World

	Experimental Details
	Benchmarks
	Training
	Ablations

	Additional Related Work
	Additional Analysis
	Stand-alone evaluations
	Baselines trained with fully observed maps
	Non deterministic environment

	Additional Examples

