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A 3D RECONSTRUCTION

We demonstrate that our method is applicable to various omnidirectional downstream tasks, includ-
ing pose estimation and 3D reconstruction. From the dense correspondences and the certainty map
produced by EDM, we can estimate the essential matrix and the relative pose. Using this predicted
relative pose and dense correspondences between a pair of omnidirectional images, we can construct
the dense 3D reconstruction through spherical triangulation. To address spherical triangulation, we
simply solve the closed-form expression (Eising, 2022),

S× (R(X−C)) = 0, (1)

where S = (Sx, Sy, Sz) is the 3D Cartesian coordinates, R ∈ SO(3) denotes the orientation of the
camera, X represents the target 3D point, and C indicates the camera position. The cross product
can be expressed using a skew-symmetric matrix, leading to the following equation,

Sxr3T(X−C)− Szr1T(X−C) = 0,

Syr3T(X−C)− Szr2T(X−C) = 0,

Sxr2T(X−C)− Syr1T(X−C) = 0,

(2)

where riT denotes the ith row of R. To determine the target 3D point X, we can estimate the
two-view geometry using the linear equation AX = b. This equation can be solved by the pseudo-
inverse method, considering two omnidirectional cameras M and N ,

A =


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, b =
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
. (3)

The results of 3D reconstruction are shown in Fig. 1 and Fig. 2.

B FURTHER QUALITATIVE RESULTS

B.1 MATTERPORT3D

We proivde additional qualitative results for Matterport3D, as shown in Fig. 3 and Fig. 4. In Fig.
3, we present the results of RoMa (Edstedt et al., 2023b) instead of DKM, differing from the main
paper.

B.2 STANFORD2D3D

There are many occluded regions due to narrow corridors in the scenes. However, EDM, which
is trained on Matterport3D, has the capability to handle these regions with certainty estimation, as
shown in Fig. 5.

B.3 EGONERF AND OMNIPHOTOS

As the environments of EgoNeRF and OmniPhotos differ significantly from the Matterport3D
dataset, there is a slight performance degradation. However, comparable performance maintained
with certainty estimation, as shown in Fig. 6 and 7.
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Figure 1: 3D geometry of Matterport3D using matches and certainties produced by EDM. These point clouds
result from spherical triangulation with estimated poses between two omnidirectional images.
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Figure 2: 3D geometry of Stanford2D3D using matches and certainties produced by EDM. These point clouds
result from spherical triangulation with estimated poses between two omnidirectional images.
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Keypoint matching RoMa EDM (ours) Keypoint matching RoMa EDM (ours)

Figure 3: Qualitative results on Matterport3D. The blue lines represent the results of matching points from
SPHORB (Zhao et al., 2015); the green lines correspond to SphereGlue (Gava et al., 2023). EDM demonstrates
more robust performance compared to other methods.

Image Warp Image Warp

Figure 4: Qualitative results on Matterport3D.
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Image Warp Image Warp

Figure 5: Qualitative results on Stanford2D3D.
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Image Warp Image Warp

Figure 6: Qualitative results on EgoNeRF.

Image Warp Image Warp

Figure 7: Qualitative results on OmniPhotos.

Image Warp Image Warp

Figure 8: Failure cases.
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C THOROUGH DISCUSSION ON LIMITATIONS AND FUTURE WORK

In this section, we provide a thorough discussion of limitations and future work associated with
our study. As our work is the first to develop a dense feature matching method for omnidirectional
images, we believe this discussion will advance this research direction and offer deeper insights for
the 360° imaging research community.

C.1 RUNTIME EVALUATION

EDM’s runtime is almost the same as the DKM (Edstedt et al., 2023a) method because EDM in-
cludes an additional coordinate transformation between layers without requiring extra learning pa-
rameters. Both DKM and EDM take approximately 0.24 seconds per frame pair on a 3090 GPU.
Comparing the runtime between sparse matching, such as SphereGlue (Gava et al., 2023) and
dense matching is somewhat challenging due to differences in feature extraction and the number
of matches. Sparse matching requires feature extraction before matching, and SphereGlue involves
a local planar approximation to create multiple tangential images (perspective images) during fea-
ture extraction, which takes about 3.2 seconds. The inference speed for matching itself depends on
the number of extracted features. In most cases, the number of features is much smaller than in
dense matching, making it faster than 0.2 seconds.

C.2 ROTATIONAL DIVERSITY IN TRAINING DATA

Our primary training dataset, Matterport3D (Chang et al., 2017), consists of indoor scenes captured
with vertically fixed cameras. As a result, images with extreme rotations do not perform well in
EDM, as shown in Fig. 8. We believe this problem can be mitigated by collecting more diverse
training data, including images with various rotational angles, and by applying additional rotational
augmentation techniques during the training process. These steps would enhance the model’s ability
to handle a wider range of image orientations effectively.

C.3 ENCODER CHOICE AND DISTORTION COMPENSATION

In this paper, we use a ResNet encoder for multi-scale feature extraction. While distortion-aware
approaches (Jiang et al., 2021; Wang et al., 2020; Shen et al., 2022) exist, these methods did not
yield satisfactory results in our experiments and required significant computational resources. Con-
sequently, we employed ResNet with spherical positional embeddings to compensate for distortion
without adding extra trainable layers. This approach demonstrates promising results, however, fea-
ture extraction does not fully address distortion issues. In the future, we will extend our work to
develop more efficient encoders capable of handling distortions.

C.4 UTILIZATION OF FOUNDATION MODELS

In dense matching tasks for perspective images, leveraging foundation models for coarse features
(Edstedt et al., 2023b) has shown better performance compared to sharing coarse-fine features using
a ResNet encoder (Edstedt et al., 2023a). In this paper, our primary goal is to demonstrate the
potential of a dense matching method for omnidirectional images. We believe that adopting different
foundational models, as Edstedt et al. (2023b) did, could improve our framework. We plan to train
foundation models such as DINOv2 (Oquab et al., 2023) or CroCo (Weinzaepfel et al., 2022) on
omnidirectional images and integrate these into our approach.
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visiting robust losses for dense feature matching. arXiv preprint arXiv:2305.15404, 2023b. 1,
7

Ciarán Eising. Direct triangulation with spherical projection for omnidirectional cameras. arXiv
preprint arXiv:2206.03928, 2022. 1

Christiano Gava, Vishal Mukunda, Tewodros Habtegebrial, Federico Raue, Sebastian Palacio, and
Andreas Dengel. Sphereglue: Learning keypoint matching on high resolution spherical images.
In CVPR Workshops, 2023. 4, 7

Hualie Jiang, Zhe Sheng, Siyu Zhu, Zilong Dong, and Rui Huang. Unifuse: Unidirectional fusion
for 360 panorama depth estimation. IEEE Robotics and Automation Letters, 6(2):1519–1526,
2021. 7
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