
Appendix1

A Videos2

Please see our website at https://continual-mobile-manip.github.io/, and re-3

sult video.mp4 in the zip folder. This depicts the robot performing each of the tasks we consider -4

moving the chair 1) with a table in the corner in the playpen, 2) with a table in the middle of the5

playpen, 3) picking up a dustpan and vertically orienting it such that it can stand up, 4) sweeping6

a paper bag into a target region. We also include timelapse videos which show how our approach7

adapts behavior over time.8

B Policy Training9

For our experiments we run DrQ implemented in the official RLPD codebase open-sourced by Ball10

et al. [1]. Since we run image-based real robot experiments, we use learning algorithm hyperparame-11

ters (including for the image encoders) from Stachowicz et al. [2], which deployed RLPD for race12

car driving. The observations are first encoded into a latent space (separately for the actor and critic),13

and the processed latent is used by the critic ensemble or the actor. Details of the architecture for14

each of these, in addition to hyperparameters for training is provided in Table 1.15

We use both image and vector observations for learning. Each of these is processed by an image16

encoder or a 1-layer dense encoding for vector observations, and the corresponding latents are all17

concatenated together and then used as input for the actor or critic. Note that we use separate encoders18

for the critic and the critic. We use the architecture from Stachowicz et al. [2] for encoding each19

image source, without using any pre-trained embeddings, the network is retrained from scratch for20

each new experiment. There are 4 RGB image sources. The network encoders are provided with21

the last 3 frames for each image source, except for the goal image, since this remains fixed for the22

episode. The image sources are -23

• Egocentric front-left image24

• Egocentric front-right image25

• Third-person fixed-cam current image26

• Third-person fixed-cam goal image27

We use (128,128) spatial resolution for the egocentric images, and (256,256) for the images from the28

third person camera. The latter uses a higher resolution since it is further away from the scene and29

objects appear smaller/less clear.30

In addition, we have two vector observations -31

• Body pose - We compute the (x,y,θ) position of the robot body in the SE(2) plane relative to32

the calibrated playpen frame (calibration details in section D). The input to the network is 433

dimensional, consisting of (x, y, cos(θ), sin(θ)). We use sin, cos transforms for the angle to34

avoid discontinuities in input, since −π and π represent the same orientation.35

• Hand pose - This contains the 6-dof end effector orientation of the hand relative to the base36

position.37

There are certain learning parameters that are tuned separately for each environment, which we list in38

Table 2. This was mainly to balance the exploration-exploitation trade-off for learning new behavior,39

and pertain to the weight placed on entropy maximization in DrQ (temperature and target entropy),40

or to handle sparse rewards (number of min Q functions). We use a maximum episode length of 1641

for the chair and sweeping tasks, and 8 for the dustpan task, since it has sparse reward.42
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Table 1: Hyperparameters used in the experiments
Category Hyperparameter Value
Training Batch size 256

Update to Sample Ratio 4

Actor/Critic Actor learning rate 3e-4
Critic learning rate 3e-4
Actor network architecture 2x256
Critic network architecture 2x256
Critic ensemble size 10

Image Encoder Layer count 4
Convolution size 3x3
Stride 2
Hidden channels 32
Output latent dim 50

Table 2: Environment-tuned Hyperparameters
Env #MinQ Temp LR Init Temp Target Entropy

Chair 2 1e-4 0.5 -2
Dustpan 1 1e-3 0.1 -2

Sweeping 2 1e-4 0.1 -4

C Rewards43

C.1 Detection-Segmentation44

Figure 1: Grounded SAM/Detic Visualization: Visualization
of the object masks obtained from Segment Anything for chair
moving(left) and sweeping (right).

For each task, there is an object of45

interest, the state of which is used to46

compute the reward. We specify the47

object using a text prompt, which is48

used by the detection model to ob-49

tain a bounding box. This is then50

used to condition the Segment Any-51

thing [3] model to obtain a 2D ob-52

ject mask, as shown in Fig.1. For53

text-based detection we use either54

Grounding-Dino [4] or Detic [5]. For55

Grounding-Dino, we append the task-56

specific prompt to the list of class names in COCO [6] (to avoid cases of false positive de-57

tection), and we use Detic with objects365 vocabulary class names. The task-specific text58

prompts we use are ’chair’ for the chair tasks, ’red broom’ for the dustpan standup task, and59

’box.bag.poster.signboard.envelope.tag.clipboard.street sign’ for the sweeping task. The object of60

interest in the sweeping task is a paper bag being swept and we use many different possible matching61

text descriptions since it is detected as different classes due to its deformable nature. We list the62

detection model and the confidence threshold for a detection to be accepted for each task in Table 3.63

Once we obtain object masks, we can obtain the corresponding object point-cloud using depth64

observations. Some detections are rejected based on estimated position, eg: if there is a detection65

of an object outside the playpen. This filtering is essential since the robot often picks up on known66

infeasible objects, eg: the box in the middle of the playpen, or some chairs outside the railings.67
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Table 3: Detection Settings
Env Detection Model Confidence Threshold

Chair Grounding-Dino 0.4
Dustpan Grounding-Dino 0.2

Sweeping Detic 0.1

C.2 Reward Function68

Chair-moving tasks: For this task, we compute reward at every timestep of the episode. Given the69

estimated chair point cloud using the detection-segmentation system along with depth observations,70

we estimate the center of mass xt and the yaw rotation wt. Given the goal position g and orientation71

gw (extracted from the goal image), we compute position xdiff and yaw difference wdiff norms. Then72

the reward is given by :73

rposition = −xdiff + e(−xdiff) + e(−10·xdiff)

rori = e(−wdiff) + e(−10·wdiff)

Total Reward = rposition + rori

Dustpan Standup In this task, it is difficult to provide reward when the robot is interacting with the74

dustpan, since the detection model fails to pick up on the dustpan from the third person or egocentric75

image observations. We can measure reward at the end of the episode (when the robot has released76

its grasp) to detect the dustpan and estimate the center of the handle xT , and provide a large bonus77

if the height of the handle (z component of xT ) is above a set threshold. To prioritize faster task78

completion, we use an alive penalty of -0.1. The robot can terminate the episode earlier by releasing79

its gripper and letting go of the handle.80

rpenalty = −0.1

rbonus = 10 if xt height ≥ thresh

Total Reward =

{
rpenalty, if timestep t < T
rbonus, if end of episode, timestep T

Sweeping: Similar to the chair task, we compute reward at every timestep of the episode. We81

estimate the point cloud of the paper bag, let its center of mass be denoted by xt. The target region82

is a rectangle, denoted by Gr. Let d(x,Gr) denote the distance from position x to the closest83

corresponding point on the rectangle given by Gr. Then the reward is given by:84

rdistance = −0.2 · d(xt, Gr) + e(−10·xdiff)

rprogress = 10 ·max(0, d(xt−1, Gr)− d(xt, Gr))

rbonus =

{
10, if d(xt, Gr) = 0
0, else

Total Reward = rdistance + rprogress + rbonus

C.3 Success Criteria85

The results we show for continual improvement during training, as well as the evaluation of the final86

policies report success rate. Success is defined for an episode in the following manner for each of the87

tasks -88
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• Chair tasks - If the max reward obtained in the epsiode is above 1. This implies the chair is89

very close to its target.90

• Dustpan Standup - If the episode ends with a reward of 10 (indicating the dustpan is standing91

up).92

• Sweeping - If the episode ends with a reward of 10 (indicating the paper bag is swept into93

the goal region).94

C.4 Priors95

Algorithm 1 Prior generation for Dustpan Standup

1: Initialize Prior data buffer D
2: Initialize Uniform noise distribution U with limits

:
(−0.1,−0.1,−1) → (0.1, 0.1, 1)

3: for N = 1 to Number of episodes do
4: Initialize action list A = []
5: Set yaw hand rotation ω to either +0.5 or -0.5
6: for t = 1 to episode len do
7: Set vertical hand action z to be either +0.2 or

-0.2
8: Add (z, ω, 0) + (n ∼ U) to A
9: end for

10: Add (−0.2, ω, 0) + (n ∼ U) to A
11: Execute A on the robot, record observations, add

to D
12: end for
13: return Prior data buffer D

For the chair moving tasks we use RRT*96

for planning a path in SE(2) space with a97

simplified model that only has 2D occu-98

pancy of the top surface of the table, and99

is not aware of the chair, or robot-chair or100

chair-table interactions. This generates a101

set of way-points for the target position of102

the center of mass of the robot in SE(2)103

space, in global coordinates. We use coor-104

dinate transforms to convert these targets to105

be in the robot’s body frame in order to use106

the same action space as the reactive RL107

policy. We are able to perform this com-108

putation since we know the robot’s body109

position in global coordinates. Specifically,110

we have Wbody = Wglobal ∗ T−1, where111

Wf denotes the way-point with respect to112

frame f and T is the matrix transform of113

the robot body center of mass with respect114

to the global coordinates.115

For sweeping, the prior is simply to stay within 0.5m of the last detected location of the paper bag.116

For dustpan standup we use a simple procedural function to generate trajectories to create a prior117

dataset, which we detail in Algorithm 1118

D Map Calibration119

Figure 2: Collision map of
the playpen used for safety
and navigation. The table
is added to this map when
included in experiments.

We use the GraphNav functionality provided in the SpotSDK by Boston120

Dynamics for Spot robots for generating a map of the playpen. This121

involves walking the robot around with some fiducials (we use 5) in the122

arena. This needs to be performed only once, and is used to obtain a123

reference frame to localize the robot, which is useful to record body pose124

information and also to implement safety checks to make sure the robot125

is not executing actions that collide with the playpen railings. While Spot126

has inbuilt collision avoidance we implement an additional safety layer127

using the map to clip unsafe actions that would move the robot too close128

to the playpen railings. For navigation we use RRT* to plan in SE(2)129

space given the obstacles, using the collision map of the playpen as shown130

in Fig. 2. The red region denotes the estimate of the robot’s position in131

the x-y plane, with the blue marking denoting its heading.132

E System Overview133

We use a workstation with a single A5000 GPU to run RLPD online, which requires about 20GB134

GPU memory, mostly owing to all the image inputs that need to be processed. The detection and135
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segmentation models are run on cloud compute on a single A100 GPU. The fixed third person136

camera images from the realsense are streamed to a local laptop. Communication between the laptop,137

workstation and cloud server is facilitated via GRPC servers, and the main program script is run on138

the workstation, which also controls the robot. Commands are issued to the robot over wifi using the139

SpotSDK provided by Boston Dynamics.140
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