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Abstract

Large Language Models (LLMs) have demon-001
strated remarkable capabilities across various002
NLP tasks but struggle with code-mixed (or003
code-switched) language understanding. For004
example, prior work benchmarking the perfor-005
mance of multilingual LLMs on code-mixed006
translation tasks has demonstrated that cur-007
rent state-of-the-art multilingual LLMs are in-008
effective in dealing with code-mixed languages.009
However, the question of how to improve the010
capability of multilingual LLMs to handle code-011
mixed language has not received any atten-012
tion to date. In this paper, we tackle this re-013
search gap by proposing CHAI, a novel general-014
purpose framework for improving the ability015
of multilingual LLMs to handle code-mixed016
languages. CHAI relies on three novel contri-017
butions made in this paper. First, we explore018
the ability of LLMs to provide accurate annota-019
tions for code-mixed translation tasks. Second,020
we leverage this ability of LLMs as annota-021
tors to generate preference data for code-mixed022
translation tasks at scale, which are then used023
within a reinforcement learning from AI feed-024
back (RLAIF) procedure to improve LLMs’025
capability on code-mixed tasks. Third, we con-026
duct a rigorous experimental evaluation across027
various real-world datasets and settings. Our028
analysis shows that CHAI-powered LLMs out-029
perform state-of-the-art open-source LLMs by030
25.66% (in terms of win rate adjudicated by031
human annotators) in code-mixed translation032
tasks. This work represents a first step towards033
developing more inclusive code-mixed LLMs.034

1 Introduction035

Large language models (LLMs) have excelled at036

comprehending, producing, and interacting with037

human language across a wide variety of real-world038

use cases, e.g., drafting code in information tech-039

nology (Tian et al., 2023), generating hypotheses in040

biology (Park et al., 2024), formulating therapeutic041

dialogue in mental health settings (Cheng et al.,042

2023), etc. LLMs have also seen widespread user 043

adoption, e.g., ChatGPT reached 100 million users 044

in two months after its launch, the fastest growth 045

of any consumer application in history (Hu, 2023). 046

Unfortunately, the vast linguistic diversity across 047

the globe still poses significant challenges for such 048

emerging LLM-based technologies. In particu- 049

lar, recent studies (Zhang et al., 2023a; Gupta 050

et al., 2024a) have shown that the ability of cur- 051

rent LLMs to understand and generate language 052

is heavily skewed towards monolingual English 053

language queries, with a significant performance 054

degradation reported in prior work (Gupta et al., 055

2024b) on tasks involving code-mixed language1. 056

These results are highly problematic because they 057

leave a large proportion of the global population 058

— those using code-mixed language as their pri- 059

mary means of communication (which includes 060

more than 1 billion people in India alone) — at a 061

comparative disadvantage (Ramzan et al., 2021). 062

To ensure that the benefits of LLMs can extend to 063

these populations, it is crucial that the next genera- 064

tion of LLMs can understand, reason, and respond 065

to/in code-mixed language. 066

In large part, this performance degradation on 067

code-mixed tasks occurs because most current-day 068

LLMs have been trained on large corpora of mono- 069

lingual and/or multilingual text, with comparatively 070

little explicit code-mixed corpora included dur- 071

ing the pre-training phase of LLM training. This 072

lack of inclusion of code-mixed corpora can be 073

attributed to a (relative) lack of availability of large- 074

scale code-mixed datasets on the Internet (Maguer- 075

esse et al., 2020). Despite this, prior attempts at 076

augmenting LLMs to handle code-mixed language 077

have mainly focused on injecting additional code- 078

mixed text during the pre-training stage (Zhang 079

et al., 2023c). At the same time, while some stud- 080

1Code-mixing, the fluid alternation between languages
within a conversation or text, is a common linguistic phe-
nomenon, especially in multilingual societies (e.g., India).
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ies highlight the cross-lingual transfer ability of081

LLMs, these results do not effectively extend to082

code-mixed language, where inconsistencies in083

grammar, syntax, and context-switching further084

hinder model performance.085

These challenges motivate us to explore - Can086

we develop a general-purpose approach to improve087

the capability of LLMs in dealing with code-mixed088

tasks? To tackle this main research question, we089

propose CHAI (Code Mixed Understanding via090

Hybrid AI Instruction), a novel general-purpose091

framework for improving the ability of multilingual092

LLMs to handle code-mixed language. CHAI re-093

lies on three novel contributions. First, we explore094

the ability of LLMs in providing accurate annota-095

tions for code-mixed translation tasks. We compare096

LLM annotation results with human annotations,097

and our results show that LLM labeled preferences098

(for code-mixed text) are highly correlated with099

human annotator preferences. Second, we leverage100

this ability of LLMs (to serve as a proxy annotator)101

to generate preference data for code-mixed trans-102

lation tasks at scale, which is then used to develop103

a new code-mixed LLM through model alignment.104

In particular, we adopt a reinforcement learning105

from AI feedback (RLAIF) procedure to improve106

the capability of current-day LLMs to handle code-107

mixed language. To the best of our knowledge,108

we are the first to utilize model alignment for the109

code-mixing scenario. Third, we conduct a rig-110

orous experimental evaluation across various real-111

world datasets and settings. Our analysis shows112

that LLMs powered with CHAI outperform conven-113

tional state-of-the-art LLMs by 25.66% (in terms114

of win rate adjudicated by human annotators) on115

code-mixed translation tasks. This work takes a116

first step towards developing more inclusive code-117

mixed LLMs, which can empower people from118

diverse linguistic communities.119

2 Related Work120

We discuss three primary areas of related work in121

this section.122

LLMs on Code-Mixed Tasks. Zhang et al. (2023b)123

investigates LLMs’ potential in the context of code-124

mixed tasks. They benchmark multilingual LLMs’125

performance across sentiment analysis, machine126

translation, summarization, and word-level lan-127

guage identification tasks. They argue that cur-128

rent multilingual capabilities in LLMs do not im-129

ply proficiency with code-mixed texts. Similarly,130

Gupta et al. (2024a) focuses on multilingual LLMs’ 131

performance in code-mixed machine translation 132

tasks. Experimental results suggest that better code- 133

mixed translation quality is obtained from k-shot 134

prompting rather than 0-shot prompting. Unfor- 135

tunately, while all these existing studies focus on 136

benchmarking LLMs on code-mixed tasks, none 137

of them offer any solutions for improving perfor- 138

mance on such tasks. 139

RLHF in machine translation. RLHF fine-tunes 140

LLMs using human preference data to align outputs 141

with user expectations. Xu et al. (2024) explores 142

modeling translation preferences with RLHF and 143

constructs reward models by contrasting deficien- 144

cies in machine translation compared to human 145

translation from published books. He et al. (2024) 146

investigates the possibility of utilizing the qual- 147

ity estimation (QE) model as the reward model to 148

predict human preferences during RLHF. Exper- 149

iments show that QE-based feedback training is 150

highly data-efficient. Lai et al. (2024) introduces 151

a framework that models hierarchical rewards in 152

RLHF, and tests their approach in long-form ques- 153

tion answering and machine translation tasks. They 154

demonstrate how well hierarchical reward model- 155

ing works to improve LLM training procedures for 156

greater consistency with human preferences. Un- 157

fortunately, prior work in this space focuses solely 158

on monolingual machine translation tasks. In con- 159

trast, we focus on code-mixed machine translation. 160

RLAIF (Reinforcement Learning from AI Feed- 161

back). Collecting human preference data at scale 162

for RLHF is expensive and time-consuming. As 163

a workaround, some recent work attempts to re- 164

place human feedback with AI (or LLM) feedback, 165

which is then used as preference data to power 166

the conventional RLHF training procedure. Bai 167

et al. (2022) first introduced this RLAIF procedure, 168

where an AI labeler identified harmful or harmless 169

outputs to construct a reward model for policy opti- 170

mization and model alignment. Lee et al. (2024) fo- 171

cus on RLAIF for text summarization and dialogue 172

generation tasks and show that RLAIF achieves 173

human-level performance. Li et al. (2024) propose 174

phased annotations on different prompt categories 175

during the AI preference labeling process, greatly 176

improving the accuracy of AI annotations, result- 177

ing in a more robust helpfulness model. To the best 178

of our knowledge, this paper represents the first 179

attempt at adapting RLAIF to improve the ability 180

of LLMs to handle code-mixed language, as no 181

prior work has addressed this task. 182
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3 CHAI: RLAIF for Code-Mixed183

Translation184

Reinforcement Learning from Human Feedback185

(RLHF) is a highly popular and effective tech-186

nique for aligning the output of LLMs with human-187

specified preferences (Ouyang et al., 2022). Unfor-188

tunately, a key obstacle prohibiting the large-scale189

use of RLHF is that the quality of the reward model190

(a key component of RLHF used to fine-tune the191

final policy model) highly depends on access to192

high-quality human preference labels. Collecting193

these preference labels at scale from human anno-194

tators is expensive and time-consuming.195

To address this issue, recent work (Bai et al.,196

2022) has proposed replacing human annotators197

with AI (more specifically, LLM) annotators to198

efficiently generate preference label data at scale,199

which can then be used to train the reward model200

(inside a conventional RLHF pipeline). This novel201

paradigm of aligning LLMs with (desirable) pref-202

erences is called Reinforcement Learning from AI203

Feedback (RLAIF) (Lee et al., 2024), and it has204

been successfully adopted to achieve model align-205

ment across various use cases, such as reducing206

harmful outputs (Li et al., 2024), etc.207

In this section, we propose CHAI, a novel208

general-purpose RLAIF framework to improve the209

ability of multilingual LLMs to handle code-mixed210

language. To the best of our knowledge, CHAI is211

the first to apply RLAIF (or RLHF) to improve212

model alignment for code-mixed use cases.213

Specifically, CHAI focuses on using RLAIF to214

improve LLMs’ alignment on the task of code-215

mixed translation (i.e. translating monolingual216

text to code-mixed text) using AI-annotated217

preference labels. Next, we describe CHAI’s218

overall architecture (see Figure 1).219

220

Base LLM Model. The RLAIF procedure starts221

by using an existing off-the-shelf LLM as a base222

model (referred to as Base-LLM or πbase in Figure223

1), which is then further optimized (or aligned)224

using the RLAIF procedure. In CHAI, we use225

Llama-3.1-8B-Instruct (Grattafiori and et. al.,226

2024) as our base model, as (i) it is a robust227

multilingual LLM (with support for English, Hindi,228

German, French, and Italian, among others); and229

(ii) it has demonstrated strong performance in230

machine translation tasks (Xu et al., 2023), the231

primary task of interest in this paper, making it232

an ideal choice for an RLAIF-driven code-mixed233

translation pipeline. 234

235

Stage 1: Supervised Fine Tuning of Base Model 236

Next, we use the base model and conduct super- 237

vised fine-tuning on it using domain-specific data 238

(for code-mixed translation) to adapt the base LLM 239

to the target task (of translating monolingual text 240

into code-mixed text). More formally, given a 241

parallel corpus Dparallel = {(x(i), y(i))}i=1,...,n 242

where xi represents the source (English) sentences, 243

and yi represents the corresponding (code-mixed) 244

translation, we apply a fixed prompt template I 245

(see Appendix A1) on a portion of this parallel 246

corpus and convert it into a training set Dsft = 247

{(I(x(i)), y(i))}i=1,...,n that can be used to fine- 248

tune our Llama-3.1-8B-Instruct base model. In par- 249

ticular, πbase is supervised fine-tuned (SFT) using 250

a next-token prediction objective on this training 251

set Dsft (Radford et al., 2019). This SFT version of 252

the base model is referred to as SFT-LLM or πsft 253

in Figure 1 (and in the rest of the paper). 254

Given the widespread prevalence of code-mixed 255

language usage in India (in the form of Hinglish, or 256

Hindi+English) (Thara and Poornachandran, 2018), 257

we focus on using datasets for English → Hinglish 258

translation in CHAI to power this SFT stage. In 259

particular, we utilize the following two datasets and 260

use it as our parallel corpus Dparallel: 261

• MixMT 2022 shared task (Srivastava and 262

Singh, 2022), which contains ∼1800 parallel 263

English sentences along with multiple human- 264

generated Hinglish translations. 265

• ALL-CS dataset (Tarunesh et al., 2021), 266

which contains 9290 English sentences and 267

multiple Hinglish translations for each sen- 268

tence (only movie subset is included). 269

For each of these datasets, we first pair each 270

English sentence with each of the available 271

Hinglish translations, and this results in a total 272

of 3873 data points (from the MixMT dataset) 273

+ 11317 data points (from the All-CS dataset) 274

= 15190 datapoints inside our parallel corpus 275

Dparallel, a portion of which is then converted into 276

the Dsft dataset (as explained above). 277

278

Stage 2: Reward Model Training using AI Feed- 279

back. The key distinguishing characteristic of an 280

RLAIF framework is that we use an AI or LLM 281

model (instead of a human annotator) to annotate 282

preference data. Once generated, this preference 283
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Figure 1: Overall architecture of the RLAIF Procedure used in CHAI.

data is used to train a reward model, and the rest of284

the RLAIF pipeline mimics the steps in RLHF. We285

now explain how this is accomplished in CHAI for286

the task of code-mixed translation.287

2.1 Collecting Preference Data Using LLMs We288

use a portion of the Dparallel corpus (from Stage289

1) and convert it into a preference dataset as fol-290

lows: (i) each source (English) sentence is paired291

with two alternative Hinglish translations; (ii) these292

three sentences are fed into a prompt template293

Ipref (see Appendix A.5) that generates a cus-294

tom prompt for an LLM annotator asking it to295

select which of the two provided Hinglish sen-296

tences is a better code-mixed translation for the297

source English sentence. To mitigate positional298

bias (Pezeshkpour and Hruschka, 2023; Li et al.,299

2024) in preference labeling of code-mixed text,300

we randomly switch the position of the two candi-301

date Hinglish translations before presenting them302

to the LLM annotator (see Appendix A.2 for more303

details on positional bias).304

Our final preference dataset contains 15190 dis-305

tinct prompts (of type Ipref ) that can be passed to306

an LLM annotator to get a preference label. CHAI307

uses GPT-4o (OpenAI et al., 2024) 2 as an LLM308

annotator, each prompt is passed to GPT-4o at three309

different temperature settings (T=0.1, 0.3, 0.5) to310

get three preference labels, and the final binary311

2GPT-4o points to gpt-4o-2024-11-20

preference label (Y=0 or 1 means that the LLM 312

annotator prefers the first or second code-mixed 313

translation, respectively) is obtained through a ma- 314

jority vote on these three labels. To the best of our 315

knowledge, this represents the first-ever attempt at 316

utilizing LLM annotation abilities for annotating 317

tasks related to code-mixing. 318

2.2 Reward Model Training This LLM-annotated 319

preference label dataset is used to train a reward 320

model (a key component in the RLAIF frame- 321

work), which outputs numerical scores in response 322

to LLM generated responses provided as input. In- 323

tuitively, the trained reward model should be such 324

that LLM responses that are closely (or weakly) 325

aligned with AI preferences (expressed in our pref- 326

erence dataset) should receive high (or low) scores 327

from the reward model. 328

In CHAI, we train our reward model as fol- 329

lows: (i) we take πsft (our SFT model from Stage 330

1) and change its last neuronal layer from a lan- 331

guage modeling head (i.e., output logit of each 332

token in vocabulary) into a linear layer which gen- 333

erates a singular scalar prediction representing the 334

output reward score. (ii) To get the final reward 335

model, this modified version of πsft is trained on 336

the LLM-annotated preference dataset using the 337

Bradley-Terry model (Bradley and Terry, 1952), 338

which provides a functional form for the probabil- 339

ity that for an English sentence x, the LLM labeler 340

4



prefers its chosen Hinglish translation yc over the341

rejected translation yr:342

P{i ≻ j} =
er(x,yc)

er(x,yc) + er(x,yr)
(1)343

where r(x, yc) and r(x, yr) denote the reward344

model scores for the chosen and rejected Hinglish345

translations, respectively. Finally, this probability346

is incorporated into a negative log-likelihood loss347

function as follows:348

L(r) = −EDrm [logP{i ≻ j}] (2)349

where Drm = {x(i), y(i)c , y
(i)
r }Ni=1 represents the350

preference labeled dataset for all X data points351

annotated by the LLM.352

Stage 3: Tuning Policy Model with Reinforce-353

ment Learning. Finally, we train a policy354

model πrl (initialized from πsft) to maximize the355

expected score returned from the reward model356

using general-purpose reinforcement learning al-357

gorithms, such as proximal policy optimization358

(PPO) (Schulman et al., 2017). More precisely,359

we optimize the policy model πrl to maximize this360

objective function:361

rtotal = r(x, y)− ηKL(πrl(y|x)||πsft(y|x)) (3)362

where r refers to the reward score based on a363

single sample, and the KL divergence term (i) acts364

as an entropy bonus, preserving generation diver-365

sity and preventing pattern-collapse into singular366

high-reward responses (Jaques et al., 2019); while367

(ii) also ensuring that the RL policy’s output does368

not deviate drastically from the distribution where369

the reward model is accurate (Laidlaw et al., 2024;370

Wang et al., 2024). Finally, η is a coefficient that371

trades-off the two terms in this objective function.372

4 Experimental Evaluation373

We primarily focus our experimental evaluation on374

analyzing the effectiveness of CHAI in improving375

the ability of our base Llama-3.1-8B-Instruct model376

on the task of English → Hinglish translation. Note377

that while our CHAI framework is general enough378

to handle code-mixed translation tasks for any lan-379

guage pair, we focus our evaluation to English →380

Hinglish because there are very few large-scale381

datasets similar to MixMT 2022 and All-CS avail-382

able in other language pairs. In particular, MixMT383

2022 and All-CS contain multiple target Hinglish384

translations for every source English sentence, and385

these multiple target translations are crucial in en- 386

abling LLMs to provide preference labels in Stage 387

2 of the CHAI framework. As such, we leave ex- 388

ploration of other language pairs to future work, 389

especially given the non-trivial effort in collecting 390

such data in other language pairs using human an- 391

notators. Nevertheless, we do provide an analysis 392

of the cross-lingual transfer ability of our CHAI- 393

powered LLM (trained specifically for English → 394

Hinglish translation) on additional language pairs 395

(in Table 4). 396

Evaluation Metrics. To understand the impact of 397

CHAI on the quality of code-mixed translation, we 398

utilize five well-studied metrics: (i) chrF (Popović, 399

2015), which calculates a character n-gram F-score 400

based on the overlap between predicted and ref- 401

erence sentences; (ii) chrF++ (Popović, 2017), 402

which improves correlations with human assess- 403

ment by adding word unigrams and bigrams to the 404

standard chrF score; (iii) COMET (Rei et al., 2020), 405

which generates embeddings of the source, hypoth- 406

esis, and reference sentences with a cross-lingual 407

encoder (Conneau, 2019), and predicts the score 408

of the given translation3. To validate the impact of 409

CHAI on classification tasks (especially the senti- 410

ment analysis task), we use two classic metrics: (i) 411

classification accuracy; (ii) weighted F1-score. 412

In addition to these classical evaluation metrics, 413

we also utilize human and LLM evaluators to calcu- 414

late the win rate (Lee et al., 2024). (iv) To compute 415

win rate with human evaluators, three human eval- 416

uators4 fluent in both English and Hindi were re- 417

cruited. For each source English sentence in the test 418

set (of MixMT 2022), we generated two Hinglish 419

translations, one using the CHAI-powered LLM 420

and the other using the base LLM (πbase). These 421

two Hinglish translations were shown (in random 422

order) to each human evaluator, who were asked 423

to select their preferred translation of the source 424

English sentence. A majority vote was used to 425

determine the evaluators’ aggregate preference la- 426

bel. (v) Similarly, to calculate win rate with LLM 427

evaluators, we generated two Hinglish translations 428

for each test data point (as described above) and 429

presented them in random order to a Gemini-1.5- 430

Flash-001 (Team et al., 2024) model across three 431

different temperature settings (T=0.1, 0.3, 0.5), and 432

aggregated results using a majority vote. In both 433

3We use reference-based evaluation model wmt22-comet-
da to calculate the COMET score.

4All our study protocols were approved by an Institutional
Review Board
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Prompt Alignment score
Basic 0-shot 60.30%

Basic + rule 0-shot 61.8%
Basic 1-shot 57.70%
Basic 2-shot 54.90%
Basic 3-shot 56.50%

Basic + rule 1-shot 59.70%
Basic + rule 2-shot 55.40%
Basic + rule 3-shot 57.60%
Basic + CoT 0-shot 56.40%

Basic + rule + CoT 0-shot 59.40%
Basic + rule + CoT 1-shot 58.90%
Basic + rule + CoT 2-shot 60.20%

Table 1: Alignment scores between human annotators
and LLM annotators utilizing different prompting strate-
gies.

cases, the win rate was defined as the proportion434

of test data points for which the Hinglish trans-435

lation generated by our CHAI-powered LLM was436

preferred by the evaluators over the Hinglish trans-437

lation generated by the base LLM.438

Evaluation Datasets. All machine transla-439

tion experiments are evaluated on the test set of440

MixMT 2022 shared task (Srivastava and Singh,441

2022). The experiments on cross-lingual transfer442

ability rely on English → Bengali+English, En-443

glish → French+English, and English → Span-444

ish+English corpora contained in (Gupta et al.,445

2024c). The sentiment analysis experiments are446

evaluated based on the whole dataset of SentMix-447

3L (Raihan et al., 2023) and the test set of SemEval-448

2020 Task 9 (Patwa et al., 2020).449

We now present results in three stages. First, we450

present results analyzing the ability of LLM anno-451

tators to mimic human preferences in code-mixed452

translation tasks. We also present results of fine-453

tuning several hyperparameters in the CHAI frame-454

work. Second, we present our main evaluation455

result of comparing code-mixed translation quality456

of CHAI-powered LLMs against state-of-the-art457

open-source LLMs to understand its effectiveness.458

Finally, we present results analyzing transfer learn-459

ing abilities of CHAI powered LLMs by evaluating460

its performance on Hinglish sentiment analysis &461

cross-lingual machine translation tasks.462

LLM Annotator Alignment. To generate pref-463

erence labels via LLM annotators in Stage 2 of464

the CHAI framework, we compared the prefer-465

ence labels generated via several permutations and466

Figure 2: Relationship between the temperature and the
quality of code-mixed machine translation.

combinations of three different types of prompting 467

strategies (basic prompting A3, rule-augmented 468

prompting A4, and chain-of-thought prompting 469

A5) against human-annotated preferences (three 470

independent human-annotators were also used to 471

provide preference labels on training data points). 472

Table 1 lists the alignment scores (defined as the 473

fraction of training data points on which the LLM 474

annotation matched the human-generated annota- 475

tion) achieved by LLM annotators powered by dif- 476

ferent prompting strategies. This figure shows that 477

basic prompting with specified preference anno- 478

tation rules for code-mixed texts outperforms all 479

other strategies by 1.5% (on average) and achieves 480

the highest alignment score of 61.8%. In particu- 481

lar, this table shows that having additional rules in 482

the prompt helps improve the alignment of LLM 483

annotators (1.28% increase in alignment score on 484

average) on code-mixed translation tasks. Surpris- 485

ingly, Table 1 shows that chain-of-thought (CoT) 486

prompting and k-shot prompting fails to improve 487

alignment in code-mixed scenarios, possibly be- 488

cause of inconsistencies in grammatical structure 489

of code-mixed texts leads CoT and k-shot prompt- 490

ing astray. In the rest of the experiments, we fix our 491

prompting strategy to the best-performing strategy 492

in Table 1. 493

Impact of Supervised Fine Tuning. We conduct 494

an ablation study to evaluate the impact of super- 495

vised fine-tuning (SFT) in Stage 1 of the RLAIF 496

framework on code-mixed translation. Table 2 com- 497

pares the quality of code-mixed translation gener- 498

ated with the standard RLAIF framework (which 499

includes the SFT step) and the translation generated 500

with a version of RLAIF in which no SFT train- 501

ing is done in Stage 1. Both human and Gemini 502

evaluators prefer RLAIF (no SFT) over standard 503

RLAIF, with win rates of 55.47% and 63.30%, re- 504

spectively (Table 2). Results with conventional 505

metrics show similar trends. These results show 506
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Evaluator Results En->
Hinglish

Gemini RLAIF 36.70%
RLAIF(no SFT) 63.30%

Human RLAIF 44.53%
RLAIF(no SFT) 55.47%

chrF RLAIF 42.09
RLAIF(no SFT) 42.43

chrF++ RLAIF 38.01
RLAIF(no SFT) 38.04

COMET RLAIF 0.67
RLAIF(no SFT) 0.70

Table 2: Performance of RLAIF with (without) SFT.

that using SFT is counterproductive in our con-507

text, lowering the code-mixed translation quality.508

In part, these results could also be explained by509

our choice of an instruction-tuned model (Llama-510

3.1-8b-Instruct) as our base model. As instruction-511

tuned models have undergone one round of SFT512

during their training phase, the additional SFT step513

in the standard RLAIF framework may have led to514

overfitting, reducing the model’s generalizability.515

Future research should investigate alternative fine-516

tuning strategies or data augmentation techniques517

to enhance generalization without compromising518

translation quality. Thus, all future CHAI experi-519

ments exclude SFT.520

Tuning LLM Temperature. In Figure 2, we521

compare the variation in code-mixed translation522

quality (as measured by chrF, chrF++, and COMET523

on Y-axes) with increasing values of temperature524

for the CHAI-powered LLM (X-axis). This figure525

shows that all three metrics are optimized at T=0.6.526

Thus, we fix the temperature of the CHAI-powered527

LLM to T=0.6 in all future experiments.528

Impact of CHAI on Translation Quality. Hav-529

ing identified the best prompting strategy, tempera-530

ture, etc., we now train a CHAI-powered LLM531

with these optimal hyperparameters to evaluate532

its effectiveness in improving the quality of code-533

mixed translation. Table 3 compares the quality534

of code-mixed translation generated by the CHAI-535

powered LLM against the translations generated536

by the base model (πbase). This table shows that537

the win rate achieved by translations generated538

by the CHAI-powered LLM outperforms the win539

rate (of πbase) by 13.42% (for LLM evaluators)540

and 25.66% (for human evaluators). Similarly,541

CHAI-powered LLM outperforms πbase by achiev-542

ing 27.57% higher chrF, 27.16% higher chrF++, 543

and 10.93% higher COMET scores. In a nutshell, 544

these results establish that the CHAI framework is 545

highly successful at improving the ability of LLMs 546

to handle code-mixed translation tasks. 547

Moreover, examples shown in Table 5 compare 548

the translations generated from πbase and CHAI- 549

powered LLM on two sampled data points, which 550

are representative of the general trend. From 551

both samples, it is evident that code-mixed trans- 552

lations generated by the CHAI-powered LLM ex- 553

press more accurate and natural-sounding language, 554

which aligns well with human preferences. 555

Evaluator Results En -> Hinglish
Gemini πbase 43.29%

CHAI-LLM 56.71%
Human πbase 37.17%

CHAI-LLM 62.83%
chrF πbase 33.77

CHAI-LLM 43.08
chrF++ πbase 30.49

CHAI-LLM 38.77
COMET πbase 0.64

CHAI-LLM 0.71

Table 3: Measuring CHAI’s ability in improving code
mixed translation ability.

Cross-lingual Transferability. Next, we exam- 556

ine if translation preferences learned during post- 557

training (especially, the RLAIF procedure) enhance 558

cross-lingual transfer. Three translation directions: 559

(i) English → English + Bengali;(ii) English → En- 560

glish + French; and (iii) English → English + Span- 561

ish are evaluated in Table 4, which shows that our 562

RLAIF procedure has indeed improved the cross- 563

lingual transfer ability of our CHAI-powered LLM 564

(as compared to SFT-LLM) on at least two out of 565

three language pairs ( English → English + Bengali 566

& English → English + Spanish). This results mir- 567

rors existing findings showing cross-lingual trans- 568

fer ability of LLMs achieved via machine transla- 569

tion tasks (Lample and Conneau, 2019). 570

Ability to Understand Code-Mixing. Finally, we 571

explore if using RLAIF for code-mixed translation 572

improves an LLM’s general ability to handle ad- 573

ditional code-mixed tasks. Table 6 compares the 574

accuracy and F1 achieved by our CHAI-powered 575

LLM and the base LLM (πbase) on two code-mixed 576

sentiment analysis datasets containing Hinglish sen- 577

tences as input, and a ternary sentiment (positive, 578
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Original Translation
Direction

Evaluator Results Translation Direction

En→CM of
Be and En

En→CM of
Fr and En

En→CM of
Es and En

En→Hinglish

Gemini
πbase Win 49.89% 54.44% 42.86%
CHAI-LLM Win 50.11% 45.56% 57.14%

chrF
πbase 12.75 34.88 32.72
CHAI-LLM 19.94 22.07 35.56

chrF++
πbase 11.42 31.52 30.56
CHAI-LLM 17.48 19.85 33.09

COMET
πbase 0.59 0.67 0.65
CHAI-LLM 0.66 0.71 0.79

Table 4: Cross-lingual transfer result based on different code-mixed language pairs.

Results English -> Hinglish
Input (English) You can see a gleam in their eye.

Sample-1 πbase output (Hinglish) Aapko unke aankhon mein ek chhupi hui chot dikh rahi
hai.

CHAI output (Hinglish) Arre, aapko unke aankhon mein ek gleam dikh raha hai.
Comments In the CHAI output, "gleam" remains unchanged, while

the rest of the sentence is translated into Hindi. However,
in the πbase output, "gleam" is mistranslated as "chhupi
hui chot" (’hidden injury’ in Hinglish), incorrectly trans-
lating "gleam" into ’injury’, and also adding an unin-
tended descriptor ’hidden’.

Input (English) Get our egotism out of the way.
Sample-2 πbase output (Hinglish) Aapke aap mein khelna band kar dena hai.

CHAI output (Hinglish) Arre, humari egotism ko aside kar do.
Comments πbase output misinterprets ’egotism’ literally (psychologi-

cally) where the translation means "we have to stop play-
ing amongst ourselves", which is unrelated to the given
sentence. Instead, CHAI preserves the original meaning.

Table 5: Comparing the translations generated from πbase and the CHAI-powered LLM.

neutral, negative) label. This table shows that our579

CHAI-powered LLM outperforms πbase by 14.12%580

(and 25.64%) on average in terms of accuracy (and581

F1), which indicates that using RLAIF improves582

an LLM’s ability to handle other code-mixed tasks.583

Dataset LLM Accuracy F1_score

SemEval-2020
πbase 35.40% 22.65%
CHAI 36.77% 25.04%

SentMix-3L
πbase 44.39% 32.96%
CHAI 55.21% 46.38%

Table 6: Performance of CHAI on sentiment analysis.

5 Conclusion 584

This paper introduces CHAI (Code Mixed Under- 585

standing via Hybrid AI Instruction), a novel frame- 586

work utilizing RLAIF to handle code-mixed lan- 587

guage, specifically for machine translation. CHAI 588

provides a cost-effective preference labeling strat- 589

egy using high-quality open-source datasets and AI 590

labeling. We demonstrate that LLM-as-annotators 591

can effectively annotate code-mixed texts, reducing 592

human annotation costs. Experimental results show 593

CHAI-powered models outperform state-of-the-art 594

open-source LLMs by 25.66% and exhibit cross- 595

lingual transfer in other code-mixed languages. 596
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6 Limitations597

Due to the non-trivial effort involved in gathering598

annotations from professional crowd (human) an-599

notators across different language pairs, this study600

focuses on a single language pair (Hindi and En-601

glish) and leave the exploration of other language602

pairs for future work. This naturally limits our603

evaluation somewhat. Additionally, the study fo-604

cuses on implementing CHAI on only one 8-billion605

parameter version of an open-source LLM (Llama-606

3.1-8B-Instruct). Extending this study to multiple607

LLMs is an interesting direction for future work608

(albeit an expensive one). Next, the study mainly609

focuses on a single NLP task: machine translation610

(except for experiments in Table 6). In future work,611

we aim to experiment with other directionalities612

of translation and more general NLP tasks such as613

code-mixed summarization, word-level language614

identification, etc. Finally, while we recognize that615

there are other important dimensions for evaluating616

translation quality such as the presence/absence of617

bias, helpfulness/harmfulness of translations, etc.,618

this study evaluates performance solely based on619

translation accuracy. We leave the exploration of620

these other evaluation dimensions for future work.621

7 Ethical Considerations622

The problem studied in this paper - development623

of LLMs for code mixed translation - presents sev-624

eral ethical challenges that need to be discussed625

and contemplated. First, it is important that such626

code-mixed LLMs output fair and unbiased trans-627

lation outputs. In particular, is is necessary to be628

vigilant about situations in which biases in code-629

mixed training data lead to biased or skewed trans-630

lations that may end up reinforcing problematic631

social norms, or misrepresenting cultural nuances.632

Additionally, preserving the intent and sentiment of633

speakers is essential, particularly in settings where634

such code-mixed translations are used to interact635

with code-mixed speakers.636

Perhaps most importantly, the ethics of circum-637

venting human feedback with AI feedback (as is the638

norm in RLAIF procedures) needs to be discussed639

carefully. On the one hand, as the results of this pa-640

per show, leveraging AI feedback in RLAIF proce-641

dures will speed up the developmennt of inclusive642

code-mixed LLMs which will help bridge the digi-643

tal divide, by making the benefits of LLMs avail-644

able to lots of code-mixed speakers from places645

like South Asia. On the other hand, utilizing AI646

feedback (in RLAIF) might mean fewer opportuni- 647

ties for human crowd workers (a majority of whom 648

live in South Asia) to provide annotations and re- 649

ceive renumeration in return. Thus, the ethics of 650

leveraging LLMs as annotators deserves serious 651

discussion (especially with regards to the associ- 652

ated negative impacts on the livelihoods of human 653

crowd annotators). 654
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A Appendix848

A.1 Prompt Template to Create Parallel849

Corpus850

See template at Table A1.851

A.2 Positional Bias in Code-mixed Texts852

We use the same test set (previously used for sec-853

tion A.3) to evaluate the positional bias problem854

in annotating code-mixed texts. For each example855

in the test set, we ask different LLM labelers to856

generate preference labels for a pair of candidates857

Prompt template I:
Translate this from {Source} to {Target}:
[Source]: {x}
[Target]: {y}

Table A1: Prompt template to create parallel corpus,
where ’Source’ and ’Target’ represent the names of the
source language and the target language,respectively.

through the basic prompt in A3. Then the candidate 858

order presented in the prompt is swapped, and the 859

same LLMs are requested to generate preference 860

labels again. If an LLM favors the same opinion on 861

both the original and reversed order of candidates 862

in the prompt, we consider it to be biased. 863

In this section, we measure position bias by com- 864

puting the alignment score between the LLM an- 865

notated results and human preference labels. From 866

Table A2, we see that both LLM labelers(GPT-4o 867

and Gemini) shows different alignment score on 868

same preference labeling task. This observation 869

indicates the positional bias of LLM labelers also 870

exists through the preference annotation task on 871

code-mixed texts. 872

LLM labeler Alignment score
GPT-4o (default order) 59.7%

GPT-4o (switched order) 54.3%
Gemini (default order) 59.0%

Gemini (switched order) 55.2%

Table A2: Performance of LLM labelers with different
positional orders.

A.3 Details of Evaluation Set for Alignment 873

Score Calculation 874

We downsampled from the training set Drm and 875

create a evaluation set containing 1000 data points. 876

Each data point contains one English sentence and 877

two corresponding code-mixed Hinglish transla- 878

tions. Each sample is assessed by three indepen- 879

dent human annotators. The human preference 880

labels are obtained through the majority voting of 881

three human annotators’ results. 882

A.4 Training Details of RLAIF Procedure 883

SFT stage. From the ablation study called Impact 884

of Supervised Fine Tuning, we see that SFT step 885

cannot boost LLM’s final performance. Therefore, 886

we do not include the SFT stage in training. 887

Reward model training stage. The reward model 888

is initialized from LlaMA-3.1-8b-Instruct. The 889
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whole training data are used to form the chosen-890

rejected pairs with translated results collected from891

the open-source dataset of code-mixed machine892

translation tasks. We train 3 epochs with the893

learning rate of 1.0e-4, warmup ratio of 0.1, and894

maximum input length of 1024.895

896

RL fine-tuning stage. We use the LlaMA-3.1-8b-897

Instruct as the initial policy. We reuse the input898

from the training data during the reward model899

training phase as queries. During RL fine-tuning,900

we sample from LLM with a temperature T=0.6901

and nucleus sampling top_p=0.9 and limit the902

maximum of generated length to 512. We train the903

model with a batch size of 16 and the learning rate904

of 1.0e-5 for 5 epochs.905

906

A.5 Prompts for Preference Labeling907

See different prompt strategies at Table A3, Ta-908

ble A4, Table A5, and Table A6.909

A.6 Prompt for LLM-based Evaluation910

See LLM evaluation prompt at Table A7.911

A.7 Recruitment Details912

All three human annotators are recruited from the913

university using convenience sampling. Each per-914

son was given 25 U.S. dollars per hour.915

12



Prompt_text: You are a fluent Hinglish speaker. Fluent Hinglish speakers are able to switch between Hindi and
English in the same sentence effortlessly while having a conversation.
You have an English sentence for which you’d like to choose the best Hinglish translation.
The English sentence is: {original_sent};
Translated-sentence-0 is: {first_translation};
Translated-sentence-1 is: {second_translation};

Choose a translated statement that best aligns with how a fluent Hinglish speaker talks. The format of the output
should be as follows: “My preference is:”,followed by the number 0 or 1 (which signifies the corresponding translated
sentence) based on your preference.

Table A3: Basic zero-shot prompt for preference labeling on code-mixed texts.

Prompt_text: A good code-mixed translation seamlessly blends elements of two or more languages while maintain-
ing the original meaning and context. It ensures clarity and fluency in both languages, allowing the message to be
easily understood by speakers of all involved languages.
Below we define four evaluation axes for code-mixed translation quality: accuracy, naturalness, syntactic correctness,
and Code-switching Correctness.
1.Accuracy: It evaluates how effectively the translated sentence retains the meaning and information of the original
sentence, while ensuring the correct usage of code-switched terms. For example, does the translation faithfully reflect
the content of the original meaning? Is the key information missing, alternated or repeated in translated sentences?
Does the translation introduce the new information which are not covered in original sentences?
2.Naturalness: It assesses how natural and easy to understand the translated sentence is. For example, is the new
translation elegant? Does the translated sentence seem difficult to understand, awkward, or contain unnatural
phrasing?
3.Syntactic correctness: It considers grammar, syntax, and the seamless integration of code-switching in translated
sentences. Are there any grammar or syntax issues in translation? Does code-mixing disrupt the flow of the sentence?
Is it somewhat smooth but not perfectly integrated? Or is it smooth and seamless?
4.Code-switching Correctness: It evaluates whether the given sentence is a correct instance of code-switching (CS).
Specifically, we define a sentence as a correct CS sentence if it meets the following constraints: (a) it is not entirely
in Hindi or English, and (b) no language other than Hindi or English is used.

You are a fluent Hinglish speaker. Fluent Hinglish speakers are able to switch between Hindi and English in the
same sentence effortlessly while having a conversation.
You have an English sentence for which you’d like to choose the best Hinglish translation.
The English sentence is: {original_sent};
Translated-sentence-0 is: {first_translation};
Translated-sentence-1 is: {second_translation};

Choose a translated statement that best aligns with how a fluent Hinglish speaker talks. The format of the output
should be as follows: “My preference is:”,followed by the number 0 or 1 (which signifies the corresponding translated
sentence) based on your preference.

Table A4: rule-augmented zero-shot prompt for preference labeling on code-mixed texts.
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Prompt-1 (output_rationale): You are a fluent Hinglish speaker. Fluent Hinglish speakers are able to switch
between Hindi and English in the same sentence effortlessly while having a conversation.
You have an English sentence and two of its possible Hinglish translation.
Explain the reason that which translation is better.
The format of the output should be as follows: “Rationale:”,followed by the reasons in one paragraph.

The English sentence is: {original_sent};
Translated-sentence-0 is: {first_translation};
Translated-sentence-1 is: {second_translation};
Prompt-2 (output_preference): You are a fluent Hinglish speaker. Fluent Hinglish speakers are able to switch
between Hindi and English in the same sentence effortlessly while having a conversation.
You have an English sentence, two of its possible Hinglish translation, and corresponding rationale.
Choose a translated statement that best aligns with how a fluent Hinglish speaker talks.
The format of the output should be as follows: “My preference is:”,followed by the number 0 or 1 (which signifies
the corresponding translated sentence) based on your preference.

The English sentence is: {original_sent};
Translated-sentence-0 is: {first_translation};
Translated-sentence-1 is: {second_translation};
Rationale: {rationale}

Table A5: Basic zero-shot chain-of-thought prompt for preference labeling on code-mixed texts, where we first
generate the rational based on prompt-1 and then concatenate it with prompt-2 to generate the final preference label.

Prompt: You are a fluent Hinglish speaker. Fluent Hinglish speakers are able to switch between Hindi and English
in the same sentence effortlessly while having a conversation.
You have an English sentence for which you’d like to choose the best Hinglish translation.
Choose a translated statement that best aligns with how a fluent Hinglish speaker talks.
You could only output 0 (if you prefers Translated-sentence-0) or output 1 (if you prefers Translated-sentence-1)

»»»» Example »»»»
The English sentence is: <original_sent for example-1>;
Translated-sentence-0 is: <first_translationfor example-1>;
Translated-sentence-1 is: <second_translation for example-1>;
My preference is: <label for example-1>

»»»» Follow the instructions and the example(s) above »»»»
The English sentence is: {original_sent};
Translated-sentence-0 is: {first_translation};
Translated-sentence-1 is: {second_translation};
My preference is:

Table A6: Basic 1-shot prompt for preference labeling on code-mixed texts.
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System_role: You are a translation expert in {source_language}, {target_language}, code-mixing of
{source_language} and {target_language}. I need your help in impartially judging the quality of two transla-
tions.
Prompt_text: Below we define four evaluation axes for code-mixed translation quality: accuracy, naturalness,
syntactic correctness, and Code-switching Correctness.
1.Accuracy: It evaluates how effectively the translated sentence retains the meaning and information of the original
sentence, while ensuring the correct usage of code-switched terms. For example, does the translation faithfully reflect
the content of the original meaning? Is the key information missing, alternated or repeated in translated sentences?
Does the translation introduce the new information which are not covered in original sentences?
2.Naturalness: It assesses how natural and easy to understand the translated sentence is. For example, is the new
translation elegant? Does the translated sentence seem difficult to understand, awkward, or contain unnatural
phrasing?
3.Syntactic correctness: It considers grammar, syntax, and the seamless integration of code-switching in translated
sentences. Are there any grammar or syntax issues in translation? Does code-mixing disrupt the flow of the sentence?
Is it somewhat smooth but not perfectly integrated? Or is it smooth and seamless?
4.Code-switching Correctness: It evaluates whether the given sentence is a correct instance of code-switching (CS).
Specifically, we define a sentence as a correct CS sentence if it meets the following constraints: (a) it is not entirely
in Hindi or English, and (b) no language other than Hindi or English is used.

Next, I will provide you with the original text under the <Original> tag, first translation under the <Translation_1>,
and second translation under the <Translation_2>.
Please let me know which one is better according to these criteria. Please give your judgment directly (output
"Translation_1" or "Translation_2" only) and do not output additional explanations.
<Original>
{original_sent}
</Original>

<Translation_1>
{first_translation}
</Translation_1>

<Translation_2>
{second_translation}
</Translation_2>

Table A7: Prompt for LLM-based evaluation.

15


	Introduction
	Related Work
	CHAI: RLAIF for Code-Mixed Translation
	Experimental Evaluation
	Conclusion
	Limitations
	Ethical Considerations
	Appendix
	Prompt Template to Create Parallel Corpus
	Positional Bias in Code-mixed Texts
	Details of Evaluation Set for Alignment Score Calculation
	Training Details of RLAIF Procedure
	Prompts for Preference Labeling
	Prompt for LLM-based Evaluation
	Recruitment Details


