
Towards Understanding Why Lookahead Generalizes
Better Than SGD and Beyond

(Supplementary File)

Pan Zhou∗ Hanshu Yan∗ Xiao-Tong Yuan† Jiashi Feng∗ Shuicheng Yan∗
∗ Sea AI Lab, Singapore

† Nanjing University of Information Science & Technology, Nanjing, China
{zhoupan, yanhanshu, fengjs, yansc}@sea.com xtyuan@nuist.edu.cn

This supplementary document contains the technical proofs of convergence results
and some additional experimental results of the NeurIPS’21 submission entitled
“Towards Understanding Why Lookahead Generalizes Better Than SGD and Be-
yond”. It is structured as follows. Appendix A first discusses the limitations of
this work. In Appendix B, we provides more experimental results and details,
including the robustness investigation of SLRLA to regularization parameter. Next,
Appendix C presents several auxiliary lemmas which will be used for subsequent
analysis. Then Appendix D gives the proofs of the main results in Sec. 4, including
Theorem 1 ∼ 4 and Corollary 1 which analyze optimization error, generalization
error and excess risk error of vanilla lookahead algorithm. Finally, Appendix E
provides the proofs of the results in Sec. 5, including Theorems 5 and 6 which
analyze the optimization error, generalization error and excess risk error of the
proposed SLRLA.

A Limitation Discussion

The main limitation of this work is that the analysis in this work cannot be applicable to general
nonconvex problems. This is because as explained in Sec. 4.3, for general nonconvex problems,
one often uses the gradient norm E[‖∇FS(θ)‖2] instead of the loss distance E[FS(θ)− FS(θ∗S)] to
measure whether θ is a stationary point. The reasons is that many stationary points may exist in a
nonconvex problem. But as shown in Sec. 3, to bound the excess risk error, one needs to first bound
the loss distance. In this way, our analysis cannot be applicable to general nonconvex problems.
However, in this work, we are particularly interested in nonconvex problems under PL condition
which allows us to bound the loss distance, since PL condition establishes the relation between
gradient norm and loss distance. Moreover, deep learning models often satisfy PL condition, which is
well observed/proved in [1, 2, 3, 4, 5] and our empirical results in Sec. 6.2. So in the future, finding
and developing new framework which avoids the requirement on the bounded loss distance to analyze
excess risk error for nonconvex problems is an interesting avenue of future research.

B More Experimental Results and Details

Due to space limitation, we defer more experimental results and details to this appendix. Here we
first investigate robustness of SLRLA to the regularization parameter βq. Then we present more
experimental setting details on strongly convex problems in Sec. 6.1. Note, we use two A100 GPUs to
train ImageNet, and use single A100 GPU for all remaining experiments. Our codes are implemented
based on lookahead.

Robustness to Regularization Parameter. Here we investigate the impact of regularization pa-
rameter βq to the performance of SLRLA. For simplicity, we set βq = β as constant for all op-
timization stages. Then we evaluate SLRLA on ImagNet using ResNet 18. We respectively set
35th Conference on Neural Information Processing Systems (NeurIPS 2021).

r

0.7 0.1 0.3 0.7 1.3 1.7 2.0
log()

68

69

70

71

72

73

cla
ss

ifi
ca

tio
n

ac
cu

ra
cy

 (%
)

Figure 4: Effects of the regularization parameter β to SLRLA.

β = 0.2, 0.8, 2, 5, 20, 50, 100 and train ResNet 18 for 200 epochs with the same training strategy in
the manuscript for fairness. Fig. 4 reports the effects of regularization parameter β to the performance
of SLRLA. From Fig. 4, one can observe that when tuning β in a relatively large range, SLRLA has
relatively stable performance on ImageNet. This testifies the robustness of ImageNet to regularization
parameter.

Details of Experimental Setting on Strongly Convex Problems. Here we introduce the details of
the experiments in Sec. 6.1. We test lookahead, SLA and SLRLA on a regularized softmax problem
with MNIST [6]. The regularized softmax problem for k-classification task can be formulated as

min
θ

1

n

n∑
i=1

k∑
j=1

[
γ

2
‖θj‖2 − 1{yi = j} log

exp(θ>j xi)∑k
l=1 exp(θ>l xi)

]
where yi is the target output of the i-th sample xi. We set the regularization constant γ = 10−5.
Following our theory, we use a linearly decayed learning rate (LR) for lookahead, namely ηt = c

t
with a constant c. For SLA/SLRLA, we use multi-step decayed LRs with decaying rate 0.5. That is,
we decay the LR at the {0.3S, 0.6S, 0.8S}-th epoch where S denotes the total epoch number. We
tune the initial LR of lookahead as 0.1 and set the initial LR of SLA/SLRLA as 0.05. For lookahead,
SLA and SLRLA, we set k = 5, a momentum of 0.9, a weight decay of 10−4, and training epoch
number S = 80.

C Auxiliary Lemmas

Lemma 1. [7] Assume that `(f(x;θ),y) is L-smooth w.r.t. θ. Suppose v(t)
τ+1 = v

(t)
τ −

η
(t)
τ ∇`(f(x;v

(t)
τ);y) and ṽ

(t)
τ+1 = ṽ

(t)
τ − η

(t)
τ ∇`(f(x; ṽ

(t)
τ);y). Assume max(‖ṽ(t)

τ+1 −
ṽ

(t)
τ ‖, ‖v(t)

τ+1 − v
(t)
τ ‖) ≤ η(t)

τ G.
(1) Suppose `(f(x;θ),y) is nonconvex w.r.t. θ.
(1.1) For the (t, τ) iteration, when v(t)

τ+1 and ṽ(t)
τ+1 sample the same sample (x,y), we have

‖v(t)
τ+1 − ṽ

(t)
τ+1‖2 ≤ (1 + η(t)

τ L)‖v(t)
τ − ṽ(t)

τ ‖2.

(1.2) Assume that `(f(x;θ),y) is further G-Lipschitz w.r.t. θ. For the (t, τ) iteration, when v(t)
τ+1

and ṽ(t)
τ+1 sample different samples (x,y) and (x′,y′), we have

‖v(t)
τ+1 − ṽ

(t)
τ+1‖2 ≤ ‖v(t)

τ − ṽ(t)
τ ‖2 + 2η(t)

τ G.

(2) Suppose `(f(x;θ),y) is convex w.r.t. θ. Set the learning rate η(t)
τ ≤ 2

L .
(2.1)For the (t, τ) iteration, when v(t)

τ+1 and ṽ(t)
τ+1 sample the same sample (x,y), we have

‖v(t)
τ+1 − ṽ

(t)
τ+1‖2 ≤ ‖v(t)

τ − ṽ(t)
τ ‖2.

(2.2) Assume that `(f(x;θ),y) is further G-Lipschitz w.r.t. θ. For the (t, τ) iteration, when v(t)
τ+1

and ṽ(t)
τ+1 sample different samples (x,y) and (x′,y′), we have

‖v(t)
τ+1 − ṽ

(t)
τ+1‖2 ≤ ‖v(t)

τ − ṽ(t)
τ ‖2 + 2η(t)

τ G.

2

(3) Suppose `(f(x;θ),y) is λ-strongly convex w.r.t. θ. Set the learning rate η(t)
τ ≤ 2

λ+L .

(3.1)For the (t, τ) iteration, when v(t)
τ+1 and ṽ(t)

τ+1 sample the same sample (x,y), we have

‖v(t)
τ+1 − ṽ

(t)
τ+1‖2 ≤

(
1− η

(t)
τ λL

λ+ L

)
‖v(t)

τ − ṽ(t)
τ ‖2.

(3.2) Assume that `(f(x;θ),y) is further G-Lipschitz w.r.t. θ. For the (t, τ) iteration, when v(t)
τ+1

and ṽ(t)
τ+1 sample different samples (x,y) and (x′,y′), we have

‖v(t)
τ+1 − ṽ

(t)
τ+1‖2 ≤

(
1− η

(t)
τ λL

λ+ L

)
‖v(t)

τ − ṽ(t)
τ ‖2 + 2η(t)

τ G.

Lemma 2. [8] If FS(θ) satisfies the PL condition, then for any θ we have

‖θ − θ∗S‖2 ≤
1

2µ
(FS(θ)− FS(θ∗S)),

where θ∗S = argminθ FS(θ).

Lemma 3. Assume that `(f(x;θ);y) satisfies |`(f(x;θ);y)| ≤ `max and is G-Lipschitz for all
(x,y). Let S and S ′ be two datasets of size n differing in only one single sample. Denote by v(t)

τ and
ṽ

(t)
τ the output of the (t, τ)-iteration of lookahead on the datasets S and S ′, respectively. Then for

every (x,y) ∈ S and every t0 under the random update rule and the random permutation rule, we
have

E|`(f(x;u(t)
τ);y)− `(f(x; ũ(t)

τ);y)| ≤ t0`max

n
+ LE[δ(t)

τ | δ(t0)
τ0 = 0],

where δ(t)
τ = ‖u(t)

τ − ũ(t)
τ ‖2‖ with u(t)

τ = αv
(t)
τ + (1− α)θt−1 and ũ(t)

τ = αṽ
(t)
τ + (1− α)θ̃t−1.

Proof. This proof follows [7]. For completeness, we provide its proof here. To begin with, we first
define the variable u(t)

τ = αv
(t)
τ + (1−α)θt−1 = αv

(t)
τ + (1−α)v

(t)
0 . It can be observed that when

τ = k, then θt = u
(t)
k . In this way, we also can obtain the updating rule of u(t)

τ+1 as follows:

u
(t)
τ+1 = αv(t)

τ + (1− α)v
(t)
0 = u(t)

τ − αη(t)
τ g

(t)
τ ,

where g(t)
τ denotes the stochastic gradient at the point v(t)

τ .

Suppose given n samples S = {z1, z2, · · · , zn} where zi = (xi,yi) is sampled from an un-
known distribution D, one usually analyze the stability of an algorithm by replacing one sample
in S by another sample from D. Suppose the generated sample set S(i) = {z′1, z′2, · · · , z′n} =
{z1, z2, · · · , zi−1, z

′
i, zi+1 · · · , zn} which only differs from the set S with the i-th sample. Then

based on these two set, one can train the algorithm to obtain different solution θ of the function
FS(θ). When using S(i), we use θ̃t and ṽ(t)

τ to denote their corresponding versions θt and ṽ(t)
τ in

Algorithm 1 trained on S . In this way, we can define their corresponding u(t)
τ and ũ(t)

τ . Next, we can
define

δ(t)
τ = ‖u(t)

τ − ũ(t)
τ ‖2.

In this way, we can follow [7] and prove our results. Let E = 1[δ
(t0)
τ0 = 0] denote the event that δ(t0)

τ0 .
In this way, we can upper bound

E|`(f(x;u(t)
τ);y)− `(f(x; ũ(t)

τ);y)| =P(E)E[|`(f(x;u(t)
τ);y)− `(f(x; ũ(t)

τ);y)|
∣∣ E]

+ P(Ec)E[|`(f(x;u(t)
τ);y)− `(f(x; ũ(t)

τ);y)|
∣∣ Ec]

≤E[|`(f(x;u(t)
τ);y)− `(f(x; ũ(t)

τ);y)|
∣∣ E] + 2`maxP(Ec)

≤GE[‖u(t)
τ − ũ(t)

τ ‖2
∣∣ E] + 2`maxP(Ec)

Then we only need to bound P(Ec). Assume t∗k+τ∗ denote the position in which S and S ′ differ and
consider the random variable (i, j) assuming the index of the first time step in which the lookahead

3

algorithm uses the sample (xt∗k+τ∗ ,yt∗k+τ∗). When ik + j > t∗k + τ∗, then we have δ(i)
j = 0

since the execution on S and S ′ is identical until iteration (t0, τ0). In this way, we have

P(Ec) ≤ P(δ(t0)
τ0 6= 0) ≤ P(ik + j ≤ t0k + τ0).

Under the random permutation rule, ik + j) is a uniformly random number in {1, · · · , n} and
therefore,

P(ik + j ≤ t0k + τ0) =
t0k + τ0

n
.

This completes the proof.

D Proof of The Results in Sec. 4

D.1 Proof of Theorem 1

Proof. Since the function FS(θ) is λ-strongly-convex and θ∗S is the optimum of FS(θ), then we
have

FS(v
(t)
τ−1) ≥ FS(θ∗S) + 〈∇FS(θ∗S),θ∗S − v

(t)
τ−1〉+

λ

2
‖θ∗S − v

(t)
τ−1‖22 = FS(θ∗S) +

λ

2
‖θ∗S − v

(t)
τ−1‖22.

Similarly, we have

FS(θ∗S) ≥ FS(v
(t)
τ−1) + 〈∇FS(v

(t)
τ−1),θ∗S − v

(t)
τ−1〉+

λ

2
‖θ∗S − v

(t)
τ−1‖22.

Then we can upper bound

E
[
‖v(t)

τ − θ∗S‖2
]
≤ E

[
‖v(t)

τ−1 − η
(t)
τ−1g

(t)
τ−1 − θ∗S‖2

]
≤E

[
‖v(t)

τ−1 − θ∗S‖2 − 2η
(t)
τ−1〈v

(t)
τ−1 − θ∗S , g

(t)
τ−1〉+ (η

(t)
τ−1)2‖g(t)

τ−1‖2
]

¬
=E

[
‖v(t)

τ−1 − θ∗S‖2 − 2η
(t)
τ−1〈v

(t)
τ−1 − θ∗S ,∇FS(v

(t)
τ−1)〉+ (η

(t)
τ−1)2‖g(t)

τ−1‖2
]

≤E
[
‖v(t)

τ−1 − θ∗S‖2 + 2η
(t)
τ−1

[
FS(θ∗S)− FS(v

(t)
τ−1)− λ

2
‖θ∗S − v

(t)
τ−1‖22

]
+ (η

(t)
τ−1)2‖g(t)

τ−1‖2
]

≤E
[
‖v(t)

τ−1 − θ∗S‖2 + 2η
(t)
τ−1

[
−λ

2
‖θ∗S − v

(t)
τ−1‖22 −

λ

2
‖θ∗S − v

(t)
τ−1‖22

]
+ (η

(t)
τ−1)2‖g(t)

τ−1‖2
]

­
≤(1− 2λη

(t)
τ−1)E

[
‖v(t)

τ−1 − θ∗S‖2
]

+ (η
(t)
τ−1)2G2

where ¬ holds since E[g
(t)
τ−1] = ∇FS(v

(t)
τ−1), ­ holds by assuming each individual loss is G-

Lipschitz. Since η(t)
τ = c

λ((t−1)k+τ+2) where c = λ+L
L ∈ (1, 2], we have 1

λ((t−1)k+τ+2) ≤ η
(t)
τ ≤

2
λ((t−1)k+τ+2) . For brevity, let

A(j, i) =

i∏
s=j

(
1− 2

(t− 1)k + s+ 1

)
, B(j, i) =

i∑
s=j

(
1− 2

(t− 1)k + s+ 1

)
.

4

We can unwind the above recurrence relation from τ = k to 1 to obtain

E
[
‖v(t)

τ − θ∗S‖2
]
≤A(1, k)E

[
‖v(t)

0 − θ∗S‖2
]

+

k∑
i=1

A(i+ 1, k) · 4G2

λ2((t− 1)k + i+ 1)2

¬
≤ exp {−B(1, k)}E

[
‖v(t)

0 − θ∗S‖2
]

+

k∑
i=1

exp {−B(i+ 1, k)} 4G2

λ2((t− 1)k + i+ 1)2

­
≤ exp

{
−2 log

(
tk + 2

(t− 1)k + 2

)}
E
[
‖v(t)

0 − θ∗S‖2
]

+

k∑
i=1

exp

{
−2 log

(
tk + 2

(t− 1)k + i+ 2

)}
4G2

λ2((t− 1)k + i+ 1)2

=

(
(t− 1)k + 2

tk + 2

)2

E
[
‖v(t)

0 − θ∗S‖2
]

+
4G2

λ2(tk + 2)2

k∑
i=1

((t− 1)k + i+ 2)2

((t− 1)k + i+ 1)2

®
≤
(

(t− 1)k + 2

tk + 2

)2

E
[
‖v(t)

0 − θ∗S‖2
]

+
16kG2

λ2(tk + 2)2

¯
=

(
(t− 1)k + 2

tk + 2

)2

E
[
‖θt−1 − θ∗S‖2

]
+

16kG2

λ2(tk + 2)2
,

where in ¬ we have used 1 + x ≤ ex, in ­ we have used
∑k
j=i

1
a+j+1 ≥

∫ k+1

i
1

a+s+1ds =

log
(
a+k+2
a+i+1

)
and ® is due to (a+ 1)2 ≤ 4a2 for all a ≥ 1 and ¯ is due to w(t−1) = v

(t)
0 . Then it

follows from the updating of slow parameter and the above inequalities that

E
[
‖θt − θ∗S‖2

]
≤(1− α)E

[
‖θt−1 − θ∗S‖2

]
+ αE

[
‖v(t)

k − θ
∗
S‖2
]

≤

(
1− α+ α

(
(t− 1)k + 2

tk + 2

)2
)
E
[
‖θt−1 − θ∗S‖2

]
+

16αkG2

λ2(tk + 2)2

=

(
1− 2αk

tk + 2
+ α

(
k

tk + 2

)2
)
E
[
‖θt−1 − θ∗S‖2

]
+

16αkG2

λ2(tk + 2)2
.

Unwinding this recurrence relation from time instance t to 1 yields

E
[
‖θt − θ∗S‖2

]
≤

t∏
i=1

(
1− 2αk

ik + 2
+ α

(
k

ik + 2

)2
)
‖θ0 − θ∗S‖2 +

t∑
i=1

t∏
j=i+1

(
1− 2αk

jk + 2
+ α

(
k

jk + 2

)2
)

16αkG2

λ2(ik + 2)2

≤
t∏
i=1

exp

{
− 2αk

ik + 2
+ α

(
k

ik + 2

)2
}
‖θ0 − θ∗S‖2 +

t∑
i=1

t∏
j=i+1

exp

{
− 2αk

jk + 2
+ α

(
k

jk + 2

)2
}

16αkG2

λ2(ik + 2)2

= exp

{
−

t∑
i=1

(
2αk

ik + 2
− α

(
k

ik + 2

)2
)}
‖θ0 − θ∗S‖2

+

t∑
i=1

exp

−
t∑

j=i+1

(
2αk

jk + 2
− α

(
k

jk + 2

)2
) 16αkG2

λ2(ik + 2)2
.

5

On the other hand, by using
∑t
j=i

k
jk+2 ≥

∫ t+1

i
k

sk+2ds = log
(

(t+1)k+2
ik+2

)
and

∑t
j=i

k2

(jk+2)2 ≤∫ t
i−1

k2

(sk+2)2 ds ≤
k

(i−1)k+2 , we have

E
[
‖θt − θ∗S‖2

]
≤ exp

{
−2α log

(
(t+ 1)k + 2

k + 2

)
+ α

(
k2

(k + 2)2
+

k

k + 2

)}
‖θ0 − θ∗S‖2

+

t∑
i=1

exp

{
−2α log

(
(t+ 1)k + 2

(i+ 1)k + 2

)
+

αk

ik + 2

}
16αkG2

λ2(ik + 2)2

≤ e2α(k + 2)2α

((t+ 1)k + 2)2α
‖θ0 − θ∗S‖2 +

16αeαG2

λ2((t+ 1)k + 2)2α

t∑
i=1

k((i+ 1)k + 2)2α

(ik + 2)2

¬
≤ e2α(k + 2)2α

((t+ 1)k + 2)2α
‖θ0 − θ∗S‖2 +

16α(4e)αG2

λ2((t+ 1)k + 2)2α

t∑
i=1

k

(ik + 2)2−2α

≤ e2α(k + 2)2α

((t+ 1)k + 2)2α
‖θ0 − θ∗S‖2 +

16α(4e)αG2

λ2((t+ 1)k + 2)2α

∫ t

0

k(sk + 2)2α−2ds,

where ¬ is due to (i+ 1)k + 2 ≤ 2(ik + 2).

Let us now distinguish the following three complementary cases on the value of α.

Case I: α ∈ (0, 1/2). In this case, we have

E
[
‖θt − θ∗S‖2

]
≤ e2α(k + 2)2α

((t+ 1)k + 2)2α
‖θ0 − θ∗S‖2 +

16α(4e)αG2

λ2((t+ 1)k + 2)2α

(
(tk + 2)2α−1 − 22α−1

2α− 1

)
≤ e2α(k + 2)2α

((t+ 1)k + 2)2α
‖θ0 − θ∗S‖2 +

16α(4e)αG2

λ2((t+ 1)k + 2)2α(1− 2α)

≤ 3(k + 2)2α

((t+ 1)k + 2)2α
‖θ0 − θ∗S‖2 +

32G2

λ2((t+ 1)k + 2)2α(1− 2α)
,

where in the last inequality we have used α ∈ (0, 1/2).

Case II: α = 1/2. In this case, we have

E
[
‖θt − θ∗S‖2

]
≤ 3(k + 2)

(t+ 1)k + 2
‖θ0 − θ∗S‖2 +

32G2 log(tk + 2)

λ2((t+ 1)k + 2)
.

Case III: α ∈ (1/2, 1]. In this case, we have

E
[
‖θt − θ∗S‖2

]
≤ e2α(k + 2)2α

((t+ 1)k + 2)2α
‖θ0 − θ∗S‖2 +

16α(4e)αG2

λ2((t+ 1)k + 2)2α

(
(tk + 2)2α−1 − 22α−1

2α− 1

)
≤ e2α(k + 2)2α

((t+ 1)k + 2)2α
‖θ0 − θ∗S‖2 +

16α(4e)αG2(tk + 2)2α−1

λ2((t+ 1)k + 2)2α(2α− 1)

≤ 8(k + 2)2α

((t+ 1)k + 2)2α
‖θ0 − θ∗S‖2 +

180G2

λ2(2α− 1)(tk + 2)
,

where in the last inequality we have used α ≤ 1.

Since FS(θ) is L-smooth and θ∗S is its optimum, then it has

E [FS(θt)− FS(θ∗S)] ≤L
2
E
[
‖θt − θ∗S‖2

]
≤


3L(k+2)2α

2((t+1)k+2)2α ‖θ0 − θ∗S‖2 + 16LG2

λ2((t+1)k+2)2α(1−2α) 0 < α < 1
2

3L(k+2)
2(t+1)k+2‖θ0 − θ∗S‖2 + 16LG2 log(tk+2)

λ2((t+1)k+2) α = 1
2

4L(k+2)2α

((t+1)k+2)2α ‖θ0 − θ∗S‖2 + 90LG2

λ2(2α−1)(tk+2)
1
2 < α ≤ 1

.

The proof is completed.

6

D.2 Proof of Theorem 2

Proof. Here we aim to use uniform stability to upper bound the generalization error. Suppose given n
samples S = {z1, z2, · · · , zn} where zi = (xi,yi) is sampled from an unknown distribution D, one
usually analyze the stability of an algorithm by replacing one sample in S by another sample from D.
Suppose the generated sample set S(i) = {z′1, z′2, · · · , z′n} = {z1, z2, · · · , zi−1, z

′
i, zi+1 · · · , zn}

which only differs from the set S with the i-th sample. Then based on these two set, one can train the
algorithm to obtain different solution θ of the function FS(θ). When using S(i), we use θ̃t and ṽ(t)

τ

to denote their corresponding versions θt and v(t)
τ in Algorithm 1 trained on S . Next, we can define

δ(t)
τ =

{
‖v(t)

0 − ṽ
(t)
0 ‖2 = ‖θt−1 − θ̃t−1‖2, if τ = 0

‖v(t)
τ − ṽ(t)

τ ‖2, if τ 6= 0

Then for each iteration (t, τ) in Algorithm 1, with probability 1− 1
n , the current selected samples

in S and S(i) are the same. In this case, by using the third part results in Lemma 1, we know
that ‖v(t)

τ+1 − ṽ
(t)
τ+1‖2 ≤

(
1− η(t)τ λL

λ+L

)
‖v(t)

τ − v(t)
τ ‖2. Meanwhile with probability 1

n , the selected

samples are different in which we can use the third part results in Lemma 1: ‖v(t)
τ+1 − ṽ

(t)
τ+1‖2 ≤

min (1, a) ‖v(t)
τ − v(t)

τ ‖2 + 2η
(t)
τ G, where a = 1 − η(t)τ λL

λ+L . So by setting η(t)
τ = c

λ((t−1)k+τ+2)

where c = λ+L
L ∈ (1, 2], combining these two cases yields

E
[
δ

(t)
k

]
=

(
1− 1

n

)(
1−

η
(t)
k−1λL

λ+ L

)
E
[
δ

(t)
k−1

]
+

1

n

(
1−

η
(t)
k−1λL

λ+ L

)
E
[
δ

(t)
k−1

]
+

2η
(t)
k−1G

n

=

(
1−

η
(t)
k−1λL

λ+ L

)
E
[
δ

(t)
k−1

]
+

2η
(t)
k−1G

n

≤
k∏
i=1

(
1− cL

λ+ L

1

(t− 1)k + i+ 1

)
E
[
‖δ(t)

0 ‖2
]

+

k∑
i=1

2cG

λn((t− 1)k + i+ 1)

k∏
j=i+1

(
1− cL

λ+ L

1

(t− 1)k + j + 1

)
¬
≤ exp

{
k∑
i=1

− cL

λ+ L

1

(t− 1)k + i+ 1

}
E
[
‖δ(t)

0 ‖2
]

+

k∑
i=1

2cG

λn((t− 1)k + i+ 1)
exp

−
k∑

j=i+1

cL

λ+ L

1

(t− 1)k + j + 1


­
≤ exp

{
− cL

λ+ L
log

tk + 2

(t− 1)k + 2

}
E
[
‖δ(t)

0 ‖2
]

+

k∑
i=1

2cG

λn((t− 1)k + i+ 1)
exp

{
− cL

λ+ L
log

tk + 2

(t− 1)k + i+ 2

}

=

(
(t− 1)k + 2

tk + 2

) cL
λ+L

E
[
‖δ(t)

0 ‖2
]

+

k∑
i=1

2cG

λn((t− 1)k + i+ 1)

(
(t− 1)k + i+ 2

tk + 2

) cL
λ+L

®
≤
(

(t− 1)k + 2

tk + 2

)
E
[
‖δ(t)

0 ‖2
]

+
4ckG

λn(tk + 2)

where in ¬ we have used 1 + x ≤ ex, in ­ we have used
∑k
j=i

1
a+j+1 ≥

∫ k+1

i
1

a+s+1ds =

log
(
a+k+2
a+i+1

)
and ® is due to (a+ 1)β ≤ 2aβ for all a ≥ 1 and c = λ+L

L . Then by setting β = cλL
λ+L

7

it follows from the update of slow parameter and the above inequalities that

E
[
‖δ(t+1)

0 ‖2
]

= E
[
‖θt − θ∗S‖2

]
≤(1− α)E

[
‖θt−1 − θ∗S‖2

]
+ αE

[
‖v(t)

k − θ
∗
S‖2
]

≤
(

1− α+ α

(
(t− 1)k + 2

tk + 2

))
E
[
‖θt−1 − θ∗S‖2

]
+

4cαkG

n(tk + 2)

≤
(

1− αk

tk + 2

)
E
[
‖δ(t)

0 ‖2
]

+
4cαkG

λn(tk + 2)
.

Unwinding this recurrence relation from time instance t to 1 yields

E
[
‖δ(t+1)

0 ‖2
]
≤
(

1− αk

tk + 2

)
E
[
‖δ(t)

0 ‖2
]

+
4cαkG

nλ(tk + 2)

≤
t∏
i=1

(
1− αk

ik + 2

)
‖δ(0)

0 ‖2 +

t∑
i=1

t∏
j=i+1

(
1− αk

jk + 2

)
4cαkG

nλ(ik + 2)

≤
t∏
i=1

(
1− αk

ik + 2

)
‖δ(0)

0 ‖2 +

t∑
i=1

exp

−
t∑

j=i+1

αk

jk + 2

 4cαkG

nλ(ik + 2)

¬
≤

t∑
i=1

exp

{
−α log

(
(t+ 1)k + 2

(i+ 1)k + 2

)}
4cαkG

nλ(ik + 2)

≤ 4cαG

nλ((t+ 1)k + 2)α

t∑
i=1

k((i+ 1)k + 2)α

(ik + 2)

­
≤ 4 · 2αcαG
nλ((t+ 1)k + 2)α

t∑
i=1

k

(ik + 2)1−α

≤ 4 · 2αcαG
nλ((t+ 1)k + 2)α

∫ t

0

k(sk + 2)α−1ds

=
4 · 2αcαG

nλ((t+ 1)k + 2)α
(tk + 1)α − 1

α

≤8G(λ+ L)

nλL

(tk + 1)α − 1

((t+ 1)k + 2)α

≤16G

nλ

(tk + 1)α − 1

((t+ 1)k + 2)α
,

where in ¬ we have used
∑t
j=i

k
jk+2 ≥

∫ t+1

i
k

sk+2ds = log
(

(t+1)k+2
ik+2

)
and

∑t
j=i

k2

(jk+2)2 ≤∫ t
i−1

k2

(sk+2)2 ds ≤
k

(i−1)k+2 , ­ is due to (i+ 1)k + 2 ≤ 2(ik + 2).

Finally, we have that function `(θ, ·) is G-Lipschitz, and thus obtain

E
[
|`(f(x;θT);y)− `(f(x; θ̃T);y)|

]
≤GE

[
‖θt+1 − θ̃t+1‖2

]
≤ 16G2

nλ

(tk + 1)α − 1

((t+ 1)k + 2)α
.

The proof is completed.

D.3 Proof of Corollary 1

Proof. Now we combine all results in Theorems 1 and 2 together, including the above optimization
error and generalization error, and use Lemma 1 in the manuscript to obtain

εopt + εgen ≤


3L(k+2)2α

2((t+1)k+2)2α ‖θ0 − θ∗S‖2 + 16LG2

λ2((t+1)k+2)2α(1−2α) + 16G
nλ

(tk+1)α−1
((t+1)k+2)α , 0 < α < 1

2
3L(k+2)

2(t+1)k+2‖θ0 − θ∗S‖2 + 16LG2 log(tk+2)
λ2((t+1)k+2) + 16G

nλ
(tk+1)α−1

((t+1)k+2)α , α = 1
2

4L(k+2)2α

((t+1)k+2)2α ‖θ0 − θ∗S‖2 + 90LG2

λ2(2α−1)(tk+2) + 16G
nλ

(tk+1)α−1
((t+1)k+2)α ,

1
2 < α ≤ 1

.

The proof is completed.

8

D.4 Proof of Theorem 3

Proof. Here we prove our results in three steps. In the first step, we first prove the optimization error.
Then in the second step, we consider to prove the generalization error bound. Finally, we combine
these two error bounds by using the risk decomposition.

Step 1. Optimization error. To begin with, since function FS(θ) is convex, then we have

〈FS(v(t)
τ),θ∗S − v(t)

τ 〉 ≤ FS(θ∗S)− FS(v(t)
τ).

Next, we can bound

E
[
‖v(t)

τ+1 − θ∗S‖22
]

=E
[
‖v(t)

τ − η(t)
τ g

(t)
τ − θ∗S‖22

]
=E

[
‖v(t)

τ − θ∗S‖22 − 2η(t)
τ 〈v(t)

τ − θ∗S , g(t)
τ 〉+ (η(t)

τ)2‖g(t)
τ ‖22

]
=E

[
‖v(t)

τ − θ∗S‖22 − 2η(t)
τ 〈v(t)

τ − θ∗S ,∇FS(v(t)
τ)〉+ (η(t)

τ)2‖g(t)
τ ‖22

]
≤E

[
‖v(t)

τ − θ∗S‖22 + 2η(t)
τ (FS(θ∗S)− FS(v(t)

τ)) + (η(t)
τ)2‖g(t)

τ ‖22
]

≤E
[
‖v(t)

τ − θ∗S‖22 + 2η(t)
τ (FS(θ∗S)− FSv(t)

τ)) + (η(t)
τ)2G2

]
Then by rearranging the above inequality, we can obtain

FS(v(t)
τ)− FS(θ∗S) ≤ 1

2η
(t)
τ

E
[
‖v(t)

τ − θ∗S‖22 − ‖v
(t)
τ+1 − θ∗S‖22

]
+
G2

2
η(t)
τ .

Next, by setting a constant learning rate η(t)
τ = η, we sum up the above inequality from τ = 0 to

k − 1 and obtain

1

k

k−1∑
τ=0

(
FS(v(t)

τ)− FS(θ∗S)
)
≤ 1

2ηk
E
[
‖v(t)

0 − θ∗S‖22 − ‖v
(t)
k − θ

∗
S‖22
]

+
ηG2

2

=
1

2ηk
E
[
‖θt−1 − θ∗S‖22 − ‖v

(t)
k − θ

∗
S‖22
]

+
ηG2

2
.

Now we consider the term ‖θt−1 − θ∗S‖22 − ‖v
(t)
k − θ∗S‖22 as follows:

‖θt−1 − θ∗S‖22 − ‖v
(t)
k − θ

∗
S‖22 =

〈
θt−1 − v(t)

k ,θt−1 + v
(t)
k − 2θ∗S

〉
¬
=

〈
θt−1 −

θt − (1− α)θt−1

α
,θt−1 +

θt − (1− α)θt−1

α
− 2θ∗S

〉
=− 1

α2
〈θt−1 − θ∗S − (θt − θ∗S), (1− 2α)(θt−1 − θ∗S)− (θt − θ∗S)〉

=− 1

α2

[
(1− α)‖θt−1 − θt‖2 + α‖θt − θ∗S‖2 − α‖θt−1 − θ∗S‖2

]
≤ 1

α

[
‖θt−1 − θ∗S‖2 − ‖θt − θ∗S‖2

]
where ¬ holds since θt = (1− α)θt−1 + αv

(t)
k . In this way, we can upper bound

1

k

k−1∑
τ=0

(
FS(v(t)

τ)− FS(θ∗S)
)
≤ 1

2αηk
E
[
‖θt−1 − θ∗S‖2 − ‖θt − θ∗S‖2

]
+
ηG2

2
.

Finally, we can sum up from t = 1 to t = T and obtain

1

kT

T∑
t=1

k−1∑
τ=0

(
FS(v(t)

τ)− FS(θ∗S)
)
≤ 1

2αηkT
E
[
‖θ0 − θ∗S‖2

]
+
ηG2

2

¬
=G

√
1

αkT
E [‖θ0 − θ∗S‖2]

9

where ¬ holds by setting η =
√

1
αkTG2E [‖θ0 − θ∗S‖2].

Step 2. Generalization error via uniform stability. Here we aim to use uniform stability
to upper bound the generalization error. Suppose given n samples S = {z1, z2, · · · , zn} where
zi = (xi,yi) is sampled from an unknown distribution D, one usually analyze the stability of an
algorithm by replacing one sample in S by another sample from D. Suppose the generated sample
set S(i) = {z′1, z′2, · · · , z′n} = {z1, z2, · · · , zi−1, z

′
i, zi+1 · · · , zn} which only differs from the set

S with the i-th sample. Then based on these two set, one can train the algorithm to obtain different
solution θ of the function FS(θ). When using S(i), we use θ̃t and ṽ(t)

τ to denote their corresponding
versions θt and v(t)

τ in Algorithm 1 trained on S. Next, we can define

δ(t)
τ =

{
‖v(t)

0 − ṽ
(t)
0 ‖2 = ‖θt−1 − θ̃t−1‖2, if τ = 0

‖v(t)
τ − ṽ(t)

τ ‖2, if τ 6= 0

Then for each iteration (t, τ) in Algorithm 1, with probability 1− 1
n , the current selected samples in S

and S(i) are the same. In this case, by using the second part results in Lemma 1 for convex problems,
we know that ‖v(t)

τ+1 − ṽ
(t)
τ+1‖2 ≤ ‖v

(t)
τ − ṽ(t)

τ ‖2. Meanwhile with probability 1
n , the selected

samples are different in which we can use the second part results in Lemma 1: ‖v(t)
τ+1 − ṽ

(t)
τ+1‖2 ≤

‖v(t)
τ − ṽ(t)

τ ‖2 + 2η
(t)
τ G. So combining these two cases yields

E
[
δ

(t)
τ+1

]
=

(
1− 1

n

)
E
[
δ(t)
τ

]
+

1

n
E
[
δ

(t)
τ+1

]
+

2η
(t)
τ G

n
= E

[
δ(t)
τ

]
+

2η
(t)
τ G

n

=E
[
δ

(t)
0

]
+

τ∑
s=0

2η
(t)
s G

n
.

(7)

Let (t0, τ0) denote the iteration at which δ(t0)
τ0 = 0 and δ(t0)

τ0+1 = 0. For brevity, we use E = 1[δ
(t0)
τ0 =

0] to denote the event that δ(t0)
τ0 = 0. Now we need to use the recurrent formulation in (7) to derive

the upper bound of ‖θt − θ̃t‖2 as follows:

E
[
‖θt+1 − θ̃t+1‖2

]
=E

[
‖(1− α)θt + αv

(t+1)
k − (1− α)θ̃t − αṽ(t+1)

k ‖2
]

≤(1− α)E
[
‖θt − θ̃t‖2

]
+ αE

[
‖v(t+1)

k − ṽ(t+1)
k ‖2

]
≤(1− α)E

[
‖θt − θ̃t‖2

]
+ αE

[
δ

(t)
0

]
+

k−1∑
τ=0

2αη
(t)
τ G

n

¬
=E

[
‖θt − θ̃t‖2

]
+

k−1∑
τ=0

2αη
(t)
τ G

n

=E
[
‖θt0 − θ̃t0‖2

]
+

k−1∑
τ=τ0

2αη
(t0)
τ G

n
+

t∑
i=t0+2

k−1∑
τ=0

2αη
(i)
τ G

n

≤E
[
‖θt0 − θ̃t0‖2

]
+

t∑
i=t0+1

k−1∑
τ=0

2αη
(i)
τ G

n

≤2αηGkT

n

(8)

where ¬ holds since ‖θt − θ̃t‖2 = ‖v(t+1)
0 − ṽ(t+1)

0 ‖2. On the other hand, we have that function
`(f(·;θ); ·) is G-Lipschitz, and thus obtain

E
[
|`(f(x;θT);y)− `(f(x; θ̃T);y)|

]
≤GE

[
‖θt+1 − θ̃t+1‖2

]
≤ 2αηG2kT

n
.

10

Now we consider the average case where v̄(T)
k = 1

kT

∑T
i=1

∑k−1
τ=0 v

(t)
τ is the output which is

consistent with our optimization analysis which also needs to output the average of all v(t)
τ . To begin

with, we have

v
(t+1)
0 =θt = (1− α)θt−1 + αv

(t)
k = (1− α)θt−1 + α

(
v

(t)
0 −

k−1∑
τ=0

η(t)
τ g

(t)
τ

)

=(1− α)θt−1 + α

(
θt−1 −

k−1∑
τ=0

η(t)
τ g

(t)
τ

)
= θt−1 − α

k−1∑
τ=0

η(t)
τ g

(t)
τ

=(1− α)θt−2 + α

(
θt−2 −

k−1∑
τ=0

η(t−1)
τ g(t−1)

τ

)
− α

k−1∑
τ=0

η(t)
τ g

(t)
τ

=θt−2 − α
t∑

i=t−1

k−1∑
τ=0

η(i)
τ g

(t)
τ = θ0 − α

t∑
i=1

k−1∑
τ=0

η(i)
τ g

(i)
τ .

In this way, we can know the formulation of the average of all v(t)
τ as follows:

v̄
(T)
k =

1

kT

T∑
i=1

k−1∑
τ=0

v(t)
τ = θ0 − α

T∑
i=1

k−1∑
τ=0

η
(i)
τ (kT − (i− 1)k − τ + 1)

kT
g(t)
τ

=v̄
(T)
k−1 − α

η
(T)
k−1(kT − (T − 1)k − k + 2)

kT
g(t)
τ .

Then we have ‖v̄(T)
k −v̄

(T)
k−1‖2 ≤ α

η
(T)
k−1(kT−(T−1)k−k+2)

kT ‖g(t)
τ ‖ ≤ αG

η
(T)
k−1(kT−(T−1)k−k+2)

kT . Then
we can use the second results in Lemma 1. For each iteration (t, τ) in Algorithm 1, with probability
1 − 1

n , the current selected samples in S and S(i) are the same. In this case, by using the second
part results in Lemma 1 for convex problems, we know that ‖v(t)

τ+1 − ṽ
(t)
τ+1‖2 ≤ ‖v

(t)
τ − ṽ(t)

τ ‖2.
Meanwhile with probability 1

n , the selected samples are different in which we can use the second part
results in Lemma 1: ‖v(t)

τ+1 − ṽ
(t)
τ+1‖2 ≤ ‖v

(t)
τ − ṽ(t)

τ ‖2 + 2η
(t)
τ αGkT−(t−1)k−τ+1

kT . So combining
these two cases yields

E
[
δ

(T)
τ+1

]
=

(
1− 1

n

)
E
[
δ(T)
τ

]
+

1

n
E
[
δ

(T)
τ+1

]
+

2αη
(T)
τ G

n
= E

[
δ(T)
τ

]
+

2αη
(T)
τ G

n

kT − (t− 1)k − τ + 1

kT

=E
[
δ

(T)
0

]
+

k−1∑
τ=0

2αη
(T)
τ G

n

kT − (t− 1)k − τ + 1

kT

≤E
[
δ

(0)
0

]
+

T∑
t=1

k−1∑
τ=0

2αη
(t)
τ G

n

kT − (t− 1)k − τ + 1

kT

=

T∑
t=1

k−1∑
τ=0

2αη
(t)
τ G

n

kT − (t− 1)k − τ + 1

kT

=

kT∑
i=1

2αη
(t)
τ G

n

kT − i+ 1

kT

≤αηGkT
n

(9)

On the other hand, we have that function `(f(·;θ); ·) is G-Lipschitz, and thus obtain

E
[
|`(f(x;θT);y)− `(f(x; θ̃T);y)|

]
≤GE

[
‖θt+1 − θ̃t+1‖2

]
≤ αηG2kT

n
.

11

Finally, we can use Lemma 1 to prove that the generalization error

εgen ≤
αηG2kT

n
.

By comparison, when output the average of all v(t)
τ , then its generalization error is αηG2kT

n which

is slightly better than the generalization error 2αηG2kT
n of the solution at the last iteration. Such an

improvement is consistent with the analysis results on convex problem in [7].

Step 3. Excess risk error by combining optimization error and generalization error. Now we
combine all results together, including the above optimization error and generalization error, and use
Lemma 1 in the manuscript to obtain

εopt + εgen ≤
1

2αηkT
E
[
‖θ0 − θ∗S‖2

]
+
ηG2

2
+
αηG2kT

n
.

The proof is completed.

D.5 Proof of Theorem 4

Proof. Here we prove our results in three steps. In the first step, we first prove the optimization error.
Then in the second step, we consider to prove the generalization error bound. Finally, we combine
these two error bounds by using the risk decomposition.

To begin with, we first define the variable u(t)
τ = αv

(t)
τ + (1 − α)θt−1 = αv

(t)
τ + (1 − α)v

(t)
0 . It

can be observed that when τ = k, then θt = u
(t)
k . In this way, we also can obtain the updating rule

of u(t)
τ+1 as follows:

u
(t)
τ+1 = αv(t)

τ + (1− α)v
(t)
0 = u(t)

τ − αη(t)
τ g

(t)
τ ,

where g(t)
τ denotes the stochastic gradient at the point v(t)

τ .

Step 1. Optimization error. Firstly, we can bound

E
[
FS(u

(t)
τ+1)

]
≤E

[
FS(u(t)

τ) + 〈∇FS(u(t)
τ),u

(t)
τ+1 − u(t)

τ 〉+
L

2
‖u(t)

τ+1 − u(t)
τ ‖2

]
=E

[
FS(u(t)

τ)− αη(t)
τ 〈∇FS(u(t)

τ), g(t)
τ 〉+

Lα2(η
(t)
τ)2

2
‖g(t)
τ ‖2

]
¬
=E

[
FS(u(t)

τ)− αη(t)
τ 〈∇FS(u(t)

τ),∇FS(v(t)
τ)〉+

Lα2(η
(t)
τ)2

2
‖g(t)
τ ‖2

]

=E

[
FS(u(t)

τ)− αη(t)
τ ‖∇FS(u(t)

τ)‖2 + αη(t)
τ 〈∇FS(u(t)

τ),∇FS(u(t)
τ)−∇FS(v(t)

τ)〉+
Lα2(η

(t)
τ)2

2
‖g(t)
τ ‖2

]
­
≤E

[
FS(u(t)

τ)− 2µαη(t)
τ (FS(u(t)

τ)− FS(θ∗S)) + αη(t)
τ 〈∇FS(u(t)

τ),∇FS(u(t)
τ)−∇FS(v(t)

τ)〉+
Lα2G2(η

(t)
τ)2

2

]
.

where ¬ holds since E[g
(t)
τ−1] = ∇FS(v

(t)
τ−1), ­ holds by assuming each individual loss is G-

Lipschitz, and the fact that the function FS(θ) satisfies PL condition

2µ(FS(θ)− FS(θ∗S)) ≤ ‖∇FS(θ)‖2.
Next, we can upper bound

〈∇FS(u(t)
τ),∇FS(u(t)

τ)−∇FS(v(t)
τ)〉 ≤‖∇FS(u(t)

τ)‖ · ‖∇FS(u(t)
τ)−∇FS(v(t)

τ)‖

≤GL‖u(t)
τ − v(t)

τ ‖2
¬
= (1− α)GL‖v(t)

0 − v(t)
τ ‖2

≤(1− α)GL

τ∑
i=0

η
(t)
i ‖g

(t)
i ‖2 ≤ (1− α)LG2

τ∑
i=0

η
(t)
i ,

12

where ¬ uses u(t)
τ = αv

(t)
τ + (1− α)θt−1 = αv

(t)
τ + (1− α)v

(t)
0 . In this way, we can upper bound

E
[
FS(u

(t)
τ+1)− FS(θ∗S)

]
≤ (1− 2µαη(t)

τ)E
[
FS(u(t)

τ)− FS(θ∗S)
]

+
Lα2G2(η

(t)
τ)2

2
+ α(1− α)LG2η(t)

τ

τ∑
i=0

η
(t)
i .

By setting η(t)
τ = 1

µ((t−1)k+τ+c) and fixing the time instance t ≥ 1, we can unwind this recurrence
relation from τ = k to 1 to obtain

E
[
FS(u

(t)
k)− FS(θ∗S)

]
≤
k−1∏
i=0

(
1− 2α

(t− 1)k + i+ c

)
E
[
FS(u

(t)
0)− FS(θ∗S)

]
+

k−1∑
i=0

Lα2G2

2µ2((t− 1)k + i+ c)2

k−1∏
j=i

(
1− 2α

(t− 1)k + j + c

)

+

k−1∑
i=0

 α(1− α)LG2

µ((t− 1)k + i+ c)

i∑
j=0

1

µ((t− 1)k + j + c)

 k−1∏
j=i

(
1− 2α

(t− 1)k + j + c

)
¬
≤
k−1∏
i=0

exp

{
− 2α

(t− 1)k + i+ c

}
E
[
FS(v

(t)
0)− FS(θ∗S)

]
+

k−1∑
i=0

k−1∏
j=i

exp

{
− 2α

(t− 1)k + j + c

}
Lα2G2

2µ2((t− 1)k + i+ c)2

+

k−1∑
i=0

 α(1− α)LG2

µ((t− 1)k + i+ c)

i∑
j=0

1

µ((t− 1)k + j + c)

 exp

− k−1∑
j=i

2α

(t− 1)k + j + c


where in ¬ we have used 1 + x ≤ ex. Now we consider each term in the above inequality as follows.
We first bound the first term:

k−1∏
i=0

exp

{
− 2α

(t− 1)k + i+ c

}
E
[
FS(u

(t)
0)− FS(θ∗S)

]
= exp

{
−
k−1∑
i=0

2α

(t− 1)k + i+ c

}
E
[
FS(u

(t)
0)− FS(θ∗S)

]
¬
≤ exp

{
−2α log

(
tk + c

(t− 1)k + c

)}
E
[
FS(u

(t)
0)− FS(θ∗S)

]
=

(
(t− 1)k + c

tk + c

)2α

E
[
FS(u

(t)
0)− FS(θ∗S)

]

where in ¬ we have used
∑k
j=i

1
a+j+1 ≥

∫ k+1

i
1

a+s+1ds = log
(
a+k+2
a+i+1

)
. Next, we bound the

second term:

k−1∑
i=0

k−1∏
j=i

exp

{
− 2α

(t− 1)k + j + c

}
Lα2G2

2µ2((t− 1)k + i+ c)2

=

k−1∑
i=0

exp

−
k−1∑
j=i

2α

(t− 1)k + j + c

 Lα2G2

2µ2((t− 1)k + i+ c)2

¬
≤
k−1∑
i=0

exp

{
−2α log

(
tk + c

(t− 1)k + i+ c

)}
Lα2G2

2µ2((t− 1)k + i+ c)2

≤ Lα2G2

2µ2(tk + c)2α

k∑
i=1

((t− 1)k + i+ c)2α

((t− 1)k + i+ c)2
≤ kLα2G2

2µ2(tk + c)2α

13

where in ¬ we have used
∑k
j=i

1
a+j+1 ≥

∫ k+1

i
1

a+s+1ds = log
(
a+k+2
a+i+1

)
. Now we only need to

bound the third term:

k−1∑
i=0

 α(1− α)LG2

µ2((t− 1)k + i+ c)

i∑
j=0

1

((t− 1)k + j + c)

 exp

k−1∑
j=i

− 2α

(t− 1)k + j + c


≤
k−1∑
i=0

[
α(1− α)LG2

µ2((t− 1)k + i+ c)

i+ 1

((t− 1)k + c)

]
exp

k−1∑
j=i

− 2α

(t− 1)k + j + c


≤
k−1∑
i=0

[
α(1− α)LG2

µ2((t− 1)k + i+ c)

i+ 1

((t− 1)k + c)

]
exp

k−1∑
j=i

− 2α

(t− 1)k + j + c


≤
k−1∑
i=0

[
α(1− α)LG2

µ2((t− 1)k + i+ c)

i+ 1

((t− 1)k + c)

]
exp

{
−2α log

(
tk + c

(t− 1)k + i+ c

)}

≤α(1− α)LG2

µ2

k−1∑
i=0

[
i+ 1

((t− 1)k + i+ c)((t− 1)k + c)

(
(t− 1)k + i+ c

tk + c

)2α
]

≤2α(1− α)LG2k(k + 1)

µ2(tk + c)2α
.

By combining the above results, one can obtain

E
[
FS(u

(t)
k)− FS(θ∗S)

]
≤
(

(t− 1)k + c

tk + c

)2α

E
[
FS(u

(t)
0)− FS(θ∗S)

]
+

kLα2G2

2µ2(tk + c)2α
+

2α(1− α)LG2k(k + 1)

µ2(tk + c)2α

At the same time, we have θt = u
(t)
k and θt−1 = u

(t)
0 , because u(t)

τ = αv
(t)
τ + (1 − α)θt−1 =

αv
(t)
τ + (1− α)v

(t)
0 . In this way, we have

E [FS(θt)− FS(θ∗S)]

≤
(

(t− 1)k + c

tk + c

)2α

E [FS(θt−1)− FS(θ∗S)] +
kLα2G2

2µ2(tk + c)2α
+

2α(1− α)LG2k(k + 1)

µ2(tk + c)2α

≤
t∏
i=1

(
(i− 1)k + c

ik + c

)2α

E
[
FS(u

(t)
0)− FS(θ∗S)

]
+

t∑
i=1

[
kLα2G2

2µ2(ik + c)2α
+

2α(1− α)LG2k(k + 1)

µ2(ik + c)2α

] t∏
j=i+1

(
(j − 1)k + c

jk + c

)2α

≤ 4

(tk + c)2α
E [FS(θ0)− FS(θ∗S)]

+
2kLG2

µ2(tk + c)2α

t∑
i=1

[
α2 + 2α(1− α)(k − 1)

]
≤ 4

(tk + c)2α
E [FS(θ0)− FS(θ∗S)] +

2αLG2 (α+ 2(1− α)(k − 1))

µ2(tk + c)2α−1
,

where c = 1.

Step 2. Generalization error via uniform stability. Here we aim to use uniform stability
to upper bound the generalization error. Suppose given n samples S = {z1, z2, · · · , zn} where
zi = (xi,yi) is sampled from an unknown distribution D, one usually analyze the stability of an
algorithm by replacing one sample in S by another sample from D. Suppose the generated sample
set S(i) = {z′1, z′2, · · · , z′n} = {z1, z2, · · · , zi−1, z

′
i, zi+1 · · · , zn} which only differs from the set

S with the i-th sample. Then based on these two set, one can train the algorithm to obtain different

14

solution θ of the function FS(θ). When using S(i), we use θ̃t and ṽ(t)
τ to denote their corresponding

versions θt and v(t)
τ in Algorithm 1 trained on S. Next, we can define

δ(t)
τ = ‖u(t)

τ − ũ(t)
τ ‖2.

Then for each iteration (t, τ) in Algorithm 1, with probability 1− 1
n , the current selected samples in

S and S(i) are the same. Note, we update u(t)
τ+1 as follows:

u
(t)
τ+1 = αv(t)

τ + (1− α)v
(t)
0 = u(t)

τ − αη(t)
τ g

(t)
τ ,

where g(t)
τ denotes the stochastic gradient at the point v(t)

τ . In this case, by using the results
in the first part of Lemma 1, we know that ‖u(t)

τ+1 − ũ
(t)
τ+1‖2 ≤

(
1 + αη

(t)
τ L

)
‖u(t)

τ − ũ(t)
τ ‖2.

Meanwhile with probability 1
n , the selected samples are different in which we can use Lemma 1:

‖u(t)
τ+1 − ũ

(t)
τ+1‖2 ≤ ‖u

(t)
τ − ũ(t)

τ ‖2 + 2αη
(t)
τ G. So combining these two cases yields

E
[
δ

(t)
τ+1

]
=

(
1− 1

n

)(
1 + η(t)

τ αL
)
E
[
δ(t)
τ

]
+

1

n
E
[
δ

(t)
τ+1

]
+

2αη
(t)
τ G

n

=

(
1 +

(
1− 1

n

)
αη(t)

τ L

)
E
[
δ(t)
τ

]
+

2αη
(t)
τ G

n

¬
≤ exp

((
1− 1

n

)
αη(t)

τ L

)
E
[
δ(t)
τ

]
+

2αη
(t)
τ G

n

where ¬ holds by using 1 + x ≤ exp(x). At the same time, because u(t)
τ = αv

(t)
τ + (1− α)θt−1 =

αv
(t)
τ + (1− α)v

(t)
0 , we have θt = u

(t)
k , θt−1 = u

(t)
0 , and

u
(t)
τ+1 = αv(t)

τ + (1− α)v
(t)
0 = u(t)

τ − αη(t)
τ g

(t)
τ ,

where g(t)
τ denotes the stochastic gradient at the point v(t)

τ . In this way, we have

E
[
‖θt − θ̃t‖

]
= E

[
δ

(t)
k

]
≤ exp

((
1− 1

n

)
α

k−1∑
i=0

η
(t)
i L

)
E
[
δ

(t)
0

]
+

2αG

n

k−1∑
i=0

η
(t)
i exp

(1− 1

n

)
α

k−1∑
j=i+1

η
(t)
j L


= exp

((
1− 1

n

)
α

k−1∑
i=0

η
(t)
i L

)
E
[
‖θt−1 − θ̃t−1‖

]
+

2αG

n

k−1∑
i=0

η
(t)
i exp

(1− 1

n

)
α

k−1∑
j=i+1

η
(t)
j L


For brevity, define ηik+j = η

(i)
j . Then we can reformulate the above equation as follows:

E
[
‖θt − θ̃t‖

]
≤ exp

((
1− 1

n

)
α

tk∑
i=t0k+τ0

ηiL

)
E
[
‖δ(t0)
τ0 ‖

]
+

2αG

n

tk∑
i=t0k+τ0+1

ηi exp

(1− 1

n

)
α

tk∑
j=i+1

ηjL


¬
=

2G

µn

tk∑
i=t0k+τ0+1

1

i
exp

(1− 1

n

)
L

µ

tk∑
j=i+1

1

j


≤2G

µn

tk∑
i=t0k+τ0+1

1

i
exp

((
1− 1

n

)
L

µ
log

tk

i

)

≤2G(tk)(1− 1
n)Lµ

µn

tk∑
i=t0k+τ0+1

1

(i)(1− 1
n)Lµ+1

≤ 2G

µ(n− 1)

(
tk

t0k + τ0

)(1− 1
n)Lµ

15

where ¬ holds by setting η(t)
τ = 1

αµ((t−1)k+τ+c) with c = 1.

By setting t0k + τ0 =
[

2αG2

µ`max
(tk)(1− 1

n)αLµ
] 1

1+(1− 1
n)αLµ , from Lemma 3 we can obtain

E|`(f(x;u(t)
τ);y)− `(f(x; ũ(t)

τ);y)| ≤ (t0k + τ0)`max

n
+

2αG2

µn

(
tk

t0k + τ0

)(1− 1
n−1)αLµ

≤ `
β

1+β
max

n− 1

[
2αG2

µ

] 1
1+β

(tk)
β
β+1

where β =
(
1− 1

n

)
αL
µ .

Step 3. Excess risk error by combining optimization error and generalization error. Now we
combine all results together, including the above optimization error and generalization error, and use
Lemma 1 in the manuscript to obtain

εopt + εgen

≤ 4

(tk + c)2α
E [FS(θ0)− FS(θ∗S)] +

2αLG2 (α+ 2(1− α)(k − 1))

µ2(tk + c)2α−1
+
`

β
1+β
max

n− 1

[
2αG2

µ

] 1
1+β

(tk)
β
β+1

where β =
(
1− 1

n

)
αL
µ . The proof is completed.

E Proof of The Results in Sec. 5

E.1 Proof of Theorem 5

Proof. Here we prove our results in three steps. In the first step, we first prove the optimization error.
Then in the second step, we consider to prove the generalization error bound. Finally, we combine
these two error bounds by using the risk decomposition.

Step 1. Optimization error. Here we consider the following problem:

θ∗t = argmin
θ

{
Ft(θ) , FS(θ) +

βt
2
‖θ − θt‖22

}
.

Since F (θ) is λ-strongly convex and L-smooth, then the new function Ft(θ) is (λ + βt)-strongly
convex and (L+ βt)-smooth. Then from Theorem 3, we have

E[Ft(θt)− Ft(θ)] ≤
E
[
‖θt−1 − θ‖2

]
2αtηtktTt

+
ηtG

2

2
, (10)

where θ is an arbitrary vector. Note, in the proof of Theorem 3, we let θ = θ∗S where θ∗S is the
optimum. But we can directly follow the proof of Theorem 3, and prove Eqn. (10).

Then we aim to prove E[FS(θs) − FS(θ∗S)] ≤ εs via selecting proper parameters, where εs = ε0
2s .

By letting θ = θ∗S , we consider the (s+ 1)-th stage and can directly obtain

E[F (θs+1)− F (θ∗S)] ≤− βs+1

2
‖θs+1 − θs‖2 +

βs+1

2
‖θ∗S − θs‖2 +

E
[
‖θs − θ∗S‖2

]
2αsηsksTs

+
ηsG

2

2

≤βs+1

λ
E[F (θs)− F (θ∗S)] +

E[F (θs)− F (θ∗S)]

µαsηsksTs
+
ηsG

2

2

≤βs+1

λ
εs +

εs

λαsηsksTs
+
ηsG

2

2
¬
≤εs+1

where ¬ holds by setting βs+1 ≤ 1
6λ, ηs ≤

εs
3G2 , ηsksTs ≥ 6

λαs
. This means

E[F (θs)− F (θ∗S)] ≤ E[F (θ0)− F (θ∗S)]

2s
.

16

To achieve E[FS(θs) − FS(θ∗S)] ≤ ε, the total stage number S satisfies S ≥ log ∆
ε where ∆ =

E[F (θ0)− F (θ∗S)] = ε0. The total stochastic gradient complexity is
∑S
s=1 Tsks =

∑S
s=1

6
λαηs

=∑S
s=1

6
λα

3G22s

ε0
= 36G2

λαε .

Step 2. Generalization Error via Stability Analysis. Now we first consider one stage, such as the
s-th stage. For brevity, let

δ(t)
τ =

{
‖v(t)

0 − ṽ
(t)
0 ‖2 = ‖θt−1 − θ̃t−1‖2, if τ = 0

‖v(t)
τ − ṽ(t)

τ ‖2, if τ 6= 0

Here we first consider each stage and then analyze multi-stage algorithm. We first analyze the s-th
stage. Now we consider the average case where v̄(T)

k = 1
kT

∑T
i=1

∑k−1
τ=0 v

(t)
τ is the output which is

consistent with our optimization analysis which also needs output the average of all v(t)
τ . To begin

with, for the regularized function Ft(θ) = F (θ) + 1
2‖θ − θ0‖ where θ0 denotes the output of the

previous stage. Then by using induction, we can easily obtain

v(0)
τ = v

(0)
0 − η

τ−1∑
i=0

(1− ηβ)τ−i−1g
(0)
i .

This means v(0)
k = v

(0)
0 − η

∑k−1
i=0 (1− ηβ)τ−i−1g

(0)
i . Then because v(0)

0 = θ0, for θ1, we have

v
(1)
0 =θ1 = (1− α)θ0 + αv

(0)
k = v

(0)
0 − αη

k−1∑
i=0

(1− ηβ)k−i−1g
(0)
i

Similarly, we can obtain

v
(t+1)
0 =θt = v

(0)
0 − αη

t−1∑
j=0

k−1∑
i=0

(1− ηβ)tk−jk−i−1g
(j)
i .

In this way, we can know the formulation of the average of all v(t)
τ as follows:

v̄
(T)
k =

1

kT

T∑
i=1

k−1∑
τ=0

v(t)
τ = v

(0)
0 − αη

T−1∑
j=0

k−1∑
i=0

(1− ηβ)Tk−jk−i−1g
(j)
i

=(1− ηβ)v̄
(T)
k−1 + ηβv

(0)
0 − αηg(T)

k−1

Assume v̄(T)
k is obtained by running the algorithm on the dataset S and v̄(′T)

k denotes the solution
obtained by running the algorithm on S ′. In this way, we can conclude that for any t, we have

v̄
(t)
k = v

(t)
k , v̄

(′t)
k = ṽ

(t)
k , ‖v̄(t)

k − v̄
(′t)
k ‖ = ‖v(t)

k − ṽ
(t)
k ‖. (11)

In the following, we try to bound the difference between ‖v̄(T)
k − v̄(′T)

k ‖. For each iteration (t, τ) in
Algorithm 1, with probability 1− 1

n , the current selected samples in S and S(i) are the same. In this
case, by using the first part of Lemma 1, we know that

‖v̄(t)
τ+1 − v̄

(′t)
τ+1‖2

=‖(1− ηβ)v̄(t)
τ + ηβv

(0)
0 − αηg(t)

τ − (1− ηβ)v̄(′t)
τ − ηβv(0)

0 + αηg(′t)
τ ‖2

=(1− ηβ)

∥∥∥∥v̄(t)
τ −

αη

1− ηβ
g(t)
τ − v̄(′t)

τ +
αη

1− ηβ
g(′t)
τ

∥∥∥∥
2

¬
≤(1− ηβ)

(
1− αη

1− ηβ
λL

λ+ L

)
‖v(t)

τ − ṽ(t)
τ ‖2

17

where ¬ uses the first part of Lemma 1. Meanwhile with probability 1
n , the selected samples are

different in which we can use the first part of Lemma 1:

‖v(t)
τ+1 − ṽ

(t)
τ+1‖2

=(1− ηβ)

∥∥∥∥v̄(t)
τ −

αη

1− ηβ
g(t)
τ − v̄(′t)

τ +
αη

1− ηβ
g(′t)
τ

∥∥∥∥
2

¬
≤(1− ηβ)

(
1− αη

1− ηβ
λL

λ+ L

)
‖v(t)

τ − ṽ(t)
τ ‖2 + (1− ηβ)

2αηG

1− ηβ

=(1− ηβ)

(
1− αη

1− ηβ
λL

λ+ L

)
‖v(t)

τ − ṽ(t)
τ ‖2 + 2αηG

where ¬ holds by using the first part of Lemma 1. So combining these two cases yields

E
[
δ

(t)
τ+1

]
=‖v(t)

τ+1 − ṽ
(t)
τ+1‖2

≤
(

1− 1

n

)[
(1− ηβ)

(
1− αη

1− ηβ
λL

λ+ L

)
‖v(t)

τ − ṽ(t)
τ ‖2

]
+

1

n

[
(1− ηβ)

(
1− αη

1− ηβ
λL

λ+ L

)
‖v(t)

τ − ṽ(t)
τ ‖2 + 2αηG

]
=

(
1− ηβ − αηλL

λ+ L

)
Eδ(t)

τ +
2αηG

n

=

(
1− ηβ − αηλL

λ+ L

)(t−1)k+τ+1

E
[
δ

(0)
0

]
+

2αηG

n

t−1∑
j=0

τ∑
i=0

(
1− ηβ − αηλL

λ+ L

)jk+i

=

(
1− ηβ − αηλL

λ+ L

)(t−1)k+τ+1

E
[
δ

(0)
0

]
+

2αG

n

1

β + αλL
λ+L

[
1−

(
1− ηβ − αηλL

λ+ L

)(t−1)k+τ+1
]
.

Then by using (11), we have that for the output of the s-th stage, it holds

E
[
‖θs−stage − θ̃s−stage‖2

]
= E

[
‖θTs − θ̃Ts‖2

]
= E

[
‖v(Ts)

k − ṽ(Ts)
k ‖2

]
≤
(

1− ηsβs −
αηsλL

λ+ L

)Tsks
E
[
‖θ(s−1)−stage − θ̃(s−1)−stage‖

]
+

2αG

n

1

β + αλL
λ+L

[
1−

(
1− ηβ − αηλL

λ+ L

)Tsks]
.

Assume that at stage s, we have E
[
‖θs−stage − θ̃s−stage‖2

]
= 0. Then it holds that

E
[
‖θs−stage − θ̃s−stage‖2

]
≤
(

1− ηsβs −
αηsλL

λ+ L

)Tsks
E
[
‖θ(s−1)−stage − θ̃(s−1)−stage‖

]
+

2αG

n

1

β + αλL
λ+L

[
1−

(
1− ηβ − αηλL

λ+ L

)Tsks]

≤
s∑

i=t0+1

2αG

n

1

βi + αλL
λ+L

[
1−

(
1− ηiβi −

αηiλL

λ+ L

)Tiki] s∏
j=i+1

(
1− ηjβj −

αηjλL

λ+ L

)Tjkj

≤
s∑

i=t0+1

2αG

n

1

βi + αλL
λ+L

[
1−

(
1− ηiβi −

αηiλL

λ+ L

)Tiki] s∏
j=i+1

exp

(
−ηjβjTjkj −

αηjTjkjλL

λ+ L

)
¬
≤

s∑
i=t0+1

2αG

n

1

βi + αλL
λ+L

[
1−

(
1− ηiβi −

αηiλL

λ+ L

)Tiki]
exp

(
−6L(s− j)

λ+ L

)

≤
s∑

i=t0+1

2αG

n

1

βi + αλL
λ+L

exp

(
−6L(s− j)

λ+ L

)

≤2αG

n

1

β + αλL
λ+L

1− exp
(
− 6sL
λ+L

)
1− exp

(
− 6L
λ+L

)
18

where ¬ holds since for optimization, we set βs+1 ≤ 1
6λ, ηs ≤

εs
3G2 , ηsksTs ≥ 6

λαs
and thus have

ηjβjTjkj +
αηjTjkjλL

λ+L ≥ 6L
λ+L .

On the other hand, we have that function `(f(·;θ); ·) is G-Lipschitz, and thus obtain

E
[
|`(f(x;θT);y)− `(f(x; θ̃T);y)|

]
≤GE

[
‖θt+1 − θ̃t+1‖2

]
≤ 2αG2

n
(
β + αλL

λ+L

) 1− exp
(
− 6sL
λ+L

)
1− exp

(
− 6L
λ+L

) .
Step 3. Excess risk error by combining optimization error and generalization error. Now we
combine all results together, including the above optimization error and generalization error, and use
Lemma 1 in the manuscript to obtain

εopt + εgen ≤
∆′

2s
+

2αG2

n
(
β + αλL

λ+L

) 1− exp
(
− 6sL
λ+L

)
1− exp

(
− 6L
λ+L

) ,
where ∆′ = E[F (θ0)− F (θ∗S)]. The proof is completed.

E.2 Proof of Theorem 6

Proof. Here we prove our results in three steps. In the first step, we first prove the optimization error.
Then in the second step, we consider to prove the generalization error bound. Finally, we combine
these two error bounds by using the risk decomposition.

Step 1. Optimization error. Here we consider the following problem:

θ∗t = argmin
θ

{
Ft(θ) , FS(θ) +

βt
2
‖θ − θt‖22

}
.

Since F (θ) is L-smooth and its Hessian has minimum eigenvalue −σ (σ < 0), then the new function
Ft(θ) is (βt − σ)-strongly convex and (L+ βt)-smooth, where we set βt ≥ σ.

We first consider the case σ ≤ βs ≤ 1
6µ. From Theorem 3, we have

E[Ft(θt)− Ft(θ)] ≤
E
[
‖θt−1 − θ‖2

]
2αtηtktTt

+
ηtG

2

2
, (12)

where θ is an arbitrary vector. Note, in the proof of Theorem 3, we let θ = θ∗S where θ∗S is the
optimum. But we can directly follow the proof of Theorem 3, and prove Eqn. (12).

Then we aim to prove E[FS(θs)−FS(θ∗S)] ≤ εs via selecting proper parameters, where εs = ε0
2s . By

letting θ = θ∗S and using the PL condition, we consider the (s+ 1)-th stage and can directly obtain

E[F (θs+1)− F (θ∗S)] ≤− βs+1

2
‖θs+1 − θs‖2 +

βs+1

2
‖θ∗S − θs‖2 +

E
[
‖θs − θ∗S‖2

]
2αsηsksTs

+
ηsG

2

2
¬
≤βs+1

µ
E[F (θs)− F (θ∗S)] +

E[F (θs)− F (θ∗S)]

µαsηsksTs
+
ηsG

2

2

≤βs+1

µ
εs +

εs

µαsηsksTs
+
ηsG

2

2
¬
≤εs+1

where ¬ holds by using the result ‖θ − θ∗S‖2 ≤ 1
2µ (FS(θ) − FS(θ∗S)) in Lemma 2, ­ holds by

setting βs+1 ≤ 1
6µ, ηs ≤

εs
3G2 , ηsksTs ≥ 6

µαs
. This means

E[F (θs)− F (θ∗S)] ≤ E[F (θ0)− F (θ∗S)]

2s
.

To achieve E[FS(θs) − FS(θ∗S)] ≤ ε, the total stage number S satisfies S ≥ log ∆
ε where ∆ =

E[F (θ0)− F (θ∗S)] = ε0. The total stochastic gradient complexity is
∑S
s=1 Tsks =

∑S
s=1

6
λαηs

=∑S
s=1

6
λα

3G22s

ε0
= 36G2

λαε . For this case, we actually requires σ ≤ βs ≤ 1
6µ.

19

Next, we do consider the second case where we do not require σ ≤ βs ≤ 1
6µ but assuming there is a

constant ρ such that 〈∇Ft(θ),θ − θ∗S〉 ≥ ρ(Ft(θ)− Ft(θ∗S)). For this case, we first bound

E
[
‖v(t)

τ+1 − θ∗S‖22
]

=E
[
‖v(t)

τ − η(t)
τ g

(t)
τ − θ∗S‖22

]
=E

[
‖v(t)

τ − θ∗S‖22 − 2η(t)
τ 〈v(t)

τ − θ∗S , g(t)
τ 〉+ (η(t)

τ)2‖g(t)
τ ‖22

]
=E

[
‖v(t)

τ − θ∗S‖22 − 2η(t)
τ 〈v(t)

τ − θ∗S ,∇Ft(v(t)
τ)〉+ (η(t)

τ)2‖g(t)
τ ‖22

]
≤E

[
‖v(t)

τ − θ∗S‖22 − 2η(t)
τ 〈v(t)

τ − θ∗S ,∇Ft(v(t)
τ)〉+ (η(t)

τ)2‖g(t)
τ ‖22

]
≤E

[
‖v(t)

τ − θ∗S‖22 + 2η(t)
τ ρ(Ft(θ

∗
S)− Ft(v(t)

τ)) + (η(t)
τ)2‖g(t)

τ ‖22
]

≤E
[
‖v(t)

τ − θ∗S‖22 + 2η(t)
τ ρ(Ft(θ

∗
S)− Ftv(t)

τ)) + (η(t)
τ)2G2

]
Then by rearranging the above inequality, we can obtain

Ft(v
(t)
τ)− Ft(θ∗S) ≤ 1

2η
(t)
τ ρ

E
[
‖v(t)

τ − θ∗S‖22 − ‖v
(t)
τ+1 − θ∗S‖22

]
+
G2

2ρ
η(t)
τ .

Next, by setting a constant learning rate η(t)
τ = η, we sum up the above inequality from t = 1 to

t = T and obtain

1

k

k−1∑
τ=0

(
Ft(v

(t)
τ)− Ft(θ∗S)

)
≤ 1

2ηρk
E
[
‖v(t)

0 − θ∗S‖22 − ‖v
(t)
k − θ

∗
S‖22
]

+
ηG2

2ρ

=
1

2ηρk
E
[
‖θt−1 − θ∗S‖22 − ‖v

(t)
k − θ

∗
S‖22
]

+
ηG2

2ρ
.

Now we consider the term ‖θt−1 − θ∗S‖22 − ‖v
(t)
k − θ∗S‖22 as follows:

‖θt−1 − θ∗S‖22 − ‖v
(t)
k − θ

∗
S‖22 =

〈
θt−1 − v(t)

k ,θt−1 + v
(t)
k − 2θ∗S

〉
¬
=

〈
θt−1 −

θt − (1− α)θt−1

α
,θt−1 +

θt − (1− α)θt−1

α
− 2θ∗S

〉
=− 1

α2
〈θt−1 − θ∗S − (θt − θ∗S), (1− 2α)(θt−1 − θ∗S)− (θt − θ∗S)〉

=− 1

α2

[
(1− α)‖θt−1 − θt‖2 + α‖θt − θ∗S‖2 − α‖θt−1 − θ∗S‖2

]
≤ 1

α

[
‖θt−1 − θ∗S‖2 − ‖θt − θ∗S‖2

]
where ¬ holds since θt = (1− α)θt−1 + αv

(t)
k . In this way, we can upper bound

1

k

k−1∑
τ=0

(
Ft(v

(t)
τ)− Ft(θ∗S)

)
≤ 1

2αρηk
E
[
‖θt−1 − θ∗S‖2 − ‖θt − θ∗S‖2

]
+
ηG2

2ρ
.

Finally, we can sum up from t = 1 to t = T and obtain

1

kT

T∑
t=1

k−1∑
τ=0

(
Ft(v

(t)
τ)− Ft(θ∗S)

)
≤ 1

2αρηkT
E
[
‖θ0 − θ∗S‖2

]
+
ηG2

2ρ

Then by letting θs+1 = 1
Tsks

∑Ts
t=1

∑ks−1
τ=0 v

(t)
τ , we have

E (Fs(θs+1)− Fs(θ∗S)) ≤ 1

2αρηkT
E
[
‖θ0 − θ∗S‖2

]
+
ηG2

2ρ

20

Since Fs(θ) = FS(θ) + βs
2 ‖θ − θs‖

2, we consider the (s+ 1)-th stage and can directly obtain

E[FS(θs+1)− FS(θ∗S)] ≤− βs+1

2
‖θs+1 − θs‖2 +

βs+1

2
‖θ∗S − θs‖2 +

E
[
‖θs − θ∗S‖2

]
2ραsηsksTs

+
ηsG

2

2ρ
¬
≤βs+1

µ
E[F (θs)− F (θ∗S)] +

E[F (θs)− F (θ∗S)]

µραsηsksTs
+
ηsG

2

2ρ

≤βs+1

µ
εs +

εs

µραsηsksTs
+
ηsG

2

2ρ
¬
≤εs+1

where ¬ holds by using the result ‖θ − θ∗S‖2 ≤ 1
2µ (FS(θ) − FS(θ∗S)) in Lemma 2, ­ holds by

setting βs+1 ≤ 1
6µ, ηs ≤

ρεs
3G2 , ηsksTs ≥ 6

µραs
. This means

E[F (θs)− F (θ∗S)] ≤ E[F (θ0)− F (θ∗S)]

2s
.

To achieve E[FS(θs) − FS(θ∗S)] ≤ ε, the total stage number S satisfies S ≥ log ∆
ε where ∆ =

E[F (θ0)− F (θ∗S)] = ε0. The total stochastic gradient complexity is
∑S
s=1 Tsks =

∑S
s=1

6
µραηs

=∑S
s=1

6
µρα

3G22s

ρε0
= 36G2

µρ2αε .

Step 2. Generalization Error via Stability Analysis. We first consider the case σ ≤ βs ≤ 1
6µ. For

this case, we know that the new function Ft(θ) is (βt − σ)-strongly convex and (L+ βt)-smooth,
where we set βt ≥ σ. In this way, we can directly follow the proof of Theorem 5 which provides the
generalization analysis on strongly convex problem. So we can obtain the same generalization error
bound as follows:

E
[
|`(θT ; ξ)− `(θ̃t; ξ)|

]
≤GE

[
‖θt+1 − θ̃t+1‖2

]
≤ 2αG2

n
(
β − σ + αµL

µ+L

) 1− exp
(
− 6sL
µ+L

)
1− exp

(
− 6L
µ+L

) .
Now we first consider one stage, such as the s-th stage. For brevity, let

δ(t)
τ =

{
‖v(t)

0 − ṽ
(t)
0 ‖2 = ‖θt−1 − θ̃t−1‖2, if τ = 0

‖v(t)
τ − ṽ(t)

τ ‖2, if τ 6= 0

Here we first consider each stage and then analyze multi-stage algorithm. We first analyze the s-th
stage. Now we consider the average case where v̄(T)

k = 1
kT

∑T
i=1

∑k−1
τ=0 v

(t)
τ is the output which is

consistent with our optimization analysis which also needs output the average of all v(t)
τ . To begin

with, for the regularized function Ft(θ) = F (θ) + 1
2‖θ − θ0‖ where θ0 denotes the output of the

previous stage. Then by using induction, we can easily obtain

v(0)
τ = v

(0)
0 − η

τ−1∑
i=0

(1− ηβ)τ−i−1g
(0)
i .

This means v(0)
k = v

(0)
0 − η

∑k−1
i=0 (1− ηβ)τ−i−1g

(0)
i . Then because v(0)

0 = θ0, for θ1, we have

v
(1)
0 =θ1 = (1− α)θ0 + αv

(0)
k = v

(0)
0 − αη

k−1∑
i=0

(1− ηβ)k−i−1g
(0)
i

Similarly, we can obtain

v
(t+1)
0 =θt = v

(0)
0 − αη

t−1∑
j=0

k−1∑
i=0

(1− ηβ)tk−jk−i−1g
(j)
i .

21

In this way, we can know the formulation of the average of all v(t)
τ as follows:

v̄
(T)
k =

1

kT

T∑
i=1

k−1∑
τ=0

v(t)
τ = v

(0)
0 − αη

T−1∑
j=0

k−1∑
i=0

(1− ηβ)Tk−jk−i−1g
(j)
i

=(1− ηβ)v̄
(T)
k−1 + ηβv

(0)
0 − αηg(T)

k−1

Assume v̄(T)
k is obtained by running the algorithm on the dataset S and v̄(′T)

k denotes the solution
obtained by running the algorithm on S ′. In this way, we can conclude that for any t, we have

v̄
(t)
k = v

(t)
k , v̄

(′t)
k = ṽ

(t)
k , ‖v̄(t)

k − v̄
(′t)
k ‖ = ‖v(t)

k − ṽ
(t)
k ‖. (13)

In the following, we try to bound the difference between ‖v̄(T)
k − v̄(′T)

k ‖. For each iteration (t, τ) in
Algorithm 1, with probability 1− 1

n , the current selected samples in S and S(i) are the same. In this
case, by using the first part of Lemma 1, we know that

‖v̄(t)
τ+1 − v̄

(′t)
τ+1‖2 =‖(1− ηβ)v̄(t)

τ + ηβv
(0)
0 − αηg(t)

τ − (1− ηβ)v̄(′t)
τ − ηβv(0)

0 + αηg(′t)
τ ‖2

=(1− ηβ)

∥∥∥∥v̄(t)
τ −

αη

1− ηβ
g(t)
τ − v̄(′t)

τ +
αη

1− ηβ
g(′t)
τ

∥∥∥∥
2

¬
≤(1− ηβ)

(
1 +

αηL

1− ηβ

)
‖v(t)

τ − ṽ(t)
τ ‖2

where ¬ uses the first part of Lemma 1.

Meanwhile with probability 1
n , the selected samples are different in which we can use the first part of

Lemma 1:

‖v(t)
τ+1 − ṽ

(t)
τ+1‖2 =(1− ηβ)

∥∥∥∥v̄(t)
τ −

αη

1− ηβ
g(t)
τ − v̄(′t)

τ +
αη

1− ηβ
g(′t)
τ

∥∥∥∥
2

¬
≤(1− ηβ)

(
1 +

αηL

1− ηβ

)
‖v(t)

τ − ṽ(t)
τ ‖2 + (1− ηβ)

2αηG

1− ηβ

=(1− ηβ)

(
1 +

αηL

1− ηβ

)
‖v(t)

τ − ṽ(t)
τ ‖2 + 2αηG

where ¬ holds by using the first part of Lemma 1. So combining these two cases yields

E
[
δ

(t)
τ+1

]
=‖v(t)

τ+1 − ṽ
(t)
τ+1‖2

≤
(

1− 1

n

)[
(1− ηβ)

(
1 +

αηL

1− ηβ

)
‖v(t)

τ − ṽ(t)
τ ‖2

]
+

1

n

[
(1− ηβ)

(
1 +

αηL

1− ηβ

)
‖v(t)

τ − ṽ(t)
τ ‖2 + 2αηG

]
= (1− ηβ + αηL)Eδ(t)

τ +
2αηG

n

= (1− ηβ + αηL)
(t−1)k+τ+1 E

[
δ

(0)
0

]
+

2αηG

n

t−1∑
j=0

τ∑
i=0

(1− ηβ + αηL)
jk+i

= (1− ηβ + αηL)
(t−1)k+τ+1 E

[
δ

(0)
0

]
+

2αG

n

1

β − αL

[
1− (1− ηβ + αηL)

(t−1)k+τ+1
]
.

Then by using (13), we have that for the output of the s-th stage, it holds

E
[
‖θs−stage − θ̃s−stage‖2

]
= E

[
‖θTs − θ̃Ts‖2

]
= E

[
‖v(Ts)

k − ṽ(Ts)
k ‖2

]
≤ (1− ηsβs + αηsL)

Tsks E
[
‖θ(s−1)−stage − θ̃(s−1)−stage‖

]
+

2αG

n

1

ηsβs − αηsL

[
1− (1− ηsβs + αηsL)

Tsks
]
.

22

Assume that at stage s, we have E
[
‖θs−stage − θ̃s−stage‖2

]
= 0. Then it holds that

E
[
‖θs−stage − θ̃s−stage‖2

]
≤ (1− ηsβs + αηsL)

Tsks E
[
‖θ(s−1)−stage − θ̃(s−1)−stage‖

]
+

2αG

n

1

βs − αL

[
1− (1− ηsβs + αηsL)

Tsks
]

=

s∑
i=t0+1

2αG

n

1

βi − αL

[
1− (1− ηiβi + αηiL)

Tiki
] s∏
j=i+1

(1− ηjβj + αηjL)
Tjkj

≤
s∑

i=t0+1

2αG

n

1

βi − αL

[
1− (1− ηiβi + αηiL)

Tiki
] s∏
j=i+1

exp (−ηjβjTjkj + αηjTjkjL)

¬
≤

s∑
i=t0+1

2αG

n

1

βi − αL

[
1− (1− ηiβi − αηiL)

Tiki
]

exp

(
−6(s− j)(βs − αL)

µραs

)

≤
s∑

i=t0+1

2αG

n

1

βi − αL
exp

(
−6(s− j)(βs − αL)

µραs

)

≤ 2αG

n(βs − αL)

1− exp
(
− 6s(βs−αL)

µρα

)
1− exp

(
− 6(βs−αL)

µρα

)
where ¬ holds since for optimization, we set βs+1 ≤ 1

6µ, ηs ≤
ρεs
3G2 , ηsksTs ≥ 6

µραs
and thus have

−ηjβjTjkj + αηjTjkjL ≥ − 6(βs−αL)
µραs

.

On the other hand, we have that function `(f(·;θ); ·) is G-Lipschitz, and thus obtain

E
[
|`(f(x;θT);y)− `(f(x; θ̃T);y)|

]
≤GE

[
‖θt+1 − θ̃t+1‖2

]
≤ 2αG2

n(βs − αL)

1− exp
(
− 6s(βs−αL)

µρα

)
1− exp

(
− 6(βs−αL)

µρα

) .
Step 3. Excess risk error by combining optimization error and generalization error. Now we
combine all results together, including the above optimization error and generalization error, and use
Lemma 1 in the manuscript. Specifically, for the case σ ≤ βs ≤ 1

6µ, we have

εopt + εgen ≤
∆′

2s
+

2αG2

n
(
β − σ + αµL

µ+L

) 1− exp
(
− 6sL
µ+L

)
1− exp

(
− 6L
µ+L

) .
where ∆′ = E[F (θ0)−F (θ∗S)]. Then for the case where there is a constant ρ such that 〈∇Ft(θ),θ−
θ∗S〉 ≥ ρ(Ft(θ)− Ft(θ∗S)), we have

εopt + εgen ≤
∆′

2s
+

2αG

n(βs − αL)

1− exp
(
− 6s(βs−αL)

µρα

)
1− exp

(
− 6(βs−αL)

µρα

) .
The proof is completed.

References
[1] M. Hardt and T. Ma. Identity matters in deep learning. arXiv preprint arXiv:1611.04231, 2016. 1

[2] B. Xie, Y. Liang, and L. Song. Diverse neural network learns true target functions. In Int’l Conf. Artificial
Intelligence and Statistics , pages 1216–1224. PMLR, 2017. 1

[3] Z. Li and Y. Yuan. Convergence analysis of two-layer neural networks with relu activation. In Proc. Conf.
Neural Information Processing Systems, 2017. 1

[4] Z. Charles and D. Papailiopoulos. Stability and generalization of learning algorithms that converge to global
optima. In Proc. Int’l Conf. Machine Learning, pages 745–754. PMLR, 2018. 1

23

[5] Y. Zhou and Y. Liang. Characterization of gradient dominance and regularity conditions for neural networks.
In Int’l Conf. Learning Representations, 2018. 1

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998. 2

[7] M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: Stability of stochastic gradient descent. In
Proc. Int’l Conf. Machine Learning, pages 1225–1234. PMLR, 2016. 2, 3, 12

[8] Z. Yuan, Y. Yan, R. Jin, and T. Yang. In Stagewise training accelerates convergence of testing error over
sgd, 2018. 3

24

