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APPENDIX A GRAPH PRELIMINARY

Directed Graph (Digraph):

A Directed Graph G is defined by a pair (V,E), where V is a non-empty finite set of elements called
vertices and E is a finite set of ordered pairs of distinct vertices called arcs or edges

Subdigraph:

A digraph H = (VH, EH) is subdigraph of a digraph G = (VG , EG) if VH ⊆ VG and EH ⊆ EG and
every edge in EH has both end-vertices in VH. One says H is induced by VH and call H an induced
subdigraph of G (Bang-Jensen & Gutin, 2008).

Degree of a Directed Graph

Given v ∈ V the indegree of v is denoted as d−(v) which is the number of edges that points to v and
the outdegree is denoted d+(v) which is the number of edges that points out from v to some other
vertices. A node v ∈ V is a source if d−(v) = 0 and it is a sink if d+(v) = 0 (Bang-Jensen & Gutin,
2008).

Weighted Directed Graph: It is a Directed Graph G = (V,E) with a mapping W : E → R which
assigns values to each edge. Hence, G can be shown as a triplet (V,E,W ) (Bang-Jensen & Gutin,
2008).

Walk:

A walk in directed graph G = (V,E) is an alternating sequence W = x1a1x2a2x3 . . . xk−1ak−1xk

where xi ∈ V, 1 ≤ ∀i ≤ k and ai ∈ E such that ai = (xi, xi+1) (Bang-Jensen & Gutin, 2008).

Strongly connected components (SCC)

In a directed graph G vertex y is reachable from vertex x if there is walk from x to y. A directed
graph G is strongly connected if for every pair of x, y ∈ V , x is reachable from y and vice versa.

A strongly connected component of an directed graph G is a maximal induced subgraph that is
strongly connected.

Complete Graph. A directed graph G = (V,E) is complete, if for every pair x, y ∈ V , we have
(x, y), (y, x) ∈ E (Bang-Jensen & Gutin, 2008).

Cliques: A clique is complete subdigraph of a given graph (Meeusen & Cuyvers, 1975).

Quotient Graph S
Given the graph H = (V,EH), we denote S = (VS , ES) as a quotient graph through strong
connectivity equivalence relation, i.e., i ∼ j ⇐⇒ i and j are strongly connected. More precisely:

Definition Given the graph H = (V,EH), we denote S = (VS , ES) as a reduced graph where:

• The set of vertices is the quotient set, i.e., VS = V/ ∼= {SCC(v) : v ∈ V }
• Two equivalence classes SCC(u), SCC(v) ∈ VS forms an edge if and only if (u, v) ∈ EH.

In particular (Bloem et al., 2006):

ES = {(C,C ′) |C ̸= C ′ and ∃v ∈ C, v′ ∈ C ′ : (v, v′) ∈ EH} (7)

Graph Density of Digraphs:

Graph density computes ratio of number of edges in the graph to the maximal number of edges, i.e.,

d =
m

n(n− 1)
(8)

where n is the number of nodes and m is the number of edges in the directed graph.

APPENDIX B PROOF OF THE THEOREM 1 AND COROLLARY 1.1.

We restate the Theorem 1:
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B.1 THEOREM1

For i, j, k ∈ D, assume that

max
j∈S⊆D

|u(S ∪ {i})− u(S)| ≤ εj (I)

max
i∈S⊆D

|u(S ∪ {k})− u(S)| ≤ εi (II)

Then, the following inequalities hold:

|E2(u)ij | ≤
d!

2
εj , |E2(u)ki| ≤

d!

2
εi (A)

|E2(u)kj | ≤
d!

2
(2εj + εi) (B)

Proof. Part A)

Using Eq (6), |E2(u)ij | is equal to:

|E2(u)ij | = |
∑

j∈S⊆D\{i}

|S|! (d− |D| − 1)!

d!
(u(S ∪ {i})− u(S))| ≤ (9)

∑
j∈S⊆D\{i}

|S|! (d− |S| − 1)!

f !
|(u(S ∪ {i})− u(S))| triangular inequality (10)

≤
∑

j∈S⊆D\{i}

|S|! (d− |S| − 1)!

d!
εj = (

∑
j∈S⊆D\{i}

|S|! (d− |S| − 1)!

d!
)εj =

∗ d!

2
εj (11)

*:All the possible combinations of features are d! but half of these times j ∈ S and half of these times
j /∈ S, because given a sequence of features a1, . . . , ad where j ∈ S as follows:

(a1 . . . j . . . a|S|)︸ ︷︷ ︸
|S|

i (a|S|+2 . . . ad)︸ ︷︷ ︸
d−|S|−1

(12)

There is an exact sequence on j /∈ S as follows:

(a|S|+2 . . . ad)︸ ︷︷ ︸
d−|S|−1

i (a1 . . . j . . . a|S|)︸ ︷︷ ︸
|S|

(13)

so it is d!
2 elements that j ∈ S, similarly one can derive the other inequality in part A which is

|E2
ki| ≤ d!

2 εi.

Part B)

We start by writing E2
kj from Eq (6), i.e.:

|E2
kj(u)| = |

∑
j∈S⊆D\{k}

|S|! (d− |S| − 1)!

d!
(u(S ∪ {k})− u(S))|

≤
∑

j∈S⊆D\{k}

|S|! (d− |S| − 1)!

d!
|(u(S ∪ {k})− u(S))|

(14)

where we used triangular inequality, now we look at the element inside the summation separately
when i ∈ S and i /∈ S, note that in all cases j ∈ S, in particular we have:
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• if i ∈ S, then from the assumption 2 we have |u(S ∪ {k})− u(S)|is less or equal than εi
• if i /∈ S: In this case we have the following:

|u(S ∪ {i})− u(S)| ≤ εj , we use (I)
|u(S ∪ {i} ∪ {k})− u(S ∪ {i})| ≤ εi, i ∈ S ∪ {i}, we use (II)
|u(S ∪ {i} ∪ {k})− u(S ∪ {k})| ≤ εj j ∈ S ∪ {k} , we use (I)

(15)

Using these three inequalities we have:

|[u(S ∪ {i})− u(S)] + [u(S ∪ {i} ∪ {k})− u(S ∪ {i})]− [u(S ∪ {i} ∪ {k})− u(S ∪ {k})]| =

|u(S ∪ {k})− u(S)|
∗∗
≤ |[u(S ∪ {i})− u(S)]|+ |[u(S ∪ {i} ∪ {k})− u(S ∪ {i})]|+

|[u(S ∪ {i} ∪ {k})− u(S ∪ {k})]| ≤ εi + εj + εj
(16)

where ** uses triangular inequality. Hence we have each element is at most 2εj + εi for both cases
when i ∈ S or i /∈ S, thus we have:

max
j∈S⊆D

|(u(S ∪ {k})− u(S))| ≤ (2εj + εi) (17)

using the similar arguments as in part A, we have the following:

|E2
kj | =≤

∑
j∈S⊆D\{k}

|S|! (d− |S| − 1)!

d!
|(u(S ∪ {k})− u(S))|

=
∑

j∈S⊆D\{k}

|S|! (d− |S| − 1)!

d!
(2εj + εi) =

d!

2
(2εj + εi)

(18)

B.2 COROLLARY 1.1.

For the corollary we did not mention what u is, to compute E2(u), we need u. In this corollary
we assume that the utility function is monotone. In particular, Utility function u : P (D) → R is
monotone iff

∀S, S′ s.t S ⊆ S′ ⊆ P (D) =⇒ u(S) ≤ u(S′).

This assumption on utility states that more features given to the model does not hurt. An exmple of
such utility function is mutual information, i.e., u(S) = I(XS ;Y ).

Corollary 1.1. (Transitivity): If E is the Shapley explanation map and u be a monotone utility
function, then graph H is transitive.

Proof. If E2(u)ij = 0 and E2(u)ki = 0 we want to show E2(u)kj = 0

Based on the assumption u is monotone, hence every marginal gain is greater or equal than zero, i.e.,
u(S ∪ {i})− u(S) ≥ 0, for all S ⊆ P (D) an i ∈ D.

Based on the assumption we have E2(u)ij = 0, i.e.,

E2(u)ij = 0 =⇒
∑

j∈S⊆D\{k}

|S|! (d− |S| − 1)!

d!
(u(S ∪ {i})− u(S)) = 0 (19)

But every element of the sum is greater or equal than zero hence, maxj∈S⊆D |u(S∪{i})−u(S)| = 0,
similarly from E2(u)ki = 0 we have maxi∈S⊆D |u(S ∪ {k})− u(S)| = 0. Using Theorem 1 result
we have:

|E2
kj | ≤

d!

2
(2εj + εi) = 0 =⇒ E2

kj = 0. (20)
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APPENDIX C PAGERANK

C.1 PAGERANK

PageRank (Page et al., 1999) is an algorithm used by Google search in order to give a importance
ranking for web pages in their search engine. Page rank output is a probability distribution which
represent the likelihood of a person random clicking on different links to end up in a specific web
page form (Page et al., 1999).In here we overview the PageRank algorithm. The PageRank scores
si ∈ [0, 1], where

∑
i∈V si = 1, are given as the solution of the following system of equations:

si = pi · α+
∑

j:(j,i)∈E

wji

dj
sj for all i ∈ V,

where α ∈ [0, 1] is a dampening factor (default value of 0.85),

dj =
∑

k:(j,k)∈E

wjk

is the outgoing weighted degree of node j ∈ V and [pi]i∈V is a probability distribution over V . In
standard PageRank, pi = 1

|V | , i.e., p is the uniform distribution. In personalized pagerank, a different
distribution, possibly differentiated per node, is used.

Intuitively, the PageRank scores correspond to the steady state random walk over the weighted graph
with random restarts: with probability (1 − α) the walker transitions to an edge selected with a
probability proportional to neighboring edge weights. With probability α, the walker jumps to a
random node in V , sampled from probability distribution p. Usually, they are via iterative applications
of the above random walk transition equations, applied to a starting distribution over V (Newman,
2018; Page et al., 1999).

APPENDIX D DERIVATION OF BIVARIATE SHAPLEY EXPLANATION MAP
FORMULA

To prove the equation (6), we need to compute the E2
ij elements of the matrix E2

ij . E2
ij is the element

in intersection jth column and ith row. Based on the definition of E2, we jth column is represented as
E(uj) where uj is defined as in eq (5). In the case of shapley explanation E(uj)i has specific form
based on Shapley value eq (4), i.e.,

E(uj)i =
∑

S⊆D\{i}
|S|! (d−|S|−1)!

d! (uj(S ∪ {i})− uj(S)) (21)

From the definition of uj we know it is zero if j /∈ S, thus we can remove those from the summation,
i.e.,

E(uj)i =
∑

j∈S⊆D\{i}
|S|! (d−|S|−1)!

d! (uj(S ∪ {i})− uj(S))+∑
j /∈S,i⊆D\{i}

|S|! (d−|S|−1)!
d! (uj(S ∪ {i})− uj(S)) =∑

j∈S⊆D\{i}
|S|! (d−|S|−1)!

d! (u(S ∪ {i})− u(S)) + 0

(22)

APPENDIX E EXTENSION OF BIVARIATE EXPLANATION MAP TO
MULTIVARIATE EXPLANATION

To generalize the bivariate explanation map E2, define Ek : U → R

k times︷ ︸︸ ︷
d× · · · × d, which outputs a

tensor, let T be the tensor output, each element of this tensor would be denoted as T i1...ik ∈ R, hence
each column would be defined as T i1...ik−1 ∈ Rd and similar to E2 is defined as E(ui1...ik−1

), where
ui1...ik−1

is defined as follows:

ui1...ik−1
: P (D) → R =⇒ ∀S ∈ P (D), ui1···k−1

(S) =

{
u, if {i1, . . . ik−1} ⊆ S

0, if {i1, . . . ik−1} ̸⊆ S
(23)
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Algorithm 1 Approximate Graph G with Shapley Sampling Algorithm
Input : Data Sample x ∈ X ⊂ Rd, Utility Function f , Number of Samples M
Output : Adjacency Matrix G ∈ Rd×d

Initialize G = 0
for i=1...d do

for m=1...M do
Create random permutation O of size d
Define ĩ as permuted index of feature i
Define the set of indices s = {O1...̃i−1} and the set of all indices D = {O}
Sample random baseline w ∈ X

b1 = xs∪i ⊕ wD\{s∪i} \\ Symbol ⊕ indicates concatenation
b2 = xs ⊕ wD\s

for j ∈ s do
Gij = Gij + f(b1)− f(b2)

end
end

end
G = 1

M
G

Return G

APPENDIX F DETAILS OF EXPERIMENTAL SETUP AND ADDITIONAL
EXPERIMENTAL RESULTS

F.1 EXPERIMENT SETUP

F.1.1 ALGORITHMS

Approximating Graph G with Shapley Sampling. Computation over all subsets of features is
computationally expensive. In practice we can use a approximate the Bivarate Shapley value over a
fixed number of samples by adapting the sampling algorithm introduced by Štrumbelj & Kononenko
(Štrumbelj & Kononenko, 2014), as seen in Alg. 1. Note that computing the G matrix adds no
complexity to the original algorithm; we simply keep track of when feature j is absent (i.e. j /∈ S
and set the value function output to zero when this condition occurs. We can therefore calculate the
bivariate and univariate shapley values concurrently. Note that since we are discarding or "filtering
out" the samples where j is absent, we need to double the number of samples to achieve the same
approximation accuracy as the univariate calculation.

Approximating Graph G with KernelSHAP.

As mentioned in Section 4, our method can be generalized to any removal-based Shapley approxima-
tion or other removal-based explainer. More concretely, each column of the d× d interaction matrix,
representing interactions between d features, can be considered an independent explanation where
the column feature is always present. Therefore our method is extremely flexible; the user can decide
which explanation method to use based on the constraints of their intended application. However, we
can also improve performance by taking advantage of different approximation methods.

Performance is improved through the use of two properties in KernelSHAP. First, we can save the
sampled model outputs and reuse these values when recalculating KernelSHAP over all d features.
This allows for a fixed number of model samples independent of the number of data features. Second,
note that KernelSHAP attributions are calculated through a weighted linear regression mechanism.
Bivariate Shapley simply changes the model output (setting the output to zero) depending on whether a
feature is present or removed, which corresponds to applying a binary mask over the linear regression
labels. Therefore we can save the intermediate linear regression calculation and evaluate each column

18
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Algorithm 2 Approximate Graph G with KernelSHAP Algorithm
Input : Data Sample x ∈ X ⊂ Rd, Utility Function f , Number of Samples M
Output : Univariate Shapley Values ϕ ∈ Rd, Adjacency Matrix G ∈ Rd×d

Initialize G ∈ Rd×d

Initialize matrix X̃ ∈ {0, 1}M×d

Initialize matrix Π as an identity matrix IM
Initialize vector Y ∈ RM

Define the KernelSHAP weighting kernel π(x) = (d−1)
(d choose |x|)|x|(d−|x|)

\\ Randomly draw M samples around x
for m=1...M do

Sample random baseline w ∈ X
Sample binary vector x̃ ∈ {0, 1}d
Calculate perturbed labels y = f(x̃⊙ x+ (1− x̃)⊙w) \\ Symbol ⊙ indicates Hadamard product

X̃m,: ← x̃ \\Xi,j indicates indices i and j in matrix X. : indicates the entire row / column.
Ym ← ỹ
Πm,m ← π(x̃m)

end

\\ Solve a constrained 2, weighted linear regression
Define Γ = (X̃TΠX̃)−1X̃TΠ
Define Γ+ = Γ−d,: \\ remove the last row of Γ
Define Γ− = Γ−1,: \\ remove the first row of Γ

\\ Remove the last feature in regression calculation with the constraint that
∑

i ϕi = f(x)− f(E[X ])
Define ϕ = Γ+[Y −X:,d × (f(x)− f(E[X ]))]
ϕ← ϕ⊕ (f(x)− f(E[X ])−

∑
i ϕi) \\ Enforce constraint. ⊕ indicates concatenation.

\\ Iterate regression calculation over filtered labels
for j=1...d do

Define Y + = Y ⊙ X̃:,j \\ Set Ym = 0 if feature j was not selected in X̃m,:

Define ϕ+ = Γ+[Y + −X:,d × f(x)]

Define Y − = Y ⊙ (1− X̃:,j) \\ Set Ym = 0 if feature j was selected in X̃m,:

Define ϕ− = Γ−[Y − +X:,d × f(E[X ])]

ϕ+ ← ϕ+ ⊕ (ϕd − ϕ−
d−1) \\ Utilize the property that ϕ = ϕ− + ϕ+

G:,j ← ϕ+

end

Return ϕ, G

of the interaction matrix with two matrix multiplications with the sparse labels. This results in
significant speed improvements and allows scaling to datasets with large number of features, such as
the COPD dataset with 1,077 features.

Mutual Redundancy on Graph H. Given the unweighted graph H, we want to find groups of
mutually redundant features as investigated in Fig. 2. These features are identified as strongly
connected nodes within the graph. We use the package NetworkX (?), which implements Tarjan’s

2Note that π(x) =∞ when |x| ∈ {0, d}, therefore in practice we remove two variables during the linear
regression calculation and enforce the following two constraints. 1) ϕ0 = f(E[X ]), where ϕ0 is defined as the
bias / intercept term in the regression, and 2)

∑
i ϕi = f(x)− f(E[X ]).
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Figure 5: Comparison of graph G and graph H for the the given IMDB example "The movie was
the worst; surprisingly awful", which is classified as negative sentiment. Note that the sinks and
sources of graph G and graph H are reversed in terms of influential and redundant features. I.E. the
source nodes of graph G represent redundant features, whereas the sink nodes of graph H represent
(directionally) redundant features.

algorithm (Tarjan, 1972) to identify such nodes. Tarjan’s algorithm is a depth-first search that runs in
linear time. This algorithm for identifying mutually redundant features is outlined in Alg. 3.

To generate the results of Fig. 2, we apply a binary mask for each sample such that a given percentage
of its mutually redundant features are set to their baseline value. Note that the number of features
masked for a given percentage may vary between samples, since the H is calculated on an instance-
wise basis. We then record the accuracy for the set of masked samples.

Algorithm 3 Mutual Redundancy on Graph H
Input : Unweighted Directed GraphH
Output : Groups of Mutually Redundant Features

Define S = {s1, ..., sm} as the set of strongly connected subgraphs inH

Return S

Directional Redundancy on Graph H. Directional redundancy is defined in terms of H-sinks and
H-sources on graph H, which we investigate in Table 2. There are a number of methods to identify
source and sink nodes on a graph; in our implementation we use the PageRank algorithm (Page et al.,
1999) and take the maximally and minimally-ranked node as the sink and source, respectively (Alg.
4). Note that using PageRank in such manner will only identify singular sinks and sources, therefore
we first separate graph H into its connected subgraphs and apply PageRank to the condensation graph
of each subgraph. We use the PageRank implementation in the Scikit-Network package (Bonald
et al., 2020) with no personalization and default damping = 0.85. In practice, we found that changing
the damping parameter had no effect on identified features.

In Table 2 we show the results of completely masking all H-sources and H-sinks. We apply a binary
mask, setting the value of all H-source or H-sink features to their baseline values, then record the
sample accuracy.

Redundancy Ranking on Graph G. We want to create a continuous ranking of feature redundancy
given graph G, as investigated in Fig. 3. We first add ϵ = 10−70 to each element in G to eliminate
disconnected subgraphs. Note that for certain value functions, such as those used in our experiments,
the graph G can contain negative values. We normalize these negative values by applying an element-
wise Softplus function: Softplus(x) = ln(1 + ex). We then directly apply the PageRank algorithm
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Algorithm 4 Directional Redundancy on Graph H
Input : Unweighted Directed GraphH
Output : Source Nodes and Sink Nodes

DefineW = {w1, ..., wm} as the set of weakly connected subgraphs inH
for i = 1,...,m do

Create condensed graph ci = Condensation(wi)
Source Node αi = argmax PageRank (ci)
Sink Node ωi = argmin PageRank (ci)

end
Source Nodes = Condensation−1({α1, ..., αm})
Sink Nodes = Condensation−1({ω1, ..., ωm})

Return Source Nodes, Sink Nodes

from Scikit-Network to obtain feature rankings. We again use the default damping parameter of 0.85
for all datasets.

One issue we observed during testing was the occurrence of nodes with identical PageRank scores,
indicating a similar level of redundancy. With no other information, this would necessitate random
selection when generating the feature ranking. With this motivation, we experiment with using the
univariate shapley values as personalization values. In personalized PageRank, the personalization
values dictate the distribution over nodes for which a random jump will land. With no personalization,
a random jump will land in each node with equal probability; i.e. the personalization is assumed to
be uniform. By setting the personalization to the univariate shapley values, we bias the stationary
distribution towards nodes that have high shapley values. Therefore, nodes of similar redundancy
would be further ranked by their respective univariate shapley values. In practice, using personaliza-
tion slightly improves post-hoc accuracy results in Fig. 3 for larger masking percentages. The full
algorithm for generating the redundancy ranking of features is outlined in Alg. 5.

Algorithm 5 Directional Redundancy Ranking on Graph G.
Input : Weighted Directed Graph G, optional Univariate Feature Ranking R ∈ Rd

Output : Score vector S ∈ Rd, representing relative feature importance for each feature.

Define A as the adjacency matrix for Graph G

Ã = A+ 10−70 \\ Add ϵ ≈ 0 to ensure all nodes are connected
Ã = SoftPlus(A) \\ Element-wise Softplus function to normalize negative values

if Personalization then
S = PageRank(Ã) with Personalization Values R

else
S = PageRank(Ã)

end
Return S

F.1.2 IMPLEMENTATION DETAILS FOR BIVARIATE SHAPLEY AND COMPARISONS MODELS.

Unless otherwise specified, we use the default parameters when implementing comparison methods
using publicly available code.

Removal-based methods typically assign a value to act as a proxy for a feature’s absence during
feature removal. This value is commonly referred to as a baseline, or reference value, and is often
assigned to be some a priori neutral value. While different removal-based methods may have different
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baseline values as default, we assign a single baseline value used for all methods for a given dataset.
This is to maintain comparability, since the objective of our experiments is to evaluate the explanation
calculation rather than the choice of baseline value. For tabular data, we define the value for all
removed features to be zero, except the Divorce dataset where a value of ‘3’ indicates the average
response, and the Census dataset where we fix the baseline to be the average value for each feature.
For images, we use a pixel value of zero. For text, we set the word embedding for the selected feature
to be the zero vector.

Bivariate Shapley - Sampling We apply Bivariate Shapley on a variety of prediction models (detailed
in section F.1.3), using a value function v(S) = Ew∼B[P (Y = ŷ|X = xS ∪ wS̄)], where ŷ is the
model’s predicted class, S̄ is the complement of S, and w represents samples drawn from a baseline
distribution B. As previously discussed, this baseline distribution is fixed to a value that is dependent
on the given dataset. We set m, the number of samples drawn in alg. 1 to be 1000.

Bivariate Shapley - Kernel We utilize the algorithm described in sec.F.1.1 by adapting the publicly
available package for kernelSHAP (Lundberg & Lee, 2017). We keep the same default parameters as
KernelSHAP, except we double the number of default samples to account for the Bivariate Shapley
filtering.

Shapley Excess. Shapley Excess refers to the surplus value from contribution of players in a coalition
game grouped in a singleton coalition as compared to their individual contributions. This can be
written formally as:

ϕs −
∑
i∈s

ϕi

where ϕs is the shapley value of a group of players when considered as a singleton player. We
implement this formula using the KernelSHAP approximation by combining features and evaluating
the resulting excess Shapley value.

Shapley Interaction Index. Introduced by (Grabisch & Roubens, 1999), Shapley Interaction Index
has gained popularity due to the efficient implementation by (Lundberg et al.) on tree-based prediction
models. In order to apply this method efficiently with the entirety of the datasets in our experiments,
we use the KernelSHAP approximation to calculate Shapley Interaction Index. This implementation
results in significantly faster calculations compared to Shapley Sampling approximations (as seen in
tbl 7. We use the default parameters of KernelSHAP, applied 2× d times per sample, where d is the
number of features.

Shapley Excess. Shapley Excess refers to the surplus value from contribution of players in a coalition
game grouped in a singleton coalition as compared to their individual contributions. This can be
written formally as:

ϕs −
∑
i∈s

ϕi

where ϕs is the shapley value of a group of players when considered as a singleton player. We
implement this formula using the KernelSHAP approximation by combining features and evaluating
the resulting excess Shapley value.

Shapley Taylor Index. Introduced by Sundararajan et al. (2020b). As of this writing, there is no
publicly available code for the Shapley Taylor Index. Therefore we build our own implementation
using the Shapley Sampling approximation as outlined in the original paper. We choose a sample size
of m = 200 for each element of the interaction matrix.

GNNExplainer. Introduced by Ying et al. (2019), GNNExplainer is a method for explaining a
GNN-based black-box model. It can be used on a variety of GNN tasks, such as node or graph
classification, and identifies a compact subgraph and subset of node features that best explains the
GNN output. This is accomplished through the use of a soft mask on the edges and node features of
the input graph. Specifically, GNNExplainer trains a neural network to generate the edge and node
feature masks, with the objective of maximizing mutual information between the black-box output of
the masked graph and the label.

While GNNExplainer was originally intended to explain GNN models, it can be used in conjunction
with non-GNN models. In our implementation, our objective is to identify the important edges
between the features of a data sample. Therefore we define a fully-connected graph with the features
as the graph nodes. When applying GNNExplainer to this fully-connected graph, GNNExplainer
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Domain Genetics Image Text Tabular
Dataset COPDGene CIFAR10 MNIST IMDB Census Divorce Drug

Classes 2 10 10 2 2 2 2
Train/Test Samples 1,641/407 50k/10k 60k/10k 25k/25k 26k/6.5k 102/68 1413/472

Model 4-Layer MLP Resnet18 2-Layer CNN 1-Layer GRU XGBoost 3-Layer MLP Random Forest
Model Accuracy 88.2 89.8 99.0 88.1 87.3 98.5 85.3

Table 3: Summary of the datasets and models in our investigation

returns edge importance values for the given data sample. This output can be converted to a subgraph
using specifying a threshold, below which the edges are removed. In our experiments, we directly
use the edge importance values as the weights of a directed, weighted graph. This resulting graph
is then evaluated and compared with Bivariate Shapley using the same algorithms for identifying
mutually redundant features, directionally redundant features, and feature redundancy ranking, as
outlined in App. F.1.1. We implement GNNExplainer using the Pytorch Geometric package (Fey &
Lenssen, 2019) with default parameters.

Note that while GNNExplainer can indeed be applied to non-GNN models, these models may not be
able to incorporate the graph structure in its predictions. For example, even though GNNExplainer
applies an edge mask to the input graph, this edge information is meaningless if the black-box model
is not designed to use this structure in its prediction. In this case, the GNNExplainer will receive
non-informative black-box outputs in its mutual information maximization objective.

F.1.3 DATASETS AND MODELS

COPDGene. The COPDGene dataset is an observational study with a cohort of 10,000 participants
designed to identify the genetic risk factors for COPD. The study contains participants with and
without COPD; COPD diagnosis, subtyping, and progression are monitored using high-resolution CT
scans. We are interested in investing the relation between gene expression and smoking status (see
section F.2.6 for details). The dataset contains RNA-sequencing count data for 1,077 genes and the
associated binary label for smoking status. We use a neural network with 4 fully-connected layers of
200 hidden units, batch normalization, and relu activation. The model is trained using Adam (Kingma
& Ba, 2015) with learning rate 10−3 for 800 epochs, achieving a test accuracy of 88.2%.

CIFAR10. CIFAR10 (Krizhevsky, 2009) consists of 60k images of dimension 32× 32 with RGB
channels. We train a Convolution Neural Network (CNN) to classify the 10 different classes, using
a Resnet18 architecture (He et al., 2016) with default parameters. We apply color jittering and
horizontal flip data augmentations, as well as data normalization. The model is trained using Adam
with learning rate 10−3 for 80 epochs, achieving a test accuracy of 89.8%.

While it is possible to use individual pixels when calculating Bivariate Shapley, we choose to
use superpixels to reduce computation and improve the interpretability of results. Superpixels are
contiguous clusters of pixels that are treated as a single feature for feature importance purposes;
i.e. all individual pixels within the superpixel are masked or selected jointly. We use the simple
linear iterative clustering (SLIC) algorithm (Achanta et al., 2012) in our image experiments. SLIC
divides the image into similarly sized superpixels based on clustering in the CIELAB color space.
For CIFAR10, we use SLIC with 255 superpixels and minimal smoothing (σ = 5).

MNIST. MNIST (LeCun & Cortes, 2010) consists of 28× 28 greyscale images with the handwritten
numerals 0− 9. We train a CNN with two convolution layers and a single batch normalization layer.
Each convolution uses a 6× 6 kernel size, stride 2, and a 200 channel mapping. We train the model
using stochastic gradient descent (SGD) with learning rate 10−2 for 20 epochs, achieving a test
accuracy of 99.0%. We again use SLIC to create superpixels; for MNIST we use 196 superpixels and
σ = 5.

IMDB. The Large Movie Review Dataset (IMDB) (Maas et al., 2011) consists of 50k movie reviews
which we use for the task of sentiment analysis. We train a Recurrent Neural Network (RNN) classifier
with a single Gated Recurrent Unit (GRU) (Cho et al., 2014) layer of 500 hidden units to predict
either positive or negative sentiment. We tokenize each review using the NLTK package (Loper &
Bird, 2002) and map each token to a pretrained word embedding. We use the 300-dimensional GloVe
(Pennington et al., 2014) embedding with 840B tokens, pretrained on the Common Crawl dataset.
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Insertion AUC (Higher is better) Deletion AUC (Lower is better)
Dataset COPD CIFAR10 MNIST IMDB Census Divorce Drug COPD CIFAR10 MNIST IMDB Census Divorce Drug
Ours-SS 0.48 0.75 0.85 0.45 0.43 0.30 0.30 0.01 0.05 0.03 0.02 0.32 0.05 0.10
Ours-K 0.49 0.65 0.84 0.43 0.42 0.30 0.30 0.00 0.08 0.03 0.02 0.32 0.05 0.10
Sh-Sam 0.48 0.75 0.85 0.45 0.43 0.30 0.30 0.01 0.05 0.03 0.02 0.32 0.05 0.10
kSHAP 0.42 0.48 0.77 0.29 0.42 0.29 0.30 0.09 0.17 0.17 0.03 0.36 0.05 0.11
Sh-Int 0.20 0.35 0.46 0.32 0.43 0.16 0.17 0.23 0.31 0.52 0.29 0.33 0.14 0.20
Sh-Tay – 0.34 0.78 0.34 0.06 0.17 0.29 – 0.27 0.19 0.19 0.06 0.10 0.11
Sh-Exc – 0.32 0.51 0.30 0.37 0.15 0.08 – 0.31 0.48 0.29 0.38 0.15 0.29

GNNExp 0.25 0.15 0.25 0.30 0.38 0.25 0.26 0.25 0.15 0.25 0.30 0.38 0.25 0.27

Table 4: Influential Feature Evaluation through Insertion and Deletion AUC. We calculate a feature
ranking by applying PageRank on the G graph, iteratively removing the most influential feature, then
evaluating AUC on the resulting curve. Note that we cannot run Sh-Tay and Sh-Exc methods on the
COPD dataset due to their computational issues with the large number of features.

We limit the vocabulary to 10k tokens and text sample length to 400 tokens. The model was trained
using Adam with learning rate 10−4 for 15 epochs, achieving test accuracy of 88.1%.

Census. The UCI Census Income dataset aggregates data from the 1994 census dataset. We use 12
features, including both continuous and discrete data, to predict whether an individual has an annual
income greater than $50k. Our model is trained using XGBoost (Chen & Guestrin, 2016) with a
maximum of 5000 trees, η = 0.01, and subsample = 0.5, achieving 87.3%test accuracy.

Divorce. The UCI Divorce Predictors dataset (Yöntem et al., 2019) consists of a 54-question survey
with 170 participants regarding various activities and attitudes towards their partners. Each question
is answered with a ranking on a scale from 1 − 5. We train a 3-layer MLP with relu activation,
predicting if the participant was divorced. Each hidden layer contained 50 hidden units. The model
was trained using SGD with learning rate 0.1 and achieved test accuracy of 98.5%. During the
Bivariate Shapley calculation, we use a baseline value of 3 to indicate a feature’s absence, as this
represents the value representing a neutral response.

Drug. The UCI Drug Consumption dataset (Fehrman et al., 2015) consists of 1,885 responses to
an online survey concerning the consumption habits of various drugs. We use binary features for
the six drugs nicotine, marijuana, cocaine, crack, ecstasy, and mushrooms, indicating whether the
respective drug has been previously consumed. We build a model to predict whether the participant
has also consumed a seventh drug, LSD. We use a random forest model with 100 trees, achieving a
test accuracy of 85.3%

F.1.4 LICENSES FOR COPDGENE DATA

All participants provided their informed consent, and IRB approval was obtained from all concerned
institutions. IRB information will be provided once anonymity has been lifted.

F.2 ADDITIONAL EXPERIMENTAL RESULTS

F.2.1 INSERTION AND DELETION AUC

Insertion AUC (iAUC) and Deletion AUC (dAUC), introduced by (Petsiuk et al.), quantify the ability
for an explainer to find the most influential features of a given black-box model. We use iAUC and
dAUC as a supplementary metric to evaluate the redundancy-based ranking we explore in figure 3.

To summarize, dAUC iteratively removes the highest-ranked features of a given image and measures
the change in model output compared to the baseline prediction, as summarized by the area under
the curve. Lower dAUC values indicate that the explainer can accurately assess the features most
influential towards the model output. Conversely, iAUC starts with an uninformative baseline sample
then iteratively inserts the highest-ranked features, then measures change in model output through
AUC. Higher values of iAUC indicate better performance. We evaluate Bivariate Shapley, as well as
a variety of popular univariate and bivariate black-box explainers, on these two metrics in table 4.
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10% Features Mask 50% Features Mask
Dataset Ours Shap Sampl Int KernelSHAP L2X Ours Shap Sampl Int KernelSHAP L2X
COPD 100 ± 0.0 100 ± 0.0 82.8 ± 1.9 99.3 ± 0.4 92.6 ± 1.3 100 ± 0.0 100 ± 0.0 68.3 ± 2.3 100 ± 0.0 86.0 ± 1.7

CIFAR10 99.4 ± 0.3 99.0 ± 0.4 70.2 ± 2.0 86.6 ± 1.0 71.4 ± 2.0 93.0 ± 1.1 92.4 ± 1.2 32.8 ± 2.1 54.9 ± 1.4 23.2 ± 1.9
MNIST 100 ± 0.0 100 ± 0.0 84.6 ± 1.6 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 62.8 ± 2.2 99.9 ± 0.4 100 ± 0.0
IMDB 100 ± 0.0 100 ± 0.0 92.6 ± 1.2 100 ± 0.0 94.0 ± 1.2 100 ± 0.0 100 ± 0.0 64.4 ± 2.1 100 ± 0.0 57.9 ± 2.2
Census 100 ± 0.0 100 ± 0.0 100 ± 0.0 96.0 ± 0.9 96.6 ± 0.8 96.8 ± 0.8 96.8 ± 0.8 94.8 ± 1.0 90.0 ± 1.3 84.8 ± 1.6
Divorce 100 ± 0.0 100 ± 0.0 98.5 ± 1.5 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 58.8 ± 6.0 98.5 ± 1.5 98.5 ± 1.5

Drug 100 ± 0.0 100 ± 0.0 91.7 ± 1.3 100 ± 0.0 100 ± 0.0 99.2 ± 0.4 99.2 ± 0.4 77.1 ± 1.9 100 ± 0.0 75 ± 2.0

Table 5: Accuracy results for masking redundant features as identified using PageRank on graph G.
These results mirror Figure 3 but with the result variance, as represented by ± standard deviation.
Note that for datasets with < 10 features, the given feature mask percentage is approximate.

Bivariate Shapley-S
PH-Accy % Feat Masked

Dataset Sink
Masked

Source
Masked

Sink
Masked

Source
Masked

COPD 99.5 62.7 1.5 98.5
CIFAR10 94.6 15.0 6.2 93.8
MNIST 100.0 13.4 77.7 22.3
IMDB 100.0 54.0 3.5 96.5
Census 100.0 82.0 23.8 76.2
Divorce 100.0 51.5 22.2 77.8

Drug 100.0 48.5 43.5 56.5

Bivariate Shapley-K
PH-Accy % Feat Masked

Dataset Sink
Masked

Source
Masked

Sink
Masked

Source
Masked

COPD 97.3 62.7 13.6 86.4
CIFAR10 82.6 19.4 10.4 89.6
MNIST 100.0 17.6 13.6 86.4
IMDB 97.2 54.0 23.7 76.3
Census 100.0 82.0 33.3 66.7
Divorce 100.0 51.5 22.0 78.0

Drug 100.0 48.5 43.5 56.5

Table 6: Posthoc-accy of BivShap-S and BivShap-K after masking H-source nodes, representing
features with minimal redundancies, and H-sink nodes, representing directionally redundant features.

F.2.2 SAMPLING VARIANCE OF POST-HOC ACCURACY RESULTS

The Bivariate Shapley method, like other shapley-based methods, does not involve any training
or optimization of weights. Therefore it does not suffer from issues related to data variability. In
addition, the quantitative results from our experiments are averaged over ≈ 500 test samples (less for
divorce and drug, due to dataset size). We show the variance results for Figure 3 in Table 5.

F.2.3 BIVSHAP-K RESULTS FOR SINK AND SOURCE MASKING ON GRAPH H

The BivShap-K results for sink and source masking on graph H are omitted in table 2 due to space
constraints. We present the full full results in table 6.

F.2.4 SENSITIVITY OF GRAPH Hγ TO γ

In Section 4.1 we define a relaxed version of the redundancy graph Hγ = (VH, Eγ
H) where VH = VG

and Eγ
H = {(i, j) ∈ EG : |WG(i, j)| ≤ γ}. Intuitively, γ ∈ R+ acts as a threshold to define

redundant edges in Hγ . As γ increases, the number of edges in Hγ also increases, resulting in larger
mutually redundant clusters and a higher sensitivity to directional redundancy. From the perspective
of accurately representing the black-box model, the choice of γ presents a tradeoff akin to sensitivity
and specificity: larger γ values more easily identify true redundancies within the data (increased
sensitivity), at the cost of potentially mislabeling non-redundancies (reduced specificity).

While it is trivial to choose γ through cross-validation using post-hoc accuracy (or equivalent metric),
such methods are not ideal for instance-wise explanation purposes where the practitioner may not
have access to a sufficient number of validation samples. We therefore attempt to establish guidelines
for choosing γ. In particular we investigate the effect of γ on graph density (Figure 6). Note that
increasing γ also increases the density of graph H. We can see that at a certain density, post-hoc
accuracy exhibits a sharp decrease, suggesting that the identified redundancies are not truly redundant.
The ideal γ depends on the level of redundancy in the dataset, therefore the value should be chosen
based on the given task. For experimental purposes, we use a constant γ = 10−5 for all datasets.

We also explore how increasing γ affects the identification of mutually redundant features in Figure 7.
We similarly see that increasing γ increases the number of edges in graph H, which correspondingly
increases the number of mutually redundant features identified. For datasets with inherently low
mutual redundancy, such as CIFAR10, this has the effect of reducing Post-hoc accuracy when γ is
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Figure 6: Sensitivity analysis of graph H to parameter γ. We compare the density of H as γ increases
to the post-hoc accuracy after masking all directionally redundant features found in H.

Bivariate Methods Univariate Methods GNN Methods
Dataset # Features Ours-SS Ours-K Sh-Int Sh-Tay Sh-Exc Sh-Sam kSHAP L2X GNNExp
COPD 1077 5942 36 2877 112900* 838200* 3047 1.4 0.00 10.9

CIFAR10 255 218 2.5 101 2819* 6267* 140 0.65 0.00 0.79
MNIST 196 116 1.5 48 1194* 2350* 57 0.34 0.00 0.42
IMDB ≤400 207 1.9 160 1279* 1796* 103 0.40 0.00 0.73
Census 12 2.7 0.20 2.6 11.6 5.3 1.6 0.83 0.00 0.17
Divorce 54 18.2 0.34 6.5 63.2 93.3 11.3 0.16 0.00 0.15

Drug 6 2.3 0.07 1.21 181 0.96 1.26 0.10 0.00 1.54

Table 7: Time comparison in seconds per data sample for the methods used for the post-hoc accuracy
and AUC calculations. Fields indicated by * which were averaged over 5 samples due to computational
cost, otherwise time calculations were averaged over 500 samples (or the total number of test samples
if fewer than 500)

increased past a certain threshold. Therefore in practice γ should be selected either through cross
validation, or by examining the density curve as in Figure 6.

F.2.5 TIME COMPLEXITY DETAILS WITH UNIVARIATE COMPARISON.

Table 7 includes the full feature attribution timing results. Note that L2X requires an initial training
stage for neural network-based explainer model, which is not included in these results. Once this
explainer model is trained, the topk features are obtained through single forward pass, which is the
activity measured in Table 7. All experiments are performed on an internal cluster equipped with
Intel Gold 6132 CPUs. The evaluations on CIFAR10, MNIST, IMDB datasets were calculated using
GPUs (Nvidia Tesla V100), whereas the other datasets were trained without a GPU. Finally, the
calculated times were averaged over all samples used in the experiments (500 samples, unless the
dataset has less than 500 samples total), except for the fields indicated by * which were averaged
over 5 samples due to computational cost.

As previously mentioned in Sec F.1.1, the Bivariate Shapley method can be applied naively to any
removal-based explanation method repeating the explainer’s calculations d times, where d is the
number of data features. It follows that our method’s time complexity is dependent on the choice
explanation method and, when implemented naively, linearly scales that method’s complexity by
the number of features. Certain methods, such as KernelSHAP, can be adapted to realize even more
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COPD IMDB MNIST Divorce CensusDrugCIFAR10

Figure 7: Posthoc Accuracy evaluated on Mutual Redundancy masking derived from graph H.
Strongly connected nodes in H are randomly masked with increasing mask sizes until a single node
remains, represented by the final marker for each dataset. Each row represents a different selection of
threshold parameter γ. Note that we cannot run Sh-Tay and Sh-Exc methods on the COPD dataset
due to their computational issues with the large number of features.

efficient implementations of Bivariate Shapley, which we outline in App F.1.1. We provide time
comparisons to competing methods in Table 1.

F.2.6 GENE ONTOLOGY ENRICHMENT ANALYSIS OF COPDGENE DATASET

Chronic Obstructive Pulmonary Disease (COPD) is a chronic inflammatory lung disease. The relation
between COPD and smoking is well-established; it has been shown that smoking increases the
risk of developing lung disease through a variety of ways, such as increasing lung inflammation
(Arnson et al., 2010). Here, we investigate the relation between gene expression data and smoking
status in COPDGene data. We show the interpretation power of our methods by relating our most
influential genes to biological pathways which correspond to smoking. We performed Gene Set
Enrichment Analysis (GSEA) using the GenePattern web interface (Reich et al., 2006) on the ranking
of influential features, which we generate as follows. We first calculate graph G locally, as in Alg. 1.
We then create the global G graph for each subgroup, smokers and non-smokers, by averaging the
G adjacency matrix over all samples within each subgroup (Fig. 8). We directly apply the ranking
algorithm outlined in Section F.1.1 to obtain subgroup-specific importance scores. We use the list
of 1,079 unique gene names with their associated importance score as input into the GenePattern
interface. Gene set enrichment for these two groups was calculated using the GSEAPreranked
module with 1000 permutations, using the Hallmark (h.all.v7.4.symbols.gmt) and Immunologic gene
sets (c7.all.v7.4.symbols.gmt). We observed genetic pathways corresponding to Macrophages as
statistically significant at a q-value ≤ 0.05 (the pathway table is in the App., Table. 8). Macrophages
are a type of immune cells that can initiate inflammation, and they also involve the detection and
destruction of bacteria in the body. The relation between such cells and smoking has been observed
in biological domain; many studies have observed that smoking induces changes in immune cell
function in COPD patients (Yang & Chen, 2018; Strzelak et al., 2018).
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Group Pathway Name Genes q-value
Smoker GSE25123_WT_VS_PPARG_KO_MACROPHAGE_IL4_STIM_DN 23 0.02

GSE32986_GMCSF_VS_GMCSF_AND_CURDLAN_LOWDOSE_STIM_DC_UP 24 0.16
GSE45365_WT_VS_IFNAR_KO_CD11B_DC_UP 18 0.20
GSE22886_NAIVE_VS_MEMORY_TCELL_DN 32 0.20
GSE40274_FOXP3_VS_FOXP3_AND_LEF1_TRANSDUCED_ACTIVATED_CD4_TCELL_UP 25 0.21
GSE32986_UNSTIM_VS_CURDLAN_LOWDOSE_STIM_DC_DN 28 0.32

NonSmoker GSE25123_WT_VS_PPARG_KO_MACROPHAGE_IL4_STIM_DN 23 0.01
GSE32986_UNSTIM_VS_CURDLAN_LOWDOSE_STIM_DC_DN 28 0.13
GSE32986_GMCSF_VS_GMCSF_AND_CURDLAN_LOWDOSE_STIM_DC_UP 24 0.21

Table 8: GO enrichment results for the redundancy-based ranking of graph G for Smoker and
Nonsmoker subgroups. Gene pathways with q-value < 0.05 are bolded.

Figure 8: Adjacency matrix for graph G, averaged over Smoker and Nonsmoker subgroups and
displayed as a heatmap.
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