CHALI for LLMs: Improving Code-Mixed Translation in Large Language
Models through Reinforcement Learning with AI Feedback

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have demon-
strated remarkable capabilities across various
NLP tasks but struggle with code-mixed (or
code-switched) language understanding. For
example, prior work benchmarking the perfor-
mance of multilingual LLMs on code-mixed
translation tasks has demonstrated that cur-
rent state-of-the-art multilingual LL.Ms are in-
effective in dealing with code-mixed languages.
However, the question of how to improve the
capability of multilingual LLMs to handle code-
mixed language has not received any atten-
tion to date. In this paper, we tackle this re-
search gap by proposing CHAI, a novel general-
purpose framework for improving the ability
of multilingual LLMs to handle code-mixed
languages. CHALI relies on three novel contri-
butions made in this paper. First, we explore
the ability of LLMs to provide accurate annota-
tions for code-mixed translation tasks. Second,
we leverage this ability of LLMs as annota-
tors to generate preference data for code-mixed
translation tasks at scale, which are then used
within a reinforcement learning from Al feed-
back (RLAIF) procedure to improve LLMs’
capability on code-mixed tasks. Third, we con-
duct a rigorous experimental evaluation across
various real-world datasets and settings. Our
analysis shows that CHAI-powered LLMs out-
perform state-of-the-art open-source LLMs by
25.66% (in terms of win rate adjudicated by
human annotators) in code-mixed translation
tasks. This work represents a first step towards
developing more inclusive code-mixed LLMs.

1 Introduction

Large language models (LLMs) have excelled at
comprehending, producing, and interacting with
human language across a wide variety of real-world
use cases, e.g., drafting code in information tech-
nology (Tian et al., 2023), generating hypotheses in
biology (Park et al., 2024), formulating therapeutic
dialogue in mental health settings (Cheng et al.,

2023), etc. LLMs have also seen widespread user
adoption, e.g., ChatGPT reached 100 million users
in two months after its launch, the fastest growth
of any consumer application in history (Hu, 2023).

Unfortunately, the vast linguistic diversity across
the globe still poses significant challenges for such
emerging LLM-based technologies. In particu-
lar, recent studies (Zhang et al., 2023a; Gupta
et al., 2024a) have shown that the ability of cur-
rent LLMs to understand and generate language
is heavily skewed towards monolingual English
language queries, with a significant performance
degradation reported in prior work (Gupta et al.,
2024b) on tasks involving code-mixed language'.
These results are highly problematic because they
leave a large proportion of the global population
— those using code-mixed language as their pri-
mary means of communication (which includes
more than 1 billion people in India alone) — at a
comparative disadvantage (Ramzan et al., 2021).
To ensure that the benefits of LLMs can extend to
these populations, it is crucial that the next genera-
tion of LLMs can understand, reason, and respond
to/in code-mixed language.

In large part, this performance degradation on
code-mixed tasks occurs because most current-day
LLMs have been trained on large corpora of mono-
lingual and/or multilingual text, with comparatively
little explicit code-mixed corpora included dur-
ing the pre-training phase of LLM training. This
lack of inclusion of code-mixed corpora can be
attributed to a (relative) lack of availability of large-
scale code-mixed datasets on the Internet (Maguer-
esse et al., 2020). Despite this, prior attempts at
augmenting LLMs to handle code-mixed language
have mainly focused on injecting additional code-
mixed text during the pre-training stage (Zhang
et al., 2023c¢). At the same time, while some stud-

!Code-mixing, the fluid alternation between languages
within a conversation or text, is a common linguistic phe-
nomenon, especially in multilingual societies (e.g., India).

ies highlight the cross-lingual transfer ability of
LLMs, these results do not effectively extend to
code-mixed language, where inconsistencies in
grammar, syntax, and context-switching further
hinder model performance.

These challenges motivate us to explore - Can
we develop a general-purpose approach to improve
the capability of LLMs in dealing with code-mixed
tasks? To tackle this main research question, we
propose CHAI (Code Mixed Understanding via
Hybrid Al Instruction), a novel general-purpose
framework for improving the ability of multilingual
LLMs to handle code-mixed language. CHAI re-
lies on three novel contributions. First, we explore
the ability of LLMs in providing accurate annota-
tions for code-mixed translation tasks. We compare
LLM annotation results with human annotations,
and our results show that LLM labeled preferences
(for code-mixed text) are highly correlated with
human annotator preferences. Second, we leverage
this ability of LLMs (to serve as a proxy annotator)
to generate preference data for code-mixed trans-
lation tasks at scale, which is then used to develop
a new code-mixed LLM through model alignment.
In particular, we adopt a reinforcement learning
from Al feedback (RLAIF) procedure to improve
the capability of current-day LL.Ms to handle code-
mixed language. To the best of our knowledge,
we are the first to utilize model alignment for the
code-mixing scenario. Third, we conduct a rig-
orous experimental evaluation across various real-
world datasets and settings. Our analysis shows
that LLMs powered with CHAI outperform conven-
tional state-of-the-art LLMs by 25.66% (in terms
of win rate adjudicated by human annotators) on
code-mixed translation tasks. This work takes a
first step towards developing more inclusive code-
mixed LLMs, which can empower people from
diverse linguistic communities.

2 Related Work

We discuss three primary areas of related work in
this section.

LLMs on Code-Mixed Tasks. Zhang et al. (2023b)
investigates LLMs’ potential in the context of code-
mixed tasks. They benchmark multilingual LLMs’
performance across sentiment analysis, machine
translation, summarization, and word-level lan-
guage identification tasks. They argue that cur-
rent multilingual capabilities in LLMs do not im-
ply proficiency with code-mixed texts. Similarly,

Gupta et al. (2024a) focuses on multilingual LLMs’
performance in code-mixed machine translation
tasks. Experimental results suggest that better code-
mixed translation quality is obtained from k-shot
prompting rather than 0-shot prompting. Unfor-
tunately, while all these existing studies focus on
benchmarking LLMs on code-mixed tasks, none
of them offer any solutions for improving perfor-
mance on such tasks.

RLHF in machine translation. RLHF fine-tunes
LLMs using human preference data to align outputs
with user expectations. Xu et al. (2024) explores
modeling translation preferences with RLHF and
constructs reward models by contrasting deficien-
cies in machine translation compared to human
translation from published books. He et al. (2024)
investigates the possibility of utilizing the qual-
ity estimation (QE) model as the reward model to
predict human preferences during RLHF. Exper-
iments show that QE-based feedback training is
highly data-efficient. Lai et al. (2024) introduces
a framework that models hierarchical rewards in
RLHF, and tests their approach in long-form ques-
tion answering and machine translation tasks. They
demonstrate how well hierarchical reward model-
ing works to improve LLM training procedures for
greater consistency with human preferences. Un-
fortunately, prior work in this space focuses solely
on monolingual machine translation tasks. In con-
trast, we focus on code-mixed machine translation.
RLAIF (Reinforcement Learning from Al Feed-
back). Collecting human preference data at scale
for RLHF is expensive and time-consuming. As
a workaround, some recent work attempts to re-
place human feedback with Al (or LLM) feedback,
which is then used as preference data to power
the conventional RLHF training procedure. Bai
et al. (2022) first introduced this RLAIF procedure,
where an Al labeler identified harmful or harmless
outputs to construct a reward model for policy opti-
mization and model alignment. Lee et al. (2024) fo-
cus on RLAIF for text summarization and dialogue
generation tasks and show that RLAIF achieves
human-level performance. Li et al. (2024) propose
phased annotations on different prompt categories
during the Al preference labeling process, greatly
improving the accuracy of Al annotations, result-
ing in a more robust helpfulness model. To the best
of our knowledge, this paper represents the first
attempt at adapting RLAIF to improve the ability
of LLMs to handle code-mixed language, as no
prior work has addressed this task.

3 CHAI: RLAIF for Code-Mixed
Translation

Reinforcement Learning from Human Feedback
(RLHF) is a highly popular and effective tech-
nique for aligning the output of LLMs with human-
specified preferences (Ouyang et al., 2022). Unfor-
tunately, a key obstacle prohibiting the large-scale
use of RLHF is that the quality of the reward model
(a key component of RLHF used to fine-tune the
final policy model) highly depends on access to
high-quality human preference labels. Collecting
these preference labels at scale from human anno-
tators is expensive and time-consuming.

To address this issue, recent work (Bai et al.,
2022) has proposed replacing human annotators
with Al (more specifically, LLM) annotators to
efficiently generate preference label data at scale,
which can then be used to train the reward model
(inside a conventional RLHF pipeline). This novel
paradigm of aligning LL.Ms with (desirable) pref-
erences is called Reinforcement Learning from Al
Feedback (RLAIF) (Lee et al., 2024), and it has
been successfully adopted to achieve model align-
ment across various use cases, such as reducing
harmful outputs (Li et al., 2024), etc.

In this section, we propose CHAI, a novel
general-purpose RLAIF framework to improve the
ability of multilingual LLMs to handle code-mixed
language. To the best of our knowledge, CHAI is
the first to apply RLAIF (or RLHF) to improve
model alignment for code-mixed use cases.
Specifically, CHAI focuses on using RLAIF to
improve LLMs’ alignment on the task of code-
mixed translation (i.e. translating monolingual
text to code-mixed text) using Al-annotated
preference labels. Next, we describe CHAI’s
overall architecture (see Figure 1).

Base LLM Model. The RLAIF procedure starts
by using an existing off-the-shelf LLM as a base
model (referred to as Base-LLM or 7%?¢ in Figure
1), which is then further optimized (or aligned)
using the RLAIF procedure. In CHAI, we use
Llama-3.1-8B-Instruct (Grattafiori and et. al.,
2024) as our base model, as (i) it is a robust
multilingual LLM (with support for English, Hindi,
German, French, and Italian, among others); and
(i1) it has demonstrated strong performance in
machine translation tasks (Xu et al., 2023), the
primary task of interest in this paper, making it
an ideal choice for an RLAIF-driven code-mixed

translation pipeline.

Stage 1: Supervised Fine Tuning of Base Model
Next, we use the base model and conduct super-
vised fine-tuning on it using domain-specific data
(for code-mixed translation) to adapt the base LLM
to the target task (of translating monolingual text
into code-mixed text). More formally, given a
parallel corpus Dparanier = {(@, ¥}z
where x; represents the source (English) sentences,
and y; represents the corresponding (code-mixed)
translation, we apply a fixed prompt template 7
(see Appendix Al) on a portion of this parallel
corpus and convert it into a training set Dy, =
tune our Llama-3.1-8B-Instruct base model. In par-
ticular, 72%¢ is supervised fine-tuned (SFT) using
a next-token prediction objective on this training
set Dy (Radford et al., 2019). This SFT version of
the base model is referred to as SFT-LLM or 7/*
in Figure 1 (and in the rest of the paper).

Given the widespread prevalence of code-mixed
language usage in India (in the form of Hinglish, or
Hindi+English) (Thara and Poornachandran, 2018),
we focus on using datasets for English — Hinglish
translation in CHAI to power this SFT stage. In
particular, we utilize the following two datasets and
use it as our parallel corpus Dparaliel:

e MixMT 2022 shared task (Srivastava and
Singh, 2022), which contains ~1800 parallel
English sentences along with multiple human-
generated Hinglish translations.

* ALL-CS dataset (Tarunesh et al., 2021),
which contains 9290 English sentences and
multiple Hinglish translations for each sen-
tence (only movie subset is included).

For each of these datasets, we first pair each
English sentence with each of the available
Hinglish translations, and this results in a total
of 3873 data points (from the MixMT dataset)
+ 11317 data points (from the All-CS dataset)
= 15190 datapoints inside our parallel corpus
Dparanel, a portion of which is then converted into
the Dy, dataset (as explained above).

Stage 2: Reward Model Training using Al Feed-
back. The key distinguishing characteristic of an
RLAIF framework is that we use an Al or LLM
model (instead of a human annotator) to annotate
preference data. Once generated, this preference

Stage-1.Supervised fine-tuning

o ———————— -
s
s

U

=

ProweT)= \"
e,

SFT-LLM

Stage-2. Reward modeling

—— e e e e e

Figure 1: Overall architecture of the RLAIF Procedure used in CHAI

data is used to train a reward model, and the rest of
the RLAIF pipeline mimics the steps in RLHF. We
now explain how this is accomplished in CHAI for
the task of code-mixed translation.

2.1 Collecting Preference Data Using LLMs We
use a portion of the Dp,rane1 corpus (from Stage
1) and convert it into a preference dataset as fol-
lows: (i) each source (English) sentence is paired
with two alternative Hinglish translations; (ii) these
three sentences are fed into a prompt template
Lyrey (see Appendix A.5) that generates a cus-
tom prompt for an LLM annotator asking it to
select which of the two provided Hinglish sen-
tences is a better code-mixed translation for the
source English sentence. To mitigate positional
bias (Pezeshkpour and Hruschka, 2023; Li et al.,
2024) in preference labeling of code-mixed text,
we randomly switch the position of the two candi-
date Hinglish translations before presenting them
to the LLM annotator (see Appendix A.2 for more
details on positional bias).

Our final preference dataset contains 15190 dis-
tinct prompts (of type Z,,..) that can be passed to
an LLM annotator to get a preference label. CHAI
uses GPT-40 (OpenAl et al., 2024) 2 as an LLM
annotator, each prompt is passed to GPT-4o at three
different temperature settings (T=0.1, 0.3, 0.5) to
get three preference labels, and the final binary

2GPT-4o points to gpt-40-2024-11-20

preference label (Y=0 or 1 means that the LLM
annotator prefers the first or second code-mixed
translation, respectively) is obtained through a ma-
jority vote on these three labels. To the best of our
knowledge, this represents the first-ever attempt at
utilizing LLM annotation abilities for annotating
tasks related to code-mixing.

2.2 Reward Model Training This LLM-annotated
preference label dataset is used to train a reward
model (a key component in the RLAIF frame-
work), which outputs numerical scores in response
to LLM generated responses provided as input. In-
tuitively, the trained reward model should be such
that LLM responses that are closely (or weakly)
aligned with Al preferences (expressed in our pref-
erence dataset) should receive high (or low) scores
from the reward model.

In CHAI, we train our reward model as fol-
lows: (i) we take 75 (our SFT model from Stage
1) and change its last neuronal layer from a lan-
guage modeling head (i.e., output logit of each
token in vocabulary) into a linear layer which gen-
erates a singular scalar prediction representing the
output reward score. (ii) To get the final reward
model, this modified version of 75 is trained on
the LLM-annotated preference dataset using the
Bradley-Terry model (Bradley and Terry, 1952),
which provides a functional form for the probabil-
ity that for an English sentence z, the LLM labeler

prefers its chosen Hinglish translation y. over the
rejected translation y,.:

er(:c,yc)
Pli=j} =

e pp e S
where r(x,y.) and r(z,y,) denote the reward
model scores for the chosen and rejected Hinglish
translations, respectively. Finally, this probability
is incorporated into a negative log-likelihood loss
function as follows:

L(r) = —Ep,, [log P{i > j}] 2

where Dy, = {x(i),ygi),yy)}fil represents the
preference labeled dataset for all X data points
annotated by the LLM.
Stage 3: Tuning Policy Model with Reinforce-
ment Learning. Finally, we train a policy
model 7! (initialized from 7°*) to maximize the
expected score returned from the reward model
using general-purpose reinforcement learning al-
gorithms, such as proximal policy optimization
(PPO) (Schulman et al., 2017). More precisely,
we optimize the policy model 7! to maximize this
objective function:

Ttotal = T(.CU, y) - nKL(er(y‘x)Hﬂ-Sft(y‘w)) (3)

where r refers to the reward score based on a
single sample, and the KL divergence term (i) acts
as an entropy bonus, preserving generation diver-
sity and preventing pattern-collapse into singular
high-reward responses (Jaques et al., 2019); while
(i) also ensuring that the RL policy’s output does
not deviate drastically from the distribution where
the reward model is accurate (Laidlaw et al., 2024,
Wang et al., 2024). Finally, 7 is a coefficient that
trades-off the two terms in this objective function.

4 Experimental Evaluation

We primarily focus our experimental evaluation on
analyzing the effectiveness of CHAI in improving
the ability of our base Llama-3.1-8B-Instruct model
on the task of English — Hinglish translation. Note
that while our CHAI framework is general enough
to handle code-mixed translation tasks for any lan-
guage pair, we focus our evaluation to English —
Hinglish because there are very few large-scale
datasets similar to MixMT 2022 and All-CS avail-
able in other language pairs. In particular, MixMT
2022 and All-CS contain multiple target Hinglish
translations for every source English sentence, and

these multiple target translations are crucial in en-
abling LLMs to provide preference labels in Stage
2 of the CHAI framework. As such, we leave ex-
ploration of other language pairs to future work,
especially given the non-trivial effort in collecting
such data in other language pairs using human an-
notators. Nevertheless, we do provide an analysis
of the cross-lingual transfer ability of our CHAI-
powered LLM (trained specifically for English —
Hinglish translation) on additional language pairs
(in Table 4).

Evaluation Metrics. To understand the impact of
CHALI on the quality of code-mixed translation, we
utilize five well-studied metrics: (i) chrF (Popovic,
2015), which calculates a character n-gram F-score
based on the overlap between predicted and ref-
erence sentences; (ii) chrF++ (Popovié, 2017),
which improves correlations with human assess-
ment by adding word unigrams and bigrams to the
standard chrF score; (iii)) COMET (Rei et al., 2020),
which generates embeddings of the source, hypoth-
esis, and reference sentences with a cross-lingual
encoder (Conneau, 2019), and predicts the score
of the given translation®. To validate the impact of
CHALI on classification tasks (especially the senti-
ment analysis task), we use two classic metrics: (i)
classification accuracy; (i) weighted F1-score.

In addition to these classical evaluation metrics,
we also utilize human and LLM evaluators to calcu-
late the win rate (Lee et al., 2024). (iv) To compute
win rate with human evaluators, three human eval-
uators* fluent in both English and Hindi were re-
cruited. For each source English sentence in the test
set (of MixMT 2022), we generated two Hinglish
translations, one using the CHAI-powered LLM
and the other using the base LLM (7b@5€). These
two Hinglish translations were shown (in random
order) to each human evaluator, who were asked
to select their preferred translation of the source
English sentence. A majority vote was used to
determine the evaluators’ aggregate preference la-
bel. (v) Similarly, to calculate win rate with LLM
evaluators, we generated two Hinglish translations
for each test data point (as described above) and
presented them in random order to a Gemini-1.5-
Flash-001 (Team et al., 2024) model across three
different temperature settings (T=0.1, 0.3, 0.5), and
aggregated results using a majority vote. In both

3We use reference-based evaluation model wmt22-comet-
da to calculate the COMET score.

*All our study protocols were approved by an Institutional
Review Board

Prompt Alignment score

Basic 0-shot 60.30%

Basic + rule 0-shot 61.8%
Basic 1-shot 57.70%

Basic 2-shot 54.90%

Basic 3-shot 56.50%

Basic + rule 1-shot 59.70%
Basic + rule 2-shot 55.40%
Basic + rule 3-shot 57.60%
Basic + CoT 0-shot 56.40%
Basic + rule + CoT 0-shot 59.40%
Basic + rule + CoT 1-shot 58.90%
Basic + rule + CoT 2-shot 60.20%

Table 1: Alignment scores between human annotators
and LLM annotators utilizing different prompting strate-
gies.

cases, the win rate was defined as the proportion
of test data points for which the Hinglish trans-
lation generated by our CHAI-powered LLM was
preferred by the evaluators over the Hinglish trans-
lation generated by the base LLM.

Evaluation Datasets. All machine transla-
tion experiments are evaluated on the test set of
MixMT 2022 shared task (Srivastava and Singh,
2022). The experiments on cross-lingual transfer
ability rely on English — Bengali+English, En-
glish — French+English, and English — Span-
ish+English corpora contained in (Gupta et al.,
2024c). The sentiment analysis experiments are
evaluated based on the whole dataset of SentMix-
3L (Raihan et al., 2023) and the test set of SemEval-
2020 Task 9 (Patwa et al., 2020).

We now present results in three stages. First, we
present results analyzing the ability of LLM anno-
tators to mimic human preferences in code-mixed
translation tasks. We also present results of fine-
tuning several hyperparameters in the CHAI frame-
work. Second, we present our main evaluation
result of comparing code-mixed translation quality
of CHAI-powered LLMs against state-of-the-art
open-source LLMs to understand its effectiveness.
Finally, we present results analyzing transfer learn-
ing abilities of CHAI powered LLMs by evaluating
its performance on Hinglish sentiment analysis &
cross-lingual machine translation tasks.

LLM Annotator Alignment. To generate pref-
erence labels via LLM annotators in Stage 2 of
the CHAI framework, we compared the prefer-
ence labels generated via several permutations and

o
o
g

chrf
34 —8— chrf++
COMET

ChrF score
=1
° o
o o
2 a
COMET Score

o
o
2

N

©
o
@
S

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Temperature

Figure 2: Relationship between the temperature and the
quality of code-mixed machine translation.

combinations of three different types of prompting
strategies (basic prompting A3, rule-augmented
prompting A4, and chain-of-thought prompting
AS5) against human-annotated preferences (three
independent human-annotators were also used to
provide preference labels on training data points).
Table 1 lists the alignment scores (defined as the
fraction of training data points on which the LLM
annotation matched the human-generated annota-
tion) achieved by LLM annotators powered by dif-
ferent prompting strategies. This figure shows that
basic prompting with specified preference anno-
tation rules for code-mixed texts outperforms all
other strategies by 1.5% (on average) and achieves
the highest alignment score of 61.8%. In particu-
lar, this table shows that having additional rules in
the prompt helps improve the alignment of LLM
annotators (1.28% increase in alignment score on
average) on code-mixed translation tasks. Surpris-
ingly, Table 1 shows that chain-of-thought (CoT)
prompting and k-shot prompting fails to improve
alignment in code-mixed scenarios, possibly be-
cause of inconsistencies in grammatical structure
of code-mixed texts leads CoT and k-shot prompt-
ing astray. In the rest of the experiments, we fix our
prompting strategy to the best-performing strategy
in Table 1.

Impact of Supervised Fine Tuning. We conduct
an ablation study to evaluate the impact of super-
vised fine-tuning (SFT) in Stage 1 of the RLAIF
framework on code-mixed translation. Table 2 com-
pares the quality of code-mixed translation gener-
ated with the standard RLAIF framework (which
includes the SFT step) and the translation generated
with a version of RLAIF in which no SFT train-
ing is done in Stage 1. Both human and Gemini
evaluators prefer RLAIF (no SFT) over standard
RLAIF, with win rates of 55.47% and 63.30%, re-
spectively (Table 2). Results with conventional
metrics show similar trends. These results show

Evaluator Results En->
Hinglish
Gemini RLAIF 36.70%
RLAIF(no SFT) 63.30%
Human RLAIF 44.53%
RLAIF(no SFT) 55.47%
chrF RLAIF 42.09
RLAIF(no SFT) 42.43
chrF++ RLAIF 38.01
RLAIF(no SFT) 38.04
COMET RLAIF 0.67
RLAIF(no SFT) 0.70

Table 2: Performance of RLAIF with (without) SFT.

that using SFT is counterproductive in our con-
text, lowering the code-mixed translation quality.
In part, these results could also be explained by
our choice of an instruction-tuned model (LLlama-
3.1-8b-Instruct) as our base model. As instruction-
tuned models have undergone one round of SFT
during their training phase, the additional SFT step
in the standard RLAIF framework may have led to
overfitting, reducing the model’s generalizability.
Future research should investigate alternative fine-
tuning strategies or data augmentation techniques
to enhance generalization without compromising
translation quality. Thus, all future CHAI experi-
ments exclude SFT.

Tuning LLM Temperature. In Figure 2, we
compare the variation in code-mixed translation
quality (as measured by chrF, chrF++, and COMET
on Y-axes) with increasing values of temperature
for the CHAI-powered LLM (X-axis). This figure
shows that all three metrics are optimized at T=0.6.
Thus, we fix the temperature of the CHAI-powered
LLM to T=0.6 in all future experiments.

Impact of CHAI on Translation Quality. Hav-
ing identified the best prompting strategy, tempera-
ture, etc., we now train a CHAI-powered LLM
with these optimal hyperparameters to evaluate
its effectiveness in improving the quality of code-
mixed translation. Table 3 compares the quality
of code-mixed translation generated by the CHAI-
powered LLM against the translations generated
by the base model (7b@5€). This table shows that
the win rate achieved by translations generated
by the CHAI-powered LLM outperforms the win
rate (of wbese) by 13.42% (for LLM evaluators)
and 25.66% (for human evaluators). Similarly,
CHAI-powered LLM outperforms 7°**¢ by achiev-

ing 27.57% higher chrF, 27.16% higher chrF++,
and 10.93% higher COMET scores. In a nutshell,
these results establish that the CHAI framework is
highly successful at improving the ability of LLMs
to handle code-mixed translation tasks.

Moreover, examples shown in Table 5 compare
the translations generated from 7%%%¢ and CHAI-
powered LLM on two sampled data points, which
are representative of the general trend. From
both samples, it is evident that code-mixed trans-
lations generated by the CHAI-powered LLM ex-
press more accurate and natural-sounding language,
which aligns well with human preferences.

Evaluator Results En -> Hinglish
Gemini mrPase 43.29%
CHAI-LLM 56.71%
Human groase 37.17%
CHAI-LLM 62.83%
chrF roase 33.77
CHAI-LLM 43.08
chrF++ roase 30.49
CHAI-LLM 38.77
COMET roase 0.64
CHAI-LLM 0.71

Table 3: Measuring CHAT’s ability in improving code
mixed translation ability.

Cross-lingual Transferability. Next, we exam-
ine if translation preferences learned during post-
training (especially, the RLAIF procedure) enhance
cross-lingual transfer. Three translation directions:
(i) English — English + Bengali;(ii) English — En-
glish + French; and (iii) English — English + Span-
ish are evaluated in Table 4, which shows that our
RLAIF procedure has indeed improved the cross-
lingual transfer ability of our CHAI-powered LLM
(as compared to SFT-LLM) on at least two out of
three language pairs (English — English + Bengali
& English — English + Spanish). This results mir-
rors existing findings showing cross-lingual trans-
fer ability of LLMs achieved via machine transla-
tion tasks (Lample and Conneau, 2019).

Ability to Understand Code-Mixing. Finally, we
explore if using RLAIF for code-mixed translation
improves an LLLM’s general ability to handle ad-
ditional code-mixed tasks. Table 6 compares the
accuracy and F1 achieved by our CHAI-powered
LLM and the base LLM (7%%*¢) on two code-mixed
sentiment analysis datasets containing Hinglish sen-
tences as input, and a ternary sentiment (positive,

Translation Direction

Original Translation Evaluator Results
Direction En—CM of En—CM of En—CM of
Be and En Fr and En Es and En

Gemini 7ba5¢ Win 49.89% 54.44% 42.86%

emint CHALLLM Win+— 50.11% 45.56% 57.14%
cheF prbase 12.75 34.88 32.72
En—Hinglish CHAI-LLM 19.94 22.07 35.56
—— rbase 11.42 31.52 30.56
¢ CHAI-LLM 17.48 19.85 33.09

base

T 0.59 0.67 0.65
COMET CHAI-LLM 0.66 0.71 0.79

Table 4: Cross-lingual transfer result based on different code-mixed language pairs.

‘ Results ‘ English -> Hinglish

Input (English) You can see a gleam in their eye.

Sample-1 7Ps¢ output (Hinglish) Aapko unke aankhon mein ek chhupi hui chot dikh rahi
hai.

CHALI output (Hinglish) Arre, aapko unke aankhon mein ek gleam dikh raha hai.

Comments In the CHALI output, "gleam" remains unchanged, while
the rest of the sentence is translated into Hindi. However,
in the 7%°¢ output, "gleam" is mistranslated as "chhupi
hui chot" (Chidden injury’ in Hinglish), incorrectly trans-
lating "gleam" into ’injury’, and also adding an unin-
tended descriptor hidden’.

Input (English) Get our egotism out of the way.

Sample-2 7€ output (Hinglish) Aapke aap mein khelna band kar dena hai.

CHALI output (Hinglish) Arre, humari egotism ko aside kar do.

Comments 7P35¢ output misinterprets ‘egotism’ literally (psychologi-
cally) where the translation means "we have to stop play-
ing amongst ourselves", which is unrelated to the given
sentence. Instead, CHAI preserves the original meaning.

Table 5: Comparing the translations generated from 7°?*¢ and the CHAI-powered LLM.

neutral, negative) label. This table shows that our
CHAI-powered LLM outperforms 7°%*¢ by 14.12%
(and 25.64%) on average in terms of accuracy (and
F1), which indicates that using RLAIF improves
an LLM’s ability to handle other code-mixed tasks.

Dataset LLM Accuracy F1_score
base
p 35.40% 22.65%
SemEval-2020 CHAI 36.77% 25.04%
‘ base " 44399% 32.96%
SentMix-3L CHAI 5521% 46.38%

Table 6: Performance of CHAI on sentiment analysis.

5 Conclusion

This paper introduces CHAI (Code Mixed Under-
standing via Hybrid AI Instruction), a novel frame-
work utilizing RLAIF to handle code-mixed lan-
guage, specifically for machine translation. CHAI
provides a cost-effective preference labeling strat-
egy using high-quality open-source datasets and Al
labeling. We demonstrate that LLM-as-annotators
can effectively annotate code-mixed texts, reducing
human annotation costs. Experimental results show
CHAI-powered models outperform state-of-the-art
open-source LL.Ms by 25.66% and exhibit cross-
lingual transfer in other code-mixed languages.

6 Limitations

Due to the non-trivial effort involved in gathering
annotations from professional crowd (human) an-
notators across different language pairs, this study
focuses on a single language pair (Hindi and En-
glish) and leave the exploration of other language
pairs for future work. This naturally limits our
evaluation somewhat. Additionally, the study fo-
cuses on implementing CHAI on only one 8-billion
parameter version of an open-source LLM (Llama-
3.1-8B-Instruct). Extending this study to multiple
LLMs is an interesting direction for future work
(albeit an expensive one). Next, the study mainly
focuses on a single NLP task: machine translation
(except for experiments in Table 6). In future work,
we aim to experiment with other directionalities
of translation and more general NLP tasks such as
code-mixed summarization, word-level language
identification, etc. Finally, while we recognize that
there are other important dimensions for evaluating
translation quality such as the presence/absence of
bias, helpfulness/harmfulness of translations, etc.,
this study evaluates performance solely based on
translation accuracy. We leave the exploration of
these other evaluation dimensions for future work.

7 Ethical Considerations

The problem studied in this paper - development
of LLMs for code mixed translation - presents sev-
eral ethical challenges that need to be discussed
and contemplated. First, it is important that such
code-mixed LLMs output fair and unbiased trans-
lation outputs. In particular, is is necessary to be
vigilant about situations in which biases in code-
mixed training data lead to biased or skewed trans-
lations that may end up reinforcing problematic
social norms, or misrepresenting cultural nuances.
Additionally, preserving the intent and sentiment of
speakers is essential, particularly in settings where
such code-mixed translations are used to interact
with code-mixed speakers.

Perhaps most importantly, the ethics of circum-
venting human feedback with Al feedback (as is the
norm in RLAIF procedures) needs to be discussed
carefully. On the one hand, as the results of this pa-
per show, leveraging Al feedback in RLAIF proce-
dures will speed up the developmennt of inclusive
code-mixed LLMs which will help bridge the digi-
tal divide, by making the benefits of LLMs avail-
able to lots of code-mixed speakers from places
like South Asia. On the other hand, utilizing Al

feedback (in RLAIF) might mean fewer opportuni-
ties for human crowd workers (a majority of whom
live in South Asia) to provide annotations and re-
ceive renumeration in return. Thus, the ethics of
leveraging LLMs as annotators deserves serious
discussion (especially with regards to the associ-
ated negative impacts on the livelihoods of human
crowd annotators).

References

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Ralph Allan Bradley and Milton E Terry. 1952. Rank
analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324—
345.

Szu-Wei Cheng, Chung-Wen Chang, Wan-Jung Chang,
Hao-Wei Wang, Chih-Sung Liang, Taishiro Kishi-
moto, Jane Pei-Chen Chang, John S Kuo, and Kuan-
Pin Su. 2023. The now and future of chatgpt and gpt
in psychiatry. Psychiatry and clinical neurosciences,
77(11):592-596.

A Conneau. 2019. Unsupervised cross-lingual rep-
resentation learning at scale. arXiv preprint
arXiv:1911.02116.

Aaron Grattafiori and et. al. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Ayushman Gupta, Akhil Bhogal, and Kripabandhu
Ghosh. 2024a. Code-mixer ya nahi: Novel ap-
proaches to measuring multilingual 1lms’ code-
mixing capabilities. Preprint, arXiv:2410.11079.

Ayushman Gupta, Akhil Bhogal, and Kripa-
bandhu Ghosh. 2024b. Code-mixer ya nahi:
Novel approaches to measuring multilingual
Ilms’ code-mixing capabilities. arXiv preprint
arXiv:2410.11079.

Ayushman Gupta, Akhil Bhogal, and Kripabandhu
Ghosh. 2024c. Multilingual controlled generation
and gold-standard-agnostic evaluation of code-mixed
sentences. arXiv preprint arXiv:2410.10580.

Zhiwei He, Xing Wang, Wenxiang Jiao, Zhuosheng
Zhang, Rui Wang, Shuming Shi, and Zhaopeng Tu.
2024. Improving machine translation with human
feedback: An exploration of quality estimation as a
reward model. In Proceedings of the 2024 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
8164-8180, Mexico City, Mexico. Association for
Computational Linguistics.

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2410.11079
https://arxiv.org/abs/2410.11079
https://arxiv.org/abs/2410.11079
https://arxiv.org/abs/2410.11079
https://arxiv.org/abs/2410.11079
https://doi.org/10.18653/v1/2024.naacl-long.451
https://doi.org/10.18653/v1/2024.naacl-long.451
https://doi.org/10.18653/v1/2024.naacl-long.451
https://doi.org/10.18653/v1/2024.naacl-long.451
https://doi.org/10.18653/v1/2024.naacl-long.451

Krystal Hu. 2023. Chatgpt sets record for fastest-
growing user base - analyst note.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen
Shen, Craig Ferguson, Agata Lapedriza, Noah Jones,
Shixiang Gu, and Rosalind Picard. 2019. Way
off-policy batch deep reinforcement learning of im-
plicit human preferences in dialog. arXiv preprint
arXiv:1907.00456.

Yuhang Lai, Siyuan Wang, Shujun Liu, Xuanjing Huang,
and Zhongyu Wei. 2024. ALaRM: Align language
models via hierarchical rewards modeling. In Find-
ings of the Association for Computational Linguistics:
ACL 2024, pages 7817-7831, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Cassidy Laidlaw, Shivam Singhal, and Anca Dra-
gan. 2024. Preventing reward hacking with oc-
cupancy measure regularization. arXiv preprint
arXiv:2403.03185.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. arXiv preprint
arXiv:1901.07291.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas
Mesnard, Johan Ferret, Kellie Lu, Colton Bishop,
Ethan Hall, Victor Carbune, Abhinav Rastogi, and
Sushant Prakash. 2024. Rlaif vs. rlhf: Scaling re-
inforcement learning from human feedback with ai
feedback. Preprint, arXiv:2309.00267.

Ang Li, Qiugen Xiao, Peng Cao, Jian Tang, Yi Yuan, Zi-
jie Zhao, Xiaoyuan Chen, Liang Zhang, Xiangyang
Li, Kaitong Yang, Weidong Guo, Yukang Gan,
Xu Yu, Daniell Wang, and Ying Shan. 2024. Hrlaif:
Improvements in helpfulness and harmlessness in
open-domain reinforcement learning from ai feed-
back. Preprint, arXiv:2403.08309.

Alexandre Magueresse, Vincent Carles, and Evan Heet-
derks. 2020. Low-resource languages: A review
of past work and future challenges. arXiv preprint
arXiv:2006.07264.

OpenAl, Josh Achiam, and et. al. 2024. Gpt-4 technical
report. Preprint, arXiv:2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. Preprint, arXiv:2203.02155.

Yang Jeong Park, Daniel Kaplan, Zhichu Ren, Chia-Wei
Hsu, Changhao Li, Haowei Xu, Sipei Li, and Ju Li.
2024. Can chatgpt be used to generate scientific
hypotheses? Journal of Materiomics, 10(3):578—
584.

10

Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj
Pandey, Srinivas PYKL, Bjorn Gambéck, Tanmoy
Chakraborty, Thamar Solorio, and Amitava Das.
2020. Semeval-2020 task 9: Overview of sen-
timent analysis of code-mixed tweets. Preprint,
arXiv:2008.04277.

Pouya Pezeshkpour and Estevam Hruschka. 2023.
Large language models sensitivity to the order of
options in multiple-choice questions. arXiv preprint
arXiv:2308.11483.

Maja Popovié. 2015. chrf: character n-gram f-score for
automatic mt evaluation. In Proceedings of the tenth
workshop on statistical machine translation, pages

392-395.

Maja Popovié. 2017. chrf++: words helping character
n-grams. In Proceedings of the second conference on
machine translation, pages 612-618.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Md Nishat Raihan, Dhiman Goswami, Antara Mah-
mud, Antonios Anstasopoulos, and Marcos Zampieri.
2023. Sentmix-31: A bangla-english-hindi code-
mixed dataset for sentiment analysis. arXiv preprint
arXiv:2310.18023.

Muhammad Ramzan, Aamir Aziz, and Maimoona
Ghaffar. 2021. A study of code-mixing and code-
switching (urdu and punjabi) in children’s early
speech. Journal of Language and Linguistic Studies,
17(2):869-881.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. Comet: A neural framework for mt
evaluation. arXiv preprint arXiv:2009.09025.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Prox-
imal policy optimization algorithms. Preprint,
arXiv:1707.06347.

Vivek Srivastava and Mayank Singh. 2022. Overview
and results of MixMT shared-task at WMT 2022. In
Proceedings of the Seventh Conference on Machine
Translation (WMT), pages 806-811, Abu Dhabi,
United Arab Emirates (Hybrid). Association for Com-
putational Linguistics.

Ishan Tarunesh, Syamantak Kumar, and Preethi Jyothi.
2021. From machine translation to code-switching:
Generating high-quality code-switched text. arXiv
preprint arXiv:2107.06483.

Gemini Team, Petko Georgiev, and et. al. 2024.
Gemini 1.5: Unlocking multimodal understanding
across millions of tokens of context. Preprint,
arXiv:2403.05530.

https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://doi.org/10.18653/v1/2024.findings-acl.465
https://doi.org/10.18653/v1/2024.findings-acl.465
https://doi.org/10.18653/v1/2024.findings-acl.465
https://arxiv.org/abs/2309.00267
https://arxiv.org/abs/2309.00267
https://arxiv.org/abs/2309.00267
https://arxiv.org/abs/2309.00267
https://arxiv.org/abs/2309.00267
https://arxiv.org/abs/2403.08309
https://arxiv.org/abs/2403.08309
https://arxiv.org/abs/2403.08309
https://arxiv.org/abs/2403.08309
https://arxiv.org/abs/2403.08309
https://arxiv.org/abs/2403.08309
https://arxiv.org/abs/2403.08309
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2008.04277
https://arxiv.org/abs/2008.04277
https://arxiv.org/abs/2008.04277
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://aclanthology.org/2022.wmt-1.74
https://aclanthology.org/2022.wmt-1.74
https://aclanthology.org/2022.wmt-1.74
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530

S Thara and Prabaharan Poornachandran. 2018. Code-
mixing: A brief survey. In 2018 International con-
ference on advances in computing, communications
and informatics (ICACCI), pages 2382-2388. IEEE.

Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-
Chi Cheung, Jacques Klein, and Tegawendé F Bis-
syandé. 2023. Is chatgpt the ultimate program-
ming assistant-how far is it? arXiv preprint
arXiv:2304.11938.

Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan
Dou, Caishuang Huang, Wei Shen, Senjie Jin, Enyu
Zhou, Chenyu Shi, et al. 2024. Secrets of rlhf in large
language models part ii: Reward modeling. arXiv
preprint arXiv:2401.06080.

Haoran Xu, Young Jin Kim, Amr Sharaf, and
Hany Hassan Awadalla. 2023. A paradigm shift
in machine translation: Boosting translation perfor-
mance of large language models. arXiv preprint
arXiv:2309.11674.

Nuo Xu, Jun Zhao, Can Zu, Sixian Li, Lu Chen, Zhi-
hao Zhang, Rui Zheng, Shihan Dou, Wenjuan Qin,
Tao Gui, Qi Zhang, and Xuanjing Huang. 2024. Ad-
vancing translation preference modeling with rlhf:
A step towards cost-effective solution. Preprint,
arXiv:2402.11525.

Ruochen Zhang, Samuel Cahyawijaya, Jan Chris-
tian Blaise Cruz, and Alham Fikri Aji. 2023a. Mul-
tilingual large language models are not (yet) code-
switchers. arXiv preprint arXiv:2305.14235.

Ruochen Zhang, Samuel Cahyawijaya, Jan Chris-
tian Blaise Cruz, Genta Winata, and Alham Fikri
Aji. 2023b. Multilingual large language models are
not (yet) code-switchers. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 12567—12582, Singapore.
Association for Computational Linguistics.

Wenbo Zhang, Hangzhi Guo, Prerna Ranganathan,
Jay Patel, Sathyanath Rajasekharan, Nidhi Danayak,
Manan Gupta, and Amulya Yadav. 2023c. A con-
tinual pre-training approach to tele-triaging pregnant
women in kenya. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 37, pages
14620-14627.

A Appendix

A.1 Prompt Template to Create Parallel
Corpus

See template at Table Al.

A.2 Positional Bias in Code-mixed Texts

We use the same test set (previously used for sec-
tion A.3) to evaluate the positional bias problem
in annotating code-mixed texts. For each example
in the test set, we ask different LLM labelers to
generate preference labels for a pair of candidates

11

Prompt template 7:

Translate this from {Source} to {Target}:
[Source]: {x}

[Target]: {y}

Table Al: Prompt template to create parallel corpus,
where ’Source’ and *Target’ represent the names of the
source language and the target language,respectively.

through the basic prompt in A3. Then the candidate
order presented in the prompt is swapped, and the
same LLMs are requested to generate preference
labels again. If an LLM favors the same opinion on
both the original and reversed order of candidates
in the prompt, we consider it to be biased.

In this section, we measure position bias by com-
puting the alignment score between the LLM an-
notated results and human preference labels. From
Table A2, we see that both LLM labelers(GPT-40
and Gemini) shows different alignment score on
same preference labeling task. This observation
indicates the positional bias of LLM labelers also
exists through the preference annotation task on
code-mixed texts.

LLM labeler Alignment score
GPT-40 (default order) 59.7%
GPT-40 (switched order) 54.3%
Gemini (default order) 59.0%
Gemini (switched order) 55.2%

Table A2: Performance of LLM labelers with different
positional orders.

A.3 Details of Evaluation Set for Alignment
Score Calculation

We downsampled from the training set D, and
create a evaluation set containing 1000 data points.
Each data point contains one English sentence and
two corresponding code-mixed Hinglish transla-
tions. Each sample is assessed by three indepen-
dent human annotators. The human preference
labels are obtained through the majority voting of
three human annotators’ results.

A.4 Training Details of RLAIF Procedure

SFT stage. From the ablation study called Impact
of Supervised Fine Tuning, we see that SFT step
cannot boost LLM’s final performance. Therefore,
we do not include the SFT stage in training.

Reward model training stage. The reward model
is initialized from LlaMA-3.1-8b-Instruct. The

https://arxiv.org/abs/2402.11525
https://arxiv.org/abs/2402.11525
https://arxiv.org/abs/2402.11525
https://arxiv.org/abs/2402.11525
https://arxiv.org/abs/2402.11525
https://doi.org/10.18653/v1/2023.emnlp-main.774
https://doi.org/10.18653/v1/2023.emnlp-main.774
https://doi.org/10.18653/v1/2023.emnlp-main.774

whole training data are used to form the chosen-
rejected pairs with translated results collected from
the open-source dataset of code-mixed machine
translation tasks. We train 3 epochs with the
learning rate of 1.0e-4, warmup ratio of 0.1, and
maximum input length of 1024.

RL fine-tuning stage. We use the LIaMA-3.1-8b-
Instruct as the initial policy. We reuse the input
from the training data during the reward model
training phase as queries. During RL fine-tuning,
we sample from LLM with a temperature T=0.6
and nucleus sampling top_p=0.9 and limit the
maximum of generated length to 512. We train the
model with a batch size of 16 and the learning rate
of 1.0e-5 for 5 epochs.

A.5 Prompts for Preference Labeling

See different prompt strategies at Table A3, Ta-
ble A4, Table A5, and Table A6.

A.6 Prompt for LLM-based Evaluation

See LLM evaluation prompt at Table A7.

A.7 Recruitment Details

All three human annotators are recruited from the
university using convenience sampling. Each per-
son was given 25 U.S. dollars per hour.

12

Prompt_text: You are a fluent Hinglish speaker. Fluent Hinglish speakers are able to switch between Hindi and
English in the same sentence effortlessly while having a conversation.

You have an English sentence for which you’d like to choose the best Hinglish translation.

The English sentence is: {original_sent};

Translated-sentence-0 is: {first_translation};

Translated-sentence-1 is: {second_translation};

Choose a translated statement that best aligns with how a fluent Hinglish speaker talks. The format of the output
should be as follows: “My preference is:”,followed by the number 0 or 1 (which signifies the corresponding translated
sentence) based on your preference.

Table A3: Basic zero-shot prompt for preference labeling on code-mixed texts.

Prompt_text: A good code-mixed translation seamlessly blends elements of two or more languages while maintain-
ing the original meaning and context. It ensures clarity and fluency in both languages, allowing the message to be
easily understood by speakers of all involved languages.

Below we define four evaluation axes for code-mixed translation quality: accuracy, naturalness, syntactic correctness,
and Code-switching Correctness.

1.Accuracy: It evaluates how effectively the translated sentence retains the meaning and information of the original
sentence, while ensuring the correct usage of code-switched terms. For example, does the translation faithfully reflect
the content of the original meaning? Is the key information missing, alternated or repeated in translated sentences?
Does the translation introduce the new information which are not covered in original sentences?

2.Naturalness: It assesses how natural and easy to understand the translated sentence is. For example, is the new
translation elegant? Does the translated sentence seem difficult to understand, awkward, or contain unnatural
phrasing?

3.Syntactic correctness: It considers grammar, syntax, and the seamless integration of code-switching in translated
sentences. Are there any grammar or syntax issues in translation? Does code-mixing disrupt the flow of the sentence?
Is it somewhat smooth but not perfectly integrated? Or is it smooth and seamless?

4.Code-switching Correctness: It evaluates whether the given sentence is a correct instance of code-switching (CS).
Specifically, we define a sentence as a correct CS sentence if it meets the following constraints: (a) it is not entirely
in Hindi or English, and (b) no language other than Hindi or English is used.

You are a fluent Hinglish speaker. Fluent Hinglish speakers are able to switch between Hindi and English in the
same sentence effortlessly while having a conversation.

You have an English sentence for which you’d like to choose the best Hinglish translation.

The English sentence is: {original_sent};

Translated-sentence-0 is: {first_translation};

Translated-sentence-1 is: {second_translation};

Choose a translated statement that best aligns with how a fluent Hinglish speaker talks. The format of the output
should be as follows: “My preference is:”,followed by the number O or 1 (which signifies the corresponding translated
sentence) based on your preference.

Table A4: rule-augmented zero-shot prompt for preference labeling on code-mixed texts.

13

Prompt-1 (output_rationale): You are a fluent Hinglish speaker. Fluent Hinglish speakers are able to switch
between Hindi and English in the same sentence effortlessly while having a conversation.

You have an English sentence and two of its possible Hinglish translation.

Explain the reason that which translation is better.

The format of the output should be as follows: “Rationale:”,followed by the reasons in one paragraph.

The English sentence is: {original_sent};

Translated-sentence-0 is: {first_translation};

Translated-sentence-1 is: {second_translation};

Prompt-2 (output_preference): You are a fluent Hinglish speaker. Fluent Hinglish speakers are able to switch
between Hindi and English in the same sentence effortlessly while having a conversation.

You have an English sentence, two of its possible Hinglish translation, and corresponding rationale.

Choose a translated statement that best aligns with how a fluent Hinglish speaker talks.

The format of the output should be as follows: “My preference is:”,followed by the number O or 1 (which signifies
the corresponding translated sentence) based on your preference.

The English sentence is: {original_sent};
Translated-sentence-0 is: {first_translation};
Translated-sentence-1 is: {second_translation};
Rationale: {rationale}

Table AS: Basic zero-shot chain-of-thought prompt for preference labeling on code-mixed texts, where we first
generate the rational based on prompt-1 and then concatenate it with prompt-2 to generate the final preference label.

Prompt: You are a fluent Hinglish speaker. Fluent Hinglish speakers are able to switch between Hindi and English
in the same sentence effortlessly while having a conversation.

You have an English sentence for which you’d like to choose the best Hinglish translation.

Choose a translated statement that best aligns with how a fluent Hinglish speaker talks.

You could only output O (if you prefers Translated-sentence-0) or output 1 (if you prefers Translated-sentence-1)

boododod Examp]e boedodod

The English sentence is: <original_sent for example-1>;
Translated-sentence-0 is: <first_translationfor example-1>;
Translated-sentence-1 is: <second_translation for example-1>;
My preference is: <label for example-1>

»»»» Follow the instructions and the example(s) above »»»»
The English sentence is: {original_sent};
Translated-sentence-0 is: {first_translation};
Translated-sentence-1 is: {second_translation};

My preference is:

Table A6: Basic 1-shot prompt for preference labeling on code-mixed texts.

14

System_role: You are a translation expert in {source_language}, {target language}, code-mixing of
{source_language} and {target language}. I need your help in impartially judging the quality of two transla-
tions.

Prompt_text: Below we define four evaluation axes for code-mixed translation quality: accuracy, naturalness,
syntactic correctness, and Code-switching Correctness.

1.Accuracy: It evaluates how effectively the translated sentence retains the meaning and information of the original
sentence, while ensuring the correct usage of code-switched terms. For example, does the translation faithfully reflect
the content of the original meaning? Is the key information missing, alternated or repeated in translated sentences?
Does the translation introduce the new information which are not covered in original sentences?

2.Naturalness: It assesses how natural and easy to understand the translated sentence is. For example, is the new
translation elegant? Does the translated sentence seem difficult to understand, awkward, or contain unnatural
phrasing?

3.Syntactic correctness: It considers grammar, syntax, and the seamless integration of code-switching in translated
sentences. Are there any grammar or syntax issues in translation? Does code-mixing disrupt the flow of the sentence?
Is it somewhat smooth but not perfectly integrated? Or is it smooth and seamless?

4.Code-switching Correctness: It evaluates whether the given sentence is a correct instance of code-switching (CS).
Specifically, we define a sentence as a correct CS sentence if it meets the following constraints: (a) it is not entirely
in Hindi or English, and (b) no language other than Hindi or English is used.

Next, I will provide you with the original text under the <Original> tag, first translation under the <Translation_1>,
and second translation under the <Translation_2>.

Please let me know which one is better according to these criteria. Please give your judgment directly (output
"Translation_1" or "Translation_2" only) and do not output additional explanations.

<Original>

{original_sent}

</Original>

<Translation_1>
{first_translation}
</Translation_1>

<Translation_2>
{second_translation}
</Translation_2>

Table A7: Prompt for LLM-based evaluation.

15

	Introduction
	Related Work
	CHAI: RLAIF for Code-Mixed Translation
	Experimental Evaluation
	Conclusion
	Limitations
	Ethical Considerations
	Appendix
	Prompt Template to Create Parallel Corpus
	Positional Bias in Code-mixed Texts
	Details of Evaluation Set for Alignment Score Calculation
	Training Details of RLAIF Procedure
	Prompts for Preference Labeling
	Prompt for LLM-based Evaluation
	Recruitment Details

