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In this supplementary file, we first introduce the experi-001
mental details in Sec. 1, including implementation details,002
correspondence sampling, and model architecture. We then003
report more results in Sec. 2.004

1. Experimental Details005

1.1. Implementation details006

Running details. We utilized PyTorch to implement our007
method and trained it on a system consisting of one Quadro008
GV100 GPU (32G) and two Intel(R) Xeon(R) Gold 6226009
CPUs. Our training process consisted of 50 epochs for010
3DMatch and 90 epochs for KITTI, with a batch size of 1.011
We used the AdamW optimizer with a weight decay of 1e-012
6. The initial learning rate was set to 1e-4 for both datasets,013
but it was decreased by a factor of 0.05 after each epoch on014
3DMatch and every 4 epochs on KITTI.015

The encoder and decoder architectures used were iden-016
tical to those in [9]. For training, we randomly selected017
128 ground-truth super-point correspondences, while for018
testing, we used 256 putative matches. For the geomet-019
ric Transformer, we repeated it 3 times. For Fine match-020
ing on 3DMatch and KITTI, we first sampled 64 points for021
each patch, then performed geometric self-attention in each022
patch to produce more distinctive descriptors for correspon-023
dence prediction. On 3DCSR, we generated 48 points for024
each patch if a patch contains more than 48 points, then025
performed geometric self-attention.026

Correspondence sampling. Our approach for sampling027
various numbers of interest points is based on CoFiNet [9].028
To obtain correspondences, we use a probability sampling029
method that considers the product of the confidence scores030
for both coarse and fine matching, i.e., Γ̄ ∗ Γ.031

Architecture. Our approach utilizes an encoder-decoder032
framework that employs KPConv operations. We have033
incorporated two attention-based networks, which are034
geometry-enhanced, to facilitate context aggregation and035

Table 1. Computation time analysis on both 3DMatch and 3DLo-
Match datasets.

RR Time (s)
Method 3DM 3DLM Model Pose Total

FCGF [4] 85.1 40.1 0.052 3.326 3.378
D3Feat [2] 81.6 37.2 0.024 3.088 3.112
SpinNet [1] 88.6 59.8 60.248 0.388 60.636
Predator [5] 89.0 59.8 0.032 5.120 5.152
CoFiNet [9] 89.3 67.5 0.115 1.807 1.922
GeoTrans [6] 92.0 75.0 0.075 1.558 1.633
FLAT (ours) 92.4 78.6 0.412 1.502 1.914

geometric embedding. For further information regarding 036
our network architecture, please refer to Fig. 1. 037

2. Additional results 038

Computation time analysis. We computed the average 039
inference time of our proposed method and compared it 040
to that of the baseline methods on 3DMatch and 3DLo- 041
Match. It is worth mentioning that each method consists 042
of two stages, which are feature or correspondence extrac- 043
tion and transformation recovery using RANSAC. We re- 044
port the inference times for both stages. For baselines, we 045
use the codes and pre-trained models provided by the au- 046
thors and run them in our environment for a fair comparison. 047
While our approach may be marginally slower than certain 048
baselines in the correspondence prediction stage, it outper- 049
forms them in reliably extracting correspondences. All ex- 050
periments were conducted on the 3DMatch testing set, us- 051
ing a single Tesla V100-PCIE GPU (32G) and two Intel(R) 052
Xeon(R) Gold 6226 CPUs. 053

Test with very low overlap ratios. Certainly! Here’s a 054
revised version of your paragraph for improved clarity and 055
coherence: 056

”We selectively analyzed scenarios within 3DMatch 057
where the overlap ratio falls between 1.0% and 10%. As 058
demonstrated in Tab. 2, the introduction of full geomet- 059
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Figure 1. Detailed architecture FLAT. Within the self- and cross-attention modules, the multi-head attention part utilizes four heads. Angle
and distance provide geometry information for cross-attention.

Table 2. Registration results on 3DMatch where the overlap ratio
ranges between 1.0% to 10%.

RR↑ FMR↑ IR↑
GeoTr 38.2 66.9 17.0
Ours 46.9 76.3 21.4

ric cross-attention in our approach significantly enhances060
performance over GeoTransformer. This advancement can061
be attributed to the primary distinction between our FLAT062
and GeoTransformer: the implementation of full geometric063
cross-attention, which effectively aids in identifying over-064
lapping regions. Consequently, FLAT exhibits heightened065
proficiency in detecting more accurate correspondences in066
cases with low overlap.067

Failure cases. Fig. 2 shows two failure cases on 3DLo-068
Match wherein the overlapping regions are planar surfaces,069
lacking geometric information. We analyze cases with low070
overlap ratios: 10.2% top case, 13.8% bottom case. Cor-071
rectly matched points are colored in red, while incorrectly072
matched points are black. Although several features are cor-073
rectly matched at the coarse level, the refinement stage pro-074
duces uninformative features due to the ambiguous geomet-075

ric structure of planar surfaces, failing registration. 076

Registration results on 3DMatch and 3DLoMatch. 077
Following REGTR [8], we conducted further analysis of 078
the Relative Rotation Errors (RRE) and Relative Transla- 079
tion Errors (RTE) to assess the accuracy of successful reg- 080
istrations. Tab. 3 presents the results of the various meth- 081
ods, with the best performance highlighted in bold and the 082
second-best results underlined. Our method demonstrates 083
superior performance on 3DLoMatch, achieving the lowest 084
average rotation (RRE) and translation (RTE) errors across 085
scenes. Additionally, our method exhibits the highest aver- 086
age registration recall, indicating the final performance on 087
point cloud registration (92.4% on 3DMatch and 78.6% on 088
3DLoMatch). 089

Qualitative results of registration. Fig. 3 shows visual 090
results on KITTI. The correspondences extracted by FLAT 091
are used as input for RANSAC to estimate the relative trans- 092
formation. These outcomes underscore the efficacy of our 093
method in outdoor datasets. They demonstrate the adapt- 094
ability and strong performance of the full geometric cross- 095
attention mechanism inherent in FLAT, even within outdoor 096
settings. 097
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Figure 2. Example qualitative registration results for failure cases on 3DLoMatch.

Table 3. Results on both 3DMatch and 3DLoMatch datasets. The best results for each criterion are labeled in bold, and the second-best
results are underlined.

3DMatch 3DLoMatch
Method RR↑ RRE ↓ RTE ↓ RR ↑ RRE ↓ RTE ↓
FCGF [4] 85.1% 1.949 0.066 40.1% 3.147 0.100
D3Feat [2] 81.6% 2.161 0.067 37.2% 3.361 0.103
OMNet [7] 35.9% 4.166 0.105 8.4% 7.299 0.151
DGR [3] 85.3% 2.103 0.067 48.7% 3.954 0.113
Predator1K [5] 90.5% 2.062 0.068 62.5% 3.159 0.096
CoFiNet [9] 89.7% 2.147 0.067 67.2% 3.271 0.090
GeoTrans [6] 92.0% 1.808 0.063 74.0% 2.934 0.089
REGTR [8] 92.0% 1.567 0.049 64.8% 2.827 0.077
FLAT (ours) 92.4% 1.690 0.053 78.6% 2.599 0.070

Time Cost Comparison with GeoTransformer We have098
reported the time costs on Tab. 4 in the Appendix of the sub-099
mitted materials. We also compare our method with RoITr100
and GeoTr in terms of time costs, as the table below shows.101

The “model” is the time for feature extraction and cor-102
respondence search, while the “pose” is for transforma-103
tion estimation. Our model time is indeed a bit heavier;104
this is mainly because the computation of the Gromov-105
Wasserstein distance is expensive.106

Method Model (s)↓ Pose (s)↓ Total (s)↓
RoITr 0.053 1.524 1.577
GeoTr 0.075 1.558 1.633

FLAT (Ours) 0.412 1.502 1.914

Table 4. Comparison of methods based on Model, Pose, and Total
time in seconds.
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Figure 3. Example qualitative registration results on KITTI. The (Input) column exhibits the input point cloud pairs, the (Our) column
demonstrates the estimated registration, and the (GT) column presents the ground truth alignment.
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