
Supplementary Material for DORT: Modeling1

Dynamic Objects in Recurrent for Multi-Camera 3D2

Object Detection and Tracking3

A Evaluation Metrics4

Detection Metrics We adopt the official evaluation protocol provided by nuScenes benchmark [1].5

The official protocol evaluates 3D detection performance by the metrics of average translation error6

(ATE), average scale error (ASE), average orientation error (AOE), average velocity error (AVE),7

and average attribute error (AAE). Besides, it also measures the mean average precision (mAP) with8

considering different recall thresholds. Instead of using 3D Intersection over Union (IoU) as the9

criterion, nuScenes defines the match by 2D center distance d on the ground plane with thresholds10

{0.5, 1, 2, 4}m. The above metrics are finally combined into a nuScenes Detection Score (NDS).11

Tracking Metrics Regarding the tracking metrics, the nuScenes benchmark mainly measures the av-12

erage multi-object tracking accuracy (AMOTA), average multi-object tracking precision (AMOTP),13

and tracking recall. In particular, AMOTA and AMOTP are the averages of multi-object tracking14

accuracy (MOTA) and multi-object tracking precision (MOTP) under different recall thresholds.15

B Implementation Details16

In the main paper, we have introduced our overall multi-camera 3D object detection and tracking17

framework and the details of the proposed components. In this supplemental section, we present the18

details of the other basic modules.19

B.1 Network Architecture20

Our framework is built based on BEVDet and BEVDepth, and we follow them to design the basic21

modules.22

2D Feature Extraction. Given N multi-view images I ∈ RN×W×H×3in each frame, we use a23

shared 2D backbone to extract the corresponding features. We adopt the standard ResNet-50 [2] as24

the backbone and initialize it with ImageNet pre-trained weights. Then we adopt a modified Feature25

Pyramid Network (FPN) [3] to extract the multiple-level features and the output 2D features are26

downsampled with the ratio of 1
16 with channel size 256: Fpv ∈ RW

16×
H
16×256.27

View Transformation. Our work is the same as BEVDet and BEVDepth that contains a 2D to 3D28

view transformation module. Specifically, we first leverage a depth prediction head to predict the29

depth probability for each pixel. Then we lift the 2D features to a 2.5D frustum space via out-product30

it with the depth probability. The depth probability range is set as [0m, 60m] with grid size 0.5m.31

With the 2.5D frustum features, the 3D features for each local volume are obtained via utilizing the32

camera intrinsic to project the 3D grid back to the frustum and bi-linear sample the corresponding33

features. As mentioned in the main paper, we aggregate the 3D volume features along the height34

dimension and obtain the corresponding object-wise BEV features F obj
bev ∈ RN×W obj×Hobj×256,35

where W obj and Hobj are the object features dimension and set as 28 in the main setting.36

RefineNet. Given the object-wise features extracted based on the proposal 3D box and motion,37

RefineNet takes several convolutional neural networks to extract the object-wise features and esti-38

mate the bounding box and motion residual. Specifically, we first adopt an average pooling layer to39

aggregate the 3D features along the height dimension and obtain the BEV features. Then we filter40

each object-wise BEV features with 6 basic 2D residual blocks, where each residual block consists41

of two 2D convolution layers and a skip connection module as in ResNet. The channel size of the42
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residual blocks in the first three layers is 256 and decreases to 64 in the last three layers. Then43

we aggregate the features along the spatial dimension via average pooling and take 4 layers MLP44

network to estimate the bounding box and motion residuals.45

B.2 The Tracking Module46

In this section, we provide the details of the tracking module that omit in the paper. Since DORT47

can estimate tightly coupled object location and motion, object tracking can be easily achieved via48

nearest center distances association [4, 5, 6]. Hence, our tracking module is mainly adapted from49

the previous distance-based object tracker [4, 5, 6]. Specifically, the tracking module contains four50

parts: Pre-processing, Association, Status Update and Life-cycle Management.51

Pre-processing. Given the detection results, the pre-processing stages mainly focus on filtering false52

negative objects. In our work, we first adopt Non-maximum Suppression to remove the duplicated53

bounding boxes with the threshold of 0.1 in terms of 3D IoU. Then we filter out the bounding boxes54

that the confidence threshold is lower than 0.25.55

Association. This stage associates the detection results in the current frame with tracklets in the56

past frame. Specifically, we first utilize the estimated object motion (velocity) to warp the detection57

results back to the past frame and then utilize the L2 distances of object centers to compute the58

similarity between the detected objects and the tracklets. Then we utilize the linear greedy matching59

strategy to achieve multi-object matching.60

Status Update. This stage updates the status of the tracklets. For the tracklets that do not match61

with any bounding boxes, we replace it object center location with the corresponding detection62

results. For the unmatched objects, we utilize the estimated object velocity to update its object63

center location.64

Life-cycle Management. The life-cycle management module controls the “birth” and “depth” of65

the tracklets (i.e. birth, depth). Specifically, for the unmatched bounding boxes, they will be ini-66

tialized as new tracklets. For the unmatched tracklets, we remove them when they are consecutive67

unmatched more than 2 times.68

C Ablation Studies69

In this section, we provide the additional ablation studies that omit in the main paper. We will release70

the code afterward for providing the details of the methods and reproducing the experimental results.71

DORT with Different Proposal Detector. We first show that DORT is agnostic with different72

proposal detectors (e.g. PGD [7], BEVDepth [8]). In Table 1, we display the experimental results73

of DORT with using PGD and BEVDepth as the proposal detectors. We can observe that the DORT74

is insensitive to the proposal detector and can consistently improve BEVDepth. We Benefiting from75

the low computation overhead of BEVDepth in the perspective part and the designed local volume,76

DORT also can achieve a more lightweight pipeline for dynamic object modeling.77

Table 1: Experimental results on the nuScenes validation set. 1 past frame is adopted in the temporal modeling.
∗ denotes the BEV FLOPS from the proposal detector.

Method mAP NDS Flops
PV BEV

BEVDepth 35.1 47.5 120.4 94.5
DORT with PGD 37.9 52.1 238.2 40.2

DORT with BEVDepth 38.1 52.1 120.4 74.4∗+40.2

Tracking with Semantic Embedding or Geometry Distance. In this work, DORT achieves 3D78

object tracking via the nearest centerness association. To have a more comprehensive comparison79

of the tracking pipeline designed, we further provide the comparison of DORT with using semantic80

embedding to associate objects. Specifically, we follow previous methods [9] and adopt the widely-81
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used quasi-dense similarity learning [10] to learn the tracking embedding. We extract two kinds82

of embedding features, one is from the perspective-view (PV) and another is from the bird-eye-83

view (BEV). In Table 2 and 3, we display the tracking results on the nuScenes tracking set. We84

can observe that DORT with geometry distance association can outperform the embedding-based85

methods by a large margin. Furthermore, it is also much simpler and more efficient that does not86

need to maintain an extra object embedding. Besides, the PV embedding is worse than the BEV-87

based embedding, which may be due to the view change in different cameras.

Table 2: Experimental results on the nuScenes validation set. 1 past frame is adopted in the temporal modeling.
Method AMOTA↑ AMOTP↓ MOTAR↑

PV-Embedding 36.8 1.412 44.2
BEV-Embedding 40.1 1.356 46.7

DORT (Geometry Distance) 42.4 1.264 49.2

88

Table 3: 3D object tracking results on the nuScenes validation set. We adopt ResNet-50 as the backbone and
set the input resolution as 704× 256.

Method AMOTA↑ AMOTP↓ Recall↑
QD-Track3D [9] 24.2 1.518 39.9

Time3D [11] 21.4 1.360 N/A
TripletTrack [12] 28.5 1.485 N/A
MUTR3D [13] 29.4 1.498 42.7

QTrack [14] 34.7 1.347 46.2
DORT 42.4 1.264 49.2

D Theoretical Analysis of Ignoring Object Motion89

In the main paper, we have shown that when ignoring object motion, the temporal correspondence90

would derive a biased depth. In this supplementary, we provide the full details of how ignoring91

object motion introduces a biased depth. We denote the camera intrinsic as K and the ego-motion92

from frame t0 to frame t1 as T ego
t0→t1 :93

K =

[
f 0 cu
0 f cv
0 0 1

]
, T ego

t0→t1 =

[
1 0 0 xego

0 1 0 0
0 0 1 zego

]
. (1)

Here, f is the camera’s focal length, and (cu, cv) is the camera center coordinates in the image. For94

simplicity, we assume the ego-motion only contains the translation (xego, 0, zego) on the horizontal95

plane. The analysis also can be easily extended to a more complicated case that the motion contains96

rotation. Given the multiple-view images, temporal-based methods can utilize photometric or fea-97

turemetric similarity to find the correspondence of pixel pt0 = (ut0 , vt0) in the past frame t0 and the98

pixel pt1 = (ut1 , vt1) in the current frame t1.99

When we ignore the object motion, the depth zt1 of pixel pt1 can be recovered as:100

T ego
t0→t1 · π(pt0 ,K) = π(pt1 ,K),

zt1
ut1 + cu

f
− xego =

ut0 + cu
f

(zt1 − zego),

zt1 =
zego(ut0 − cu)− fxego

ut0 − ut1

, (2)

where π denotes the projection from 2D image coordinate to 3D camera coordinate.101

But as we showed in the main paper, the moving objects occupy large ratios in the driving scenarios.102

For example, when the object contains the translation (xobj , 0, zobj) in the horizontal plane, the103

object’s motion can be represented as104

T obj
i→j =

 1 0 0 xobj

0 1 0 0
0 0 1 zobj

 . (3)
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Figure 1: Different object motion can make the same temporal correspondence derive different depth.

With the object motion, the depth zt1 of pixel pt1 is recovered as:105

T obj
t0→t1T

ego
t0→t1 · π(pt0 ,K) = π(pt1 ,K),

zt1
ut1 + cu

f
− xego − xobj =

ut0 + cu
f

(zt1 − zego − zobj)

ẑt1 =
(zego + zobj)(ut0 − cu)− f(xego + xobj)

ut0 − ut1

. (4)

From Eq (2) and Eq (4), we can obtain the depth gap for the temporal correspondence with and106

without considering object motion:107

∆z =
zobj(ut0 − cu)− fxego

ut0 − ut1

. (5)

In Figure 1, we also provide a toy example to illustrate that one temporal correspondence can come108

from multiple combinations of object depth and motion (i.e. inaccurate depth with zero motion and109

accurate depth and GT motion). This means that if we inaccurately assume that objects are static110

across frames, the temporal correspondence would derive a misleading depth.111

D.1 Ill-posed Problem of Simultaneously Estimating 3D Location and Motion112

Although object motion plays a critical role in temporal correspondence, however, it is non-trivial113

to estimate it from the monocular images. As shown in Figure 1, the one correspondence can come114

from infinite combinations of location and motion (the location can be the point in the ray
−−−−→
Ot0Pt0115

and
−−−−→
Ot1Pt1 , and the motion can be the line that connects the points.) Hence, it is an ill-posed116

problem that simultaneously estimates the 3D location and motion from the monocular images. To117

alleviate this issue, we leverage the rigid-body assumption for the objects in the driving scenarios118

and elaborate more temporal frames with constant velocity regularization to further constrain the119

motion.120

E More Related Work121

Multi-View 3D Perception Leveraging multi-view images to recover 3D information is a fun-122

damental topic, such as structure from motion [15], multi-view stereo [16], simultaneous lo-123

calization and mapping [17], etc. One line of methods develop neural-network-based cost vol-124

umes [16, 18, 19, 20, 21, 22] to construct cross-frame visual cues for 3D perception. Another line of125

methods [23, 24, 25] constructs geometry constraints and leverage optimization techniques to obtain126

a tight-coupled 3D structure. However, most of the work assumes the scene and objects are static,127

making them fail to handle the moving objects in driving scenarios.128
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