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This supplementary document contains the technical proofs of convergence results
and some additional experimental results of the NeurIPS’21 submission entitled
“Towards Understanding Why Lookahead Generalizes Better Than SGD and Be-
yond”. It is structured as follows. Appendix A first discusses the limitations of
this work. In Appendix B, we provides more experimental results and details,
including the robustness investigation of SLRLA to regularization parameter. Next,
Appendix C presents several auxiliary lemmas which will be used for subsequent
analysis. Then Appendix D gives the proofs of the main results in Sec. 4, including
Theorem 1 ~ 4 and Corollary 1 which analyze optimization error, generalization
error and excess risk error of vanilla lookahead algorithm. Finally, Appendix E
provides the proofs of the results in Sec. 5, including Theorems 5 and 6 which
analyze the optimization error, generalization error and excess risk error of the
proposed SLRLA.

A Limitation Discussion

The main limitation of this work is that the analysis in this work cannot be applicable to general
nonconvex problems. This is because as explained in Sec. 4.3, for general nonconvex problems,
one often uses the gradient norm E[||V Fs(8)||?] instead of the loss distance E[Fs(0) — Fis(0%)] to
measure whether 0 is a stationary point. The reasons is that many stationary points may exist in a
nonconvex problem. But as shown in Sec. 3, to bound the excess risk error, one needs to first bound
the loss distance. In this way, our analysis cannot be applicable to general nonconvex problems.
However, in this work, we are particularly interested in nonconvex problems under PL condition
which allows us to bound the loss distance, since PL condition establishes the relation between
gradient norm and loss distance. Moreover, deep learning models often satisfy PL condition, which is
well observed/proved in [1, 2, 3, 4, 5] and our empirical results in Sec. 6.2. So in the future, finding
and developing new framework which avoids the requirement on the bounded loss distance to analyze
excess risk error for nonconvex problems is an interesting avenue of future research.

B More Experimental Results and Details

Due to space limitation, we defer more experimental results and details to this appendix. Here we
first investigate robustness of SLRLA to the regularization parameter 3,. Then we present more
experimental setting details on strongly convex problems in Sec. 6.1. Note, we use two A100 GPUs to
train ImageNet, and use single A100 GPU for all remaining experiments. Our codes are implemented
based on lookahead.

Robustness to Regularization Parameter. Here we investigate the impact of regularization pa-
rameter 3, to the performance of SLRLA. For simplicity, we set 3, = 3 as constant for all op-
timization stages. Then we evaluate SLRLA on ImagNet using ResNet 18. We respectively set

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



]
w

~
N
"

~
[y

N

~
o

classification accuracy (%)
[e)]
O

8 T T T T :
-0.7 -0.1 0.3 0.7 1.3 1.7 2.0
log(B)

Figure 4: Effects of the regularization parameter § to SLRLA.

£ =0.2,0.8,2,5,20,50, 100 and train ResNet 18 for 200 epochs with the same training strategy in
the manuscript for fairness. Fig. 4 reports the effects of regularization parameter /3 to the performance
of SLRLA. From Fig. 4, one can observe that when tuning (5 in a relatively large range, SLRLA has
relatively stable performance on ImageNet. This testifies the robustness of ImageNet to regularization
parameter.

Details of Experimental Setting on Strongly Convex Problems. Here we introduce the details of
the experiments in Sec. 6.1. We test lookahead, SLA and SLRLA on a regularized softmax problem
with MNIST [6]. The regularized softmax problem for k-classification task can be formulated as

n k T
1 Yia i ) exp(6; x;)
mln*ZZ 10517 = Hy:i = j}log ——————
6 niz j=1 2 >t eXp(alT‘”i)

where y; is the target output of the i-th sample x;. We set the regularization constant v = 1075,
Following our theory, we use a linearly decayed learning rate (LR) for lookahead, namely 7, = 7
with a constant c. For SLA/SLRLA, we use multi-step decayed LRs with decaying rate 0.5. That is,
we decay the LR at the {0.3.5,0.65,0.85}-th epoch where .S denotes the total epoch number. We
tune the initial LR of lookahead as 0.1 and set the initial LR of SLA/SLRLA as 0.05. For lookahead,
SLA and SLRLA, we set k = 5, a momentum of 0.9, a weight decay of 10~4, and training epoch
number S = 80.

C Auxiliary Lemmas

Lemma 1. [7] Assume that ((f(x;0),y) is L-smooth w.rt. 6. Suppose vgrl = oY -
nﬁt)VK(f(w;vg));y) and 'F)gl = 3 - ng)VE(f(m;'f)g));y). Assume max(Hf;i?Ll —

(¢ t t t
o ol — o)) < niG.
(1) Suppose {(f(x; 0),y) is nonconvex w.r.t. 6.

(1.1) For the (t, ) iteration, when 17521 and f;@H sample the same sample (x,y), we have

[0 =l < A+ 0O D)ol — 50]l
(1.2) Assume that {(f(x; 0),y) is further G-Lipschitz w.r.t. 0. For the (t,T) iteration, when o)

T7+1
and 'Bg_l sample different samples (x,y) and (', y’), we have

lofy =1 12 < o =892 + 206
(2) Suppose {(f(x;0),y) is convex w.r.t. 0. Set the learning rate 779 <2
(2.1)For the (t, T) iteration, when 'vg_l and 'Dg_l sample the same sample (x,vy), we have
ey e e

(2.2) Assume that {(f(x;0),y) is further G-Lipschitz w.r.t. 0. For the (t,T) iteration, when vi:)_l
and 'Bg_l sample different samples (x,y) and (x',y’), we have

Iy =38 2 < [0 — 502 + 200G



(3) Suppose {(f(x;0),y) is A-strongly convex w.r.t. 0. Set the learning rate 77§ ) < )jL

®) o )1 sample the same sample (x,y), we have

(3.1)For the (t, T) iteration, when v, | and v
(t)
® _ 5® nr AL t) _ (¢
lvriy —0rall2 < (1 - )\+L> [o8 = 3{|2.

(3.2) Assume that U(f(x; 0),y) is further G-Lipschitz w.r.t. 6. For the (t,T) iteration, when vii)l

and © UTH sample different samples (x,y) and (', y'), we have

OO nOALY o (t)
||U‘r+1 - U‘r+1|| < 1- m ||UT —U; ||2 + 2777' G.

Lemma 2. [8] If Fs(0) satisfies the PL condition, then for any 6 we have
* 1 *
16— 63]* < Z(Fs(e) - Fs(05)),

where 8% = argming Fs(0).

Lemma 3. Assume that {(f(x;0);y) satisfies |£(f(x;0);y)| < lmax and is G-Lipschitz for all

(z,y). Let S and S’ be two datasets of size n differing in only one single sample. Denote by 'vg’) and

f;Tt) the outpur of the (t, T)-iteration of lookahead on the datasets S and S’, respectively. Then for
every (x,y) € S and every to under the random update rule and the random permutation rule, we
have

Ew(f(w;u@);y) ~ 0 ( a0)sy)] < O g RSO | 500 =),
n

(t) _ (t) ~(t)

) = || u9||2|\ withuy’ = av:’ + (1 — «)0;—1 and a = ol + (1= a)8;_1.

where &

Proof. This proof follows [7]. For completeness, we provide its proof here. To begin with, we first

define the variable u!”) = av" + +(1-a)b;—q = = av! + +(1 a)'v(()t) It can be observed that when
7 =k, then 0, = u,(f ). In this way, we also can obtain the updating rule of u(T_a_l as follows:

u(Ttll =ov® + (1 - a)vét =ul) —ang®,

where g@ denotes the stochastic gradient at the point vg).

Suppose given n samples S = {z1,2z9, -, 2,} where z; = (x;,y;) is sampled from an un-
known distribution D, one usually analyze the stability of an algorithm by replacing one sample
in S by another sample from D. Suppose the generated sample set S = {2],25,--- , 2/} =
{z1,22,"+* ,Zi—1,2},Zi+1 " , Zn } which only differs from the set S with the i-th sample. Then
based on these two set, one can train the algorithm to obtain different solution 6 of the function

Fs(6). When using S, we use 6, and v(t) to denote their corresponding versions 8; and o in

Algorithm 1 trained on S. In this way, we can define their corresponding u(T) and u(t)

define

Next, we can

5(t) — ||u(t) — ﬂ(t)HQ
In this way, we can follow [7] and prove our results. Let £ = 1[5%0) = 0] denote the event that §
In this way, we can upper bound

to).

El0(f(z;ul);y) — 0(f (2 al)); y)

=P(E)E[0(f (@ ul);y) — (f (2 al ) y)| | €]

+P(EEO(f (z:ul)iy) — €(f (s al));y)| | €]
<E[|e(f (a5 u)sy) — €(f (2 7)% )| | €]+ 26maxP(E°)
<GE[lul) — a2 | €] + 2maP(°)

Then we only need to bound P(£€). Assume ¢t*k+7* denote the position in which S and &’ differ and
consider the random variable (i, j) assuming the index of the first time step in which the lookahead



algorithm uses the sample (¢ jtr+, Ye+ko+r+). When ik +j > t*k + 7%, then we have 6]@ =0
since the execution on S and S’ is identical until iteration (¢g, 70). In this way, we have

P(£°) < P(8{0) # 0) < P(ik + j < tok + 7).

Under the random permutation rule, ik + j) is a uniformly random number in {1,--- ,n} and
therefore,
tok
P(ik 4+ j < tok+79) = fob 70,
n
This completes the proof. O

D Proof of The Results in Sec. 4

D.1 Proof of Theorem 1

Proof. Since the function Fs(0) is A-strongly-convex and 6% is the optimum of Fs(8), then we
have

* )‘ * *
Fs(@),) > Fs(03) + (VFs(05),05 — o) + 2105 — ol 3 = Fs(03) + 3 05 v,
Similarly, we have

* )\ *

Fs(03) 2 Fs(v1) + (VEs(o1),05 = o) + 505 — v, 3
Then we can upper bound

* t *
E ol - 052 <E[[lol, - 1,9\, - 65]?]
t * t t t t t
<E [0\, - 03] — 201, (0, - 05,9,) + (1,211, 1)

@ % *
2E [0l - 03]1° — 20{, (0, — 05, VFs(02,)) + (n2,) g\ ]

* E3 A *
<E [0, - 032 + 212, [sts) Fs(o),) - ||05—v£t21||§] (12,2 lg ﬂ

A *
<k [0l - 0511+ 20, | 5105 o 13 - 5105 — o 18] + 022l 1

@
<(1— 22" E [||v£t31 - OZIIQ} + ()26

where @ holds since E[g( ) ] = VFS( ) @ holds by assuming each individual loss is G-

T—1
ML o (t)
L _—

Lipschitz. Since 775) = where ¢ = € (1,2], we have m <

)\((tfl)k+7'+2)

2 .
NG=T)ksr52)- For brevity, let

i %

160 =11 (' gomrars) P00=X (1~ omrsri):

s=j s=j



‘We can unwind the above recurrence relation from 7 = k to 1 to obtain

k

* ) _ 4G?
B ol — 031°] <A, KB [Is” - 61°] + 3 A+ 1.b)- 55

t—1Dk+i+1)2

i=1
k
® 4G*
<exp{—B(1 ]E[ ) _ g 2} “B(i+ 1,k
Zexp (BRI [Iof? ~031] + e (B4 LI} gy
@ tk+2 t *
<exp {210g ((—)k‘*‘?) } E [”’U(()) - 95”2]
tk + 2 4G?
t—Dk+i+2) [ N((t—Dk+i+1)2
=Dk +2 E[| ) 0”] 4G? k — Dk +i+2)?
T\ tk+2 S )\2(tk+22121 — Dk +i+1)2
° ((t—1k+2\" ® 16kG?
2 B [jo? 031 + 190
( th +2 ) sl A2(tk + 2)2
@ k;—‘r2 9 16kG>
= E 0;_1— 05 -5
( th +2 ) (18— 5||]+/\2(tk+2)2’
where in @ we have used 1 + x < €%, in @ we have used Z] Z a+]+1 > k+1 a+i+1ds =
log (%) and @ is due to (a + 1)? < 4a® for all @ > 1 and @ is due to w(*~ 1) = 3. Then it

follows from the updating of slow parameter and the above inequalities that

E[16: - 03] <(1 — @)E [|6,1 — 63]°] +aE [|[vf") - 65]

(t—Dk+2\> ) 160kG?2
<[1- ST VR0, — 6 i
—< O‘+O‘< th + 2 (160 5||]+)\2(tk+2)2

20k Eo\? 16akG?
— = v ]E - * (12 v
<1 tk+2+a<tk+2> ) (1801 - 651 ]+)\2(tk+2)2

Unwinding this recurrence relation from time instance ¢ to 1 yields

E [[16: — 65°]
t 2
2ak k 16akG?
< 60 — 6%
—H( k12" <k+2)>|0 sl +;j111< k+2 (jkz—i—2>>)\2(ik+2)2
t 2
20k 9 ok k 16akG?
< —
_i=1exp{ k12 (k+2> }”00 Os| +;]1116Xp{ 2+a(jk+2) }AZ(ik+2)2

20k ko’ i
_eXp{_;<ik+2_a<ik+2> )}”00_03”

t t 2
20k k 16akG?
+;e’{p -2 (jk+2_a<jk+2) ) N(ik+ 22

j=it1




On the other hand, by usmg Z] ; ]k+2 > f:ﬂ S,H_st = log ((t;ill;ﬁ) and Zj ; (Jk+2 <

ft ds<

i1 (Sk+2 we have

(i— 1)k+2’

t4+ 1)k 42 k2 k
E[|0, — 0%]?] < —2al (7 0y — 0%
e, sn]_exp{ atog (552 ) b (g + g 160 - 6

t
(t+1Dk+2 ak 16akG?
“2al
+;eXp{ alog <(¢+1)k+2 T2 Nikr2)?
16ae®G? zt: k(i + 1)k + 2)2
N((t+ Dkt 2)22 2= (ik + 2)?

eQa(k + 2)2(1

* (12
7m”90 - 05"+

2%k 4 2)% 9 16a(4e)*G? i k

<— _ *

“((t+ Dk + 2)% 160 = Osll” + N2((t+ 1)k + 2)20 & Z (ik + 2)2—2
e2(k + 2)%« . 16a(4e)*G? .

—((t+1)k+2)2a||90_05”2+ N2((t+ D)k + 2)20 / Klsk +2)%ds,

where @ is due to (i + 1)k + 2 < 2(ik + 2).

Let us now distinguish the following three complementary cases on the value of a.

Case I: @ € (0,1/2). In this case, we have

€2 ( + 2)2¢ 160(4e)*G? (th +2)%t — 2%t
E[|6, — 6 o 100 — 0517
[H  — S” ] ((t—|—1)/€+2)2a” 0 SH +)\2((t—|—1)]€+2)2a ( 200 — 1 )
S U X — L. 0
S+ DR+ 2200 TS TR+ DR+ 2)22(1 - 20)
2a 2

“((t+ 1)k +2)2 A2((t+ 1)k +2)22(1 — 2a)’
where in the last inequality we have used o € (0,1/2).
Case II: « = 1/2. In this case, we have

3(k+2)

32G2 log(tk + 2)
(t+ 1)k +2

E (16 - 651") < N((t+ 1)k +2)

160 — 051 +

Case III: « € (1/2,1]. In this case, we have

2 (s 4 2)2 2, 16a(4e)°G> [ (th+2)* ! — 22!
E R A _ pA*
[Hat 68” ] ((t+1)k’+2)20‘”00 BSH + A2((t+ 1)k +2)2« ( 200 — 1 )
e (k +2)* o2, 16a(4e) G2 (th +2)% 1
Sr vk 2 1%~ S B Dk 27 e — )
8(k +2)** 180G?

O\ e _p*2
*((t+1)k+2)2a”9° Osl” +

where in the last inequality we have used o < 1.

(20— 1)(th +2)°

Since Fs(0) is L-smooth and 6% is its optimum, then it has

E[Fs(0,) ~ Fs(05)] < E (10, — 03]

%HGO 02”2 + )\2((t+1)1k6f26);22a(172a) I<a< %
S %HOO_OSHQ‘F%W a:%
T 180 — O511° + 7r2iorry Lca<i
The proof is completed. O



D.2 Proof of Theorem 2

Proof. Here we aim to use uniform stability to upper bound the generalization error. Suppose given n
samples S = {z1, 22, -+ , 2, } Where z; = (x;,y;) is sampled from an unknown distribution D, one
usually analyze the stability of an algorithm by replacing one sample in S by another sample from D.
Suppose the generated sample set S = {2/, 25, -+, 2/} = {21,290, ,2i 1,20, Zit1 -, Zn}
which only differs from the set S with the i-th sample. Then based on these two set, one can train the

algorithm to obtain different solution @ of the function Fis(6). When using S(*), we use 6, and v(t)

() .

to denote their corresponding versions 8, and vy~ in Algorithm 1 trained on S. Next, we can define

5 —

T

[0 = 8"l = 1601 = B1a[l2, ifT=0

lof? = &2, if 7 #0
Then for each iteration (¢, 7) in Algorithm 1, with probability 1 — % the current selected samples
in S and S are the same. In this case, by using the third part results in Lemma 1, we know

)
that |[o!") 11— 0 +1|| ( Iy ’\L) [0t — »®||,. Meanwhile with probability 1, the selected

L
samples are different in which we can use the third part results in Lemma 1: Hvit_?_l - f;g_)H Il2

)
min (1,a) o} — vy + 20 G, where a = 1 — ";\t+)LL. So by setting i) =

AL
L

)\((t—l)k+7—+2)
where ¢ =

E[ol"] =

€ (1, 2], combining these two cases yields

® " .
AL ) O AL ® G
- N R = 0 ], &
< >< “L>E[6H}+”<l A+L>E{5k—1}+ n
) )
MM g [50 14 2 €
(1 A+L>E[‘s'f—1}+ n
1 ()2
E||5
11:[1< )\+Lt—1)k+ _|_1) {Ho”}
e 1 1
=1 t—1k+z+1 )\+L(t—1)/{+3+1
)

1 (*)
=e {Z A+ L(t 1)k+i+1}E[6OHQ]

k

cL

)
_ 1
A+ %

k
2cG L 1
+;)\n((t—1 k+it1) P _j;1A+L(t—1)k+j+1
@
tonl-yo,

k

tk+2 (t)2
E
s be1er]
2G cL th +2
- 1
+;An((t1)k+i+1)eXp{ AT L Og(tl)k+i+2}
(= Dk 42\ 3T 2 (t— 1)k +i+2)\ 3
_< th+2 [”5 ||]+Z/\ k+z+1) th +2

(t—1Dk+2 )2 4ckG
( th + 2 £ [”60 | } + An(tk +2)

®

. k?+1 1 .
where in @ we have used 1 + =z < e%, in @ we have used ZJ i a+j+1 > a+s+1ds =
log (Zi’fif) and ® is due to (a + 1) < 2a” forall @ > 1 and ¢ = 2+E. Then by setting B=2%



it follows from the update of slow parameter and the above inequalities that

E 16512 =B [16, - 051) <(1 - o) [[18:1 — 63 + oE [|lof” — 63|

(t—1k+2 9 4ecakG
<|1- ————— | |E[||6:—1 — 05 —_
—( O‘+a( th + 2 [16:-1 SH]+n(tk+2)
ak ()12 deakG
< (12 Ve [jape] + ek
—( tk+2> I0”] +)\n(tk+2)
Unwinding this recurrence relation from time instance ¢ to 1 yields

1051 < (1- 500 ) B (16017 + s

th+2 (tk:+2)
t
(0) 12 4ecakG
< 1-—
—H( k+2)|6 | +Z H < jk:+2> Ak +2)
=1 1=1 j=141
¢ ¢
(0) 12 ak 4deakG
< 1-— —
~ ( )'6 I +ZeXp 2 Thra (kD)
=1 j=i+1
ol (t+1k+2 4ecakG
< 1
_z:1exp{ “ Og( )k+2)}m@k+2)

4caG E((i+ 1)k +2)°

MwM» =

“nA((t+ Dk 4+ 2) (ik +2)
@ 4-2%aG k
“nA((t+ Dk + 2)e (ik +2)1—

i=1
4-2%aG K a1

< N Dk 1) /k(8k+2) ds

_ 4-2%aG (tk+1)*—1

S nA((t+ 1)k +2) a

<8G(>\+L) (tk+1)* -1

=T AL ((t+ DE+2)°

<16G (tk + 1)~ —

X ((t+1)k+2)27

where in @ we have used ZJ i ]k’fw > f;ﬂ Y ds = log ((ttak;ﬂ) and Z; _ jk+2)2 <
fztl(sk+2) ds < = k+2,®1sdueto(z+1)k:+2<2(zk:+2)

Finally, we have that function £(0, -) is G-Lipschitz, and thus obtain
16G% (tk+1)* —

E || (i 0r)s) = (S Or)s)l| <GB (1001 = Oualle] < < iy
The proof is completed. O

D.3 Proof of Corollary 1

Proof. Now we combine all results in Theorems 1 and 2 together, including the above optimization
error and generalization error, and use Lemma 1 in the manuscript to obtain

3L(k+2)? 2 16LG? 16G _(tk+1)*—1
2(7(t+1)k+2)2a 160 — 65" + () k+2)7 (1—2a) + X ks 0<a<
3L(k+2) o | 16LG2log(tk+2) , 16G (th+1)*—1 1
fom F€gen =9 arnegz 0 — 0517 + et s R o=y
4L(k+2)? 2 90LG? 16G _(tk+1)*—1 1
((t+1)k+2)2&”90 05° + N Ba—1)ThT12) T nx (D) g <as
The proof is completed.
O
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D.4 Proof of Theorem 3

Proof. Here we prove our results in three steps. In the first step, we first prove the optimization error.
Then in the second step, we consider to prove the generalization error bound. Finally, we combine
these two error bounds by using the risk decomposition.

Step 1. Optimization error. To begin with, since function Fs(0) is convex, then we have
(Fs(v),05 — o)) < Fs(85) — Fs(v).

Next, we can bound
E[llvl, - 0513 =E [Ilv —nigl - 6311
—E [0 — 053 — 20" (0" — 05, 9) + (0?19 I3]
=E [0 - 053 - 20" (v") — 05, Vs (v)) + ()21 g |3]

SE _HU-E- 05”2 + 277 t)(FS(BS) FS(’US—t))) + (T]S—t)) ||g(t)|| :|

<E [0l — 63]13 + 20" (Fs(63) — Fsvl")) + (n")*G?]

Then by rearranging the above inequality, we can obtain

Fs(v") — Fs(0%) < ok {H”g) — 055 — H”TH 93”%} + =",
20y 2

Next, by setting a constant learning rate 779 = 1, we sum up the above inequality from 7 = 0 to

k — 1 and obtain

1 t t % T]G2
%g(Fs (019) = F5(83)) <5 B 1o = 0315 — ot — 0318 + %5~
1 t % 7]G2
=5 100 03113 — lo? — 6315] + T~
Now we consider the term [|0;_1 — 0%||3 — ||'v(t) 0% |13 as follows:

1601 = 0313 — 0 — 0513 = (611 — v}, 611 + v}’ —265)

0, —(1—a)f;_ 0, — (1 —a)f;_
®<0t—1 t ( aOz) t 1,9t—1+ t ( aa) t 120§>

__ % (6,1 — 65 — (6, — 63), (1 — 20) (8,1 — 05) — (6; — 63))

1
— [(1=)]|0—1 = 0] + ol|6; — O5* — |61 — 05]]

1 * *
sz [16:—1 — 051> — |16, — 65]I°]
where @ holds since 6; = (1 — «)0;_1 + a'vl(f). In this way, we can upper bound

k—1

1 1 G?
+ )y ) < _pE2  px 2 ne—
k;_oj(Fs@T) Fs(03)) <go i 161~ 0317 — 6, — 65]%] + -

Finally, we can sum up from ¢ = 1 to t = T" and obtain

T k-1 GQ

1 2 (Felot?) - Fo(03) g e 100 — 0317 + 75

t=1 =0
1 *
1e E[l[60 — 05]°]




where @ holds by setting 7 = \/WE (|60 — 0%]12).

Step 2. Generalization error via uniform stability. = Here we aim to use uniform stability
to upper bound the generalization error. Suppose given n samples S = {z1, 22, - , 2, } where
z; = (x;,vy;) is sampled from an unknown distribution D, one usually analyze the stability of an
algorithm by replacing one sample in S by another sample from D. Suppose the generated sample
set SO = {2, 2, 2/} = {21,209, -, Zi_1, 2}, 2ix1- -+ , Z, } which only differs from the set
S with the i-th sample. Then based on these two set, one can train the algorithm to obtain different

solution @ of the function Fs(0). When using S(*), we use 6, and " to denote their corresponding

(®) -

versions 6; and v; "’ in Algorithm 1 trained on S. Next, we can define

s JIoe” =8Il = 10,1 — i fl2, i T =0
! ||U$)— 7')”27 if7#£0

Then for each iteration (¢, 7) in Algorithm 1, with probability 1 — %, the current selected samples in S
and S are the same In this case, by using the second part results in Lemma 1 for convex problems,
we know that ||vT 11— vﬁle < ||v ® _ M l2. Meanwhile with probability , the selected
samples are different in which we can use the second part results in Lemma 1: ||'vT F RO +1 l2 <

[lv ORI l2 + 27 ()G So combining these two cases yields

] (1)l o] B ] 2

n
(7
g [s® ZT 277§t)G
=K |:60t :| + — T

Let (to, 70) denote the iteration at which 6%°) = 0 and (57(_750le = 0. For brevity, we use £ = 1[0,

0] to denote the event that &, tO) = 0. Now we need to use the recurrent formulation in (7) to derive
the upper bound of |0, — 6, ||2 as follows:

(to) _

E {Hgt-&-l - 5t+1||2}
—E[|(1 - )6, +av{" ) — (1~ )8, — a5 ]

<(1-a)E [Het . §t||2] +aF [”,U(t—&—l) . ﬁ(t+1)”2}

<(1-Q)E [8, = Bifl2] + o [é(t}+22an(t)G

- (t)
ZE [16: - 61l +Z% @®)

7=0

t
& (61, — 8, 2] + 3 20”7 s 22“77

T=To 1=tog+2 7=0
t k-1 )
~ 2amn; ' G
<E (16, — 8u 1| + > P
i=tg+17=0
S2047]GI€T
n

(1) _ f)(()tH) |l2- On the other hand, we have that function

where @ holds since ||0; — 6,2 = llvg
2(f(+;0);-) is G-Lipschitz, and thus obtain

2anG?kT
—

B (160 (: 07)s 9) — €(F(2:0r); w)l| <GE [10011 — B

10



Now we consider the average case where 'uk = 5 ZZ 1 ET o v is the output which is

consistent with our optimization analysis which also needs to output the average of all 'u$ ). To begin

with, we have

'vét“) =0, =(1— )01 + ozv,g) (1-a)fi—1+« <v0 ZUT g@)

k—1
=(1—a)6;_ 1+a<9t 1—277 (t)> =6 1—0422779)9575
7=0
k—1
:(l_a)gt—2+a<0t—2_z777(—tl Tt 1) aZnTt)g
t - t k—1
SRR S 3 I 5 prCH
i=t—17=0 =1 7=0

In this way, we can know the formulation of the average of all vg) as follows:

T k-1 T k-1

_(T) ZZv(t)—go azz ; Z_Tl)k_T+1)g$)

117'0 i=1 7=0

T
oy KT = (T = Dk — k +2) ©
=V — & kT g- -

M (KT —(T—1)k—k
Then we have ||17;(€T)—17,(€T,)1||2 < o=l (kT Dh—kt7) || t)H <aG . Then
we can use the second results in Lemma 1. For each iteration (¢, 7) in Algorithm 1, with probability
1-— %, the current selected samples in S and S are the same. In this case, by using the second

part results in Lemma 1 for convex problems, we know that ||v£€)rl — vitll Iz < ||v(t) Y Il2-

Meanwhile with probability L the selected samples are different in which we can use the second part
G kT —(t— 1)k T+1

" (kT —(T—1)k—k+2)

results in Lemma 1: ||vTJr1 - vT+1||2 < ||v$t) o l2 + 21> Mg
these two cases yields

. So combining

2 62
B 1 1, 200G 20n G KT — (t — )k — 7 + 1
~(1- ) m o] + L [o] + 2 g [om] 200 -
k—1 (T)
(T) 20my 'GKT — (t— 1Dk —7+1
E [60T } + Z n kT
(0) Tk12cm GKkI'—(t—1k—7+1
<E [50 ]*;;} KT
20 “’GkT (t—1)k—7+1

_f: 2om$”G KT —i+ 1

= n kT
< anGkT
n
©))
On the other hand, we have that function ¢(f(-; 8); -) is G-Lipschitz, and thus obtain
~ ~ anG*kT
E[10/(2:0r):y) — 0/ (@:01); y)l| <GE 0121 — O] < 2.

11



Finally, we can use Lemma 1 to prove that the generalization error
anG?kT

Egen <
& n

2
By comparison, when output the average of all v&t), then its generalization error is W which

2 - . . .
is slightly better than the generalization error 2anG7RT of the solution at the last iteration. Such an

improvement is consistent with the analysis results on convex problem in [7].

Step 3. Excess risk error by combining optimization error and generalization error. Now we
combine all results together, including the above optimization error and generalization error, and use
Lemma [ in the manuscript to obtain
1 nG?  anG?kT
€ Cgen < ——E [||@g — O5|?] + — + ——.
opt T Egen < 20[77/€T [” 0 SH } 2 +

The proof is completed. O

D.5 Proof of Theorem 4

Proof. Here we prove our results in three steps. In the first step, we first prove the optimization error.
Then in the second step, we consider to prove the generalization error bound. Finally, we combine
these two error bounds by using the risk decomposition.

To begin with, we first define the variable u' = av® + +(1—-a)f;y = avt?) + +(1- a)vét). It

can be observed that when 7 = k, then 8, = u,g ). In this way, we also can obtain the updating rule

of u(Ttll as follows:
U(Tt_)H =av® + (1 - a)vét) =ul®) — ang®,
where gg) denotes the stochastic gradient at the point vg).

Step 1. Optimization error. Firstly, we can bound

E Fs( )

T

<E | Fs(ul®) + (VEs(u®). ul); —u) + = [ul?), — ) H

®) ®) oy on 2 L))o
=E FS(UT )_an'r <VFS(UT )7g'r >+f”g ||

Lo (n (f))
25 | Fs(ul?) — an(V Fs(u?), VFs (w0) + 220 L g0 2

Lo (t)\2
=5 | Fo(u) = an® [V Fs ()] + an? (VFs(ul?), VFs(u?) — VEs(w0)) + 2201 g0 ”2]

< (1)) — 20 (Fs(ul) — Fs (63 ® 0 )y _ oy, 4 LG )
<E |Fs(u;’) — 2uany”’ (Fs(uy’) — Fs(05)) + any’(VEs(uy’), VFs(uy’) — VFs(vy)) + . _

where @ holds since E[g., ® )= VFS('ugl) @ holds by assuming each individual loss is G-
Lipschitz, and the fact that the function Fs(6) satisfies PL condition
2u(Fs(0) — Fs(05)) < [VFs(0)|.
Next, we can upper bound
(VEs(u), VFs(ul) = VEs(vl)) <|VEs ()| - |VEs(ul) = VEs ()]

T

<GLul — o]z = (1~ a)GL]vg — o2

<(1-a)GLY 1P gP s < (1 - )62 Yy

=0 =0

12



where @ uses u(Tt) = avg) +(1-—a)fi—1 = avﬁ) +(1 a)vét)

. In this way, we can upper bound
La2G2(n§t))2

E|Fs(ul))) — Fs(63)] < (1 - 2pan{E |Fs(u®) - Fs(83)] + =

+a(l - a)LGZUg) an@-
i=0

. (t) o 1 . . . . .
By setting ;' = (=== and fixing the time instance ¢ > 1, we can unwind this recurrence

relation from 7 = k to 1 to obtain

E [Fs(uff)) - FS(GE)]

. 200 ®) . La?G? i 20

< l1- ————|E|F, Fs(0% 11— —

H}( (t—l)k+z+c) [3( )~ Fsl S)}+§2u2((t—l)k+i+0)2g< (t—l)k+j+c)
a(l —a)LG? : i 20

1-—=--

+Z (t—1Dk+i+c) Z t—lk—|—j+c) E( (t—l)k+j+c)

@ . 20 La?G?

< — Fs(0

Hexp{ k+z+c} st 5)]+1_ JH_Z-GXP{ <t—1)k+y+c} 2((t— Dk + i +c)?
a(l — a)LG? : i

+Z (t—Dk+i+c) jZ::O;L t—1k+j+c ;t—1k+g+c

where in @ we have used 1 + = < e®. Now we consider each term in the above inequality as follows.
We first bound the first term:

k—1
Oy g
geXp{ (t—1 k+z+c}E[Fs(uo ) FS(GS)}

k-t 2 (t) *
:exp{‘, OWW}E[F5< )~ Fs(03)

1=

Z exp {—2a log (&;jﬂ) } E[Fs(u’) - Fs(05)]

(t — Dk +c\* ' )
= <tk‘—|—c E {Fs(ué )) - FS(HS)}
where in @ we have used Z] _ a+;+1 > fikﬂ a+é+1ds = log (‘Zikj_rlz) Next, we bound the
second term:

Rkl 2a Lo?G?
D [Lewq- : '
— 1 (t—Dk+j+c) 202((t— Dk +i+ )

7 j=i
k—1 k—1 %, La2G2
:izoexp _;(tfl)k+]+c 2H2((t*1)k+l+c)2
gkile 2010 tk +c La2G?
X J—
i g ¢ (t—VDk+i+c) ) 2u2((t — 1Dk +i+c)?

La2G? Ek:((t—l)k+i+c)20‘< kLa?G?

T 2uP(th + )2 P (t—Dk+i+c)? — 2u(tk + c)?e

13



. k+1
where in @ we have used Zfzq a+}+l > fl * a+i+1ds = log (‘Z‘j_fj_‘f) Now we only need to
bound the third term:

- a(l — a)LG? i 1 . = 2a
< 22
Lo |12t =Dk +i+0) = (t— Dk +j+0) P - Dk +j+e
<’“‘1 a(l — a)LG? it1 ] — 20
. 2
SRk (- Dk+o] T\ & =Dk e
<’“‘1‘ a(l — o) LG? it1 ], - 20
. 2
SR Dk (- Dk+o] T\ & T Dk e
k—1 - . -
a(l — a)LG? i+1 tk+c
< “2alog [ — T
—;_u2((t—1)k+¢+c)((t—1)k+c)_exp{ aog((t—l)k+i+c>}

a(l — a)LG? i+1 (t—Dk+i+c\>
w2 ; ((t—l)k+i+c)((t—l)k+c)< tk+c ) 1
<2a(1 — )LG%*k(k + 1)
w2 (tk + c)2e

By combining the above results, one can obtain
E|Fs(uf) - Fs(05)]

(t— Dk +c\>* ® . kLa2G> 20(1 — a)LG2k(k + 1)
<l — E | F. — F.
- < tk +c [ s(ug) 5(05)} + 2u2(tk + ¢)?@ u?(tk + ¢)2e

(t) (t)

(t) , because u;’ = av:’ + (1 — @)0i—1 =

At the same time, we have 8; = u,~ and 6;_; = uét)

avt + (1— a)v(()t). In this way, we have
E[Fs(0:) — Fs(05)]

kLa*G? 20(1 — ) LG?k(k + 1)
202 (tk 4 ¢)2 w2 (tk + c)2e

tk +c

ST ) e [rsiult) - o)

< <(t_1)k+c>2a E[Fs(0:-1) — Fs(05)] +

+Zt:[ kLa2G? 2a(1—a)LG2k(k+1)} li[ ((j_l),wrc)za

M b e U
gﬁz& [Fs(60) — Fs(03)]

% Zi; [0% +2a(1 — a)(k —1)]
< G Fs(0) - Fa(og)] + 2L g 20 S L),

where ¢ = 1.

Step 2. Generalization error via uniform stability. Here we aim to use uniform stability
to upper bound the generalization error. Suppose given n samples S = {z1, 22, - , 2, } where
z; = (x;,vy;) is sampled from an unknown distribution D, one usually analyze the stability of an
algorithm by replacing one sample in S by another sample from D. Suppose the generated sample
set SO = {2, 2, 2!} ={z1,22, -+ ,2i_1,2}, Ziy1" - , 2, } Which only differs from the set
S with the i-th sample. Then based on these two set, one can train the algorithm to obtain different

14



solution @ of the function Fs(0). When using S(*), we use 6, and f)g) to denote their corresponding
versions 6; and 'u( ) in Algorithm 1 trained on S. Next, we can define

60 = flul?) — @l

Then for each iteration (¢, 7) in Algorithm 1, with probability 1 — %, the current selected samples in

()

S and S are the same. Note, we update )’ 71 as follows:

ul'ly = 0o + (1 - a)v” = ul) — ang,

where gg) denotes the stochastic gradient at the point 1;9). In this case, by using the results
in the first part of Lemma 1, we know that HuTJrl - u7+1||2 < (1 + anT)L) Hu(t g)||2.
Meanwhile with probability 1 +» the selected samples are different in which we can use Lemma 1I:

HuTJrl - uﬂl Il2 < ||u(7t) —al ll2 + 2a77§t)G. So combining these two cases yields

o] = (1) (rwe) o] fa o] « 20
= (1 + (1 - ;) anﬁ)L) E [59} + 26”75)(;

@ 1 92 S_t)
<exp ((1 - ) ang)L) E [59} + 2o G
n n

where @ holds by using 1 + = < exp( ) At the same time, because u!”) = av") + (1—)iq =

avgt) +(1- )vé ), we have 8, = uk L0, = u(t), nd
ul'ly = 0ol + (1 - v’ = ul) — ang,

where gﬁt) denotes the stochastic gradient at the point vg). In this way, we have

E [||9t —@II} =E [5,&”}
<exp ((1 - > aan’“‘ L) E { t)} + % Omu) exp (1 - ) Z ny

Jj=i+1

:exp<<1_> Z” L) [Hetl—et 1||}+@th>exp (1—) Zm

j=i+1

For brevity, define 7;;4; = 77§i). Then we can reformulate the above equation as follows:

E[[16: - 6| Sexp((l—) ZnL>E[n6£g°>||] 206 <1_) S

i=tok+T10 z tok+10+1 Jj=i+1
tk tk
©2G 1 1\ L 1
E R (G PP
i=tok+1o+1 j=i+1
26 1 1\ L. tk
<4y .exp((l_)l )
H oottt nsK ‘
2G (tk)(1=%) & i’“: 1
- . _1)\L
pn i=tok+710+1 (Z)(l ">“+1

T~

SM(SG 0 (tokti To>(1_i)
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where @ holds by setting ng) = m withc = 1.

1

By setting tok + 719 = M(tk)(lfl) aL

al _1l)alL .
p w) } (%) 4 , from Lemma 3 we can obtain
max

El0(f(z;ull);y) — (f(z;u);y)| <

_ (fok + 70)lss 206G ( tk ><1—m)z

n un  \tok + 7o
_B_ 1
T+3 271 158
< AT [QaG } (tk)%
n—1 "

where 8 = (1 — 1) %

Step 3. Excess risk error by combining optimization error and generalization error. Now we
combine all results together, including the above optimization error and generalization error, and use
Lemma 1 in the manuscript to obtain

Eopt T Egen
B 1
20LG? (a+2(1 —a)(k—1))  Llomx [2aG2?]TFP B
<——E[Fs5(6g) — Fs(0% tk)B+1
_(tk+c)2a [ 5( 0) 3( S)]+ ‘LLQ(tk+C)2a71 + n_1 1 ( )
where = (1 — 1) % The proof is completed. O

E Proof of The Results in Sec. 5

E.1 Proof of Theorem 5

Proof. Here we prove our results in three steps. In the first step, we first prove the optimization error.
Then in the second step, we consider to prove the generalization error bound. Finally, we combine
these two error bounds by using the risk decomposition.

Step 1. Optimization error. Here we consider the following problem:
0; = argmin {Ft(o) 2 Fs(0) + %Ho - 0t||§}.
0

Since F'(0) is A-strongly convex and L-smooth, then the new function F3(0) is (A + f3;)-strongly
convex and (L + f;)-smooth. Then from Theorem 3, we have

E 6,1 —06|?] nG?
E[F:(0,) — F(0)] <
[F:(0:) +(0)] < Senmlir T, + 5

where 0 is an arbitrary vector. Note, in the proof of Theorem 3, we let § = 0% where 0% is the
optimum. But we can directly follow the proof of Theorem 3, and prove Eqn. (10).

(10)

Then we aim to prove E[Fs(8,) — Fs(0%)] < &, via selecting proper parameters, where ¢, = 2.

By letting @ = 0%, we consider the (s + 1)-th stage and can directly obtain

* 684-1 2 684-1 * 2 E [”95 _ 0§||2] nSG2
E[F (0, —F(0%)] <— 0,.1—80, ——||0s — 6,
(F(Our) = FO3)] <~ 2520, — 0.2+ 2 o3 — 0,12 + =720l 4 20
Bst1 <\, E[F(8s) — F(03)] | nsG?
<——E[F(6,) — F(0
<= E[F(6;) - F(05)] + PR P
ﬂs-&-l Es n€G2
<
=N ST ek T T2
@
§€s+1

where @ holds by setting 8,41 < $A, 75 < 557, nsksTs > /\%S. This means
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To achieve E[Fs(0,) — Fs(6%)] < e, the total stage number S satisfies S > log £ where A =
E[F(6o) — F(0%)] = 0. The total stochastic gradient complexity is Zf:l Tiks = ZS e

s=1 lans
ZS 6 3G3%2° _ 36G3
s=1 da e  dae "

Step 2. Generalization Error via Stability Analysis. Now we first consider one stage, such as the
s-th stage. For brevity, let

50— L0 =9 2 = 16021 = 6,alla, if7T =0
R (I P ifr£0

Here we first consider each stage and then analyze multi stage algorithm We first analyze the s-th
stage. Now we consider the average case where v == Zl 1 ZT o v is the output which is

consistent with our optimization analysis which also needs output the average of all v$ ) To begin

with, for the regularized function F}(0) = F(8) + 1||@ — 6y|| where 6, denotes the output of the
previous stage. Then by using induction, we can easily obtain

vﬁo):v _nz 711 (0)
This means v,(co) = v(()o) -7 Zf:_ol(l — nﬁ)“i_lggo). Then because v(()o) = 6y, for 8;, we have
ol =0, = (1-a)fy + Oé’U(O = 'uéo anz B)*- i_lggo)

Similarly, we can obtain

t—1k—

arn
7=0 z:O

;-.

v(()t+1) —0, = tk—jk—i—lgl(j).

In this way, we can know the formulation of the average of all vg) as follows:

T-1k-1

7D 7% ZT: kz: — o —an Z Z(l _ B)Thik—ic1g()

=0 §=0 i=0
=(1- 776)172 + 1B — ang!"),
(T) (T

Assume v, ’ is obtained by running the algorithm on the dataset S and v, ) denotes the solution
obtained by running the algorithm on S’. In this way, we can conclude that for any ¢, we have

v = v, v, =9, loy” = ol = o) 5”1 ab

In the following, we try to bound the difference between H'B,im - f)gT) ||. For each iteration (¢, 7) in

Algorithm 1, with probability 1 — %, the current selected samples in S and S are the same. In this
case, by using the first part of Lemma 1, we know that

(t) —( t)

||'U-r+1 7—+1H2
=[|(1 - nB)ol" + nﬁv — ang® — (1 =B’ — npol” + ang! |,
=(1-ns —_g® _ @(t)+7g7(_t)
(1—mnB) 776 2 2
@ an )\L B
<(1-— 1-— (t) 5@
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where @ uses the first part of Lemma 1. Meanwhile with probability %, the selected samples are
different in which we can use the first part of Lemma 1:

(®) &®

lvri1 — 020l
—(1— u<t>_ g — 5t 1 910

(L —=np) nﬁ T |,
@ an AL . 2anG
<(1 — 11— o ) _ 5® 1—
<=9 ( 177/”%) o0 = 50 + (1 - 98) 221

an AL

- 08) (1= 22 ol - 6092 + 2006

where @ holds by using the first part of Lemma 1. So combining these two cases yields

{5521} :H"%(-a)ﬂ ~S—?L1H

1 AL -
<(1-2) Ja-m (1- 12 HL) ol - 51

1 an
~la- 1-— oW1y + 2
w e (1o 12 A ) B = 601 + 2006
anAL w , 2anG
=(1-np—- T2 R0 + 22
( s )\—i-L) L
(i IB?O”?)\L (t_l)k+T+1]E|: (0)] 2OZT]Gt 1 7 - /870477)\L jk+i
UYL Pt o Ly

AL\ DR+ 9 1 AL\ DR+
_<1—n5—§iL) ]E[ééo)}jt C:LGﬁ+ML 1-(1—775—3”?%) .
AL
|

Then by using (11), we have that for the output of the s-th stage, it holds
ansAL ok ~ 200G 1 om)\L
< <]— - nsﬂs - B\ j_ 7 > E {He(s—l)—stage - 0(5—1)—stage||:| T L anL |} (1 - B - L) ‘| .

E [[10:-suge ~ Oesazellz] = E 167, — bz, 2] = E [0 — 3"
no B+ 527

Assume that at stage s, we have E [||05_mge — 5S_Smge||2} = 0. Then it holds that

]E |:||93—stage - gs—stage||2]

T,k
ansAL { ~ } 2aG 1 VAL
< sMs (7] s—1)— -0 s—1)— _ —1- —
= < —NsBs — N+ L ) H (s—1)—stage (s—1) stage” n B+ gj‘_i npB 7
. 2aG 1 an AL u VAL
= Z ( —nifi — ) (1_,7‘5‘_ j )
B; + AL s ” 7
i=to+1 n ﬁz + )\+L A“”L | j=i+1 )\+L
s ZCYG 1 ( a?’h)\L s ar]Tk)\L
< > nifi = ) [T exp <_77.54T,k4_m
B + AL iP5 43R5
i=to+1 Bi+ 5L +L | A+ L
2 f, 206G 1 OzmAL Tik] 6L(s — j)
< ( —nifi — ) exp [ ————
a1 AL
i=to+1 Bi+ 531 +L ] A+ L
DA —— <6L<—J>>
il ™ Bt ;*iﬁ A+ L

6sL
L2G 1 1 —exp (_ )\+L)
n 5+%17exp<7f+—i)
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where @ holds since for optimization, we set 5541 < %)\, Ns < 582, NsksTs > s and thus have

B 1. o i TikiAL 6L
n;B;iTsk; + P il vy

On the other hand, we have that function £(f(-; 0); -) is G-Lipschitz, and thus obtain

6sL
20G%  1—exp (_ >\+L)

B [|e(f(2:6r)i) - ((f(@:0r):w)] <GE 16111~ Brsall] < n(o+528) 1 -ewn ()
L)+ T AL

Step 3. Excess risk error by combining optimization error and generalization error. Now we
combine all results together, including the above optimization error and generalization error, and use
Lemma | in the manuscript to obtain

N sacz  L—exp (1)
Eopt T €gen S+ + - )
¥ on(pr k) 1-ew ()
where A’ = E[F(0y) — F(0%)]. The proof is completed. O

E.2 Proof of Theorem 6

Proof. Here we prove our results in three steps. In the first step, we first prove the optimization error.
Then in the second step, we consider to prove the generalization error bound. Finally, we combine
these two error bounds by using the risk decomposition.

Step 1. Optimization error. Here we consider the following problem:
6; = argmin { F;(6) 2 Fs(6) + %Ha — 6.3}
0
Since F'(0) is L-smooth and its Hessian has minimum eigenvalue —o (o < 0), then the new function
F:(0) is (B; — o)-strongly convex and (L + S;)-smooth, where we set 3; > o.
We first consider the case 0 < B, < % . From Theorem 3, we have
E[181 - 01] | nG”
QOétntktTt 2 ’

where @ is an arbitrary vector. Note, in the proof of Theorem 3, we let 8 = 65 where 5% is the
optimum. But we can directly follow the proof of Theorem 3, and prove Eqn. (12).

E[F;(0;) — F,(0)] < 12)

Then we aim to prove E[F5(60;) — Fs(0%)] < & via selecting proper parameters, where £, = 5%. By
letting @ = 0% and using the PL condition, we consider the (s + 1)-th stage and can directly obtain

* 69+1 2 69+1 2 E [HBS - 0§||2] 778G2
E[F (0, —F(0 o, . 0 0,
(F(Bu11) = P(83)] < = 526,10 — .7 + 5205 — 0.7 + =5 == L 4+ 0

@ 5s+1 E[F(Os) — F(03)] | nsG?

< E[F(0,) — F(0%

>~ 1 [ ( ) ( S)]+ MasnsksTS + 9
2

S68+1 £ Es nsG

12 pesnsksTs 2
@
§€s+1

where @ holds by using the result ||@ — 8%]|* < ﬁ(Fg (0) — Fs(0%)) in Lemma 2, @ holds by
setting o1 < g4, 1 < 557, sk Ts > ﬁ. This means

.. E[F(8,) — F(6
To achieve E[Fs(0,) — Fs(6%)] < e, the total stage number S satisfies S > log 2 where A =
E[F(6y) — F(6 )] = 0 The total stochastic gradient complexity is 253:1 Tsks = Zsszl %ﬁg =
N 6 3G%2° _ ‘
s=1 da e )\ae

For this case, we actually requires 0 < 5 < ¢ L.
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Next, we do consider the second case where we do not require o < 5 < %u but assuming there is a
constant p such that (VF;(0),0 — 0%) > p(F,(0) — F;(0%)). For this case, we first bound

E|o%, - 0313] =E [0l —nig® — 053

—E |[of" - 053 — 21 (v — 05,9%) + ()19 3]

—E [[[v) ~ 0313 — 20 (0! — 05, VE,(0) + ()7 93]
<E [0 - 8513 - 20 (v — 05, VE,(uD)) + ()2 03]
<E [[[0") - 03113 + 20 p(Fi(83) — Fu(v() + (ni")*1g 3]

<E |00 — 03]13 + 200" p(Fi(03) — Frol)) + ()]

Then by rearranging the above inequality, we can obtain
x 1 . . G?
Fw®) = Fi(03) < —5-E [0 - 0513 — [0, - 0313] + .
207 p 2p

Next, by setting a constant learning rate n( ) =

t = T and obtain

= 7, we sum up the above inequality from ¢ = 1 to
1 . y nG?
. Z (B - F(03)) <5 B[l - 0313 — o — 03113 + 5

nG?

1 ” *
|01 - 0315 ~ 1oy ~ 6313 + % -

:277pk:
Now we consider the term [|8;_1 — 6% 2 — || v\ — 8%]|2 as follows:
1601 = 03113 = 0 — 0513 = (611 — v}, 611 + v} —265)

—(1- — —(1- —
g <0t_1 - Ot ( a)et 170t—1 + Bt ( o a)gt : - 20‘§>

(&%

_ % (O, — 0% — (0, — 0%), (1 — 2a)(8,_1 — 05) — (6, — 0%))

1 *
== 5 [(1=)[6i1 = 6. + all6, — 65" — l|6,—1 — 65]"]

1
<~ (1611 = 65° - 16, — 65|°]

where @ holds since 0; = (1 — «)6;_1 + cw,(C ). In this way, we can upper bound

1 k—1 ) nG2
- (1) P e nG?
k 7;) (Ft(’U-r ) (93)) =5, P"?kE [||0t_1 08” ||0t 08” ] + % .

Finally, we can sum up from ¢ = 1 to ¢ = 7" and obtain

T k-1

G2
17 3 (Re) ~ Fi(63) <5 100 — 0517 + 5

t=1 =0

Then by letting 6,41 = 7 k Zt 1 Z o 1o® | we have

2
E (|60 — 05)?] + "

E(Fs(0s41) — Fs(03)) < 2p

2apmkT
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Since F,(0) = Fs(0) + 2

0 — 6,2, we consider the (s + 1)-th stage and can directly obtain

o B Bs E[6, - 65°] | n.G?
E[F5(0s+1) = F5(05)] < — =501 — 0,7 + =574[05 — 0, + 2[pa T } 2
9 8., E[F(8,) — F(05)] , nsG”
<—IE[F(0,) — F(6%)] + "
; [F(6,) — F(65)] 1pasnoks T 2p

S SG2
SB SO £s L0
1 upognskg T 2p

@
<€s41

where @ holds by using the result ||@ — 8% < ﬁ(FS(B) — Fs(0%)) in Lemma 2, @ holds by
setting Boy1 < &4, 15 < L35, msks Ty > %. This means

BIF(0,) - F(03)] < S0 0]

To achieve E[Fis(0,) — Fs(0%)] < e, the total stage number S satisfies S > log £ where A =

E[F(0y) — F(0%)] = 0. The total stochastic gradient complexity is Zle Tsks = Zle ﬁ =
ZS _6_3G%2° _ 36G> '

s=1 ppa peoy pp2ae’

Step 2. Generalization Error via Stability Analysis. We first consider the case 0 < (5 < %u. For
this case, we know that the new function F}(0) is (5; — o)-strongly convex and (L + 3;)-smooth,
where we set 3, > o. In this way, we can directly follow the proof of Theorem 5 which provides the
generalization analysis on strongly convex problem. So we can obtain the same generalization error
bound as follows:

6sL
2aG? 1 —exp (_ ,u+L)

n (b’ —o+ Sii) 1 —exp (_;EFLL)

E [[6(0r:€) = 681 )|| <GE [[6,41 = O] <

Now we first consider one stage, such as the s-th stage. For brevity, let

50— J1v0) =9 2 = 1601 =6, alla, if7=0
T [0 — &8, if 7 #0

Here we first consider each stage and then analyze multi stage algorithm We first analyze the s-th

stage. Now we consider the average case where 'v = kT ZZ 1 ZT 0 ’UT is the output which is

consistent with our optimization analysis which also needs output the average of all vg). To begin

with, for the regularized function F}(6) = F(8) + (/@ — 6y || where 6, denotes the output of the
previous stage. Then by using induction, we can easily obtain

’U(O 7772177767—11(0)

1=0

This means ’U( V=l =y S - nB)7=1~1g{”) . Then because v\" = 6, for 6, we have

v(()l) =0; = (1 —a)@o—i—av(o —'u0 —04772 (1—np)k—i-1 (0
Similarly, we can obtain

v(()t-H) -0, = ((Jo) (1 . nﬂ)tkfjkfiflgl(j).



In this way, we can know the formulation of the average of all uﬁ) as follows:

1 T k-1 T-1k—-1

_(T i—

”;(g ):ﬁzzv@ _O‘”ZZ — pB)Th—ik=i-1 (a)
i=1 7=0 7=0 =0

(T 0 T
=(1 - nB)oy", +npvy” — angl”,

Assume 'TJIET) is obtained by running the algorithm on the dataset S and 'T)](;T) denotes the solution
obtained by running the algorithm on &’. In this way, we can conclude that for any ¢, we have

o) = p(V ot

=, V=0, o) — oL = [lo — 5| (13)

In the following, we try to bound the difference between H'I)IgT) - f),g,T) ||I. For each iteration (¢, 7) in

Algorithm 1, with probability 1 — %, the current selected samples in S and S are the same. In this
case, by using the first part of Lemma 1, we know that

184, — *mz:||<1—nﬂ>ﬁ$t>+n6v<Lang@ (1—nB8)8() — nBol” + ang! V|,

—(1—nB) |5 — —2T_g) _ 50 4 Mt

- (142 nﬂ)n 50,

2

where @ uses the first part of Lemma 1.

Meanwhile with probability % the selected samples are different in which we can use the first part of
Lemma 1:

®) ) _ (t) (t) g an ('
UT UT 1 B U + gr
lvr s tille =1 —nB)|v 7]5 1-nB )
@ anL 2amG
<=9 (14 175 ) ol = 50 + (1= n6)
1L—np
« L
—1 -8 (1+ 10 )n 50> + 200G

where @ holds by using the first part of Lemma 1. So combining these two cases yields
E {5521} :va)rl - 6521“

1 anl 0 _ 50
< _ = _ = _
<(1-2) Ja-m (14125 ) 1ot - 0
1 L
+ = [(1—775) (1+ &l )II (t)_”(t)||2+2a77G}
n 1—np
2anG
n

t—1 7
B (t=1) k4741 o] , 2anG ki
=(1—-n8+anlL) ]E{&O }JrnZOZO(IT]BJromL)
7=0 1=
1
8 —alL

Then by using (13), we have that for the output of the s-th stage, it holds
E |:||03—stage - gs—stage||2:| =E {HgTs - §Ts ||2} =E {H'U;(CTJ - ﬁ](CTS) 2}

2aG 1
n 77555 — a7s

=(1—nB+anL)ESY +

Cktr 2aG )kt
=(1—-ns+ omL)(t Detr+lg {650)} + aT {1 —(1—np+ anL)(t Dkt H} .

< (1 - nsﬁs + ansL)TSks E |:H9(871)7stage - 5(571)7stage||} + L {1 - (1 - 77565 + ansL)TSks] .
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Assume that at stage s, we have E |:||0573tage — gs,smgeﬂg} = 0. Then it holds that

E |:||0.sttage - gsfstage||2:|

}+2aG 1

< (1 —nsBs + ansL)TSks E {He(sfl)fstage - 5(571)75tage Tm

S S
2aG 1 [ T k. ] T k.
= — 1= (1 —n5; L) 1—n,8; L)
'7;1 n B;—aL L ( niBi + an;L) ] 1—[ ( n;B; + an; L)
i=to Jj=i+1
< i 261N (1= B, + anu L) 5] f[ exp (—n;8;Tjk; + an;Tik; L)
- n B —alLl iRt L Rj
i=to+1 j=i+1
D SN2 1 7 ] — )(Bs — aL
< Z i 1— (1 —n:B —an L) | exp <6(S DIC )>
=, n Bi—all : ppes
1=to
- Z 200G 1 exp 6(s = j)(Bs — L)
S L B; — alL ppoes

6s(Bs—aL)
< 200G 1- €xp <_ Jryee’ )
“n(Bs —aLl) | _exp (_e(m—@)

ppa

where @ holds since for optimization, we set S541 < %u, Ns < %, NsksTs > ﬁ and thus have

6 ﬁs_ L
—n; B Tikj + an;Tik; L > —%

On the other hand, we have that function ¢(f(+; @); -) is G-Lipschitz, and thus obtain

6s(B8s—al)
202 1 —exp <—7M)a )

[1 — (1 —nsfs + ansL)TSkS}

E |[¢(f(z;07);y) — E(f(fv;@T)%y)@ <GE [Hatﬂ —0pia]]2| < (B —aL) | _ oxp (_ 6(,857aL)> :

upa

Step 3. Excess risk error by combining optimization error and generalization error. Now we
combine all results together, including the above optimization error and generalization error, and use
Lemma 1 in the manuscript. Specifically, for the case o < 85 < % 1, we have

6sL
A 2aG? 1 —exp (7 /L-‘rL)

50pt+€gen S + .
A _ apl _ _ 6L
n(ﬁ U+7M+L)1 exp( ;H-L)

where A’ = E[F(6y) — F(0%)]. Then for the case where there is a constant p such that (VF;(6), 6 —
0%) > p(F,(0) — F;(6%)), we have

6s(Bs—alL)
+ < A/ + 200G 1- €xp (7 npo )
€ Egen < .
opt e =05 T (B, — al) 1 — exp (_ 6(ﬁsfaL)>
Hpox
The proof is completed. ]
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