
Appendix

Organization. The Appendix provides additional details, including the proof of the theoretical results
and more experimental results, to support the major technical contribution presented in the main
paper. The Appendix is organized as follows. Appendix A summarizes the major notations used
in the main paper. Appendix B provides the detailed proof of Theorem 1. Appendix C presents
the pseudo code for the active sampling process using GP-B2M. Finally, Appendix D provides
additional experimental results, including more ablation study, passive learning performance, and
active sampling time comparison. The link to the source code is provide in Appendix E.

A Major Notations and Definitions

We summarize the major notations used in the main paper. We categorize the notations into four
major types: observed, latent, auxiliary, and hyperparameters, based on their roles in the model.
Table 1 provides a detailed definition of each notation along with their assigned type.

Table 1: Summary of notations with definitions
Notation Definition Type

xn Feature vector of the n-th data sample Observed
yn Output labels of xn Observed
f (k) Latent GP functions of component k Latent

mk, m̂k Prior and posterior means of fk Hyperparameter
Σk, Σ̂k Prior and posterior covariances of fk Hyperparameter
znk Latent indicator variable Latent
ϕ̂nk Posterior mean of latent indicator znk Hyperparameter
h(k) Mapping function for component k Latent
πn Mixture component weights of xn Latent
θk Mixture component k Latent

akl, bkl; âkl, b̂kl Prior and posterior parameters of Beta random variable θkl Hyperparameter
λn Gamma auxiliary random variable Auxiliary

αn, βn Posterior parameter of Gamma random variable λn Hyperparameter
υnk Poisson auxiliary random variable Auxiliary
γnk Posterior mean of Poisson random variable υnk Hyperparameter
ωnk Pólya-Gamma auxiliary variable Auxiliary
cnk Posterior parameter of Pólya-Gamma random variable ωnk Hyperparameter

B Proof of Theorem 1

In this section, we provide the detailed proof of Theorem 1. We first prove the following lemma,
which is a key component used in our proof.
Lemma 1. Given the complete data likelihood (7) and the property of the Pólya-Gamma distribu-
tion (15), the posterior variational distribution q̂(ωnk, υnk) of auxiliary variables ωnk and υnk can
be factorized as q̂(ωnk|υnk)q̂(υnk), where q̂(ωnk|υnk) is a Pólya-Gamma distribution and q̂(υnk) is
a Poisson distribution.

Proof. We will make use of the property of the Pólya-Gamma distribution [24]. In particular, the
probability density of a Pólya-Gamma distribution PG(ω|c1, c2) with parameters c1 and c2 can be
derived through an exponential tilting of PG(ω|c1, 0):

p(ω|c1, c2) =
exp(− c22

2 ω)p(ω|c1, 0)

Eω′ [exp(− c22
2 ω

′)]
(15)

where p(ω|c1, 0) is the density of a PG(ω|c1, 0) random variable and the expectation in the denomi-
nator is computed by:

Eω′ [exp(−ω′t)] =
1

coshc1(
√
t/2)

(16)
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where ω′ ∼ PG(c1, 0).

By applying the general solution of mean field variational inference [28]

ln q̂(φi) = Eφ−i
[ln p(Y,φ)] + Const (17)

where φ = {Θ, Z, F,λ,Υ,Ω} and φi = {Υ,Ω}, we have

ln q̂(Ω,Υ) =EZ,F,λ

[
ln
∏
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+ lnPG(ωnk|υnk, 0) + υnk[ψ(αn)− βn]− ln υnk!

}
+Const (21)

which implies that q(ωnk, υnk) follows the distribution given below:

q̂(ωnk, υnk) ∝
(
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∝PG(ωnk|υnk, cnk)Poisson(υnk|γnk) (25)

where

cnk = f̄ (k)n =

√
m̂nk

2
+ Σ̂k(n, n) (26)

γnk =
exp(ψ(αn)) exp(

m̂nk

2 )

βn cosh(
f̄
(k)
n

2 )
(27)

Here m̂nk denotes the nth element of m̂k, and Σ̂k(n, n) denotes the nth element on the diagonal of
Σ̂k.

Proof of Theorem 1

Now we provide the proof for Theorem 1 in the main paper by deriving the variational posterior
distribution. We start by specifying the complete data likelihood

p(Y,φ) =
∏
n

∏
k

p(ynk|θk, znk)p(θk)p(znk|fn, λn, υnk, ωnk)p(ωnk|υnk)p(υnk|λnk)p(λn)

(28)
Based on the definition of the variational distribution given by (8), we invoke the general solution in
(17) iteratively by setting φi as Θ,λ, Z, and F , respectively.
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Optimize with respect to q(Θ)

ln q̂(Θ) =EZ [ln p(Y|Z,Θ)p(Θ)] + Const (29)

=

N∑
n=1

K∑
k=1

E[znk]
L∑

l=1

ynl ln θkl + (1− ykl) ln(1− θkl)

+

K∑
k=1

L∑
l=1

(akl − 1) ln θkl + (bkl − 1) ln(1− θkl) + Const (30)

=

K∑
k=1

L∑
l=1

[ N∑
n=1

(ϕ̂nkynl + akl − 1) ln θkl + ((ϕ̂nk(1− ynl) + bnk − 1) ln(1− θkl)

]
+Const

(31)

which implies that q̂(θk) ∼
K∏

k=1

Beta(θkl|âkl, b̂kl) where

âkl =akl +

N∑
n=1

ϕ̂nkynl (32)

b̂kl =bkl +

N∑
n=1

ϕ̂nk(1− ynl) (33)

Optimize with respect to q(λ)

ln q̂(λ) =EΥ[ln p(υ|λ)p(λ)] + Const (34)

=

N∑
n=1

[ K∑
k=1

γnk lnλn −Kλn

]
+Const (35)

where computation of γnk is given by (27) in Lemma 1. This implies that q̂(λn) ∼
Gamma(λn|αn, βn) where

αn =

K∑
k=1

γnk + 1 (36)

βn =K (37)

Optimize with respect to q(F )

ln q̂(F ) =EZ,Υ,Ω

[
ln

N∏
n=1

K∏
k=1

p(znk|f (k)n , λn, υnk, ωnk)p(f
(k)
n )

]
(38)

=EZ,Υ,Ω

[
ln
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N (f (k)|zk − υk

2
, diag(ωk)

−1)N (f (k)|0,Σk)

]
(39)

(40)

which implies that q̂(f(k)) ∼ N (f (k)|m̂k, Σ̂k) where

m̂k =
1

2
Σ̂k(ϕ̂k − E[υk]) (41)

Σ̂k =(Σ−1
k + diag(E[ωk]))

−1 (42)

where E[υk] = γk, Eq(ωnk,υnk)[ωnk] =
E[znk]+γnk

2cnk
tanh cnk

2 [24].

16



Optimize with respect to q(Z)

ln q̂(Z) =EΘ,F,Ω,Υ
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which implies that q̂(znk) ∼ Cat(znk|ϕ̂nk) where

ϕ̂nk ∝ exp

{ L∑
l=1

[ynl(ψ(âkl)− ψ(âkl + b̂kl))] +
m̂nk

2

}
(45)

C Pseudo Code for GP-B2M Based Active Learning

Algorithm 1: Active sampling using GP-B2M
input :Training set: (X,Y), kernel function: K(·), unlabeled candidate pool: Xu

output :Selected sample: x̂∗
1 Initialize variational hyperparameters: mk, akl, bkl, αn, γnk
2 Set Σk = K(X,X), βn = K.
3 while (!converged) do
4 for n ∈ [1 : N ] do
5 for k ∈ [1 : K] do
6 update γnk using equation (27)
7 update cnk using equations (23) and (26)
8 update ϕ̂nk using equation (45)
9 end

10 end
11 for k ∈ [1 : K] do
12 update m̂k using equation (41)
13 update Σ̂k using equation (42)
14 for l ∈ [1 : L] do
15 update âkl using equation (32)
16 update b̂kl using equation (33)
17 end
18 end
19 end
20 return x̂∗ = arg max

x∗∈Xu

ln|cov[y∗|x∗]|+η
∑

k Var[π∗k]/K

D More Details of Experiments and Additional Results

In this section, we first provide more details about our experiments, including the key properties
of the real-world data (see Table 2) and hyperparameter settings. We then present some additional
experimental results to complement the results in the main paper.

Our experiment runs on a High Performance Computing (HPC) cluster with Intel® Xeon® Gold 6150
CPUs @ 2.70GHz (six cores per learning task), 24 TB RAM, and 100 Gbit/sec RoCEv2 interconnect
(Mellanox MLX5/Juniper QFX210-64c). The submitted source code does not require GPUs to run.

D.1 Hyperparameter Settings

The parameters of the prior Beta distribution, akl and bkl are set to 1. We determine the model
convergence by observing the sum of squared changes of the latent random variables, ∆φ, between
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Table 2: Summary of datasets
Dataset Instances Features Labels Sparsity

Delicious 6833 500 156 0.04
Enron 1702 1001 53 0.06
Bibtex 7013 1836 127 0.02

Corel5K 5000 499 132 0.02
NUS-WIDE 269,648 64 128 0.02

two consecutive parameter update iterations. The parameter update ceases if ∆φ ≤ 1e−3 or the
number of update iterations exceeds 20. In the experiment we observe the B2M converges fast, often
within 5 to 8 iterations.

Both MIML [20] and CS-GP [21] compress the original label space though compressed sensing. We
adopt Bayesian principle component analysis to adjust the optimal compressing rate for CS-GP as
proposed in [21]. We then apply the same compressing rate to MIML to make a fair comparison. On
average, the compressing rates applied by both model is close to 0.45± 0.05 on the five datasets. We
set ρ = 0.75 and start B2M training with K = 25 components. We observe that as active learning
goes, K will gradually drop close to 10 for all the datasets. However, CBM [6] performs poorly at
such small number of components so we fix the K to 25 when training the model.

We use a RBF kernel: K(x1, x2) = exp{− |x1−x2|2
2δ2 } for B2M and other baselines that utilize the

kernel machine for prediction. The length scale parameter δ for CS-GP is optimized via likelihood
maximization and for the rest models are fixed as 1. Although we assume the assignment of each
data instance is noise free, in B2M, we still add a small noise - like term ϵ = 1e−3 to the diagonal of
the gram matrix to ensure that the covariance matrix Σk is positive definite. Finally, we follow the
convention and set the prior mean of the latent GP functions mk = 0,∀k ∈ [1,K].

D.2 Additional Mixture Components

We present some additional mixture components learned from the synthetic data that complement
the three presented in the introduction of the main paper. As shown in Figure 9, the first component
allocates high probability mass on G3, G4, and G8, which implies that it focuses on the union of
these three geometric regions. Meanwhile, it also has the highest mass on G6 compared with other
components. Since E1 depends on G6, we have a high chance to observe E1 and other type E labels
in this component as well. The second component focuses on a similar geometric region but pays
less attention to G3 and G6. As a result, it is less likely to observe type E labels, as evidenced by
a low mass on E1. The third component only focuses on the intersection region of G2 and G3, as
evidenced by a high mass on O2. In addition, a data instance assigned to this component is expected
to have only one or two labels as indicated by the high mass on C1.

G3 G4 G8 G2 G6 O2 O3 C1 C2 E1
Figure 9: Additional components from the synthetic data

D.3 Passive Learning Performance

We report the passive learning performance of the proposed B2M along with some representative
baselines, aiming to further demonstrate the effectiveness of the proposed active sampling function.
As multiple baselines leverage BRMs as the base model with different sampling mechanisms, we
only report the BRMs performance in the passive setting. In addition, we also include a compressed
sensing based model (MIML) [20] and the conditional Bernoulli mixture model (CBM) [6]. As can
be seen from Table 3, the passive learning performances of these two models are much lower than
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other models, which indicates that they are less suitable when being trained using limited labeled
data. As result, we did not include them for the active learning performance comparison in the main
paper. From Table 3, we can also see that while B2M still outperforms other models in most cases
under the passive setting, it achieves a more significant advantage in active learning. This further
justifies the effectiveness of proposed active sampling function.

Table 3: Passive Learning Performance
Dataset Training size B2M CS-GP MIML CBM BRMs

Corel5K 100 0.71 0.70 0.61 0.64 0.70
300 0.74 0.73 0.57 0.64 0.73
500 0.74 0.75 0.60 0.65 0.73
700 0.76 0.75 0.67 0.69 0.74

BibTex 100 0.58 0.58 0.59 0.50 0.57
300 0.61 0.61 0.60 0.49 0.60
500 0.61 0.61 0.62 0.53 0.62
700 0.63 0.62 0.64 0.58 0.62

NUS-WIDE 100 0.81 0.82 0.66 0.66 0.80
300 0.82 0.84 0.70 0.68 0.81
500 0.83 0.85 0.70 0.69 0.82
700 0.85 0.85 0.71 0.72 0.82

Enron 100 0.84 0.83 0.75 0.47 0.78
300 0.86 0.84 0.69 0.49 0.80
500 0.86 0.86 0.66 0.52 0.85
700 0.87 0.88 0.61 0.55 0.86

Delicious 100 0.70 0.69 0.57 0.69 0.67
300 0.70 0.71 0.60 0.70 0.68
500 0.71 0.71 0.63 0.72 0.68
700 0.75 0.72 0.65 0.74 0.69

D.4 Additional Ablation Study Results

In addition to the results shown in the main paper, we present the remaining results that demonstrate
the impact of the tunable parameters η and ρ over other real-world datasets. From Figure 10, we
observe that the label covariance guided sampling usually leads to higher converged active learning
performance while the variance guided sampling usually converges faster.

From Figure 11, we conclude that in general, the large number of components in the early stage of
active learning might hurt the model performance due to the lack of training data and limited observa-
tions of label correlations. However, as active learning goes, the model needs more components to
encode newly observed label correlations so that a larger K usually leads to a better performance.
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Figure 10: Impact of η

D.5 Active Sampling Time Comparison

In Table 4, we present the execution time (in seconds) for a complete active sampling iteration that
includes the model training and choosing the best sample from the unlabeled pool. The sample
selection time for all the models is similar to each other since the prediction over candidate datasets
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Figure 11: Impact of ρ

and the computation of the sampling criteria are linear. The major factor that affects the active
sampling time is caused by the model retraining. This can be further decomposed to the total number
of basic predictors multiplied by the time for training each basic predictor. Both B2M and CBM have
the least number of basic predictors to train (K ≤ 25) thus run faster than other baselines. Both B2M
and CS-GP have the same complexity for training the basic predictors (i.e., GP). However, CS-GP
runs slower as its optimal compressing rate (around 0.45) results in training more basic predictors.
MMC and CVIRS leverage SVMs as the basic predictor which has the same learning complexity as
GPs. Meanwhile, they need to train much more basic predictors than other baselines, making them
the slowest models for active sampling. Finally, the MIML model relies on mutual information for
sampling so it takes longer time than B2M in most cases.

Table 4: Active Sampling Time
Dataset Training size B2M CS-GP MMC CBM CVIRS MIML

Corel5K Init 10.7 19.1 17.0 2.9 19.0 16.8
100 12.1 22.8 37.1 3.6 34.8 16.8
300 17.4 32.5 96.4 9.5 78.3 17.1
500 23.7 42.3 157.5 16.5 149.4 17.0

BibTex Init 24.9 37.7 34.5 7.9 38.4 19.4
100 26.1 47.6 62.5 9.6 61.6 44.1
300 31.7 69.2 131.6 18.5 131.9 44.4
500 38.1 89.9 201.7 27.3 232.7 44.2

NUS-WIDE Init 2.5 2.3 3.5 0.4 11.2 8.6
100 2.8 3.6 6.0 0.5 20.7 8.7
300 6.4 14.4 18.5 1.7 40.5 8.6
500 10.9 21.3 51.8 4.9 62.7 8.5

Enron Init 2.1 3.8 3.2 0.5 2.5 4.7
100 3.9 4.8 18.9 3.8 8.7 4.8
300 4.8 7.9 65.8 5.6 28.0 4.8
500 8.4 18.6 122.8 11.3 56.4 5.0

Delicious Init 11.1 15.5 20.1 4.7 52.9 31.9
100 11.8 17.2 37.6 5.6 78.8 32.1
300 16.6 23.4 92.5 8.8 143.6 31.8
500 22.6 36.6 164.3 14.1 221.0 31.5

E Source Code

The source code and detailed documentation can be found at https://github.com/
ritmininglab/GP-B2M-MLAL.git.
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