
Supplemental Material for
The CLEAR Benchmark:

Continual LEArning on Real-World Imagery

Zhiqiu Lin1 Jia Shi1 Deepak Pathak1∗ Deva Ramanan1,2∗
1Carnegie Mellon University 2Argo AI

1 CLEAR Details

In this section, we describe additional details about the data curation pipeline used to construct
CLEAR. YFCC100M is so large that even downloading the entire dataset requires weeks and storing
all the media files would take over 10TB. Instead, we construct a carefully-tuned pipeline of successive
dataset triage stages that prunes this massive datasource into more manageable subsets. Code is
available at https://github.com/linzhiqiu/continual-learning.

(Re)constructing the YFCC100M temporal stream: We begin by downloading all the metadata
files released by the YFCC100M creator 1, which is manageable (around 40GB after decompression).
Each line of the metadata file contains the download link for an image (though some of the links
may not be available) as well as its associated metadata including the upload timestamp. Next, we
download the images in the original line order of the metadata file until we successfully download
7850000 images. Note that the metadata file provided by YFCC100M creator already shuffled the
order of images and therefore we could treat this subset as iid samples from the real YFCC100M
distribution spanning 10 years. We only download images with still accessible URLs and valid
timestamps; in particular, the upload time of the image must be strictly later than its captured time.
We then sort the 7850000 images by their upload timestamps to reconstruct the YFCC100M temporal
stream, and define 11 time-period buckets such that each bucket contain the same number of 713626
images. The time span for each bucket is shown in Table 1.

Text-Prompt Engineering: We use CLIP to retrieve a small labeled dataset of images of our target
visual concepts from each bucket independently that span the three super-categories discussed in
main paper: Product, Fashion, and Event. We found it helpful to engineer the prompt to better
capture some visual concepts. In particular, we use subcategory queries to improve the precision
of CLIP-based image retrieval, as shown in Table 2 for two classes (laptop for computer, and
sweater for pullover). Higher precision reduces the cost of MTurk quality assurance (QA) since
fewer images need to be rejected. There may also exist better prompts for retrieving the above 10
visual concepts, for example using other subcategories or using "a photo of XXX" as the prompt
as suggested by the authors of CLIP for zero shot classification [13].

Dataset Collection: Using CLIP, for each of the bucket 1st to 10th, we retrieve the highest-scoring
600 images for each of the 10 categories. We also gather a background class per bucket containing
60 lowest-scoring images of each of the 10 categories. Images co-occurred in more than one category
are discarded and we replace them by new images from the remaining highest-scoring images. Finally,
all 11 categories including background class are assembled to a single bucket of 6600 images.

Crowdsourced Quality Assurance (QA): We use Amazon MTurk (www.mturk.com) for crowd-
sourced quality assurance. We hire 3 workers per image and remove images that (1) do not align

1Since the original download link is no longer available on Yahoo, we reach out to the creator and
use this command to download the YFCC100M metadata files from Amazon s3: s3cmd get –recursive
s3://mmcommons .

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.

https://github.com/linzhiqiu/continual-learning
www.mturk.com

Bucket Index Earliest Timestamp Latest Timestamp

0 2004-01-01 2007-04-09
1 2007-04-09 2008-03-21
2 2008-03-21 2008-12-23
3 2008-12-23 2009-09-07
4 2009-09-07 2010-06-03
5 2010-06-03 2011-02-05
6 2011-02-05 2011-09-24
7 2011-09-24 2012-06-05
8 2012-06-05 2013-02-03
9 2013-02-03 2013-09-08
10 2013-09-08 2014-04-28

Table 1: Time span for 11 buckets. For each bucket, we provide its earliest timestamp and latest timestamp.
The average length of each bucket is about 0.8 year. We will provide all timestamps (as well as other YFCC100M
metadata) in the public dataset. Note that bucket 0th is longer than other buckets, because YFCC100M has
relatively fewer images uploaded during 2004 to 2006.

Super-Category Visual Concept Engineered Prompt (CLIP) Sub-Category Queries

Product computer laptop laptop, desktop, tablet, mouse, keyboard
Product camera camera SLR camera, film camera, digital camera, phone camera
Product bus bus bus interior, bus exterior

Fashion pullover sweater sweater, hoodies, sweatershirt
Fashion dress dress skirt, ballgown, sundress, wedding dress

Event racing racing car racing, bike racing, boat racing
Event cosplay cosplay anime convention, Halloween, mascot
Event baseball baseball baseball game, baseball field
Event soccer soccer soccer game, soccer field
Event hockey hockey ice hockey, field hockey

Table 2: The 10 dynamic visual concepts. For each visual concept, we attach its super-category, engineered
prompt for CLIP-assisted image retrieval from YFCC100M, and a non-exhaustive list of examples per visual
concept.

Figure 1: Example images from CLEAR. For each bucket (per column), we show a random sample
from 5 of the classes (computer, bus, camera, hockey, cosplay) in CLEAR.

with the CLIP-labeled visual concept, or (2) contain more than one visual concepts. To achieve this
goal, we ask MTurk workers to select all elements that apply to an image. A glimpse of the web user
interface is provided in figure 3.

Specifically, a worker will be asked: "Select one or more elements in this image. Or
select ’None of the above’.". If the worker want more detailed instruction, there is an in-
struction panel to the left as shown in figure 3. The worker will be provided with 11 options, and
multiple answers could be selected unless the worker already select "None of the above", in which

2

Figure 2: Examples of CLEAR images in background class. We show 3 random background
images (per column) for each of the bucket in CLEAR.

Figure 3: MTurk user interface for image verification. For each image, we hire 3 workers to select
one or more elements in the image. The image is shown in the middle of the page; the detailed
instruction is shown to the left; the options the worker could select is shown to the right. The worker
could select multiple choices (unless he or she select the "None of the above" option). Note that we
could not show all the available options in this figure due to the presence of a scrolling bar. Instead,
we provide all the options given to worker with respect to each visual concept in Table 3.

case no other visual concept could be selected. After we receive the workers’ feedback, we only keep
images that have the majority (2 workers) agreeing on the single ground-truth label.

We also ask MTurk workers to identify whether those images contain sensitive contents.
The web user interface for sensitive content removal is shown in figure 4. We ask the
worker: "Does this image contain sensitive content (e.g., pornography, abuse,
hate speech, etc.)?" Then the worker can choose from "Yes" or "No". We remove all images
with more than 2 workers selecting "Yes" for sensitive content. This pipeline successfully surfaced
three sensitive images contained in YCFF100M and we will report those cases to the creator of
YFCC100M. Finally, for the remaining crowd-sourced verified images, we use random 300 images
per visual concept to compose the final CLEAR dataset.

We paid Amazon MTurk $0.02 to label each image. An average worker could label 600 to 800
images per hour, so the estimated hourly wage is around $12 to $16 (not including the fee that
Amazon MTurk deducted). The total amount we spent on worker compensation on the Amazon
MTurk platform is $5323.

Examples of CLEAR images: Examples of images in our dataset can be found in Fig. 1 (for 5 of
the classes) and Fig. 2 (for background class).

Future directions on dataset curation with CLIP: We hope our CLIP-assisted image retrieval and
dataset curation process is simple enough to inspire future researchers to gather their own dataset

3

Visual Concept MTurk Option Seen by Workers

computer computer (laptop/tablet/desktop/keyboard/etc.)
camera camera (digital/film/etc.)
bus bus (exterior/interior/etc.)
pullover sweater (sweater/sweatshirt/hoodies/etc.)
dress dress (formal dress/casual dress/etc.)
racing racing (car/bike/runner/etc.)
cosplay cosplay (cartoon/Halloween/mascot/etc.)
baseball baseball (baseball/player/field/etc.)
soccer soccer (soccer/player/field/etc.)
hockey hockey (ice hockey/field hockey/etc.)

background None of the above

Table 3: MTurk options for each of the 10 visual concepts plus the background class. The worker can
select either "None of the above", or select one or more answers out of the 10 visual concepts. We provide
concrete examples in the prompt for each visual concept to help the workers make their choices with ease.

Figure 4: MTurk user interface for detecting sensitive content.

with a reduced cost. Given the superior "zero-shot" capability of CLIP on classifying Internet images,
we expect CLIP to do well on most common visual concepts found in web image collections. More
sophisticated prompt engineering strategies may also improve the precision of CLIP-based image
retrieval.

One may also use the same design philosophy to gather a temporally-evolving image dataset with
dynamic visual concepts from other domains such as Fashion [11].

Note that we only use the upload timestamps of YFCC100M images; YFCC100M also offer geo-
stamps for the captured locations. These may also serve as useful and natural task boundary (regional
differences) for gathering more practical continual learning dataset in a similar fashion. In particular,
a concurrent work [1] uses both the time-stamps and geo-stamps of YFCC100M images to construct
a continual image localization dataset.

4

2 Desiderata in CL Experiment Design

Our experiment design is partly inspired by the work of Farquhar et al.[4]. In particular, they criticize
that existing experiment design for CL does not consider several important desiderata. In our work,
we not only introduce a more realistic continual dataset, but also set up the experiments to reflect all
the core desiderata brought up in [4]:

A: Cross-task resemblances. In CLEAR, the 10 temporally-sorted buckets with the same group of
visual concepts form a natural sequence of 10 learning tasks that naturally and closely resemble each
others.

B: Shared output head. In our experiments, we stick to image classification of the 10 visual concepts
plus a background class and therefore there is no need to switch or modify the output head, i.e.,
incremental domain learning.

C: No test-time assumed task labels. In test time, the model does not know which time period a
test image is from.

D: No unconstrained retraining on old tasks. We consider the scenario where there is a limited
sample storage (e.g., one bucket of training images) for rehearsal purpose.

E: More than two tasks. CLEAR easily meets this desiderata as we have 10 buckets of images in
CLEAR.

CLEAR further advocates an additional desiderata with our "streaming" evaluation protocol that
reflects training and deploying a continual learning system in real world:

F: Train now, test in future. For streaming evaluation protocol, a model will always be evaluated
on the data from future bucket. This protocol resembles training and deploying a model in real
world CL scenarios. In practice, data annotation, model training, hyper-parameter tuning, and system
deployment can all take a considerable amount of time. By the time the model is deployed, it will
most likely be evaluated on "future" data that come from a distribution different from the one it was
originally trained on. Such undeniable train-test domain shift has been largely ignored in prior work
but it is crucial for real-world AI systems.

5

3 Evaluation Metrics

Prior works on continual learning have proposed a variety of metrics that summarize the accuracy
matrixR in different ways [3, 4, 10], i.e. in [3]:

1. Accuracy averages diagonal entries as well as all elements below the diagonal.
2. Backward Transfer measures learning without forgetting by averaging the lower triangular

entries.
3. Forward Transfer measures future generalization by averaging the upper triangular entries.

Formally, we calculate all five metrics as follows:

Accuracy =

∑N
i≥j Ri,j

N(N+1)
2

(1)

Backward Transfer =

∑N
i>j Ri,j

N(N−1)
2

(2)

Forward Transfer =

∑N
i<j Ri,j

N(N−1)
2

(3)

In-Domain Accuracy =

∑N
i=1Ri,i

N
(4)

Next-Domain Accuracy =

∑N−1
i=1 Ri,i+1

N − 1
(5)

The above definitions slightly differ from [3], which calculates Backward Transfer by subtracting
the diagonal term from each lower triangular entry below it, and then averaging. It further divides
Backward Transfer into "Remembering" (which penalizes forgetting) and "Positive Backward
Transfer" (which rewards improvement after learning on new tasks). For simplicity and consistency,
we calculate Backward Transfer with (2), making it symmetric with Forward Transfer.

For iid evaluation protocol, we report all above metrics; for streaming evaluation protocol, because
previous test sets have been repurposed to new train sets, we only report Next-Domain Accuracy
and Forward Transfer.

6

4 Reservoir Sampling and Its Biased Version

In this section, we provide a detailed description and the pseudocode for the biased reservoir sampling
algorithm.

"Bucket-level" reservior sampling procedure: Because in CLEAR the data comes in buckets, we
treat all samples of the same bucket as having the same timestamp (we still release the precise upload
date of each image to the public). In other words, we wait for all samples of the incoming buckets
to arrive before we start the sampling procedure. Formally, assume we have N buckets of training
data {St}Nt=1 per N timestamp. The size of each bucket is {|St|}Nt=1. Since we work with a buffer
of fixed size k, the output of the algorithm is the replay buffer per timestamp {Bt}Nt=1 with each
|Bt| ≤ k. The pseudocode of this bucket-level sampling procedure is given in Alg. 1.

Meanings of alpha in "bucket-level" sampling: There are two types of alpha: (1) Fixed Alpha
that stays the same over time, and (2) Dynamic Alpha that changes according to the timestamp. Now
in Alg. 1, for Fixed Alpha, α is still a constant non-negative real number, e.g., α ∈ {0.5, 1.0, 2.0, 5.0}.
However, for Dynamic Alpha, α changes with respect to the number of seen samples in the stream
so far. In particular, we choose α ∈ { 0.25ik , 0.5ik , 0.75ik , i

k}, where i is the total count of all seen
samples thus far, e.g., if we are at timestamp t, then i =

∑t
j=1 |Sj |.

Algorithm 1: BiasedReservoirSampling({St}Nt=1, k, α)

Input :{St}Nt=1: Incoming buckets of N timestamps
k: A fixed buffer size
α: The alpha value for weighting the probability (could be either fixed or dynamic)

Output :{Bt}Nt=1: Training buffers of N timestamps

// Starting from an empty buffer
B0 = {}
for t← 1 to T do

// Inherit the buffer from previous timestamp
Bt ← Bt−1;
// T is a temporary buffer to store samples from current bucket St

T ← {};
// i is the total size of all seen buckets
i←

∑t
j=1 |Sj |;

for s ∈ St do
if |Bt| < k then

// Buffer is not full yet so we add the new sample
Bt ← Bt + {s} ;

else
p ∼ Uniform(0, 1) ;
if p ≤ α ∗ k

i then
// Add the new sample to temporary buffer T
T ← T + {s} ;

end
end
// Shuffle to ensure we replace random samples from Bt

Bt ← RandomShuffle(Bt);
// Remove first |T | samples from Bt

Bt ← Bt[|T | : |Bt|];
// Finally add T to Bt

Bt ← Bt + T ;
end

7

5 Additional Experiment Results

Train offline with all data with ResNet18: If we treat the entire labeled portion of CLEAR as a
dataset and train on all its training data (70%) and test data (30%), then the final test accuracy is
81.1% for a ResNet18 from scratch (hyperparameters in Sec. 6). Most likely because CLEAR adopts
real-world imagery, our new dataset by itself is a much more challenging dataset than MNIST or
CIFAR10.

In the rest of this section, we enumerate a large set of additional shallow model experiments (linear
and nonlinear two-layer MLP) that could not fit into the paper, especially on the pre-trained features
with various baseline training methods and sampling strategies.

Training methods with shallow models: We adopt three simple training methods for continual
training with shallow models over pre-trained features. For each timestamp:

1. Napping: Do not train unless for very first timestamp.
2. From Scratch: Train a linear layer from random initialization for each timestamp.
3. Finetuning: Use learned weight from previous timestamp as initialization for each times-

tamp.

Note that we already present in main paper some results while adopting the Finetuning method. In
Table 4, we report iid evaluation protocol using linear classification with MoCo-YFCC-B0 features.
In Table 5, we report streaming evaluation protocol using linear classification with MoCo-YFCC-B0
features. The results include both mean and standard deviation of 5 runs using different random
seed per run. We notice several trends from the table: i) When we use From Scratch method,
there is an obvious tradeoff between Backward Transfer and Next-Domain/In-Domain Accuracy.
For example, when switching from uniform sampling (α = 1.0) to selecting 75% recent samples
(α = 0.75%) in iid protocol (Table 4), In-domain Accuracy improves from 88.4% to 89.0% and
Next-domain Accuracy improves from 87.7% to 87.9%, whereas Backward Transfer drops from
88.9% to 88.3%. ii) However, when we use Finetuning strategy, it is always better to buffer more
unseen samples from current bucket, which improves performance on all metrics. In short, with
limited buffer, biased reservoir sampling that favors more-recent samples outperforms "classic" iid
sampling from the data stream. That being said, future research on CLEAR could explore other
sampling strategies to improve the performance under limited memory. We also include the results of
unlimited buffer size (termed as "Cumulative") in the tables.

Pre-trained Models: For the results we present in paper, we train an unsupervised MoCo V2 model
with ResNet50 backbone trained with the default hyperparameter and augmentation provided in the
official codebase (https://github.com/facebookresearch/moco) on the entire bucket 0th of
around 0.7M images. In this section, we also provide results using features extracted with other
pre-trained models. All models we used for feature extraction are listed below:

• CLIP [13]: Pre-trained CLIP model (ResNet50 backbone) from official codebase2.
• Pretrained-ImageNet [15]: ResNet50 trained on labeled ImageNet 3.
• MoCo-ImageNet [2]:ResNet50 trained on ImageNet using MoCo V24.
• BYOL-ImageNet [5]: ResNet50 trained on ImageNet with BYOL5.
• MoCo-YFCC-B0 [2]: ResNet50 we trained on entire 0th bucket with MoCo V2.

We also report the results of all 5 pre-trained models using both linear classification (Table 6) and
non-linear classification (Table 7) under iid evaluation protocol. Similarly, we report the results
of those pre-trained models using both linear classification (Table 8) and non-linear classification
(Table 9) under streaming evaluation protocol.

Discussion: Out of all pre-trained models, Pretrained-ImageNet works the best and consistently
outperform the rest of the pre-trained models on all metrics. MoCo-ImageNet and BYOL-ImageNet

2https://github.com/openai/CLIP
3https://pytorch.org/vision/stable/models.html
4https://github.com/open-mmlab/OpenSelfSup/blob/master/docs/MODEL_ZOO.md
5https://github.com/open-mmlab/OpenSelfSup/blob/master/docs/MODEL_ZOO.md

8

https://github.com/facebookresearch/moco
https://pytorch.org/vision/stable/models.html
https://github.com/open-mmlab/OpenSelfSup/blob/master/docs/MODEL_ZOO.md
https://github.com/open-mmlab/OpenSelfSup/blob/master/docs/MODEL_ZOO.md

also works better than MoCo-YFCC-B0, presumably because they have been trained on images
overlapping with the period of CLEAR. CLIP has the worst performance most likely because CLIP
features are not well suited for transferring to other tasks [13] besides zero-shot classification.
Nonetheless, no matter the pre-trained models we used, biased reservoir sampling (e.g., alpha = 0.75
* i/k or 1.0 * i/k) that rewards more recent samples consistently outperform naive reservoir sampling
(e.g., alpha = 1.0) that treats the entire stream as an iid distribution.

Network Buffer Size Method Alpha Evaluation Metrics

In-Domain Acc Next-Domain Acc Acc Backward Transfer Forward Transfer

Linear N/A Nap N/A 86.7%± .0% 86.1%± .1% 87.7%± .2% 87.9%± .1% 85.4%± .1%

Linear Cumulative From Scratch N/A 91.7%± .1% 91.2%± .1% 92.5%± .1% 92.6%± .1% 88.8%± .1%
Linear One Bucket From Scratch 0.5 87.8%± .0% 86.7%± .0% 88.4%± .0% 88.5%± .0% 85.8%± .0%
Linear One Bucket From Scratch 1.0 88.4%± .0% 87.7%± .0% 88.8%± .0% 88.9%± .0% 86.3%± .0%
Linear One Bucket From Scratch 2.0 88.8%± .0% 87.7%± .0% 88.7%± .0% 88.7%± .0% 86.4%± .0%
Linear One Bucket From Scratch 5.0 89.1%± .0% 87.8%± .0% 88.5%± .0% 88.4%± .1% 86.4%± .0%
Linear One Bucket From Scratch 0.25 * i/k 88.6%± .1% 87.8%± .0% 88.8%± .1% 88.8%± .1% 86.3%± .1%
Linear One Bucket From Scratch 0.50 * i/k 88.9%± .1% 88.1%± .1% 88.7%± .1% 88.7%± .1% 86.5%± .1%
Linear One Bucket From Scratch 0.75 * i/k 89.0%± .1% 87.9%± .1% 88.4%± .1% 88.3%± .1% 86.5%± .1%
Linear One Bucket From Scratch 1.00 * i/k 89.1%± .1% 87.8%± .0% 88.2%± .1% 88.0%± .1% 86.5%± .1%

Linear Cumulative Finetuning N/A 92.3%± .0% 91.8%± .0% 93.1%± .0% 93.3%± .0% 89.2%± .0%
Linear One Bucket Finetuning 0.5 88.6%± .0% 88.1%± .0% 89.8%± .0% 90.0%± .0% 86.8%± .0%
Linear One Bucket Finetuning 1.0 89.5%± .0% 88.8%± .0% 90.4%± .0% 90.6%± .0% 87.4%± .0%
Linear One Bucket Finetuning 2.0 90.7%± .0% 89.8%± .0% 91.2%± .0% 91.4%± .0% 89.1%± .2%
Linear One Bucket Finetuning 5.0 91.5%± .0% 90.4%± .0% 91.7%± .0% 91.7%± .0% 88.5%± .0%
Linear One Bucket Finetuning 0.25 * i/k 89.7%± .0% 88.8%± .0% 90.5%± .0% 90.7%± .0% 87.1%± .0%
Linear One Bucket Finetuning 0.50 * i/k 90.7%± .0% 89.7%± .0% 91.2%± .0% 91.3%± .0% 87.9%± .0%
Linear One Bucket Finetuning 0.75 * i/k 91.3%± .0% 90.1%± .0% 91.6%± .0% 91.6%± .0% 88.2%± .1%
Linear One Bucket Finetuning 1.00 * i/k 91.6%± .0% 90.5%± .0% 91.7%± .0% 91.7%± .0% 88.5%± .0%

Table 4: Linear Classification with IID Evaluation Protocol (Features Extracted by MoCo-YFCC-B0).
With iid protocol, Finetuning consistently outperforms From Scratch and Napping. Furthermore, when there
is a limited buffer size of one bucket of memory, biased reservoir sampling that favors more recent samples with
higher values of alpha can improve the test time performance. Recall that this iid evaluation protocol requires a
held-out test set, which is not needed in the streaming protocol 5.

9

Network Buffer Size Method Alpha Evaluation Metrics

Next-Domain Accuracy Forward Transfer

Linear N/A Nap N/A 86.7%± .0% 85.7%± .0%

Linear Cumulative From Scratch N/A 90.6%± .1% 88.7%± .1%
Linear One Bucket From Scratch 0.5 87.2%± .0% 86.1%± .0%
Linear One Bucket From Scratch 1.0 87.6%± .1% 86.5%± .1%
Linear One Bucket From Scratch 2.0 87.9%± .1% 86.8%± .1%
Linear One Bucket From Scratch 5.0 88.6%± .1% 87.6%± .0%
Linear One Bucket From Scratch 0.25 * i/k 87.0%± .1% 86.0%± .1%
Linear One Bucket From Scratch 0.50 * i/k 87.9%± .1% 86.5%± .1%
Linear One Bucket From Scratch 0.75 * i/k 88.5%± .1% 87.0%± .1%
Linear One Bucket From Scratch 1.00 * i/k 88.9%± .0% 87.3%± .0%

Linear Cumulative Finetuning N/A 91.1%± .0% 89.3%± .0%
Linear One Bucket Finetuning 0.5 88.8%± .1% 87.6%± .1%
Linear One Bucket Finetuning 1.0 89.5%± .0% 88.1%± .1%
Linear One Bucket Finetuning 2.0 90.3%± .1% 88.8%± .1%
Linear One Bucket Finetuning 5.0 90.9%± .0% 89.2%± .0%
Linear One Bucket Finetuning 0.25 * i/k 89.7%± .0% 88.0%± .1%
Linear One Bucket Finetuning 0.50 * i/k 90.4%± .1% 88.6%± .1%
Linear One Bucket Finetuning 0.75 * i/k 90.8%± .1% 88.9%± .0%
Linear One Bucket Finetuning 1.00 * i/k 91.1%± .0% 89.2%± .0%

Table 5: Linear Classification with Streaming Evaluation Protocol (Features Extracted by MoCo-YFCC-
B0). This table contains the complete results for Table 2 in main paper, including forward transfer and fixed
value alpha experiments. Each entry shows the mean and std of 5 runs using different random seeds. The key
takeaway is when there is a limited buffer size, contrary to the commonly followed strategy (training on the
i.i.d. distribution sampled uniformly with reservoir sampling strategy), it is better to train on the recent data
than from the past. The rest of the observation follows table 4, e.g., Finetuning outperforms From Scratch
and Napping methods. This streaming evaluation protocol does not require a held-out test set, and it is a more
realistic measure of a CL system deployed in the real world.

Network Buffer Size Method Alpha In-Domain Accuracy Next-Domain Accuracy

CLIP Pretrain-ImgNet MoCo-ImgNet BYOL-ImgNet MoCo-YFCC CLIP Pretrain-ImgNet MoCo-ImgNet BYOL-ImgNet MoCo-YFCC

Linear N/A Nap N/A 79.8%± .2% 93.3%± .2% 88.2%± .3% 91.1%± .2% 86.7%± .1% 79.4%± .3% 93.0%± .2% 87.7%± .3% 90.7%± .2% 86.1%± .1%

Linear Cumulative From Scratch N/A 83.2%± .2% 95.5%± .2% 92.8%± .2% 94.7%± .1% 91.7%± .1% 83.0%± .4% 95.0%± .1% 92.3%± .2% 94.3%± .1% 91.2%± .1%
Linear One Bucket From Scratch 0.5 80.5%± .2% 94.1%± .2% 89.3%± .2% 92.1%± .1% 87.8%± .1% 80.3%± .4% 93.6%± .2% 88.4%± .3% 91.2%± .3% 86.7%± .1%
Linear One Bucket From Scratch 1.0 80.9%± .1% 94.2%± .2% 89.9%± .3% 92.4%± .3% 88.4%± .1% 80.4%± .4% 94.0%± .5% 88.9%± .3% 91.8%± .4% 87.7%± .1%
Linear One Bucket From Scratch 2.0 80.7%± .1% 94.3%± .2% 90.1%± .2% 92.7%± .3% 88.8%± .1% 80.1%± .3% 93.8%± .3% 89.1%± .3% 91.8%± .2% 87.7%± .1%
Linear One Bucket From Scratch 5.0 81.0%± .2% 94.4%± .1% 90.4%± .2% 92.8%± .2% 89.1%± .1% 80.0%± .1% 93.9%± .1% 89.4%± .3% 92.0%± .2% 87.9%± .1%
Linear One Bucket From Scratch 0.25 * i/k 80.7%± .2% 94.2%± .1% 90.1%± .3% 92.5%± .2% 88.6%± .1% 80.1%± .3% 93.9%± .3% 89.0%± .3% 91.8%± .4% 87.8%± .1%
Linear One Bucket From Scratch 0.50 * i/k 80.9%± .3% 94.3%± .1% 90.3%± .2% 92.7%± .2% 88.9%± .1% 80.3%± .3% 93.9%± .1% 89.2%± .4% 92.0%± .1% 88.1%± .1%
Linear One Bucket From Scratch 0.75 * i/k 81.1%± .2% 94.4%± .1% 90.5%± .2% 92.8%± .3% 89.0%± .1% 80.2%± .1% 93.8%± .2% 89.3%± .5% 91.9%± .1% 87.9%± .1%
Linear One Bucket From Scratch 1.00 * i/k 81.0%± .2% 94.3%± .1% 90.6%± .2% 93.0%± .3% 89.1%± .1% 79.8%± .2% 93.7%± .1% 89.4%± .3% 91.9%± .3% 87.8%± .1%

Linear Cumulative Finetuning N/A 83.2%± .2% 95.3%± .2% 93.4%± .2% 94.4%± .1% 91.5%± .0% 83.0%± .3% 94.9%± .0% 93.1%± .3% 94.0%± .1% 90.6%± .0%
Linear One Bucket Finetuning 0.5 80.7%± .3% 94.3%± .2% 90.9%± .3% 92.6%± .1% 88.6%± .0% 80.3%± .3% 93.8%± .3% 90.3%± .5% 91.9%± .1% 88.1%± .0%
Linear One Bucket Finetuning 1.0 81.5%± .2% 94.7%± .2% 91.6%± .2% 93.2%± .1% 89.5%± .0% 81.3%± .3% 94.3%± .4% 90.8%± .1% 92.6%± .3% 88.8%± .0%
Linear One Bucket Finetuning 2.0 82.0%± .1% 94.7%± .1% 92.2%± .3% 93.6%± .2% 90.7%± .0% 81.7%± .3% 94.2%± .2% 91.4%± .3% 93.0%± .2% 89.8%± .0%
Linear One Bucket Finetuning 5.0 82.5%± .2% 94.8%± .2% 92.7%± .2% 93.9%± .2% 91.5%± .0% 82.1%± .2% 94.3%± .1% 91.9%± .3% 93.3%± .2% 90.4%± .0%
Linear One Bucket Finetuning 0.25 * i/k 81.5%± .3% 94.5%± .1% 91.7%± .2% 93.1%± .2% 89.7%± .0% 80.9%± .3% 94.2%± .3% 90.8%± .4% 92.6%± .2% 88.8%± .0%
Linear One Bucket Finetuning 0.50 * i/k 82.2%± .2% 94.7%± .1% 92.3%± .2% 93.6%± .1% 90.7%± .0% 81.7%± .2% 94.3%± .2% 91.5%± .3% 93.0%± .1% 89.7%± .0%
Linear One Bucket Finetuning 0.75 * i/k 82.7%± .1% 94.8%± .1% 92.6%± .2% 93.8%± .2% 91.3%± .0% 82.1%± .2% 94.3%± .2% 91.8%± .3% 93.3%± .2% 90.1%± .0%
Linear One Bucket Finetuning 1.00 * i/k 82.9%± .1% 94.8%± .1% 92.8%± .2% 94.0%± .1% 91.6%± .0% 82.0%± .2% 94.2%± .1% 92.1%± .3% 93.5%± .2% 90.5%± .0%

Table 6: Linear Classification with IID Evaluation Protocol with all pre-trained models. We include the
linear classification results using all 5 pre-trained models. Each entry shows the mean and std of 5 runs using
different random seeds.

10

Network Buffer Size Method Alpha In-Domain Accuracy Next-Domain Accuracy

CLIP Pretrain-ImgNet MoCo-ImgNet BYOL-ImgNet MoCo-YFCC CLIP Pretrain-ImgNet MoCo-ImgNet BYOL-ImgNet MoCo-YFCC

MLP N/A Nap N/A 80.6%± .2% 93.4%± .4% 88.9%± .5% 91.2%± .2% 87.5%± .4% 80.2%± .4% 93.1%± .5% 88.3%± .6% 90.8%± .2% 86.9%± .5%

MLP Cumulative From Scratch N/A 84.1%± .1% 95.9%± .1% 93.8%± .2% 94.7%± .1% 92.8%± .2% 83.9%± .2% 95.6%± .1% 93.4%± .2% 94.3%± .1% 92.3%± .2%
MLP One Bucket From Scratch 0.5 81.3%± .2% 94.3%± .1% 89.8%± .2% 92.0%± .1% 88.6%± .3% 81.1%± .3% 93.9%± .4% 89.1%± .2% 91.2%± .3% 87.8%± .5%
MLP One Bucket From Scratch 1.0 81.7%± .2% 94.4%± .2% 90.5%± .3% 92.5%± .2% 88.9%± .3% 81.1%± .3% 93.9%± .2% 89.5%± .4% 91.7%± .4% 88.1%± .3%
MLP One Bucket From Scratch 2.0 81.6%± .1% 94.6%± .2% 90.7%± .3% 92.7%± .3% 89.4%± .2% 81.0%± .3% 94.1%± .0% 89.8%± .2% 92.0%± .1% 88.5%± .3%
MLP One Bucket From Scratch 5.0 81.7%± .2% 94.6%± .1% 90.9%± .2% 92.6%± .4% 89.8%± .3% 80.7%± .2% 94.0%± .1% 90.0%± .2% 91.6%± .6% 88.5%± .1%
MLP One Bucket From Scratch 0.25 * i/k 81.6%± .2% 94.6%± .1% 90.5%± .4% 92.5%± .1% 89.2%± .3% 81.1%± .2% 94.2%± .3% 89.6%± .4% 92.0%± .2% 88.1%± .3%
MLP One Bucket From Scratch 0.50 * i/k 81.6%± .2% 94.6%± .1% 90.8%± .2% 92.6%± .2% 89.5%± .3% 80.9%± .3% 94.1%± .1% 90.0%± .2% 92.0%± .2% 88.5%± .2%
MLP One Bucket From Scratch 0.75 * i/k 81.8%± .2% 94.7%± .1% 91.0%± .2% 92.8%± .2% 89.7%± .3% 80.9%± .3% 94.0%± .1% 89.9%± .3% 91.9%± .2% 88.5%± .3%
MLP One Bucket From Scratch 1.00 * i/k 81.7%± .3% 94.7%± .1% 91.0%± .1% 92.8%± .2% 89.7%± .3% 80.5%± .2% 94.1%± .3% 89.9%± .3% 92.0%± .3% 88.3%± .2%

MLP Cumulative Finetuning N/A 83.2%± .2% 95.8%± .2% 93.9%± .2% 94.6%± .1% 92.7%± .2% 82.9%± .2% 95.4%± .2% 93.5%± .1% 94.2%± .1% 92.3%± .2%
MLP One Bucket Finetuning 0.5 80.7%± .3% 94.6%± .3% 91.5%± .2% 92.5%± .2% 89.8%± .4% 80.2%± .3% 94.1%± .4% 90.7%± .2% 91.7%± .2% 89.2%± .4%
MLP One Bucket Finetuning 1.0 81.8%± .2% 94.7%± .1% 92.1%± .2% 93.2%± .2% 90.3%± .4% 81.3%± .1% 94.3%± .2% 91.6%± .4% 92.6%± .3% 89.8%± .4%
MLP One Bucket Finetuning 2.0 82.3%± .2% 94.9%± .2% 92.7%± .2% 93.6%± .2% 91.3%± .1% 81.8%± .4% 94.4%± .1% 92.1%± .2% 93.1%± .2% 90.7%± .2%
MLP One Bucket Finetuning 5.0 83.4%± .2% 95.0%± .1% 93.1%± .1% 94.0%± .1% 91.9%± .2% 82.7%± .3% 94.6%± .4% 92.5%± .2% 93.4%± .1% 91.1%± .3%
MLP One Bucket Finetuning 0.25 * i/k 81.7%± .3% 94.7%± .2% 92.3%± .2% 93.2%± .2% 90.6%± .3% 81.1%± .4% 94.5%± .2% 91.5%± .3% 92.6%± .3% 90.0%± .3%
MLP One Bucket Finetuning 0.50 * i/k 82.5%± .3% 94.7%± .2% 92.8%± .1% 93.6%± .1% 91.3%± .2% 81.9%± .2% 94.3%± .3% 92.2%± .1% 93.1%± .2% 90.5%± .2%
MLP One Bucket Finetuning 0.75 * i/k 83.2%± .2% 94.8%± .2% 93.1%± .1% 93.9%± .1% 91.7%± .2% 82.7%± .2% 94.4%± .3% 92.5%± .1% 93.4%± .2% 91.0%± .2%
MLP One Bucket Finetuning 1.00 * i/k 83.4%± .1% 94.7%± .2% 93.3%± .1% 94.1%± .1% 92.0%± .2% 82.6%± .3% 94.3%± .2% 92.7%± .2% 93.5%± .2% 91.3%± .2%

Table 7: Non-Linear (2 layers MLP) Classification with IID Evaluation Protocol with all pre-trained
models. We include the non-linear classification results using all 5 pre-trained models. Each entry shows the
mean and std of 5 runs using different random seeds.

Network Buffer Size Method Alpha Next-Domain Accuracy

CLIP Pretrain-ImgNet MoCo-ImgNet BYOL-ImgNet MoCo-YFCC

Linear N/A Nap N/A 80.1%± .0% 93.6%± .1% 88.8%± .0% 91.4%± .0% 86.7%± .0%

Linear Cumulative From Scratch N/A 83.5%± .0% 95.4%± .0% 92.7%± .0% 94.5%± .0% 90.6%± .1%
Linear One Bucket From Scratch 0.5 80.9%± .1% 94.1%± .3% 89.4%± .1% 92.0%± .2% 87.2%± .0%
Linear One Bucket From Scratch 1.0 81.1%± .1% 94.3%± .1% 89.7%± .2% 92.4%± .2% 87.6%± .1%
Linear One Bucket From Scratch 2.0 80.9%± .1% 94.4%± .1% 89.8%± .1% 92.6%± .1% 87.9%± .1%
Linear One Bucket From Scratch 5.0 80.7%± .1% 94.3%± .1% 90.1%± .1% 92.7%± .1% 88.6%± .1%
Linear One Bucket From Scratch 0.25 * i/k 81.0%± .1% 94.4%± .1% 89.8%± .2% 92.5%± .1% 87.0%± .1%
Linear One Bucket From Scratch 0.50 * i/k 81.0%± .1% 94.4%± .1% 90.1%± .0% 92.7%± .1% 87.9%± .1%
Linear One Bucket From Scratch 0.75 * i/k 80.9%± .1% 94.4%± .1% 90.2%± .0% 92.6%± .1% 88.5%± .1%
Linear One Bucket From Scratch 1.00 * i/k 80.4%± .0% 94.3%± .0% 90.1%± .0% 92.6%± .0% 88.9%± .0%

Linear Cumulative Finetuning N/A 83.6%± .0% 95.3%± .0% 93.3%± .0% 94.3%± .0% 91.1%± .0%
Linear One Bucket Finetuning 0.5 81.4%± .2% 94.3%± .2% 91.1%± .0% 92.4%± .2% 88.8%± .1%
Linear One Bucket Finetuning 1.0 81.8%± .2% 94.5%± .1% 91.6%± .2% 92.9%± .1% 89.5%± .0%
Linear One Bucket Finetuning 2.0 82.3%± .1% 94.6%± .1% 92.0%± .1% 93.5%± .1% 90.3%± .1%
Linear One Bucket Finetuning 5.0 82.5%± .0% 94.7%± .1% 92.4%± .0% 93.8%± .0% 90.9%± .0%
Linear One Bucket Finetuning 0.25 * i/k 81.7%± .2% 94.6%± .1% 91.6%± .1% 93.1%± .1% 89.7%± .0%
Linear One Bucket Finetuning 0.50 * i/k 82.3%± .2% 94.7%± .1% 92.0%± .1% 93.6%± .0% 90.4%± .1%
Linear One Bucket Finetuning 0.75 * i/k 82.6%± .1% 94.8%± .1% 92.5%± .1% 93.7%± .1% 90.8%± .1%
Linear One Bucket Finetuning 1.00 * i/k 82.5%± .0% 94.7%± .0% 92.5%± .0% 93.8%± .0% 91.1%± .0%

Table 8: Linear Classification with Streaming Evaluation Protocol with all pre-trained models. We
include the linear classification results using all 5 pre-trained models. Each entry shows the mean and std of 5
runs using different random seeds.

Network Buffer Size Method Alpha Next-Domain Accuracy

CLIP Pretrain-ImgNet MoCo-ImgNet BYOL-ImgNet MoCo-B0

MLP N/A Nap N/A 81.1%± .1% 93.8%± .0% 89.8%± .1% 91.3%± .0% 87.8%± .1%

MLP Cumulative From Scratch N/A 84.4%± .1% 95.9%± .1% 93.8%± .0% 94.6%± .0% 92.6%± .0%
MLP One Bucket From Scratch 0.5 81.7%± .1% 94.2%± .1% 90.3%± .1% 91.9%± .2% 88.6%± .1%
MLP One Bucket From Scratch 1.0 81.9%± .2% 94.5%± .1% 90.6%± .3% 92.3%± .1% 89.2%± .2%
MLP One Bucket From Scratch 2.0 81.7%± .1% 94.6%± .0% 90.8%± .1% 92.6%± .1% 89.6%± .1%
MLP One Bucket From Scratch 5.0 81.5%± .1% 94.6%± .1% 90.9%± .1% 92.6%± .1% 89.5%± .1%
MLP One Bucket From Scratch 0.25 * i/k 81.8%± .1% 94.5%± .1% 90.6%± .2% 92.6%± .1% 89.2%± .1%
MLP One Bucket From Scratch 0.50 * i/k 81.8%± .1% 94.6%± .1% 90.9%± .1% 92.7%± .1% 89.5%± .1%
MLP One Bucket From Scratch 0.75 * i/k 81.6%± .1% 94.6%± .1% 91.0%± .1% 92.6%± .1% 89.6%± .1%
MLP One Bucket From Scratch 1.00 * i/k 81.3%± .0% 94.5%± .0% 90.9%± .0% 92.5%± .0% 89.4%± .0%

MLP Cumulative Finetuning N/A 83.3%± .1% 95.9%± .1% 93.9%± .0% 94.4%± .0% 92.3%± .0%
MLP One Bucket Finetuning 0.5 80.6%± .2% 94.4%± .2% 91.6%± .2% 92.4%± .2% 89.6%± .1%
MLP One Bucket Finetuning 1.0 81.2%± .1% 94.8%± .1% 92.1%± .1% 93.0%± .1% 90.4%± .2%
MLP One Bucket Finetuning 2.0 82.0%± .2% 95.3%± .1% 92.6%± .1% 93.6%± .2% 91.1%± .1%
MLP One Bucket Finetuning 5.0 82.8%± .1% 95.3%± .1% 93.0%± .1% 93.9%± .0% 91.7%± .1%
MLP One Bucket Finetuning 0.25 * i/k 81.2%± .2% 95.0%± .1% 92.2%± .2% 93.1%± .1% 90.4%± .1%
MLP One Bucket Finetuning 0.50 * i/k 82.1%± .1% 95.2%± .1% 92.8%± .1% 93.6%± .1% 91.1%± .1%
MLP One Bucket Finetuning 0.75 * i/k 82.5%± .1% 95.3%± .1% 93.0%± .1% 93.8%± .1% 91.5%± .0%
MLP One Bucket Finetuning 1.00 * i/k 82.7%± .1% 95.4%± .0% 93.1%± .0% 93.9%± .0% 91.8%± .0%

Table 9: Non-linear (2 layers MLP) Classification with Streaming Evaluation Protocol with all pre-
trained models. We include the non-linear classification results using all 5 pre-trained models. Each entry
shows the mean and std of 5 runs using different random seeds.

11

6 Experiment Details

In this section provide all details required for replicating the results we shown in main paper and in
supplement.

Augmentation: To extract 1024-dimensional L2 normalized features using pre-trained CLIP model,
we stick to the default augmentation in their official codebase without any modification (https:
//github.com/openai/CLIP). To extract pre-trained features with the rest of the ResNet50 models,
we use a standard augmentation scheme:

1. First resize the longer edge of the image to 224px. (Resize(224))
2. Then perform a square center crop of 224px. (CenterCrop(224))
3. Convert the pixel values to the range of (0,1). (ToTensor())
4. Perform a normalization with ImageNet statistics of mean = (0.485, 0.456, 0.406) and std =

(0.229, 0.224, 0.225). (Normalize(mean, std))

When training fully-supervised CL baselines with ResNet18, we use the same above augmentation
procedure while changing "CenterCrop(224)" to "RandomCrop(224) followed by a RandomHorizon-
talFlip()" during training time.

Shallow model architectures: For linear classification, the linear layer has input size same as the
input features (1024 for CLIP features, and 2048 for other pre-trained ResNet50 features). For
non-linear classification, we adopts a simple 2 layer multi-layer perceptron (MLP). The first layer
of MLP transforms the input feature to a 2048 dimensional feature (regardless of the input size),
followed by ReLU activation function and a hidden layer that transforms the hidden feature to output.

Hyperparameters for shallow model experiments: We adopt the standard cross entropy loss using
a SGD optimizer with 0.9 momentum and no weight decay for all experiments. We use a starting
learning rate of 1.0 for linear classification experiments (the only exception is for ImageNet-pretrained
features we found out that learning rate 0.1 can improve the accuracy). We use a starting learning
rate of 0.1 for MLP experiments. For all these shallow model experiments, we use batch of 256 and
we apply a learning rate decay by a factor of 0.1 after the first 60 epochs, and train for a total of 100
epochs.

Deep CNN architectures: We use the default ResNet18 models in PyTorch library.

Hyperparameters for deep CNN experiments: For training the fully-supervised CL baselines, we
trained a ResNet18 [6] initially from scratch for 70 epochs with a batch size of 64, SGD optimizer
with momentum 0.9 and weight decay of 1e-5, initial learning rate of 0.01, and apply a learning rate
decay by a factor of 0.1 every 30 epochs.

We conduct all our comparison experiments with the avalanche continual learning library (https:
//avalanche.continualai.org/). For LwF [8], we have alpha (distillation hyperparameter) with
a list of float number start from 0, end with 2, step of 2/11, and temperate 1 (softmax temperature for
distillation). For AGEM, we have one bucket pattern per bucket(number of patterns per training step
in the memory), and one bucket sample size (number of patterns in memory sample when computing
reference gradient) with reservoir sampling. For SI [16], we have lambda=0.0001. For EWC [7], we
have ewc lambda (hyperparameter to weigh the penalty inside the total loss) being 0.4 and mode
being "online". For CWR [9], we use the last layer as the cwr layer, which is automatically generated
by the avalanche library. For GDumb [12] and ER [14], we have memeory size being number of
training data in one bucket, which is 3300 for streaming protocol, 2310 for iid protocol.

Computing Resources: We conduct all the experiments using a single GPU (GeForce RTX 2080).

12

https://github.com/openai/CLIP
https://github.com/openai/CLIP
https://avalanche.continualai.org/
https://avalanche.continualai.org/

References
[1] Z. Cai, O. Sener, and V. Koltun. Online continual learning with natural distribution shifts: An

empirical study with visual data. In ICCV.

[2] X. Chen, H. Fan, R. Girshick, and K. He. Improved baselines with momentum contrastive
learning. arXiv preprint arXiv:2003.04297, 2020.

[3] N. Díaz-Rodríguez, V. Lomonaco, D. Filliat, and D. Maltoni. Don’t forget, there is more than
forgetting: new metrics for continual learning. arXiv preprint arXiv:1810.13166, 2018.

[4] S. Farquhar and Y. Gal. Towards robust evaluations of continual learning. 2018.

[5] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Doersch,
B. A. Pires, Z. D. Guo, M. G. Azar, et al. Bootstrap your own latent: A new approach to
self-supervised learning.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR.

[7] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. Overcoming catastrophic forgetting in
neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

[8] A. Li, A. Jabri, A. Joulin, and L. van der Maaten. Learning visual n-grams from web data. In
ICCV.

[9] V. Lomonaco and D. Maltoni. Core50: a new dataset and benchmark for continuous object
recognition. In Conference on Robot Learning, pages 17–26. PMLR, 2017.

[10] D. Lopez-Paz and M. Ranzato. Gradient episodic memory for continual learning. NeurIPS,
2017.

[11] U. Mall, K. Matzen, B. Hariharan, N. Snavely, and K. Bala. Geostyle: Discovering fashion
trends and events. In ICCV.

[12] A. Prabhu, P. H. Torr, and P. K. Dokania. Gdumb: A simple approach that questions our progress
in continual learning. In ECCV.

[13] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
International Conference on Machine Learning, 2021.

[14] D. Rolnick, A. Ahuja, J. Schwarz, T. P. Lillicrap, and G. Wayne. Experience replay for continual
learning. NeurIPS, 2018.

[15] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. IJCV.

[16] F. Zenke, B. Poole, and S. Ganguli. Continual learning through synaptic intelligence. In
International Conference on Machine Learning, pages 3987–3995. PMLR, 2017.

13

Appendix: Accuracy Matrices

We provide the accuracy matrices for all five pre-trained models, networks (linear vs MLP), sample
storage (unlimited vs one bucket), training strategy (from scratch vs finetuning), and alpha value (1.0
vs 1.0 * i/k). The matrices are obtained under the iid evaluation protocol.

• Linear Classification
– CLIP (Fig. 5)
– Pretrained-ImageNet (Fig. 6)
– MoCo-ImageNet (Fig. 7)
– BYOL-ImageNet (Fig. 8)
– MoCo-YFCC-B0 (Fig. 9)

• Non-Linear MLP Classification
– CLIP (Fig. 10)
– Pretrained-ImageNet (Fig. 11)
– MoCo-ImageNet (Fig. 12)
– BYOL-ImageNet (Fig. 13)
– MoCo-YFCC-B0 (Fig. 14)

14

Cumulative, From Scratch Cumulative, Finetuning

One Bucket, Alpha = 1.0, From Scratch One Bucket, Alpha = 1.0, Finetuning

One Bucket, Alpha = 1.0 ∗ i
k

, From Scratch One Bucket, Alpha = 1.0 ∗ i
k

, Finetuning

Figure 5: Accuracy Matrix with Linear Classification (CLIP feature).

15

Cumulative, From Scratch Cumulative, Finetuning

One Bucket, Alpha = 1.0, From Scratch One Bucket, Alpha = 1.0, Finetuning

One Bucket, Alpha = 1.0 ∗ i
k

, From Scratch One Bucket, Alpha = 1.0 ∗ i
k

, Finetuning

Figure 6: Accuracy Matrix with Linear Classification (Pretrained-ImageNet feature).

16

Cumulative, From Scratch Cumulative, Finetuning

One Bucket, Alpha = 1.0, From Scratch One Bucket, Alpha = 1.0, Finetuning

One Bucket, Alpha = 1.0 ∗ i
k

, From Scratch One Bucket, Alpha = 1.0 ∗ i
k

, Finetuning

Figure 7: Accuracy Matrix with Linear Classification (MoCo-ImageNet feature).

17

Cumulative, From Scratch Cumulative, Finetuning

One Bucket, Alpha = 1.0, From Scratch One Bucket, Alpha = 1.0, Finetuning

One Bucket, Alpha = 1.0 ∗ i
k

, From Scratch One Bucket, Alpha = 1.0 ∗ i
k

, Finetuning

Figure 8: Accuracy Matrix with Linear Classification (BYOL-ImageNet feature).

18

Cumulative, From Scratch Cumulative, Finetuning

One Bucket, Alpha = 1.0, From Scratch One Bucket, Alpha = 1.0, Finetuning

One Bucket, Alpha = 1.0 ∗ i
k

, From Scratch One Bucket, Alpha = 1.0 ∗ i
k

, Finetuning

Figure 9: Accuracy Matrix with Linear Classification (MoCo-YFCC-B0 feature).

19

Cumulative, From Scratch Cumulative, Finetuning

One Bucket, Alpha = 1.0, From Scratch One Bucket, Alpha = 1.0, Finetuning

One Bucket, Alpha = 1.0 ∗ i
k

, From Scratch One Bucket, Alpha = 1.0 ∗ i
k

, Finetuning

Figure 10: Accuracy Matrix with Non-Linear (MLP) Classification (CLIP feature).

20

Cumulative, From Scratch Cumulative, Finetuning

One Bucket, Alpha = 1.0, From Scratch One Bucket, Alpha = 1.0, Finetuning

One Bucket, Alpha = 1.0 ∗ i
k

, From Scratch One Bucket, Alpha = 1.0 ∗ i
k

, Finetuning

Figure 11: Accuracy Matrix with Non-Linear (MLP) Classification (Pretrained-ImageNet
feature).

21

Cumulative, From Scratch Cumulative, Finetuning

One Bucket, Alpha = 1.0, From Scratch One Bucket, Alpha = 1.0, Finetuning

One Bucket, Alpha = 1.0 ∗ i
k

, From Scratch One Bucket, Alpha = 1.0 ∗ i
k

, Finetuning

Figure 12: Accuracy Matrix with Non-Linear (MLP) Classification (MoCo-ImageNet feature).

22

Cumulative, From Scratch Cumulative, Finetuning

One Bucket, Alpha = 1.0, From Scratch One Bucket, Alpha = 1.0, Finetuning

One Bucket, Alpha = 1.0 ∗ i
k

, From Scratch One Bucket, Alpha = 1.0 ∗ i
k

, Finetuning

Figure 13: Accuracy Matrix with Non-Linear (MLP) Classification (BYOL-ImageNet feature).

23

Cumulative, From Scratch Cumulative, Finetuning

One Bucket, Alpha = 1.0, From Scratch One Bucket, Alpha = 1.0, Finetuning

One Bucket, Alpha = 1.0 ∗ i
k

, From Scratch One Bucket, Alpha = 1.0 ∗ i
k

, Finetuning

Figure 14: Accuracy Matrix with Non-Linear (MLP) Classification (MoCo-YFCC-B0 feature).

24

	CLEAR Details
	Desiderata in CL Experiment Design
	Evaluation Metrics
	Reservoir Sampling and Its Biased Version
	Additional Experiment Results
	Experiment Details

