
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments

A NP-HARDNESS OF DEPLOYMENT
PLANNING

Finding the optimal deployment plan that maximizes the
overall SLO for deploying multiple models on a hetero-
geneous GPU cluster with variable interconnect topology
and computational capabilities is non-trivial. In particular,
we show that this problem is NP-hard by transforming it
into the well-known NP-hard Job Shop Scheduling Problem
(JSSP) (Sotskov & Shakhlevich, 1995; Omar et al., 2006).

Transformation of the deployment planning problem to
JSSP. Each GPU in the heterogeneous cluster serves as a
distinct machine in the JSSP. These GPUs exhibit differ-
ences in computation power, memory, and communication
capabilities. Each model, or its components depending on
the placement method, is considered a job within JSSP. The
deployment of each model involves multiple tasks or oper-
ations, each corresponding to the deployment of a part of
a model on one or more GPUs, accompanied by specific
resource requirements and execution constraints. Sequential
dependencies are evident in scenarios where the completion
of one operation on a GPU is prerequisite for the initia-
tion of the next on another GPU, characteristic of pipeline
model parallelism. Concurrent dependencies arise when
operations must occasionally synchronize across GPUs, re-
flecting interdependencies that require coordination akin to
those in tensor model parallelism. In this context, maxi-
mizing SLO does not solely involve minimizing idle and
wait times but also necessitates the optimization of the al-
location and scheduling of operations to ensure continuous
and efficient GPU utilization. Thus, this challenge can be
viewed as a variant of JSSP where the objective shifts from
minimizing makespan to maximizing SLO, analogous to
maximizing the number of completed jobs or operations
within certain latency deadlines. This requires managing
both the sequence and concurrency of operations across
heterogeneous resources and optimizing overall system effi-
ciency to mitigate bottlenecks and reduce synchronization
overheads.

Job shop scheduling is recognized as NP-hard due to the
complexity inherent in managing dependencies and varying
capabilities across machines. By formulating this problem
as a variant of JSSP adapted for SLO, we establish that
solving the model placement problem is at least as hard
as solving the classic NP-hard JSSP, thus confirming the
NP-hardness of the problem.

B DEDUCTION OF PARALLEL
CONFIGURATION

Given the group formation and the designated phase, we
need to deduce the optimal parallel configuration for each
group. Algorithm 2 outlines the process. 1� We enumerate

Algorithm 2 Generate Model Parallel Configurations
1: Initialize: group formation: G = {G1, G2, ..., Gg}, min-

imum number of single-type GPUs in the group: T =
{T1, T2, ..., Tg}, cluster information: I , model configuration:
M

2: model parallel configurations []
3: for i in len(G) do
4: plan list []
5: /* Limit TP within Single-type GPUs */
6: for TP in {1, 2, ..., Ti} do
7: for PP in {1, 2, ..., Gi.num gpus

Ti
} do

8: /* Route Pipeline Communication */
9: plan Dynamic Programming(I, TP, PP)

10: /* Generate Pipeline Partition */
11: plan Pipeline Partition(M,plan)
12: if Gi.type is prefill then
13: C latency(plan)
14: else
15: C throughput(plan)
16: end if
17: plan list.append((C, plan))
18: end for
19: end for
20: if Gi.type is prefill then
21: /* Select Latency Optimal Plan */
22: plan min(C) in plan list
23: else
24: /* Select Throughput Optimal Plan */
25: plan max(C) in plan list
26: end if
27: model parallel configurations.append(plan)
28: end for
29: return model parallel configurations

all possible TP and PP combinations on each given group
formation. Note that our first heuristic is to limit tensor
model parallelism within single-type GPUs, so the TP de-
gree should be smaller or equal to the minimum number of
single-type GPUs in the group, which largely minimizes the
search space. 2� Dynamic programming algorithm is uti-
lized to route the pipeline communication path. It optimizes
communication routing in a network by using a bitmask
to represent all possible subsets of stages, initializes each
stage with a zero bandwidth and builds paths by calculat-
ing the potential bandwidth for each link between stages,
updates the optimal path recursively if a higher bandwidth
stage is found, and determines the maximum bandwidth
path available by examining the states for the subset that
includes all stages, ensuring the most efficient data transfer
across the network. 3� We adjust the pipeline layer parti-
tion with respect to the memory capacity and computing
ability of different GPU types. Specifically, the pipeline
partition is adjusted in proportion to the total memory and
computing capacity of the GPU set currently servicing this
stage, while ensuring that the memory limits of individual
GPUs are not exceeded. This heuristic has proven effec-
tive in determining an optimal pipeline partition. 4� For
the compute-bound prefill replicas, we select the latency

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments

Figure 13. Heat map of inter-connection bandwidth matrix in the
cloud (left) and in-house (right) settings.

optimal plans, for the memory bandwidth-bound decode
replicas, we select the throughput optimal plans. To esti-
mate the latency and throughput of each plan, we employ
the cost model proposed by HexGen (Jiang et al., 2024),
which directly provides us with the inference memory and
latency costs for both prefill and decode phases, relative to
different request batch sizes. We calculate the throughput
by dividing the maximum total batched token size that the
device group can handle by the decode latency. Note that
the estimated latency information is also provided to our
simulator for SLO estimation.

C INTER-CONNECTION BANDWIDTH
MATRIX

The bandwidth distributions exhibit significant variability in
cloud and in-house environments. We measure the commu-
nication bandwidth between each pair of GPUs via NCCL
for both environments described in §5.1. As shown in the
left heatmap of Figure 13, the cloud environment demon-
strates notable bandwidth heterogeneity, influenced by a
range of GPU types and network configurations. This vari-
ability results in non-uniform connectivity patterns across
the network. Conversely, the right heatmap showcases the
in-house environment, characterized by a uniform GPU-to-
GPU communication bandwidth, evidenced by consistently
high connectivity values. These visualizations emphasize
the distinctions between cloud and in-house environments.

D RATIO IMPACT ON SYSTEM SLO
ATTAINMENT

We show the impact of phase designation and orchestration
on overall system SLO attainment in Figure 14. The coding
workload, characterized by relatively longer input length
and shorter output length, exhibits enhanced performance
with more prefill replicas and fewer decode replicas. A
ratio of 5:3 yields the optimal results. Conversely, the con-
versation workload, typified by relatively shorter prompts

Figure 14. Impact of phase designation and orchestration on over-
all system SLO attainment. We experiment with LLaMA-13B on
both coding and conversation workloads across 16 A5000 GPUs,
with two GPUs serving one replica.

Scheduler (§3)

Served
Model

LLM

Cloud
GPUs

Profiler

Coding
/Conversation

Coordinator

Adjust deployment plan

GPU Group 1

GPU Group 2

GPU Group 3

…Input Output

Workload pattern

Workload shift

Request dispatch

Cluster info
Comm matrix

Plan

Place
model M

od
el

co
nf
ig

Figure 15. System overview of ThunderServe.

and longer responses, necessitates more decode replicas
and fewer prefill replicas to prioritize resources to the long-
running decoding. Here, a ratio of 3:5 achieves the best
performance.

E IMPLEMENTATION DETAILS

Overview of ThunderServe. The architecture overview of
ThunderServe is shown in Figure 15. There are three major
components, which are the scheduler, the workload profiler,
and the task coordinator.

The scheduler is the core of ThunderServe for high-
performance LLM serving in cloud environments. The
scheduler takes as input the model configurations (e.g., hid-
den size and layer number), workload patterns obtained from
the workload profiler, cluster information (e.g., available
GPUs and their corresponding types), and communication
bandwidth matrix among all GPUs. Then, it performs the
scheduling algorithm introduced in §3 to provide the opti-
mal deployment plan. Should there be a detected shift in
workload, or a GPU heartbeat timeout that suggests a need
for cluster size adjustment, the scheduler will perform the
lightweight re-scheduling process and adjust the deployment
plan to adapt to the new workload or cluster size.

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments

The workload profiler monitors the real-time workload pat-
terns, including the average prompt length of incoming
requests and average output length of generated responses.
These patterns are utilized to analyze the prefill and decode
cost for each single request. For instance, in contemporary
LLM services, common workload scenarios include coding
and conversation (Patel et al., 2023), where both typically
have a median prompt length exceeding 1000 tokens. How-
ever, the coding service produces much fewer output tokens,
with a median of 13, while the conversation service gen-
erates a larger number of output tokens, with a median of
129. Undoubtedly, the overall system workload varies when
the proportions of incoming requests for various services
change in real-time. Once an obvious workload shift is
detected, the workload profiler will notify the scheduler.

The task coordinator is in charge of the request dispatching
among the prefill and decode replicas. Upon receiving a
request, the task coordinator assigns the appropriate prefill
replica and decode replica, respectively. The assignment is
guided by the deployment plan generated by the scheduler.
The task coordinator is mainly based on an open-source
implementation of decentralized computation coordination
(Yao, 2023) that utilizes libP2P (LibP2P, 2023) to estab-
lish connections among the work groups in a peer-to-peer
network.

Based on these components, the overall routine of Thun-
derServe is as follows. 1� To launch a serving process, the
scheduler generates the deployment plan, which is then uti-
lized to instantiate the model replicas over the cloud GPU
resources. 2� During the serving process, the coordinator
dispatches the incoming requests across the prefill and de-
code replicas, and gathers the generated responses. 3� At
the same time, the workload profiler consistently monitors
the workload and reports to the scheduler. 4� Once a work-
load shift is detected, the scheduler triggers a lightweight
re-scheduling process to adjust the deployment plan for
better adaptation to the new workload.

Parallel communication groups. All communication prim-
itives in ThunderServe are implemented using NVIDIA
Collective Communication Library (NCCL). To circum-
vent the substantial overhead associated with construct-
ing NCCL groups, ThunderServe preemptively establishes
a global communication group pool containing all poten-
tially required groups. For KV cache communication, we
employ NCCL’s asynchronous SendRecv/CudaMemcpy
functions for KV cache communication to prevent GPU
blocking and enable computation and communication over-
lapping during transmission. KV cache queues are main-
tained on the prefill replicas, and upon completion of a
decoding round, the decode replicas retrieve KV caches
from these queues, utilizing the GPU memory of the prefill
replicas as queuing buffers.

F CASE STUDY OF SCHEDULING

We list the deployment plan generated by ThunderServe
from coding workload to conversation workload in the het-
erogeneous setting. We use the following representation to
describe the scheduled results. We use an array to specify
one independent model replica, with two numbers repre-
senting the degrees of tensor model parallelism and pipeline
model parallelism. For example, (2,2) indicates a model
replica with tensor model parallel degree of 2 and pipeline
model parallel degree of 2 (2 pipeline stages).

We also provide the instances we considered in §5.1 here for
better readability: two 4⇥A6000 instances, two 4⇥A5000
instances, one 8⇥A40 instance and two 4⇥3090Ti instances,
making up to be 32 GPUs in total.

Parallel configuration breakdown. In the coding work-
load, the 8⇥A40 instance employs a parallel strategy (2,1)
to support four prefill replicas. One 4⇥A6000 instance
uses a parallel strategy (2,1) to support two prefill repli-
cas, while the other one 4⇥A6000 instance uses a parallel
strategy (1,2) for two decode replicas. One 2⇥A5000 and
one 2⇥3090Ti instances utilize a parallel strategy (2,2) to
support one prefill replica, and the other one 2⇥A5000 and
one 2⇥3090Ti instances utilize a parallel strategy (2,2) to
support one decode replica. One 4⇥A5000 instance utilizes
a parallel strategy (4,1) to support one prefill replica. One
4⇥3090Ti instance implements a parallel strategy (2,2) to
support one decode replica.

In the conversation workload, the 8⇥A40 instance employs
parallel strategies (2,1) and (1,2) to support three prefill repli-
cas and one decode replica, respectively. The two 4⇥A6000
instances utilize a parallel strategy (1,2) to support four de-
code replicas. One 2⇥A5000 and one 2⇥3090Ti instances
utilize a parallel strategy (2,2) to support one prefill replica,
and the other one 2⇥A5000 and one 2⇥3090Ti instances
utilize a parallel strategy (2,2) to support one decode replica.
One 4⇥A5000 instance utilizes a parallel strategy (2,2) to
support one decode replica. One 4⇥3090Ti instance im-
plements a parallel strategy (2,2) to support one decode
replica.

Insights. In the in-house setting, the 8⇥A100 instance can
only serve 4 model replicas, while in the cloud setting, the
32 cloud GPUs with various types can serve a maximum of
12 model replicas with various parallel configuration within
the same price budget. In this case, although individual in-
ference tasks in the cloud setting may experience increased
latency due to the lower hardware performance (e.g., GPU
flops and bandwidth), the overall system performance is
improved due to the higher number of model replicas. Ad-
ditionally, our scheduling algorithm prioritizes GPUs with
high peak fp16 flops for prefilling (e.g., A40) and high
memory bandwidth GPUs for decoding (e.g., 3090Ti), and

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments

Data Center 1 Data Center 2

5 Gbps

Data Center

40 Gbps

Case A: within data center Case B: cross data centers

Figure 16. Two exampled network conditions on cloud.

selects the most suitable model parallel configuration for
each phase to optimize the overall system performance. And
although KV cache compression can linearly mitigate com-
munication overhead, significant disparities in bandwidth
across different cloud environments render extremely low
bandwidth scenarios—such as those experienced between
data centers—unsuitable for effective KV cache communica-
tion. Thanks to our scheduling and orchestration algorithms,
ThunderServe automatically identifies KV cache transmis-
sion paths that maintain overall performance.

G CASE STUDY OF LIGHTWEIGHT
RESCHEDULING

We list the deployment plan change during lightweight
rescheduling with 4 out of 32 GPUs (one 4⇥A6000 instance
that support two decode replicas) become unavailable.

The deployment plan for the coding workload, detailed in
Appendix F, initially includes 8 prefill and 4 decode replicas.
After the offline of 4 GPUs, there are 8 prefill and 2 decode
replicas remaining. A subsequent lightweight rescheduling
converts one prefill replica, which uses 4 A5000 GPUs
with a (4,1) strategy, into a decode replica. The adjustment
is reasonable as this group of GPUs exhibits the highest
overall memory bandwidth among the prefill replicas. The
deployment plan for the conversation workload initially
includes 4 prefill and 8 decode replicas. After the offline of
4 GPUs, there are 4 prefill and 6 decode replicas remaining.
A subsequent lightweight rescheduling converts one prefill
replica, which uses 2 A40 GPUs with a (2,1) strategy, into a
decode replica.

H CASE STUDY OF NETWORK EFFECT ON
PHASE SPLITTING

Table 5. Benchmarks of non-disaggregation baseline vs. Thun-
derServe under high inter-instance communication bandwidth vs.
ThunderServe under low inter-instance communication bandwidth.

Configuration Prefill KV Comm Decode E2E Throughput
Baseline 884 ms 0 ms 1689 ms 1610 tokens/s
ThunderServe (High) 698 ms 133 ms 1126 ms 3292 tokens/s
ThunderServe (Low) 964 ms 41 ms 1846 ms 2196 tokens/s

Consider use ThunderServe to serve LLaMA-30B model in

Case A: within data center Case B: cross data centers

TP Comm PP Comm KV Comm

Figure 17. ThunderServe deployment plans on different cases.

Table 6. Impact of KV cache communication compression on the
perplexity results on WikiText2, PTB and CBT datasets.

Dataset LLaMA-7B LLaMA-30B

WikiText2 16-bit 3.53 2.73
4-bit 3.55 2.75

PTB 16-bit 7.46 6.49
4-bit 7.42 6.55

CBT 16-bit 7.66 6.31
4-bit 7.70 6.30

Table 7. LLaMA rouge results (using 16-bit outputs as the ground
truth and the 4-bit outputs as the prediction) on WikiText2, PTB
and CBT datasets.

Dataset LLaMA-7B LLaMA-30B

WikiText2
ROUGE-1 0.962 0.942
ROUGE-2 0.941 0.928
ROUGE-L 0.955 0.941

PTB
ROUGE-1 0.975 0.928
ROUGE-2 0.950 0.911
ROUGE-L 0.971 0.928

CBT
ROUGE-1 0.925 0.946
ROUGE-2 0.912 0.931
ROUGE-L 0.925 0.937

a heterogeneous environment featuring two GPU instances:
the first instance equipped with 4⇥A40 GPUs, and the sec-
ond with 4⇥3090Ti GPUs. We conducted tests on the in-
ference throughput of this setup by feeding it continuous
input sequences of length 1024 under two different inter-
instance communication bandwidths: 40 Gbps and 5 Gbps,
as demonstrated in Figure 16.

We established a non-disaggregating baseline that utilizes
4⇥A40 GPUs to support one model replica and 4⇥3090Ti
GPUs to support another. By comparing the baseline
with ThunderServe under different network conditions, we
observed some interesting results: With a bandwidth of
40 Gbps, ThunderServe leverages the 4⇥A40 GPUs with
higher peak flops to support one prefill replica, and the
4⇥3090Ti GPUs with higher memory access bandwidth to
support one decode replica. This configuration optimizes
system performance, achieving a 2⇥ performance gain over
the non-disaggregating baseline. However, at a lower band-
width of 5 Gbps, the inter-instance communication band-
width is insufficient for efficient KV cache communication.
Consequently, ThunderServe allocates 2⇥A40 GPUs and

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments

Table 8. Benchmarks of ThunderServe with 16-bit vs. 4-bit com-
munications.

Configuration Prefill KV Comm Decode E2E Throughput
16-bit 684 ms 584 ms 1108 ms 2450 tokens/s
4-bit 698 ms 133 ms 1126 ms 3292 tokens/s

Figure 18. Impact of KV cache communication compression.
(Non-transparent: time cost of KV cache communication. Trans-
parent: end-to-end processing time.)

2⇥3090Ti GPUs to both prefill and decode replica, which
utilizes intra-instance high network bandwidth for KV cache
communication and inter-instance low network bandwidth
for pipeline communication, resulting in a 1.4⇥ improve-
ment over the non-disaggregating baseline. The illustration
of deployment plans are demonstrated in Figure 17, the sin-
gle request prefill/decode/KV cache communication time
and overall system throughputs are demonstrated in Table 5.

I PPL AND ROUGE RESULTS ON KV
CACHE COMPRESSION

We list the PPL and ROUGE results of LLaMA-7B and
LLaMA-30B models on WikiText2, PTB and CBT datasets
with both 16-bit and 4-bit KV cache precision levels, as
shown in Table 6 and Table 7. Experimental results have
demonstrated that the PPL between 16-bit precision and 4-
bit precision is within 1% across all experimental scenarios,
and the ROUGE-1, ROUGE-2 and ROUGE-L scores are
around 0.95 across all cases, which confirms the validity
of our approach. We also demonstrate the the benchmarks
of ThunderServe with 16-bit vs. 4-bit communications in
Table 8 with the same experimental setups as mentioned in
Appendix H, and benchmarks in Figure 18, with two A5000
GPUs serving a LLaMA-7B model.

J SIMULATOR AND ALPHA-BETA MODEL
ACCURACY

To assess the accuracy of the simulator and alpha-beta model
for KV cache communication, we conducted a series of
micro-benchmarks using the LLaMA-30B model. These
benchmarks varied in SLO scales and batched token sizes

Figure 19. Comparison of benchmarked and estimated perfor-
mance metrics for simulator (left) and alpha-beta model (right).

to evaluate our estimation outputs against actual execution
metrics, specifically SLO attainment and latency. The re-
sults, detailed in Figure 19, indicate that the simulator and
alpha-beta model closely correspond with actual execution
performance.

