©® N o o »~

16
17
18
19
20
21
22
23

24

25

26

27

28
29
30

31

32
33
34
35

36
37

38
39
40
41
42

Appendix

A Videos

Please see our website at https://continual-mobile-manip.github.io/, and re-
sult_video.mp4 in the zip folder. This depicts the robot performing each of the tasks we consider -
moving the chair 1) with a table in the corner in the playpen, 2) with a table in the middle of the
playpen, 3) picking up a dustpan and vertically orienting it such that it can stand up, 4) sweeping
a paper bag into a target region. We also include timelapse videos which show how our approach
adapts behavior over time.

B Policy Training

For our experiments we run DrQ implemented in the official RLPD codebase open-sourced by Ball
et al. [1]. Since we run image-based real robot experiments, we use learning algorithm hyperparame-
ters (including for the image encoders) from Stachowicz et al. [2], which deployed RLPD for race
car driving. The observations are first encoded into a latent space (separately for the actor and critic),
and the processed latent is used by the critic ensemble or the actor. Details of the architecture for
each of these, in addition to hyperparameters for training is provided in Table 1.

We use both image and vector observations for learning. Each of these is processed by an image
encoder or a 1-layer dense encoding for vector observations, and the corresponding latents are all
concatenated together and then used as input for the actor or critic. Note that we use separate encoders
for the critic and the critic. We use the architecture from Stachowicz et al. [2] for encoding each
image source, without using any pre-trained embeddings, the network is retrained from scratch for
each new experiment. There are 4 RGB image sources. The network encoders are provided with
the last 3 frames for each image source, except for the goal image, since this remains fixed for the
episode. The image sources are -

* Egocentric front-left image
* Egocentric front-right image
* Third-person fixed-cam current image

e Third-person fixed-cam goal image

We use (128,128) spatial resolution for the egocentric images, and (256,256) for the images from the
third person camera. The latter uses a higher resolution since it is further away from the scene and
objects appear smaller/less clear.

In addition, we have two vector observations -

* Body pose - We compute the (x,y,6) position of the robot body in the SE(2) plane relative to
the calibrated playpen frame (calibration details in section D). The input to the network is 4
dimensional, consisting of (x, y, cos(6), sin(6)). We use sin, cos transforms for the angle to
avoid discontinuities in input, since —7 and 7 represent the same orientation.

* Hand pose - This contains the 6-dof end effector orientation of the hand relative to the base
position.

There are certain learning parameters that are tuned separately for each environment, which we list in
Table 2. This was mainly to balance the exploration-exploitation trade-off for learning new behavior,
and pertain to the weight placed on entropy maximization in DrQ (temperature and target entropy),
or to handle sparse rewards (number of min Q functions). We use a maximum episode length of 16
for the chair and sweeping tasks, and 8 for the dustpan task, since it has sparse reward.

https://continual-mobile-manip.github.io/

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67

Table 1: Hyperparameters used in the experiments

Category Hyperparameter Value
Training Batch size 256
Update to Sample Ratio 4
Actor/Critic Actor learning rate 3e-4
Critic learning rate 3e-4
Actor network architecture 2x256
Critic network architecture 2x256
Critic ensemble size 10
Image Encoder Layer count 4
Convolution size 3x3
Stride 2
Hidden channels 32
Output latent dim 50

Table 2: Environment-tuned Hyperparameters

Env #MinQ Temp LR Init Temp Target Entropy

Chair 2 le-4 0.5
Dustpan 1 le-3 0.1
Sweeping 2 le-4 0.1

2
2
4

C Rewards

C.1 Detection-Segmentation

Figure 1: Grounded SAM/Detic Visualization: Visualization
of the object masks obtained from Segment Anything for chair
moving(left) and sweeping (right).

For each task, there is an object of
interest, the state of which is used to
compute the reward. We specify the
object using a text prompt, which is
used by the detection model to ob-
tain a bounding box. This is then
used to condition the Segment Any-
thing [3] model to obtain a 2D ob-
ject mask, as shown in Fig.1. For
text-based detection we use either
Grounding-Dino [4] or Detic [5]. For
Grounding-Dino, we append the task-

specific prompt to the list of class names in COCO [6] (to avoid cases of false positive de-
tection), and we use Detic with objects365 vocabulary class names. The task-specific text
prompts we use are 'chair’ for the chair tasks, 'red broom’ for the dustpan standup task, and
’box.bag.poster.signboard.envelope.tag.clipboard.street_sign’ for the sweeping task. The object of
interest in the sweeping task is a paper bag being swept and we use many different possible matching
text descriptions since it is detected as different classes due to its deformable nature. We list the
detection model and the confidence threshold for a detection to be accepted for each task in Table 3.

Once we obtain object masks, we can obtain the corresponding object point-cloud using depth
observations. Some detections are rejected based on estimated position, eg: if there is a detection
of an object outside the playpen. This filtering is essential since the robot often picks up on known
infeasible objects, eg: the box in the middle of the playpen, or some chairs outside the railings.

68

69
70
71
72
73

74
75
76
77
78
79
80

81
82
83
84

85

86
87
88

Table 3: Detection Settings
Env Detection Model Confidence Threshold

Chair Grounding-Dino 0.4
Dustpan Grounding-Dino 0.2
Sweeping Detic 0.1

C.2 Reward Function

Chair-moving tasks: For this task, we compute reward at every timestep of the episode. Given the
estimated chair point cloud using the detection-segmentation system along with depth observations,
we estimate the center of mass z; and the yaw rotation w;. Given the goal position g and orientation
g (extracted from the goal image), we compute position zg4ifr and yaw difference wgir norms. Then
the reward is given by :

— 4 —10 4
Tposition = —Zdiff + e(airr) + 6(Z4ifr)

Tori = e(—wair) + e(—10-wairr)

Total Reward = 7position + Tori

Dustpan Standup In this task, it is difficult to provide reward when the robot is interacting with the
dustpan, since the detection model fails to pick up on the dustpan from the third person or egocentric
image observations. We can measure reward at the end of the episode (when the robot has released
its grasp) to detect the dustpan and estimate the center of the handle zr, and provide a large bonus
if the height of the handle (z component of x) is above a set threshold. To prioritize faster task
completion, we use an alive penalty of -0.1. The robot can terminate the episode earlier by releasing
its gripper and letting go of the handle.

Tpenalty = -0.1
Tbonus = 10 if 2, height > thresh

_J Tpenay, iftimestept <T'
Total Reward = { Thonus; if end of episode, timestep T'

Sweeping: Similar to the chair task, we compute reward at every timestep of the episode. We
estimate the point cloud of the paper bag, let its center of mass be denoted by ;. The target region
is a rectangle, denoted by G,.. Let d(x,G,) denote the distance from position z to the closest
corresponding point on the rectangle given by G,.. Then the reward is given by:

Tdistance = —0.2 - d(zt’ G7) + 6(*10'Idirr)
T'progress = 10-- ma‘X(07 d(xt—ly GT) - d(-fh Gr))

{ 10, ifd(z¢,G,) =0

T =
bonus 0 , else

Total Reward = 7gistance + T'progress T Tbonus

C.3 Success Criteria

The results we show for continual improvement during training, as well as the evaluation of the final
policies report success rate. Success is defined for an episode in the following manner for each of the
tasks -

89
90

91
92

93
94

95

9

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

119

120
121
122
123
124
125
126
127
128
129
130
131
132

133

134
135

* Chair tasks - If the max reward obtained in the epsiode is above 1. This implies the chair is
very close to its target.

* Dustpan Standup - If the episode ends with a reward of 10 (indicating the dustpan is standing
up).

» Sweeping - If the episode ends with a reward of 10 (indicating the paper bag is swept into
the goal region).

C.4 Priors

For the chair moving tasks we use RRT*

for planning a path in SE(2) space with a

simplified model that only has 2D occu- |: Initialize Prior data buffer D o

pancy of the top surface of the table, and 2: Initialize Uniform noise distribution I/ with limits

is not aware of the chair, or robot-chair or :

chair-table interactions. This generates a

set of way-points for the target position of 4. nitialize action list A — I

the center of mass of the robot in SE(2) 5. Set yaw hand rotation w to either +0.5 or -0.5

space, in global coordinates. We use coor- 6: for ¢ = 1 to episode len do

dinate transforms to convert these targetsto 7 Set vertical hand action z to be either +0.2 or

be in the robot’s body frame in order to use -0.2

the same action space as the reactive RL ~ 8: Add (2,w,0) + (n ~U) to A

policy. We are able to perform this com- 9: end for

putation since we know the robot’s body 10 Add (=02,w,0)+ (n~U)t0 A .

position in global coordinates. Specifically, 11: Execute .4 on the robot, record observations, add
1 to D

we have Wyoay = ng?bal *.T , where 12: end for

W denotes the.way-pomt‘wnh 1espect t0 3. ratvrn Prior data buffer D

frame f and T is the matrix transform of

the robot body center of mass with respect

to the global coordinates.

For sweeping, the prior is simply to stay within 0.5m of the last detected location of the paper bag.

For dustpan standup we use a simple procedural function to generate trajectories to create a prior

dataset, which we detail in Algorithm 1

Algorithm 1 Prior generation for Dustpan Standup

(-0.1,-0.1,-1) — (0.1,0.1,1)
3: for N = 1 to Number of episodes do

D Map Calibration

We use the GraphNav functionality provided in the SpotSDK by Boston
Dynamics for Spot robots for generating a map of the playpen. This
involves walking the robot around with some fiducials (we use 5) in the
arena. This needs to be performed only once, and is used to obtain a
reference frame to localize the robot, which is useful to record body pose
information and also to implement safety checks to make sure the robot
is not executing actions that collide with the playpen railings. While Spot
has inbuilt collision avoidance we implement an additional safety layer
the playpen used for safety . . .
L using the map to clip unsafe actions that would move the robot too close
and navigation. The table - o :
is added to this map when O the playpen railings. For navigation we use RRT* to plan in SE(2)
included in experiments. space given the obstacles, using the collision map of the playpen as shown
in Fig. 2. The red region denotes the estimate of the robot’s position in
the x-y plane, with the blue marking denoting its heading.

Figure 2: Collision map of

E System Overview

We use a workstation with a single A5000 GPU to run RLPD online, which requires about 20GB
GPU memory, mostly owing to all the image inputs that need to be processed. The detection and

136
137
138
139
140

141

142
143

144
145
146

147
148

149
150
151

152
153

154
155
156
157

segmentation models are run on cloud compute on a single A100 GPU. The fixed third person
camera images from the realsense are streamed to a local laptop. Communication between the laptop,
workstation and cloud server is facilitated via GRPC servers, and the main program script is run on
the workstation, which also controls the robot. Commands are issued to the robot over wifi using the
SpotSDK provided by Boston Dynamics.

References

[1] P.J. Ball, L. Smith, I. Kostrikov, and S. Levine. Efficient Online Reinforcement Learning with
Offline Data. In ICML, 2023.

[2] K. Stachowicz, D. Shah, A. Bhorkar, I. Kostrikov, and S. Levine. FastRLAP: A System
for Learning High-Speed Driving via Deep RL and Autonomous Practicing. arXiv preprint
arXiv:2304.09831, 2023.

[3] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.
Berg, W.-Y. Lo, et al. Segment Anything. arXiv preprint arXiv:2304.02643, 2023.

[4] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu, et al. Grounding
DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection. arXiv
preprint arXiv:2303.05499, 2023.

[5] X. Zhou, R. Girdhar, A. Joulin, P. Krdhenbiihl, and 1. Misra. Detecting Twenty-Thousand Classes
Using Image-Level Supervision. In ECCV, 2022.

[6] T.-Y.Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Doll4r, and C. L. Zitnick.
Microsoft coco: Common objects in context. In Computer Vision—-ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages 740-755.
Springer, 2014.

	Videos
	Policy Training
	Rewards
	Detection-Segmentation
	Reward Function
	Success Criteria
	Priors

	Map Calibration
	System Overview

