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ABSTRACT
Reducing atmospheric hazes and enhancing image clarity is crucial
for a range of applications related to computer vision. The lack of
real-life hazy ground truth images necessitates synthetic datasets,
which often need more diverse haze types, impeding effective haze
type classification and dehazing algorithm selection. This research
introduces the HazeSpace2M dataset, a comprehensive collection
of over 2 million images designed to enhance the performance of
dehazing through haze-type classification. HazeSpace2M includes
diverse scenes with 10 haze intensity levels, featuring Fog, Cloud,
and a novel category, Environmental Haze (EH). Leveraging the
dataset, we introduce a novel technique of haze-type classification
followed by specialized dehazers to dehaze hazy images. Unlike the
conventional methods, our approach classifies haze types before ap-
plying type-specific dehazing, improving clarity and functionality
across applications lacking real-life hazy images.We benchmark the
state-of-the-art classification models against different combinations
of the hazy benchmarking datasets (HBDs) and the Real Hazy Test-
set (RHT) from the HazeSapce2M dataset. For instance, ResNet50
and AlexNet, on average, achieve 92.75% and 92.50% accuracy, re-
spectively, against the existing synthetic HBDs. However, the same
models furnish 80% and 70% accuracy, respectively, against our
RHT, proving the challenging nature of our dataset. Additional ex-
periments utilizing our proposed framework verify that haze-type
classification followed by specialized dehazing enhances dehazing
results by 2.41% in PSNR, 17.14% in SSIM, and 10.2% in MSE over
general dehazers. These results highlight the significance of Haze-
Sapce2M and the proposed framework in addressing the pervasive
challenge of atmospheric haze in multimedia processing. The codes
and dataset will be available on GitHub soon.

CCS CONCEPTS
• Computing methodologies→ Reconstruction.

KEYWORDS
HazeSpace2M, Haze type classification, Haze aware dehazing, Sin-
gle image dehazing, Haze classification, Atmospheric haze, Multi-
media

1 INTRODUCTION
Atmospheric haze significantly compromises image clarity, posing
difficulties for computer vision tasks in autonomous systems, re-
mote sensing, and surveillance [64]. Adverse weather conditions
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that reduce visibility can lead to accidents, as documented in vari-
ous studies [21, 30, 40, 56]. To tackle the issues of hazes, researchers
have developed dehazing algorithms to counteract haze’s effects
on image quality [7]. Advancements in traffic systems and ve-
hicle detection technology further necessitate enhanced visibil-
ity [13, 40, 52, 65]. Current efforts focus on refining models to
restore clarity to images impaired by adverse environmental condi-
tions [41, 58, 60]. However, there is a consensus on the necessity for
versatile dehazing techniques across variable weather patterns [18],
with a rich dataset being crucial for developing robust Convolu-
tional Neural Network-based models for effective atmospheric de-
hazing.

Large datasets with varied scenes and haze types are scarce; the
RESIDE SOTS [32] benchmark dataset covers synthetic hazy images
but is limited to a single haze type. Similarly, the Cityscapes [11]
dataset includes fog and rain conditions but is confined to street
scenes, highlighting a deficit in comprehensive hazy image datasets.
Current image restoration (IR) models often operate without rec-
ognizing the specific degradation type [31, 36, 42, 43, 57, 61, 63].
Although instruction-based IR methods [8, 10] improve perfor-
mance by classifying degradation type, they rely on manual input,
which is impractical for autonomous systems. An automated model
that can identify and adapt to various haze types in the image is
needed for effective dehazing without human intervention.

However, to train such versatile models, we need a dataset that
offers various haze types across different scene types [18], which
is absent in the literature. Identifying this gap in the literature, we
develop a dataset named "HazeSpace2M," suitable for haze type
classification and training haze type-specific specialized dehazers.
We structure the "HazeSpace2M" dataset in a way that is suitable for
haze type classification and training haze type-specific specialized
dehazers. Leveraging this dataset in this paper, we also propose a
novel idea of an intelligent image dehazing approach that performs
specialized dehazing based on the haze type present in an input
image. Thus, our research makes significant progress in the direc-
tion of image dehazing and classification, marked by the following
contributions:

• Development of a Benchmarking Dataset: We developed
HazeSpace2M as a comprehensive benchmarking dataset de-
signed explicitly for haze-type classification in single in-
put images. Additionally, we are the first to introduce a
hazy dataset for different scene types, especially the Farm-
land scene type, which is unparalleled in the literature. This
dataset surpasses existing datasets in terms of number of
images (over 2 million), scene types, type of hazes, and haze
intensity (10 levels).

• Intelligent Haze Aware Dehazing: We propose a novel
framework that performs dehazing with specialized dehazers
based on the haze type present in the input hazy image.

• Benchmarking SOTA Models: We evaluate leading classifi-
cation models, setting new benchmarks for haze-type classi-
fication accuracy.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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• Evidence for Specialized Dehazers' Efficacy: Our
findings demonstrate that specialized dehazers, informed by
accurate haze type classification, enhance dehazing perfor-
mance, surpassing the capabilities of generalized dehazing
models.

2 RELATEDWORKS
In recent years, various hazy image datasets [4, 5, 11, 23, 32, 34, 46,
53, 54] have emerged to aid in developing single image dehazing
techniques. These datasets offer a range of images affected by dif-
ferent hazes. For instance, the RESIDE dataset [32] encompasses a
variety of images, including both indoor and outdoor settings, with
hazy conditions and their corresponding ground truth (GT) images.
However, it lacks distinct subsets for various types of images and
haze conditions. Conversely, the Cityscapes dataset [11] provides
fog and rain-afflicted street scenes but lacks variety in scene types.
The synthetic image collections FRIDA [54] and FRIDA2 [53] are
designed primarily for algorithm assessment in visibility and con-
trast restoration, encompassing 90 and 330 images across urban
road scenes, respectively. Despite their utility, the synthetic nature
of these sets limits their effectiveness in modeling the complexity
of real-world hazes.

To bridge the above mentioned gaps, the NH Haze [6] dataset,
introduced during the NTIRE2020 [1] challenge, features 55 out-
door scenes with actual haze conditions alongside their haze-free
GT images, proving invaluable for developing new dehazing meth-
ods. Moreover, the Haze4k dataset [34]-split into 3,000 training
and 1,000 testing images—provides ample data for benchmarking
novel dehazing approaches. Adding diversity, the Kede [37] dataset
contains 225 images with nine groups showcasing different out-
door settings and haze thicknesses. In contrast, the O-HAZE [5]
dataset with 45 scenes captured under consistent lighting condi-
tions offers realistic pairs of hazy and clear images, facilitating the
study of dehazing in authentic environments. In the realm of re-
mote sensing, datasets like Haze1k [23] and RS Haze [46] enrich the
dehazing research by providing images categorized by haze density
and showcasing a variety of cloud haze levels, respectively. Haze1k
offers 900 images curated for remote sensing applications, whereas
RS Haze challenges researchers with nine distinct haze levels in its
5,700 GT images. These datasets play a crucial role in enhancing
the development of algorithms that deal with the nuances of hazy
conditions observed in satellite imagery.

Overall, these datasets have become central to benchmarking
the performance of single image dehazing techniques. Especially,
the datasets like RESIDE [32] and Foggy Cityscapes [11] with their
extensive collection, are excellent for generalizing models and have
become a benchmark for assessing dehazing algorithms [9, 14–
16, 22, 26, 27, 33, 39, 46, 47]. However, the ranges of haze types
and scenes are limited in these datasets, scoping the improvement
with more diverse datasets having various haze types for creating
classification models capable of classifying various haze conditions.
To fill this gap, we present a new dataset that is both broad and
diverse, covering a wide range of scene types and haze types, paving
the way for breakthroughs in the realm of single image dehazing
in terms of developing robust haze type classification and dehazing
algorithms.

Table 1: Overview of HazeSpace2M dataset scene and haze
types: annotated with Fog, EH, and Cloud, each with 10 dis-
tinct haze intensity levels.

HazeSpace2M

Outdoor Street Farmland Satellite

Fog Fog Fog CloudEH EH EH

10 different levels of haze for each category

3 OUR DATASET: HAZESPACE2M
HazeSpace2M is a diverse and large dataset with over 2M images,
including the GT and Hazy images of three different types of hazes:
Fog, Environmental Haze (EH), and Cloud. To the best of our knowl-
edge, we are the first to introduce both EH and Fog separately for
scenarios such as Outdoor, Street, and Farmlands. HazeSpace2M
is suitable for developing intelligent dehazing models based on
haze-type classification.

Notably, the HazeSpace2M includes four main scene categories:
Outdoor, Street, Farmland, and Satellite, encompassing three haze
conditions: Fog, EH, and Cloud, as stated in Table 1. Each GT im-
age from every scene type features ten corresponding hazy im-
ages, varying from low to high intense levels. The HazeSpace2M
dataset, curated for research, includes an extensive collection of
over 130,193 GT images and approximately two million hazy im-
ages, each categorized into distinct levels of haze intensity across
various scene types. It also has a subset named Real Hazy Testset
(RHT) that features 1,030 real hazy images for evaluating models.
This comprehensive dataset not only paves the way for creating
more robust dehazing models but also facilitates the development of
algorithms capable of classifying the types of haze present, thereby
contributing significantly to image processing and multimedia.

Table 2: Sources and composition of GT in the HazeSpace2M
dataset: a breakdown of the various image sources and the
number of GT images selected from each source.

Scene Image Total # Total # of
Types Sources of Images GT Images

in Source we Pick

Outdoor (OD)

ADE20K [66, 67] 27,638 2,106
OTS [32] 8,964 7,851
GSV [62] 62,068 20,696
SFTGAN [59] 10,200 4,596
Our Collections 687 687

Street (ST) GSV [62] 62,068 20,000
Cityscapes [11] 19,998 19,998

Farmland (FL) Our Collections 830 830

Satellite (SL)

Haze1k [23] 1,035 898
Forest Fires [17] 42,815 42,815
DGLCC [12] 1,146 1,146
DGRED [? ] 8,570 8,570

Total GT Images: 130,193
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Figure 1: HazeSpace2M at a glance: Showcasing Ground Truth (Green), Synthetic Hazy (Yellow), and Real Hazy (Red) images
across diverse scenes.

3.1 Data Collection and Generation
Before generating the hazy data, we collected a large amount of
image data from various sources. These images are mainly the GT
images in the HazeSpace2M dataset.

Quality Assurance. As shown in Table 2, we collect most of our
GT images from the existing datasets or online under a Creative
Commons License (CML), and some are the images captured from
our personal devices. Cross-checking the quality of these images is
a challenging but essential task. Initially, to ensure the quality of
the GT images of our HazeSapce2M dataset, we established three
conditions for excluding GT images while collecting from different
sources. The conditions are as follows:

• Resolution: The image is of low quality.
• Haze Presence: The image contains haze in any form.
• Irrelevance: The image is not relevant to the scene types
of HazeSapce2M.

If any image from our sources meets either of these criteria,
it is excluded from the GT set of the HazeSpace2M dataset. For
example, as shown in Table 2, we selected only 2,106 images from
the ADE20k [66, 67] dataset out of 27,638 and 7,851 images out
of 8,964 from the RESIDE SOTS [32] to use as GT images in the
HazeSpace2M dataset. Similarly, we take 20,000 out of 62,068 images
from the GSV [62] dataset as the rest match criteria 3. Thus, we
ensure the quality and reusability of the GT images while we collect
the GT images for HazeSapace2M from a wide range of sources.

Scene Types. As mentioned earlier, our HazeSpace2M dataset
comprises diverse scenes. Outdoor images provide aerial and ground-
level views of urban environments, capturing elements like archi-
tecture and traffic. Street view offers a closer look at urban roads
and daily life. Farmland images focus on agricultural areas, detailing
rural landscapes. Satellite images from high altitudes afford expan-
sive views of the Earth’s valuable surface for geographical and
environmental studies and tracking changes in land use patterns,
highlighting details unnoticeable at ground level. The images with
the green line in Figure 1 display some sample images of different
scenes of the HazeSapce2M dataset.

Haze Types. The HazeSpace2M dataset features three hazes
types: Fog, EH, and Cloud. The haze types are applied to the GT
images to create ten different haze intensities, which means that
from each GT image, we produce ten hazy images of different haze
intensity, which varies from light to dense.

Fog: Fog is caused by the presence of water droplets in the air,
typically when there is a high relative humidity. It is a ground-level
haze that reduces visibility.

Cloud: Cloud haze is characterized by cloud formations at vari-
ous altitudes, affecting the lighting and contrast in images.

Environmental Haze (EH): EH is an atmospheric condition
characterized by fine particles, aerosols, and pollutants suspended
in the air. It is commonly caused by human activities, including
industrial emissions and vehicle exhaust, but can also originate from
natural sources such as burning from wildfires and agricultural
lands. The images with the yellow line in Figure 1 display some
sample images of different haze types of the HazeSapce2M dataset.

Real Haze Testset (RHT): The RHT comprises a collection
of real-life hazy images sourced online to evaluate the ability of
our classification models to identify haze types in real-world sce-
narios. These images are curated using specific search terms; for
instance, searches for "foggy images," "foggy weather," and "winter
fog" helped label images as Fog. Similarly, searches using "environ-
mental haze," "air pollution," "wildfire," and "smoky environment"
facilitated the labeling of images as EH. We meticulously verify
each image’s visual characteristics and origin to accurately repre-
sent the specified haze type. Thus, we collected around 686 images
with fog haze and 344 with EH. The images with the red line in
Figure 1 present some sample images of the RHT subset of the
HazeSapce2M dataset. However, sourcing original satellite images
depicting cloud haze posed a challenge. To address this, we incor-
porated 500 satellite cloudy images from the RS Haze [46] dataset
into RHT, enabling comprehensive evaluation of the classification
models trained on the HazeSpace2M dataset.
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Table 3: Details of the subdivision of the HazeSpace2M dataset according to scene types and haze conditions, listing the number
of GT images and the generated hazy images across different subsets with the defined names for each subset.

Subset Names of Subsets Names of HazeSpace2M
HazeSpace2M depending HazeSpace2M depending Nature of # of GT # of Hazy
on various Scene Types on various Haze Types the Image Images Images

Outdoor (OD) Outdoor Fog (ODF) Synthetic 35,936 359,360
Outdoor Environmental Haze (ODEH) Synthetic 359,360

Street (ST) Street Fog (STF) Synthetic 39,998 399,980
Street Envirnmental Haze (STEH) Synthetic 399,980

Farmlands (FL) Farmland Fog (FLF) Synthetic 830 8,300
Farmland Envirnmental Haze (FLEH) Synthetic 8,300

Satellite (SL) Satellite Cloud (SLC) Satellite 53,429 534,290

Real Haze Testset (RHT) - Real - 1,030

Total: 130,193 2,070,600

Total # of Images (GT + Hazy) in HazeSpace2M dataset: 2,200,793 (2.2 Million Images)

Table 4: Comparative evaluation of image quality metrics across the existing datasets. The comparison of PSNR and SSIM
values for the lowest and highest haze levels across different datasets, including our HazeSpace2M dataset.

Datasets Scene Haze types # of GT # of Hazy Lowest Haze Level Highest Haze Level
Type Fog Cloud EH Images Images PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

FRIDA [53, 54] Outdoor ✓ × × 84 420 27.54 0.81 29.92 0.69
Foggy Driving [11] Street ✓ × × 10,425 10,425 28.50 0.88 27.70 0.68
I-Haze [34] Outdoor Not Specified 30 30 29.34 0.85 27.57 0.48
O-Haze [46] Satellite Not Specified 45 45 28.96 0.80 27.49 0.37
SOTS [32] Outdoor Not Specified 8,964 313,950 29.27 0.99 27.44 0.83
NH Haze [6] Outdoor Non-Homogenous 55 55 28.43 0.66 27.70 0.22
Haze1k [23] Satellite × ✓ × 1,035 1,035 28.51 0.91 27.49 0.23
RS Haze [46] Satellite × ✓ × 6,000 54,000 27.57 0.97 27.27 0.52

HazeSpace2M

Outdoor ✓ × ✓ 35,936 718,720 30.91 0.98 27.11 0.25
Street ✓ × ✓ 39,998 799,960 31.91 0.98 27.36 0.39

Farmland ✓ × ✓ 830 16,600 32.32 0.97 27.08 0.23
Satellite × ✓ × 53,429 534,290 34.61 0.98 27.49 0.23

3.2 Annotation Process and Tools
Inspired by [23] and [46], we utilized Adobe Photoshop 25.1 with
its advanced ML-based Neural Filters (NFs) to generate hazy im-
ages for our HazeSpace2M dataset [2]. We crafted Photoshop ac-
tions, which automate editing tasks, to create varied haze levels [3].
This approach allowed the efficient processing of our extensive
dataset, consisting of over two million images, generated over sev-
eral months using three computers.

3.3 Quantitative Analysis
The HazeSpace2M dataset, as shown in Table 3, incorporates Fog
and EH hazing on its Outdoor (OD), Street (ST), and Farmland (FL)
subsets, while the Satellite (SL) subset is treated with Cloud haze,
creating subsets designated as ODF, STF, FLF for Fog; ODEH, STEH,
FLEH for EH; and SLC for Cloud haze. The OD, ST, FL, and SL
subsets consist of synthetic hazy images alongside RFH and REH,
which are real hazy images. Fog and EH haze types applied across
ten intensity levels to the OD subset’s 35,936 GT images result in
718,720 hazy images for OD, equally split between ODF and ODEH.
The ST and FL subsets yield 816,560 hazy images from 40,828 GT
images, and SL comprises 534,290 Cloud-hazy images from 53,429

GT images. Totaling around 130,193 GT images, the HazeSpace2M
spans approximately 2.2 million hazy images when considering all
three haze types and ten haze intensities per GT image, detailed in
Table 3.

Compared to established datasets in literature [4–6, 11, 23, 32, 46,
53, 54], Table 4 presents the comparative PSNR and SSIM metrics.
The HazeSpace2M dataset demonstrates high PSNR and SSIM at
the lowest haze level, reflecting clear images under minimal hazing.
At the highest haze level, these metrics show a marked reduction,
illustrating the substantial impact of intense hazing. This variance
signifies the dataset’s wide range of haze intensities, providing
a broader scope for analysis than previous datasets. The HazeS-
pace2M also exceeds others in image volume, offering an extensive
array of GT and hazy images. Including the FL subset introduces a
new scene type to the dataset, enriching the diversity and research
applicability. Comparing the scene types and the haze types, it is
evident that the HazeSapce2M consists of a diverse type of scene
and haze compared to the existing haze image datasets. Each subset
within HazeSpace2M contains GT and hazy images, establishing
its superiority in dataset quantity and scene variety.
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Figure 2: Our proposed framework for specialized dehazer-based intelligent dehazing based on the haze type classification in
image enhancement workflows, including (A) training classifiers to recognize haze types, (B) using the classifier to identify the
type of haze in a single input image, (C) selecting the appropriate dehazer based on the haze classification, and (D) the final
dehazing process to clear the image from atmospheric obscurations with the selected specialized dehazer.

4 PROPOSED FRAMEWORK
Our proposed approach for intelligent dehazing based on haze type
classification is illustrated in Figure 2. It has four main blocks, each
with a particular task. As shown in Figure 2A, we use the dataset
to train the SOTA classification models [19, 20, 24, 25, 28, 35, 38,
44, 45, 48–51] to sort out the models that could classify haze in
the single-input image. Thus, we benchmark the SOTA models
against the existing synthetic hazy benchmarking datasets and
the Real Hazy Testset of the HazeSapce2M. Then, as illustrated in
Figure 2B, we use the trained classifier for classifying the haze in a
single input image. In this paper, we train the SOTA classification
models on the HazeSapce2M dataset for haze-type classification.
As in Figure 2C block, based on the classification result and output
haze type, the model selects a suitable dehazer and performs the
inference accordingly in the Inference Block, which is illustrated
in Figure 2D. As with the classification models, we train three
dehazing algorithms for three different hazes, namely Fog, EH, and
Cloud, on our HazeSapce2M dataset. These dehazers are trained
based on the modified ASM [55] in 100 epochs. Utilizing these
three specialized dehazers, the complete framework we propose for
specialized dehazers-based intelligent dehazing based on the haze
type classification is depicted in Figure 2.

4.1 Experimental Setups
We conduct several experiments in line with the methodology illus-
trated in Figure 2. Our focus begins with training and evaluating
classification models, followed by assessing generalized and spe-
cialized dehazers using the HazeSpace2M dataset.

Haze Type Classification. For training and validating the clas-
sification models, we take subsets from the HazeSpace2M dataset
and split them as follows:

Train and Validation Dataset: We train our models using a
subset of 15,000 images from the HazeSpace2M dataset, evenly
divided among the three haze types, with 5,000 images for each
category. We allocate 85% of these images for training (12,750) and
the remaining 15% (2,250) for validation.

Test Dataset: We assess models on synthetic and real-life hazy
images, creating different sets of testing datasets using the existing
Hazy Benchmarking Datasets (HBDs) [5, 11, 23, 32, 46, 53, 54]. We
also test the models against the RHT subset of the HazeSapce2M.

To ensure uniform training, all models used a batch size 32,
a 0.001 learning rate, and a 512-pixel resolution. Following the
footsteps of DTMIC [29], eachmodel underwent a 50-epoch training
with a 10-step patience early stopping technique.

Single Image Dehazing. We introduce two terms, namely Spe-
cialized Dehazer and Generalized Dehazer, and defined below to
differentiate between the training processing for each.

Specialized Dehazer (SD): This term refers to a dehazing model
explicitly trained on images of a particular type of haze. For instance,
a model trained exclusively on foggy images to dehaze fog-related
obscurities is considered an SD.

Generalized Dehazer (GD): In contrast, the Generalized Dehazing
model is trained on a broader spectrum of hazy images. The GD
model is not limited to a specific type of haze but is designed to
handle various hazy conditions.

To conduct experiments with both SD and GD, we utilize the
same dehazer architecture as depicted in Figure 2D. This architec-
ture is developed based on the modified Atmospheric Scattering



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 5: Performance evaluation of the SOTA models using accuracy (ACC), precision (PRE), and recall (REC) against different
combinations of the Hazy Benchmarking Datasets (HBDs), highlighting their effectiveness for haze type classification. These
models are trained on the HazeSpace2M dataset.

Models

Different Combinations of Hazy Benchmarking Datasets for Haze Type Classification

Average ACC
Fog: FRIDA Fog: Cityscapes Fog: Cityscapes Fog: Cityscapes
EH: O-Haze EH: NH-Haze EH: NH-Haze EH: O-Haze

Cloud: Haze1k Cloud: Haze1k Cloud: RS-Haze Cloud: Haze1k
ACC PRE REC ACC PRE REC ACC PRE REC ACC PRE REC

AlexNet 0.96 0.96 0.96 0.95 0.95 0.95 0.83 0.91 0.83 0.96 0.96 0.96 92.50
ConvNextLarge 0.88 0.93 0.88 0.86 0.92 0.86 0.80 0.93 0.80 0.88 0.94 0.88 85.50
DenseNet121 0.98 0.98 0.98 0.90 0.96 0.90 0.63 0.95 0.63 0.90 0.97 0.90 85.25
DenseNet161 0.91 0.92 0.91 0.89 0.95 0.89 0.68 0.87 0.68 0.88 0.94 0.88 84.00
DenseNet169 0.94 0.93 0.94 0.94 0.95 0.94 0.73 0.87 0.73 0.93 0.95 0.93 88.50
DenseNet201 0.96 0.96 0.96 0.96 0.96 0.96 0.78 0.94 0.78 0.97 0.97 0.97 91.75
EfficientNet_B0 0.88 0.95 0.88 0.85 0.95 0.85 0.63 0.92 0.63 0.85 0.96 0.85 80.25
EfficientNetV2Large 0.90 0.93 0.90 0.87 0.91 0.87 0.65 0.88 0.65 0.88 0.93 0.88 82.50
GoogleNet 0.86 0.86 0.86 0.88 0.89 0.88 0.74 0.86 0.74 0.89 0.90 0.89 84.25
Inception_V3 0.78 0.86 0.78 0.79 0.89 0.79 0.68 0.90 0.68 0.80 0.91 0.80 76.25
MNasNet 0.94 0.95 0.94 0.82 0.94 0.82 0.52 0.93 0.52 0.82 0.95 0.82 77.50
MobileNetV2 0.92 0.95 0.92 0.80 0.95 0.80 0.70 0.96 0.70 0.81 0.96 0.81 80.75
MobileNetV3 0.76 0.94 0.76 0.51 0.92 0.51 0.43 0.95 0.43 0.51 0.94 0.51 55.25
ResNet50 0.96 0.96 0.96 0.95 0.94 0.95 0.84 0.92 0.84 0.96 0.96 0.96 92.75
ResNet101 0.98 0.98 0.98 0.94 0.96 0.94 0.78 0.92 0.78 0.94 0.95 0.94 91.00
ResNet152 0.97 0.97 0.97 0.94 0.96 0.94 0.76 0.93 0.76 0.94 0.96 0.94 90.25
ShuffleNetV2 0.86 0.87 0.86 0.90 0.91 0.90 0.76 0.94 0.76 0.90 0.91 0.90 85.50
SqueezeNet1 0.96 0.96 0.96 0.90 0.94 0.90 0.71 0.96 0.71 0.91 0.96 0.91 87.00
VGG16 0.95 0.94 0.95 0.93 0.92 0.93 0.84 0.92 0.84 0.95 0.94 0.95 91.75

Table 6: Evaluation of the SOTAmodels against the Real Hazy
Testset (RHT) of the HazeSapce2M dataset using accuracy
(ACC), precision (PRE), and recall (REC).

Models ACC PRE REC

AlexNet 0.70 0.71 0.70
ConvNextLarge 0.63 0.72 0.63
DenseNet121 0.46 0.69 0.46
DenseNet161 0.58 0.67 0.58
DenseNet169 0.56 0.65 0.56
DenseNet201 0.68 0.71 0.68
EfficientNet_B0 0.49 0.64 0.49
EfficientNetV2Large 0.48 0.67 0.48
GoogleNet 0.66 0.68 0.66
Inception_V3 0.54 0.63 0.54
MNasNet 0.45 0.68 0.45
MobileNetV2 0.60 0.71 0.60
MobileNetV3 0.60 0.71 0.60
ResNet50 0.80 0.78 0.80
ResNet101 0.70 0.72 0.70
ResNet152 0.63 0.71 0.63
ShuffleNetV2 0.67 0.72 0.67
SqueezeNet1 0.65 0.73 0.65
VGG16 0.70 0.69 0.70

Model (ASM) [55] for removing haze in a single input image as
follows:

𝐼 (𝑥) = 𝐽 (𝑥) × 𝑡 (𝑥) +𝐴 × (1 − 𝑡 (𝑥)). (1)

The term 𝐾 (𝑥) represents a combined variable that encapsulates
both 𝑡 (𝑥) and 𝐴, while 𝐼 (𝑥) signifies the observed image with haze.
Here, 𝐴 is the global atmospheric light and 𝑡 (𝑥) is the transmission
map defined as:

𝑡 (𝑥) = 𝑒−𝛽𝑑 (𝑥 ) , (2)

where 𝛽 is the scattering coefficient of the atmosphere, and 𝑑 (𝑥)
is the distance between the object and the camera. The modified
version of Eq. (1) that is proposed for LDNet gives improved perfor-
mance for removing haze from the images, which is verified through
comprehensive inferences on different datasets [55]. Hence, for the
experiments in our paper, we employ the modified version of the
ASM model that is stated as follows:

𝐽 (𝑥) = 𝐾 (𝑥) × 𝐼 (𝑥) − 𝐾 (𝑥) + 𝑏bias, (3)

where the bias term is incorporated with a default value of 1 and
the encapsulated values of 𝑡 (𝑥) and 𝐴, which we define by 𝐾 (𝑥),
as:

𝐾 (𝑥) =
1

𝑡 (𝑥 ) × (𝐼 (𝑥) −𝐴) + (𝐴 − 𝑏bias)
(𝐼 (𝑥) − 1) . (4)

For the experiments of single image dehazing and to know if SD
performs better than GD, we use LDNet [55] that is developed based
on Eq. (3) with the same hyperparameter settings as the backbone of
our dehazer algorithms and train them with our mentioned training
datasets in different steps as:

• LDNet: Trained using the RESIDE [32] dataset, a common
benchmark in dehazing research.
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• GDNet: Trained on a composite dataset of 150,000 images
comprising images affected by Fog, Cloud, and EH to create
a generalized model.

• SDNets: Individually trained on distinct haze types. Initially,
the model is trained exclusively on Fog type hazy images,
followed by training on Cloud type, and finally on EH type
hazy images, with each model saved after training.

With these setups of the dehazers mentioned above, we organize
the training, validation, and test datasets in the following manner:

Train and Validation Dataset: For the SD models, each target-
ing a specific haze type (Fog, EH, and Cloud), we select 5,000 GT
images and their 50,000 corresponding hazy images at ten distinct
intensity levels from each class within the HazeSpace2M dataset.
Consequently, we train each SD model using these 50,000 hazy im-
ages. In contrast, for the GD model, we amalgamate the 50,000 hazy
images from each of the three classes, resulting in a comprehensive
dataset of 150,000 hazy images encompassing all haze types. In both
scenarios, we divide the dataset into training and validation sets
with a 90/10 split ratio, ensuring a balanced model training and
validation approach.

Test Dataset: To evaluate the performance of the SD and GD
models for different types of hazes, we curated a test subset from
the HazeSpace2M dataset with the images unseen to the model.
This subset comprises 1,000 hazy images for each haze category,
distributed across ten distinct intensity levels. This test dataset
verifies the models’ robustness and effectiveness in handling a
broad spectrum of haze types and varying levels of haze intensity.

5 EXPERIMENTAL RESULTS
Our dual experiments, single haze type classification, and dehazing
for a single input image demonstrate the HazeSpace2M dataset’s
versatility and wide-ranging applicability. The experimental results
of both experiments are discussed in the following sections.

5.1 Results of Haze Type Classification
Our evaluation of SOTA classification models on both synthetic and
real hazy images commenced with a training phase of 50 epochs,
subsequently assessing performance on the HBDs and RHT datasets
are presented in Table 5 and Table 6. Initial results highlighted
the challenge within the RHT subset, as most models fell short
of achieving 80% accuracy. Nonetheless, ResNet50 surpassed this
benchmark, showcasing its potential for single image haze type
classification despite being only trained for a short period and
training with a subset of the HazeSapce2M dataset.

Expanding our investigation, as stated in Table 5, some of the
SOTA models namely AlexNet, DenseNet201, ResNet50, ResNet101,
ResNet152, and VGG16 give over 90% accuracy on average against
the different combinations of HBDs, while models like Inception_V3,
MNasNet, MobileNetV3 give 70% accuracy below on average. The
bold values for each accuracy (ACC) column represent the top
accuracy among all the accuracies while testing the models against
the corresponding combinations of the HBDs, while the underlined
values represent the second-highest accuracies. The average ACC
column shows the average accuracy achieved by eachmodel against
the HDBs. Exploring this column, we find that the AlexNet achieves
an accuracy of 92.50%, while ResNet50 outperforms the AlexNet

Figure 3: Sample images from the Real Hazy Testset (RHT)
for which the haze type is correctly classified by ResNet50,
along with the prediction probabilities.

with a slightly improved accuracy of 92.75%. Analyzing all these
facts, we observed that ResNet50 and AlexNet performed robustly
throughout the testing of different combinations of the HBDs.

We further evaluate all the models against the RHT to observe
the performance of these models on images affected by the real
atmospheric haze. As presented in Table 6, we still found ResNet50
to outperform the other models with an accuracy of 80%, while
AlexNet, ResNet101, and VGG16 achieved 70% accuracy.

While several models result in very good accuracy on the syn-
thetic datasets and very low accuracy on the RHT, the challenge lies
in classifying haze types on a real hazy image. The ResNet50 shows
some robustness by giving 80% accuracy, while the other models
failed. The inference results on the RHT images are presented in the
Figure 3, showing some of the correctly classified RHT images by
the ResNet50 model. Overall, the results show the need to develop
robust classification models that can outperform the existing SOTA
models in the context of atmospheric haze-type classification.

5.2 Results of Single Image Dehazing
To investigate the effectiveness of SD models compared to GD mod-
els in single image dehazing, we conducted extensive evaluations
using the HazeSpace2M dataset. Our methodology involved train-
ing the LDNet [55] model and its SD and GD variants across three
distinct stages.

Our study rigorously evaluated the original LDNet dehazing
model, achieving average PSNR, SSIM, andMSE values of 28.15, 0.65,
and 99.89, respectively. We based these averages on comprehensive
testing against various haze types, having 1000 hazy images for
each haze type with detailed results outlined in Table 7.

Similarly, our evaluation of the GDNet and SDNet models on
identical test sets, as detailed in Table 7, reveals that the SD models
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Table 7: Comparative performance metrics for LDNet, GDNet, and SDNets using PSNR, SSIM, and MSE scores for each model
when subjected to dehazing tasks across various hazy conditions represented in fog, EH, and cloud test sets. The average scores
reflect the overall performance of each model in processing unknown hazy images.

Testsets LDNet GDNet SDNets
PSNR ↑ SSIM ↑ MSE ↓ PSNR ↑ SSIM ↑ MSE ↓ PSNR ↑ SSIM ↑ MSE ↓

Fog Testset 28.47 0.78 92.46 28.47 0.77 92.31 28.55 0.85 90.49
EH Testset 27.89 0.44 105.44 27.93 0.63 104.78 28.34 0.79 98.43
Cloud Testset 28.11 0.75 101.76 28.29 0.70 97.85 29.84 0.83 76.17

Average 28.15 0.65 99.89 28.23 0.70 98.31 28.91 (2.41%+) 0.82 (17.14%+) 88.36 (10.12%+)

Figure 4: Visual comparison of image dehazing results from
LDNet, GDNet, and SDNet, with PSNR and SSIMmetrics high-
lighted for clarity. Ground truth images are shown for refer-
ence, demonstrating the dehazing quality and the practical
application of our proposed framework.

surpass both the LDNet and GDNet in performance. The SDNet
models demonstrate PSNR, SSIM, and MSE values of 28.91, 0.82,
and 88.36, outperforming the GDNet, which records 28.23, 0.70, and
98.31.

The PSNR values show an improvement of around 2.7% for LD-
Net compared to SDNets. Similarly, the performance of SDNets
improved by 2.4% over GDNet considering the PSNR values from
the experimental results presented in Table 7. Moreover, when we
examine the SSIM and MSE values, we see a clear performance dif-
ference among these models. For example, the SDNets yield around
26.15% higher SSIM and 23.75% improved MSE than the original LD-
Net. Similarly, compared to the GDNet, the SDNet models show an
increase of around 17.14% in SSIM and 10.12% enhancement in MSE
for dehazing images affected by Fog, EH, and Cloud. The SDNets
outperform the other two models in all three metrics with a PSNR
of 28.91, SSIM of 0.82, and MSE of 88.36, showing the effectiveness
of an SD model over a GD model.

In addition to comparing performance metrics, the visual exami-
nation reveals the superiority of the SD model over the GD models.
The single image dehazing examples in Figure 4 demonstrate the
visual clarity achieved by the SD model is markedly better than

that produced by the original LDNet [55] and GDNet. Figure 4(c)
presents the dehazed images of different haze types using the SDNet
models. On the other hand, the inference results of the LDNet and
GDNet, which we train traditionally with a relatively larger dataset,
have been presented in Figure 4(a & b). To compare the visual clarity
of the output images from each model, we highlight the differences
via the rectangles. Considering PSNR and SSIM, the SDNet models
give higher values than both traditional models, where LDNet has
trained on RESIDE [32] dataset, and GDNet is trained on a subset
of the HazeSpace2M dataset. We ran the inference on the images
unknown to the models, i.e., we did not use these images to train
the models. It should be noted that the training sets for the SDNet
models are 50,000 images, whereas the training set for the GDNet
model is 150,000. Even though we train the GDNet model with
3× more different haze types images, SDNets outperform GDNet,
ensuring the superiority of our proposed framework.

This data conclusively supports the superiority of specialized
dehazers-based dehazing techniques in enhancing single image
dehazing. The clear implication is that classifying the type of haze
in an image (as illustrated in Figure 2B) and subsequently applying
the appropriate dehazing technique (Figure 2C) boosts the dehazing
model’s efficacy. Here, the Novel HazeSpace2M dataset leads the
way by offering a diverse, large, and challenging hazy dataset with
the confirmation of haze type classification, which results in better
dehazing.

6 CONCLUSION
This paper introduces HazeSpace2M, an extensive dataset of over 2
million images designed to introduce haze-type classification and
specialized dehazer-based image dehazing, addressing a critical
need in computer vision for autonomous systems and security
applications. While our computational resources limited training
with the entire dataset, leading to reliance on partial datasets for
model training, our results confirm HazeSpace2M’s effectiveness in
real-world haze condition classification, particularly highlighted by
the RHT subset performance. Future efforts will focus on expanding
the dataset’s diversity in haze types, depths, and intensities and
benchmarking dehazing models to fully leverage HazeSpace2M’s
potential. Our study demonstrates the significant role of accurate
haze type classification in enhancing dehazing outcomes, offering
a promising path forward for precision in image processing under
adverse weather conditions, thereby filling a crucial gap in the field
and setting the stage for future advancements.
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