
A Appendix

The organization of the Appendix is as follows: Appendix sections B to F provide detailed proofs of
the lemmas and theorems presented in the main text. This is followed by additional insights, including
operational specifics of working with Adam and details on how AsyncFGD can be extended for
parallel processing on recursive networks, covered in Appendix G. Lastly, Appendix H and I provide
a comprehensive view of the training process and additional experimental results, respectively.

B Proof of Lemma 3.1

According to the update rule of Eq.(3), (4), we have

h1 =F1(h0, w1) = F1(x,w1)

o1 =JF1
(h0, w1)[o

⊺
0 , u

⊺
w1

]⊺ = JF1
(h0)o0 + JF1

(w1)uw1
= JF1

(w1)uw1

h2 =F2(h1, w2)

o2 =JF2
(h1, w2)[o

⊺
1 , u

⊺
w2

]⊺ = JF2
(h1)o1 + JF2

(w2)uw2
= JF2

(h1)JF1
(w1)uw1

+ JF2
(w2)uw2

=JF2
(w1)uw1

+ JF2
(w2)uw2

· · ·

oL =

L∑
l=1

JFL
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Then for any l ∈ {1, 2, . . . , L}, take expectation with respect to uwl
, we have
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where

Dm,n =

(
dl∑
i=1
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∂wl,i
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)
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∂wl,n
u2
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+
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with m ∈ {1, 2, . . . , dhL
}, n ∈ {1, 2, . . . , dl}. Since each uwl

∼ N(0, I), we have

Euwl
(Dm,n) =

∂JFL,m

∂wl,n
, Euwl

(D) = JFL
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Similarly, we can prove that Euwl

[∑
k ̸=l (JFL

(wk)uwk
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]
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×dl . So we have,
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∂f

∂FL
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C Proof of Lemma 5.3

Proof of Mean.
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, where l ∈ G(k), we have
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So we have,
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Lemma C.1 ([25], Theorem 3). Let gu(x) = ⟨∇f(x), u⟩u, where u ∈ Rd is a normally distributed
Gaussian vector, then we have

Eu∥gu(x)∥2 ≤ (d+ 4)∥∇f(x)∥2

Lemma C.2. Let gu1,u2
(x) = ⟨∇f(x), u1⟩u2, where u1 ∈ Rd1 , u2 ∈ Rd2 are two i.i.d. normally

distributed Gaussian vectors, then we have

Eu1,u2∥gu1,u2(x)∥2 ≤ d2∥∇f(x)∥2

Proof.
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=d2Eu1

 d1∑
i=1
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2
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where the first inequality is due to Lemma 1 in [25].

Proof of Variance.
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∥∥∥∥∥
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′

LK−1
· ut′

wG(k)
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∥∥∥∥∥
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)∥∥∥∥∥
2

,

where the inequality is due to Lemma C.1 and C.2.

D proof of Lemma 5.6

Proof. For the convenience of analysis, we denote t′ = t−K + 1, then the update rule of algorithm
1 can be rewritten as

wt′+1
G(k) = wt′

G(k) − γt′
(
ôt

′
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wG(k)

)
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wG(k)
, we have
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wG(k)

(
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)
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Define diagonal matrices I0, · · · , Ik, · · · , IK−1 ∈ Rd×d such that all the principle diagonal elements
of Ik in G(k) are 1, and all the principle diagonal elements of Ik in other than G(k) are 0. Then we
have

ôt
′

L · ut′

w =

K−1∑
k=0

Ik · ôt
′

L · ut′

wG(k)
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)
Since f(·) is L-smooth, the following inequality holds that:

f(wt′+1) ≤ f(wt′) +
〈
∇f(wt′), wt′+1 − wt′

〉
+

L

2
∥wt′+1 − wt′∥2

From the update rule of Algorithm 1, we take expectation with respect to all random variables on
both sides and obtain:
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∥∥∥∥∥
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∥∥∥∥∥
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∥∥∥∥∥
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∥∥∥2 − γt′
K−1∑
k=0

∇f(wt′)⊺Ik

(
∇fG(k)

(
wt′−K+k+1

)
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∥∥∥∥∥
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∥∥∥∥∥
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))
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,

Using the fact that ∥x+ y∥2 ≤ 2∥x∥2 + 2∥y∥2 and xy ≤ 1
2∥x∥

2 + 1
2∥y∥

2, we have

Q1 =
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2
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∥∥∥∥∥
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2
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∥∥∥∥∥
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)∥∥∥∥∥
2
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+
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+ Lγ2
t′

∥∥∥∥∥
K−1∑
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Ik∇fG(k)

(
wt′−K+k+1

)
−∇f(wt′)

∥∥∥∥∥
2

︸ ︷︷ ︸
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t′)
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(
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2
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t′
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∥∥∥∥∥
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∥∥∥∥∥
2

Using E∥ξ − E[ξ]∥2 ≤ E∥ξ∥2, we have

Q3 =E

∥∥∥∥∥
K−1∑
k=0

Ik · ôt
′

LK−1
· ut′

wG(k)
−

K−1∑
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Ik∇fG(k)

(
wt′−K+k+1

)∥∥∥∥∥
2

≤E

∥∥∥∥∥
K−1∑
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Ik · ôt
′

LK−1
· ut′

wG(k)

∥∥∥∥∥
2

≤(d+ 4)

∥∥∥∥∥
K−1∑
k=0

Ik∇fG(k),xi(t′)

(
wt′−K+k+1

)∥∥∥∥∥
2

=(d+ 4)

K−1∑
k=0

∥∥∥∇fG(k),xi(t′)
(wt′−K+k+1)

∥∥∥2
≤(d+ 4)KM,

where the second inequality is due to Lemma 5.3. Then we bound Q4,

Q4 =

∥∥∥∥∥
K−1∑
k=0

Ik∇fG(k)

(
wt′−K+k+1

)
−∇f(wt′)

∥∥∥∥∥
2

=

K−1∑
k=0

∥∥∥∇fG(k)(w
t′−K+k+1)−∇fG(k)(w

t′)
∥∥∥2

≤
K−1∑
k=0

∥∥∥∇f(wt′−K+k+1)−∇f(wt′)
∥∥∥2

≤L2
K−1∑
k=0

∥∥∥wt′ − wt′−K+k+1
∥∥∥2

=L2
K−1∑
k=0

∥∥∥∥∥∥
t′−1∑

j=max{0,t′−K+k+1}

(wj+1 − wj)

∥∥∥∥∥∥
2

= L2
K−1∑
k=0

∥∥∥∥∥∥
t′−1∑

j=max{0,t′−K+k+1}

γj(ô
j
LK−1

· uj
w)

∥∥∥∥∥∥
2

≤L2γ2
max{0,t′−K+1}

K−1∑
k=0

K

t′−1∑
j=max{0,t′−K+k+1}

(d+ 4)

∥∥∥∥∥
K−1∑
k=0

∇fG(k),x(j)
(wt′−K+k+1)

∥∥∥∥∥
2

≤(d+ 4)KLγt′
γmax{0,t′−K+1}

γt′

K−1∑
k=0

t′−1∑
j=max{0,t′−K+k+1}

∥∥∥∥∥
K−1∑
k=0

∇fG(k),x(j)
(wt′−K+k+1)

∥∥∥∥∥
2

≤(d+ 4)Lγt′σK
4M,

where the second inequality is from Assumption 5.1, the third inequality is due to Lemma 5.3, the
fourth inequality follows from Lγt′ < 1, the last inequality follows from the inequality of arithmetic
and geometric means, Assumption 5.2 and σ := maxt′

γmax{0,t′−K+1}
γt′

. Integrating the upper bound
together, we have

E
[
f(wt′+1)− f(w′)

]
≤− γt′

2

∥∥∥∇f(wt′)
∥∥∥2 + (d+ 4)Lγ2

t′KM +
γt′ + Lγ2

t′

2
(d+ 4)Lγt′σK

4M
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≤− γt′

2

∥∥∥∇f(wt′)
∥∥∥2 + 2(d+ 4)Lγ2

t′(KM + σK4M)

=− γt′

2

∥∥∥∇f(wt′)
∥∥∥2 + 2(d+ 4)Lγ2

t′MK ,

where we let MK = KM + σK4M .

E Proof of Theorem 5.6

Proof. Let γt = γ be a constant, taking total expectation in Lemma 5.5, we have

E
[
f(wt′+1)

]
− E

[
f(wt′)

]
≤ −γ

2
E∥∇f(wt′)∥2 + 2(d+ 4)Lγ2MK ,

where σ = 1 and Mk = KM +K4M . summing the above inequality from t′ = 0 to T − 1 we have

E[f(wT )]− f(w0) ≤ −γ

2

T−1∑
t′=0

E∥∇f(wt′)∥2 + 2T (d+ 4)γ2LMK

Then we have

1

T

T−1∑
t′=0

E∥∇f(wt′)∥2 ≤ 2(f(w0)− f(w∗))

γT
+ 4(d+ 4)LγMK .

F Proof of Theorem 5.7

Proof. Let {γt′} be a diminishing sequence and γt′ =
γ0

t′+1 , such that σ < K and MK = KM +

K5M . Taking expectation in Lemma 5.5 and summing it from t′ = 0 to T − 1, we have

E[f(wT )]− f(w0) ≤ −1

2

T−1∑
t′=0

γtE∥∇f(wt′)∥2 +
T−1∑
t′=0

2(d+ 4)γ2
t′LMK .

Letting ΓT =
∑T−1

t′=0 γt′ , then we have

1

ΓT

T−1∑
t′=0

γt′E∥∇f(wt′)∥2 ≤
2
(
f(w0)− f(w∗)

)
ΓT

+

∑T−1
t′=0 4(d+ 4)γ2

t′LMK

ΓT

G Details of AsyncFGD

G.1 Working with Adam

We provide example for AsyncFGD working with Adam in Algorithm 2. Minimal changes are made
on Adam by substituting the gradient the estimator using Forward Gradient.

G.2 Execution Details

Details are presented in Figure 5. By pipelining over time dimension, we can preserve buffer for
input in only one timestamp and still achieve parallel computation.
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Algorithm 2 AsyncFGD-Adam

Initialize: Stepsize sequence {γt}T−1
t=K−1, weight w0 =

[
w0

G(0), · · · , w
0
G(K−1)

]
∈ Rd,mG(k) =

0, vG(k) = 0, β1 = 0.9, β2 = 0.999, η = 1e− 8
1: for t = 0, 1, · · · , T − 1 do
2: for k = 0, 1, · · · ,K − 1 in parallel do
3: Read ĥt−k

Lk−1
, ôt−k

Lk−1
from storage if k ̸= 0

4: Compute ĥt−k
Lk

, ôt−k
Lk

5: Send ĥt−k
Lk

, ôt−k
Lk

to next worker’s storage if k ̸= K − 1
6: end for
7: Broadcast ôt−K+1

LK−1

8: for k = 0, 1, · · · ,K − 1 in parallel do
9: Compute ∆wt−K+1

G(k) = ôt−K+1
LK−1

ut−K+1
wG(k)

10: Update mG(k) = β1∆wt−K+1
G(k) + (1− β1)mG(k)

11: Update vG(k) = β2∆wt−K+1
G(k) + (1− β2)vG(k)

12: Compute m̂G(k) = mG(k)/β
t
1

13: Compute v̂G(k) = vG(k)/β
t
2

14: Update wt−K+2
G(k) = wt−K+1

G(k) − γt−K+1m̂G(k)/v̂G(k)
15: end for
16: end for
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Figure 5: Details in executon of AsyncFGD-RNN with 3 modules. In the skip stage, only the host
accumulate loss and its jvp value and other workers will jump right into the next state.

G.3 Extension: AsyncFGD-Recursive

In this section, we extend the potential of AsyncFGD by exploring the parallelization of sequential
inputs in RNNs with reduced memory footprint, necessitating the preservation of input for only a
single timestamp.

We adopt a one-to-many RNN network for ease of illustration and denote the equal length of each
sequence as n. We begin by refactoring the original loss for RNNs in terms of cumulative loss and
new activation. Here, stl signifies the hidden state at timestamp t on layer l. At timestamp t, each layer
ingests (stl−1, s

t−1
l ) as input, generating stl = Fl(s

t
l−1, s

t−1
l , wl). We represent the stacked latent

states passed from t − 1 as st−1 = [st−1
1 , st−1

2 , . . . , st−1
L ] and the output as yt = F (st0, s

t−1;w),
where st0 symbolizes the input data xt. The cumulative loss from timestamp 1 ∼ T is given by:

T∑
t=1

f(F (xt, s
t−1;w), yt) (15)

We next refactor equation 2 for the ith sequential input in iteration i, i ≥ 0 as:
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wi+1
l = wi

l − γi
∂Li

∂wi
l

, ∀l ∈ 1, 2, . . . , L (16)

where Li :=
∑

t = in+ 1(i+1)nf(F (xt, s
t−1;w), yt) represents the loss for the ith sequence.

We break the dependency between timestamps and iterations by employing dynamic staleness in
AsynFGD. Specifically, the computation in module k ∈ 1, 2, · · · ,K at timestamp t is defined as
follows:

ŝLk
t−k = fk

(
ŝLk−1

t−k, ŝG(k)t−k−1
;wG(k)t−2K+k+2

)
(17)

ôLk
t−k = Jfk

(
ŝLk − 1t−k, ŝG(k)t−k−1

;wG(k)t−2K+k+2
)
ut−k
G(k), (18)

where ut−k
G(k) = [ôLk − 1t−k⊺, ôG(k)t−k−1⊺

, uwG(k)
t−k⊺]⊺

Given that tasks belonging to the same iteration use identical parameters, we use δ(k, t, i) =
t−ni−k−1, t ∈ [in+1, (i+1)n] to quantify this difference for the ith sequential. If δ(k, t, i) ≤ 0,
then module k uses stale parameters from iteration i − 1 at timestamp t. AsyncFGD-RNN only
updates the parameter upon the completion of the last computation in the sequence. Specifically, we
use:

wt−K+2 =


wt−K+1, if

t−K + 1

n
/∈ N∗

wt−K+1 − γ⌊ t−K
n ⌋Euw

t

((
∂L⌊ t−K

n ⌋
∂sLK

t−K
ot−K
LK

)
u(t−K)
w

)
, otherwise

Refer to figure 5 for detailed execution instructions. By combining training and prediction, we
can process data from different timestamps of sequential input, maintain a buffer for just a single
timestamp, and still achieve parallelization among various workers.

H Training Details

In this section, we explain some details in the trainning process.

H.1 Random Seed

The seeds for all experiments are fixed to 0.

H.2 Description of Network Architecture

H.2.1 Models Deployed in Section 6.2.

The network structures of ConvS,ConvL, FCS and FCL are enumerated in Tables 8, 11, 9, and
10 correspondingly. In these designations, the subscripts ReLU and Tanh signify the particular acti-
vation function used in the model. Moreover, the larger models, denoted as counterparts, incorporate
batch normalization layers for enhanced performance.

H.2.2 Models used in Section 6.3.

We delve into the specific models employed in Section 6.3. For MobileNet, we utilize the structure
of MobileNet_V3_Small. The ResNet-18 structure is used when implementing ResNet. The model
EfficientNet_B0 signifies the EfficientNet architecture. The MNASNet0_5 is used for MNasNet.
Lastly, we adopt ShuffleNet_V2_X0_5 for ShuffleNet.
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H.3 Model Splitting

In this section, we provide details for how to split the model into consective moduels and distribute
them in different worker, we will first provide how to split models in Section 6.2, then we provide
how to split model in 6.3.

H.3.1 Model Splitting in Section 6.2

In Section 6.2, all models are split with K = 3. Details for how to split the ConvS, ConvL, FCS, FCL
are repented in Table 5 Table 6, Table3 and Table 4, respectively.

Table 3: Details for model splitting
for ConvS, definition for layers can
be found in Table 8

K Layers

1 conv1, act

2 pool1, fc1

3 act2, fc2

Table 4: Details for model splitting for ConvL, definition for
layers can be found in Table 11

K Layers

1 conv1, bn1, act1, pool1, conv2, bn2, act2, pool2

2 conv3, bn3, act3, pool3,conv4, bn4, act4, pool4

3 conv5, bn5, act5, pool5, fc1

Table 5: Details for model splitting
for FCS, definition for layers can
be found in Table 9

K Layers

1 fc1,ac1

2 fc2,ac2

3 fc3,ac3

Table 6: Details for model splitting for FSL, definition for
layers can be found in Table10

K Layers

1 fc1, bn1, ac1, fc2, bn2, ac2

2 fc3, bn3, ac3 ,fc4, bn4, ac4

3 fc5,bn5,ac5,fc5

H.3.2 Model Splitting in Section 6.3

In section 6.3, all models are divided into four parts (K = 4). Detailed descriptions of how each
model is split are provided below. Note that ’head’ and ’tail’ refer to the layers before and after the
main blocks of each architecture, respectively, which are assigned to the first and the last worker:

• ResNet-18: The core of ResNet-18 consists of 4 Residual Blocks, each distributed to one of
the four workers.

• EfficientNet: The core of EfficientNet consists of 7 Mobile Inverted Bottlenecks (MBConv).
The first worker handles MBConv 1, the second handles MBConv 2 to 3, the third manages
MBConv 4 to 6, and the last one manages MBConv 7.

• MoblieNet: The core of MoblieNetV3-small includes 13 layers of bottlenecks. The first
worker handles layers 1 to 3, the second manages layers 4 to 7, the third manages layers 8 to
11, and the last worker handles layers 12 to 13.

• MnasNet: The core of MnasNet consists of 6 blocks of inverted residuals. Blocks 1 to 2,
3 to 5, and 6 are assigned to workers 2, 3, and 4 respectively, while the first worker only
handles the head.

• ShuffleNet: The core of ShuffleNet consists of 3 stages, each assigned to workers 2, 3, and
4, respectively.
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I Additional Experimental Results

I.1 Ablation study in α

We have incremented the value of αbias gradually, with a step size of 0.0075, over 20 epochs. This
process can be generalized using the following equations:

αbias =

t× α∗
bias

20
, t <= 20

α∗
bias, otherwise

Here, α∗
bias control the rate of increase and the maximum attainable value of αbias, respectively. The

ablation study with respect to α∗
bias is presented in Table 7.

We observe that reducing α∗
bias to 0, which corresponds to only updating the classifier, still results

in performance gains compared to updating the full model. This improvement can be attributed to
reduced variance. As α∗

bias increases, we generally see better results, since the norm of the gradient
approximation increases. However, when α∗

bias exceeds 0.25, we sometimes observe a performance
drop due to the corresponding increase in variance.

Table 7: Ablation study on different value of α∗
bias

Dataset Model
α∗
bias

0.00 0.03 0.06 0.09 0.12 0.15 0.20 0.25

CIFAR10

Res-18 0.838 0.838 0.845 0.855 0.865 0.878 0.872 0.885

Mobile 0.898 0.912 0.911 0.910 0.913 0.911 0.914 0.909

Efficient 0.892 0.900 0.902 0.903 0.902 0.902 0.887 0.895

Shuffle 0.788 0.805 0.808 0.812 0.820 0.820 0.822 0.825

Mnas 0.782 0.790 0.788 0.789 0.788 0.789 0.777 0.782

FMNIST

Res-18 0.866 0.869 0.871 0.873 0.875 0.880 0.882 0.884

Mobile 0.890 0.908 0.906 0.906 0.906 0.906 0.899 0.901

Efficient 0.889 0.904 0.906 0.902 0.905 0.904 0.908 0.897

Shuffle 0.849 0.854 0.857 0.860 0.864 0.870 0.870 0.877

Mnas 0.854 0.868 0.870 0.870 0.870 0.870 0.864 0.864

I.2 Acceleration across Various Platforms and Architectures

In Section 6.5, we examined the acceleration of AsyncFGD in comparison to vanilla FGD on ResNet-
18, using two hardware platforms: 1) NVIDIA AGX Orin, an embedded device, and 2) a cluster of
four NVIDIA 1080 Ti GPUs. These platforms were chosen to reflect real-world edge device scenarios
and to simulate situations of ample computational power, such as in the case of stacked chips.

In this section, we expand our scope of investigation by incorporating two additional devices: 1)
NVIDIA A100, and 2) Intel(R) Xeon(R) CPU E5-2678 v3 @2.50GHZ. These additions allow us
to further examine acceleration under various conditions. We also provide supplementary results
on acceleration with respect to different batch sizes to reflect variable input streams. Moreover, to
emulate streamlined input, the mini-batch size of the synchronized pipeline is set to 1.

The performance of ResNet-18 with different batch sizes on the four NVIDIA 1080Ti GPUs, A100,
and AGX Orin platforms is illustrated in Figures 6, 7, and 8, respectively. Results for MobileNetV3-
small on AGX Orin are presented in Figure 10. A notable observation is that AsyncFGD performance
appears largely insensitive to batch size. In contrast, other algorithms typically exhibit poorer
performance with smaller batch sizes. Particularly, when the batch size is reduced to 1, these
algorithms offer negligible performance improvements over vanilla FGD. Furthermore, the overall
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acceleration on a single device is constrained by computational power. For instance, while AsyncFGD
achieves a speedup of 2.84× on a four GPU cluster, it only delivers a 2.11 × speedup on a single
AGX Orin. Communication also imposes a limit on the overall acceleration, as demonstrated by the
superior performance on the A100 in comparison to the four-GPU cluster. This is attributable to
the elimination of communication overhead on a single device, except for the sending and receiving
operations of CUDA kernels.

Results for MobileNetV3-small with different batch sizes on CPU are depicted in Figure 9. Due to
the inherently sequential execution pattern of CPUs, the acceleration is constrained, resulting in only
modest speedup and advantage over other algorithms.
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Figure 6: Acceleration with differernt batch size on ResNet-18, cluster with 4 Nvidia 1080 Ti

I.3 Memory Profiling on Other Basic Units of Convolutional Neural Networks

This section outlines memory profiling for basic units within a Convolutional Neural Network
(CNN). Commonly, a CNN layer is coupled with a batch normalization layer and an activation
layer using ReLU, so we’ve combined these elements for our memory testing. We examine the
memory consumption against the number of layers and present the results in Figure 11(a). For further
examination, we also assess the memory consumption against the number of output channels and
batch size, with results shown in Figures 11(b) and 11(c), respectively.

Our findings reveal that implementing forward gradients can significantly reduce memory consump-
tion. Generally, the majority of memory usage in CNNs stems from intermediate results, since CNNs
often operate in a ’broadcast then product’ pattern (to be specific, they are referred as ’img2col’).
Consequently, the additional memory required by the random tangent in AsyncFGD is minimal. As
such, the memory consumption appears to be invariant to the number of layers, mainly because in the
forward pass we discard almost all the intermediate variables.
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Figure 7: Acceleration with differernt batch size on ResNet-18, A100
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Figure 8: Acceleration with differernt batch size on ResNet-18, AGX Orin
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Figure 9: Acceleration with differernt batch size on MobileNetV3-small, Intel(R) Xeon(R) CPU
E5-2678 v3 @ 2.50GHz
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(b) Batch size = 2
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(c) Batch size = 3
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Figure 10: Acceleration with differernt batch size on MobileNetV3-small, AGX Orin
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Table 8: Network architecture for ConvSReLU and ConvSTanh. ConvSReLU denotes using ReLU
for the activation functions and ConvSTanh denotes using Tanh as activation functions

Layer Type Params

conv1 Conv2d out_channels=32, kernel_size=5, stride=1, padding=2

act1 ReLU/Tanh N/A

pool1 Maxpooll2d kernel_size=2, stride=2, padding=0, dilation=1

fc1 Linear out_features=1000

act2 ReLU/Tanh N/A

fc2 Linear out_features=10

Table 9: Network architecture for FCSReLU and
FCSTanh. FCSReLU denotes using ReLU for
the activation functions and FCSTanh denotes us-
ing Tanh as activation functions

Layer Type Params

flatten Flatten N/A

fc1 Linear out_features=1024

ac1 ReLU/Tanh N/A

fc2 Linear out_features=512

ac2 ReLU/Tanh N/A

fc3 Linear out_features=256

Table 10: Network architecture for FCLReLU and
FCLTanh. FCLReLU denotes using ReLU for
the activation functions and FCLTanh denotes
using Tanh as activation functions

Layer Type Params

flatten Flatten N/A

fc1 Linear out_features=1024

bn1 BatchNorm1d N/A

ac1 ReLU/Tanh N/A

fc2 Linear out_features=1024

bn2 BatchNorm1d N/A

ac2 ReLU/Tanh N/A

fc3 Linear out_features=1024

bn3 BatchNorm1d N/A

ac3 ReLU/Tanh N/A

fc4 Linear out_features=1024

bn4 BatchNorm1d N/A

ac4 ReLU/Tanh N/A

fc5 Linear out_features=512

bn5 BatchNorm1d N/A

ac5 ReLU/Tanh N/A

fc6 Linear out_features=10
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Figure 11: Memory consumpition of basic units in convoluntional networks, batch size=64, chan-
nels=3 and number of layers=18 unless appears as in the x axis

Table 11: Network architecture for ConvLReLU and ConvLTanh. ConvLReLU denotes using
ReLU for the activation functions and ConvLTanh denotes using Tanh as activation functions

Layer Type Params

conv1 Conv2d out_channels=32, kernel_size=3, stride=1, padding=2

bn1 BatchNorm2d N/A

act1 ReLU/Tanh N/A

pool1 Maxpooll2d kernel_size=2, stride=2, padding=0, dilation=1

conv2 Conv2d out_channels=64, kernel_size=3, stride=1, padding=2

bn2 BatchNorm2d N/A

act2 ReLU/Tanh N/A

pool2 Maxpooll2d kernel_size=2, stride=2, padding=0, dilation=1

conv3 Conv2d out_channels=128, kernel_size=3, stride=1, padding=2

bn3 BatchNorm2d N/A

act3 ReLU/Tanh N/A

pool3 Maxpooll2d kernel_size=2, stride=2, padding=0, dilation=1

conv4 Conv2d out_channels=256, kernel_size=3, stride=1, padding=2

bn4 BatchNorm2d N/A

act4 ReLU/Tanh N/A

pool4 Maxpooll2d kernel_size=2, stride=2, padding=0, dilation=1

conv5 Conv2d out_channels=512, kernel_size=3, stride=1, padding=2

bn5 BatchNorm2d N/A

act5 ReLU/Tanh N/A

pool5 Maxpooll2d kernel_size=2, stride=2, padding=0, dilation=1

flatten Flatten N/A

fc1 Linear out_features=10
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