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ABSTRACT

There is a prevalent opinion 1 that diffusion-based models outperform GAN-based
counterparts in the Image Super Resolution (ISR) problem. However, in most
studies, diffusion-based ISR models employ larger networks and are trained longer
than the GAN baselines. This raises the question of whether the high performance
stems from the superiority of the diffusion paradigm or if it is a consequence of
the increased scale and the greater computational resources of the contemporary
studies. In our work, we thoroughly compare diffusion-based and GAN-based
super resolution models under controlled settings, with both approaches having
matched architecture, model and dataset sizes, and computational budget. We
show that a GAN-based model can achieve results comparable or superior to a
diffusion-based model. Additionally, we explore the impact of popular design
choices, such as text conditioning and augmentation on the performance of ISR
models, showcasing their effect in several downstream tasks.

1 INTRODUCTION

In recent years, the field of Image Super Resolution (ISR) has witnessed significant advancements,
primarily attributed to improvements in image generation frameworks, mostly Generative Adversar-
ial Networks (GANs) Goodfellow et al. (2014) and Denoising Diffusion Models (DDMs) Ho et al.
(2020).

GANs introduced the adversarial training framework, which led to their remarkable ability to fit
and recover narrow, unimodal distributions while struggling with complex multi-modal data. This
trade-off allowed GANs to dominate the area of ISR for half a decade Ledig et al. (2017b); Wang
et al. (2018); Karras et al. (2017); Wang et al. (2021), pushing the boundaries of resulting image
quality, especially for high upsampling factors.

In contrast, more contemporary DDMs provide a robust framework for image generation, reliably
covering multi-modal data distributions. Yet, the diffusion ability to yield high-quality and diverse
outputs comes with a cost of high computational load during training and inference.

At the moment, the literature suggests that diffusion models have become a dominant source of state-
of-the-art methods in generative modeling, including ISR (Saharia et al. (2021); Li et al. (2021); Yue
et al. (2023); Yu et al. (2024)). However, a comprehensive comparison between GAN and diffusion
models in the context of ISR under controlled conditions still needs to be explored. In particular,
GAN-based methods that modern state-of-the-art methods are compared with are typically repre-
sented by Real-ESRGAN Wang et al. (2021), which has orders of magnitude fewer parameters,
training data samples, and computational budget.

This work aims to thoroughly compare GAN and DDM frameworks for Image Super Resolution.
Given the unique strengths of both GANs and diffusion models, understanding their comparative
performance in ISR tasks is crucial. This comparison requires a rigorous and controlled experimental
setup to ensure comparable protocol, i.e., standardized variables such as the size of the training
dataset, model complexity, and controlled allocation of computational resources.

Furthermore, we explore the influence of various design choices on the performance and general-
ization of these models. In particular, we investigate the value of practically useful Real-ESRGAN

1See, for example, (Moser et al., 2024).
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Wang et al. (2021) augmentations and validate the necessity of incorporating textual conditioning
(e.g., image captions). The contributions of our work are the following:

– We thoroughly compare GAN and DDM in Image Super Resolution problem: if scaled
appropriately, GAN-based models surpass quality of diffusion-based ones in classical SR
and yield similar quality in SR in the Wild.

– We investigate the influence of textual conditioning in the form of non-ISR-specific image
captions and find that it has no significant effect on both frameworks.

– We explore the pros and cons of a complex augmentations pipeline for each paradigm and
reveal that it may introduce some quality benefits but comes with its cost, especially hurting
DDM training dynamics.

2 RELATED WORK

GANs for SR Shortly after the introduction of the original GAN paper Goodfellow et al. (2014) for
the general image generation problem, C. Ledig et al. presented SRGAN Ledig et al. (2017b), which
introduced perceptual loss, combining content loss (using a pre-trained VGG network Johnson et al.
(2016)) with adversarial loss to generate high-resolution images with improved perceptual quality.
The following research updated the initial scheme with improved architecture and feature extraction
(ESRGAN Wang et al. (2018), ESRGAN+ Rakotonirina & Rasoanaivo (2020), LAPGAN Denton
et al. (2015), LSMGAN Mahapatra et al. (2017)), more effective training mechanism (RankSRGAN
Zhang et al. (2021b), PGGAN Karras et al. (2017)) more robust discriminator (RaGAN Jolicoeur-
Martineau (2018)) or multiple discriminator models (MPDGAN Lee et al. (2019)), and sophisticated
data pre-processing strategies to increase robustness to in the wild data (BSRGAN Zhang et al.
(2021a), RealSR Ji et al. (2020), Real-ESRGAN Wang et al. (2021)). These methods built a strong
foundation for GANs, which have become the de facto standard framework for all kinds of ISR
problems.

Recent advances in DDMs resulted in ISR models with stunning restoration quality. This remark-
able progress is at least partially attributed to scaling up models, data, and computational resources.
While novel GAN-based methods make progress in catching up with updating and scaling (Giga-
GAN Kang et al. (2023)), small-scale Real-ESRGAN remains the most commonly used baseline
model in modern ISR research.

Diffusion models for SR Recent developments in training and scaling of DDMs resulted in dif-
fusion surpassing GANs for the general image generation problem Dhariwal & Nichol (2021) and
several new methods aimed to transfer this success to the ISR problem. The pioneering ISR DDM
approaches trained image-conditioned DDM from scratch, concatenating the input noise with either
the upscaled version of a low-resolution image (SR3 Saharia et al. (2021)) or its hidden repre-
sentation produced by a convolutional network (SRDiff Li et al. (2021)). Their impressive results
relegated ISR GANs to the background and inspired the next-generation methods that propose to di-
rectly sample from the distribution of LR-images rather than the conditioned Gaussian noise (I2SB
Liu et al. (2023a), ResShift Yue et al. (2023)). Another branch of research aims to incorporate gener-
ative prior of Latent Diffusion Models Rombach et al. (2022) by freezing their generative backbones
and training only lightweight ControlNet-based Zhang et al. (2023) modules (StableSR Wang et al.
(2023b), DiffBIR Lin et al. (2024), SUPIR Yu et al. (2024)). The latter class of methods typically
uses additional condition sources, such as depth maps, segmentation maps, and text.

Text-conditioned Super Resolution Most papers Yang et al. (2023); Wu et al. (2023) generally
report that using additional conditions in ISR DDMs improves the resulting image quality. How-
ever, the case of text conditioning is more nuanced. Pixel-based natural images-focused ISR models
(SR3 Saharia et al. (2021), SR3+ Sahak et al. (2023)) do not use textual conditioning. At the same
time, several ISR models designed for upscaling inside cascaded diffusion systems, namely, Imagen
Saharia et al. (2022), DeepFloyd Shonenkov et al. (2023), Kandinsky 3.0 Arkhipkin et al. (2023)
in the 1024 → 4096 upscaler, incorporate textual information via cross-attention. In contrast, a
more recent YaART Kastryulin et al. (2024) reports the lack of noticeable quality improvement and
removes cross-attention at this stage. Latent diffusion-based ISR models also differ in this regard.
StableSR Wang et al. (2023b) adopts the null-text prompt, effectively removing the text condition-
ing, and DiffBIR Lin et al. (2024) does not have any text conditioning. However, more recent SUPIR
Yu et al. (2024) uses a dedicated multi-modal large language model to automatically caption input
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images with non-ISR specific captions, reporting a noticeable performance boost. SeeSR Wu et al.
(2023) goes further and proposes a method to generate ISR-specific captions to boost the model’s
generative ability, claiming its effectiveness in upscaling small objects with ambiguous semantics.

In this paper, we aim to shed light on the importance of textual conditioning for ISR in a practical
setup when ISR-specific captions are not accessible, and the model has no intrinsic, generation-based
prior to utilizing textual information.

Variations of SR task A general SR problem can be formulated as follows. For a given high
quality image IHR, one applies some degradation operation D to produce low quality image ILR

typically of smaller spatial resolution. This degradation can be a simple bicubic/area downsampling
kernel or a more general degradation process. In the task of Blind Super Resolution (BSR) Liu et al.
(2021), which has attracted significant attention recently, one aims to reconstruct low-resolution
images exposed to unknown and complex degradations. Higher-order degradation models introduced
in Wang et al. (2021); Zhang et al. (2021a) emulate possible types of corruptions that occur in the
real world.

3 METHODOLOGY

Models Since our goal is to compare GAN and diffusion Super Resolution under a comparable
setup, we use the same architecture for both paradigms considered. Specifically, we adopt a network
similar to 256 × 256 → 1024 × 1024 SR model from Imagen (Saharia et al. (2022)). It acts in the
pixel domain and is based on Efficient U-Net architecture Ronneberger et al. (2015). This model
has 600 − 700M trainable parameters, depending on the configuration. Details about architecture
are provided in Appendix C.

GAN-based Super Resolution models take bicubic-upscaled low-resolution image and directly pre-
dict a high-resolution image, given a reference on training.

Diffusion Super Resolution models predict a noise applied to the high-resolution image, using the
bicubic-upscaled low-resolution image as a condition. Following the prior work, the condition image
is channel-wise concatenated with the noisy input.

Both models are almost identical in terms of parameters, but for the slight difference in the diffusion
model having slightly more parameters due to the concatenation of noisy input and image condition
in the input layer and timestep embeddings.

Text conditioning One of the questions addressed in our work is the impact of text conditioning on
the performance of Super Resolution models. In our work, we consider two types of text encoders:
a CLIP-like (Radford et al., 2021) proprietary encoder transformer model that we call XL with
1.3B parameters and UMT5 (Chung et al., 2023) encoder-decoder with 3B parameters. The text
caption, corresponding to the image, is first processed via the text encoder and then passed to the
Super Resolution model via image-text cross-attention at the lowest resolution of the U-Net encoder,
middle block, and decoder. This design choice follows Imagen (Saharia et al., 2022) work.

In our work, we study the impact of the prompts with semantic information i. e., the ones that
are typically available from large image-text datasets Schuhmann et al. (2022); Gadre et al. (2024),
rather than image-quality aware captions adopted in SUPIR Yu et al. (2024) and SeeSR Wu et al.
(2023). We believe it is timely to revisit the impact of these non-SR-specific texts due to their
prominent availability in recently published image-text datasets Schuhmann et al. (2022); Gadre
et al. (2024) used for training large-scale multi-modal models.

Augmentation In our work, we study the impact of train-time augmentations in two setups: Super
Resolution of down-scaled images and in case of a more general and complex degradation process.
We train GAN and diffusion models with and without the image degradation model proposed in
(Wang et al., 2021) to address both scenarios.

Training Following the standard practice Ledig et al. (2017a); Wang et al. (2021); Saharia et al.
(2021); Sahak et al. (2023), both types of models are trained on image crops. In the ablation study
in Section 5, we also investigate the impact of finetuning on full-resolution images.

For GAN-based SR, we initially pretrain the generator model with L1 loss only. This pretraining
is essential since training from scratch with adversarial loss yields artifacts in agreement with prior
work (Ledig et al., 2017a; Wang et al., 2018; 2021). Training with L1, L2 or any derivative training
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objective alone leads to over-smoothed and blurry upscaled images. Adversarial training, introduced
in SRGAN Ledig et al. (2017a), allows the production of images with sharp edges and distinguished
high-frequency details. We adopt non-saturating adversarial loss for training without any additional
regularization.

LD,adv = EIHR∼p(IHR)[logDθD (I
HR)] + EILR∼p(ILR)[log(1−DθD (GθG(I

LR)))] (1)

LG,adv = −EILR∼p(ILR)[logDθD (GθG(I
LR))] (2)

Above, θG and θD are the parameters of generator and discriminator, respectively. ILR, IHR are the
low-resolution and high-resolution images. We employ a U-Net with spectral normalization intro-
duced in Wang et al. (2021) as a discriminator with twice as many hidden channels. Discriminator
is trained from scratch.

During the L1 pretraining stage, the generator model is only trained with L1 loss. After that, we turn
the adversarial loss on and reformulate the generator objective as a sum of L1 loss and adversarial
loss LG,adv with equal weights:

LG = L1 + LG,adv (3)

We note that usually GAN-based SR papers include an additional perceptual loss term, following
SRGAN Ledig et al. (2017a) work. We experimented with the option of adding loss on VGG19
Simonyan & Zisserman (2014) features computed between the predicted and original high resolution
image, but observed no improvement.

The diffusion model is trained on ϵ-prediction objective with noise timesteps t sampled uniformly
from [0, 1]:

Ldiff = EIHR∼p(IHR),ILR∼p(ILR),ϵ∼N (0,1),t∼U [0,1]∥ϵ− ϵθ(zt, I
LR, t)∥22, zt = αtI

HR + σtϵ (4)

Where αt and σt are determined by the noise schedule. We adopt standard variance-preserving (VP)
schedule Ho et al. (2020) with linearly increasing variances.

Inference GAN-based upscalers produce high-resolution images in a single forward pass, whereas
diffusion models iteratively denoise input noise conditioned on a low-resolution image. For that, we
adopt DPM-Solver++ Lu et al. (2023) as the one providing an excellent trade-off between generation
quality and efficiency. We set the order of the solver to be two and chose the multistep method for
sampling. All upscaled images are generated with 13 sampling steps. Our evaluations showed that a
further increase in the number of sampling steps does not lead to visually noticeable image quality
gains H.1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training Dataset We train our models on a large-scale proprietary dataset of 17 million text-image
pairs. The dataset consists of 1024 × 1024 px images with exceptional image quality, high image-
text relevance, and English captions. The high dataset quality is achieved by a rigorous filtering
process described in detail in Appendix F.

We train our models on image crops to ensure training efficiency and sample variety. For that, we
produce low-resolution - high-resolution (LR, HR) image pairs via extracting 256× 256 px random
crops of the original images, which are then downscaled to 64× 64 px. For the finetuning stage, we
interpolate 1024 px images to 256 px. cv2.INTER AREA algorithm is adopted for image resizing.

Training Hyperparameters We follow prior work in the choice of hyperparameters Wang et al.
(2021); Sahak et al. (2023) and observe that the training with these choices is stable and converges
fast enough. We fix the batch size for GAN and diffusion to ensure fairness of comparison on the
number of samples seen during training and adjust the learning rate accordingly. Further increasing
the learning rate with the goal of speeding up training leads to training instability and poor final
results. For both models, the batch size is set to 512 for training on crops and 128 for full-resolution
images. We adopt a constant linear rate with a linear warmup phase. The models are trained with
Adam Kingma & Ba (2017) optimizer without weight decay. More details are provided in Ap-
pendix D.
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While most of the related works adopt a predefined number of training iterations, we set the training
duration dynamically and terminate the training only when the visual quality of the images upscaled
by adjacent model checkpoints becomes indistinguishable from the humans’ perspective. Since the
changes become smaller throughout the training, we use an exponentially spaced grid with check-
points from the following list of thousands of training iterations: [10, 20, 40, 60, 100, 140, 220, . . .],
where we increase the interval between adjacent two checkpoints by a factor of two. Then, we es-
timate the human annotator preference using the Side-by-Side (SbS) evaluation for the current and
previous training steps. If there is no improvement for three subsequent measurements, we conclude
that the model performance is saturated and proceed to the next stage. We note that the training loss
and full-reference metrics may continue to improve, but the improvement is imperceptible to human
observers. In our work, user preferences are used both for early stopping and model evaluation. The
SbS comparison setup is described and explained in greater detail in Appendix E.

Evaluation Datasets We evaluate the performance of the SR models under study on the 244-
images dataset constructed from the pictures from RealSR Ji et al. (2020), DRealSR Wei et al.
(2020), and some additional high-quality samples from the web. LR 256 px images are ob-
tained from HR images with cv2.INTER AREA. Captions for images required as input for text-
conditional models are generated with the LLaVA model Liu et al. (2023b).

To estimate the quality of image restoration under more complex and severe corruptions, we use the
same dataset but with LR inputs obtained through Real-ESRGAN Wang et al. (2021) degradation
pipeline.

In addition, we investigate the robustness of ISR models on out-of-distribution synthetic data in
Appendix G. For that, we provide a qualitative comparison between GAN and diffusion models
together with the baselines on the Super Resolution of downscaled images produced by the YaART
Kastryulin et al. (2024) and SDXL Podell et al. (2024) models using prompts from DrawBench
Saharia et al. (2022) and YaBasket Kastryulin et al. (2024) prompt sets.

Baselines Our work’s primary goal is to compare GAN and diffusion Super Resolution rather
than establishing a new state-of-the-art in the domain. However, to demonstrate that our models
yield quality competitive to the current state-of-the-art, we provide both qualitative and quantitative
comparison with SUPIR Yu et al. (2024), DiffBIR Lin et al. (2024), RealESRGAN Wang et al.
(2021), ResShift Yue et al. (2023).

4.2 TRAINING DYNAMICS

GANs converge faster than diffusion As discussed above, we train the model until the human
annotators do not show a preference for the current training step over the previous one for three
evaluations in a row. To have enough reference points, we train the models such that they cover at
least six milestones—[10k, 20k, 40k, 60k, 100k, 140k] iterations.

We observe that GAN Super Resolution converges very quickly in all stages. After 40k steps of L1

pretraining, the changes in the output of the SR model become imperceptible. Adversarial training
converges relatively fast as well. After pretraining on crops for 40k steps, the performance of the
Super Resolution model almost stabilizes. Prior works Wang et al. (2021); Zhang et al. (2021a);
Liang et al. (2021) conduct training for 500k-1500k iterations with batch size ∼ 10 times smaller
than the one used in our work. Therefore, the total number of samples seen is of the same order of
magnitude as the referenced papers.

We note that in our experiments, in addition to worsening computational efficiency, pretraining on
full-resolution images resulted in worse Super Resolution quality starting from the first thousands
of training iterations. After several attempts to adjust training hyperparameters, we stopped this line
of experimentation.

GANs are claimed to be prone to mode collapse Roth et al. (2017) and notoriously hard to optimize,
requiring careful tuning and regularization for successful training. However, we did not encounter
any difficulties with optimization. After several hundreds of iterations, our GAN models achieved
equilibrium between the generator and the discriminator and continued to improve steadily until
convergence.

Conversely, diffusion models exhibit slower convergence, requiring up to 620k iterations of L2

pretraining on cropped images for the model to fully converge.
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Evaluation results are presented in Figure 1. We treat models as equal if p-value on SbS comparison
> 0.05 following common practice. More details are in Appendix E.

2 4 6 8 10 12

Evaluation step

Diff
GAN, L1 pretrain

GAN, L1 + Ladv

20k 40k 60k 100k 140k 220k 300k 460k 620k 940k 1260k 1900k
20k 40k 60k 100k 140k
20k 40k 60k 100k 140k

Figure 1: SbS comparison between two subsequent checkpoints showcases faster convergence of GAN mod-
els. Green corresponds to statistical improvement on the current step, grey to equality. Three evaluations
without improvement in a row indicate convergence.

4.3 PERFORMANCE COMPARISON

Evaluation To assess the performance of SR models, we report classic full-reference metrics
PSNR, SSIM (Wang et al., 2004), LPIPS Zhang et al. (2018) and recent no-reference CLIP-IQA
(Wang et al., 2023a) metric in Table 1. Figure 2 presents several representative visual samples. Ad-
ditionally, we conduct side-by-side (SbS) comparisons between different models and present user
preference results in Table 2 and Table 5. We calculate the number of wins of one model over an-
other plus the number of draws divided by two, which we denote as the win rate. The win rates
are color-coded: Green if the first model is statistically better than the second, red if the first model
is statistically worse, and black otherwise. Details about the statistical significance criteria are pro-
vided in Appendix E.

Results GAN-based SR model is equal or better than diffusion with respect to the majority of
evaluation metrics. Yet both approaches produce visually aesthetic samples with sharp edges, small
details, and apparent textures. Our SR models are competitive to the baselines from the literature.
According to the user preferences (Table 2) GAN-based model outperforms any of the other mod-
els considered. We note that full-reference metrics do not always agree with each other and SbS
comparison results.

Table 1: Quantitative comparison between GAN, diffusion SR and current state-of-the-art on ×4
image Super Resolution. Red - best, blue - second best result. Diffusion-based SR approaches are
marked with ⋄, GAN-based with ⋆.

Metrics Diff⋄ (ours) GAN⋆ (ours) SUPIR⋄ RealESRGAN⋆ DiffBIR⋄ ResShift⋄

PSNR ↑ 26.655 26.006 24.270 24.435 24.809 27.830
SSIM ↑ 0.748 0.770 0.679 0.721 0.682 0.786
LPIPS ↓ 0.253 0.208 0.310 0.316 0.337 0.238

CLIP-IQA ↑ 0.719 0.826 0.757 0.660 0.850 0.692

Table 2: SbS comparison between GAN-based and diffusion-based SR with each other and current
state-of-the-art. The values in the table are win rates of Model 1 over Model 2. Green corresponds
to statistical advantage, red to statistical disadvantage, black to statistical indifference between two
models.

Model 1
Model 2 Diff (ours) GAN (ours) SUPIR RealESRGAN DiffBIR ResShift

Diff (ours) x 9.0 37.7 85.2 51.0 46.3

GAN (ours) 91.0 x 62.7 94.6 69.0 86.0

4.4 IMPACT OF TEXT CONDITIONING

We train text-conditioned emodels with the same training setup used for unconditional models. Our
experiments cover two text encoders of different nature: our internal CLIP-like model called XL
and UMT5 Text-conditioned models have slightly more parameters than unconditional models due
to additional transformer blocks. We conduct an SbS comparison between text-conditioned and
unconditional models for both paradigms at all stages of training. According to the results in Figure 3
human annotators show preference neither for text-conditional models nor for unconditional.
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Image LR Bicubic Diff (ours) GAN (ours) DiffBIR ResShift SUPIR RealESRGAN

Figure 2: Visual comparison between GAN and diffusion SR model from our work and the baselines on
SR(×4). Zoom in for the best view.

GAN, 1 pretrain, crops GAN, 1 + adv, crops Diff, crops

21% 22% 33%

62% 59% 34%

17% 19%
34%

XL vs text-unconditional model
Uncond Equal XL

GAN, 1 pretrain, crops GAN, 1 + adv, crops Diff, crops
8% 10%

27%

82% 72% 46%

9% 18% 27%

UMT5 vs text-unconditional model
Uncond Equal UMT5

Figure 3: SbS comparison between text-conditional (based on a proprietary model called XL and
UMT5) and unconditional SR models. Bar plots show that additional text-conditioning does not
noticeably improve perceived image quality

We note that we use semantic image-level captions. Global-level information appears to be not
very useful for the SR task. Quality-aware prompts could be beneficial, especially for stronger
corruptions (Yu et al. (2024); Yang et al. (2023)). We leave verification of the usefulness of various
SR-specific image captioning techniques outside the scope of this work.

4.5 ISR FOR A COMPLEX DEGRADATION MODEL AND THE IMPACT OF TRAINING
AUGMENTATIONS

Above, all methods were applied to the SR(×4) task, which is essentially an inversion of a fixed
downscaling. However, many contemporary works study the task of Blind Super Resolution (BSR),
which assumes a more complex degradation model involving multiple, typically unknown corrup-
tions. Real-ESRGAN Wang et al. (2021) is a popular degradation model emulating various degrada-
tions that occur in low-quality images. Therefore, following the standard practice, we produce LR
inputs via the Real-ESRGAN pipeline.

In our work, we study the impact of augmentations for performance on a simple SR(×4) task and
the problem of more general degradation removal. We train both GAN and diffusion models with
Real-ESRGAN augmentations in the same way as for the vanilla SR task.

We observe that L1 pretraining and training with the adversarial loss for GAN models converge with
the same number of training steps as for training without augmentations (see Figure 4). However,
with Real-ESRGAN augmentations, the diffusion SR model requires even more extended training,
and its performance saturates only after 940k iterations. The augmentations appear to noticeably
slow down the convergence of the diffusion model.

7
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2 4 6 8 10 12 14

Evaluation step

Diff
GAN, L1 pretrain

GAN, L1 + Ladv

20k 40k 60k 100k 140k 220k 300k 460k 620k 940k 1260k 1900k 2540k
20k 40k 60k 100k 140k
20k 40k 60k 100k 140k

Figure 4: SbS comparison between two subsequent checkpoints. Green corresponds to statistical improve-
ment, grey to equality. Three evaluations without improvement in a row indicate convergence.

Results Pretraining with augmentations is detrimental to the performance on vanilla SR task. The
inversion of a non-deterministic, complex degradation process is an inherently more challenging
task since the network has to account for multiple degradations of varying magnitude. Therefore, it
is natural to expect that models specialized in inverting downscaling without additional degradations
better represent sharp edges and fine details. This intuition agrees with the experimental results in
Table 3 for SR(×4).

At the same time, pretraining with augmentations appears to be necessary for the SR task with ad-
ditional corruptions. According to the evaluation results in Table 3, pretraining with augmentations
improves robustness to corruptions for both GAN and diffusion SR models. However, metrics are
still far below the ones for the simple upscaling.

Table 3: Impact of augmentations. Red - best, blue - second best result.

Dataset Metrics Diff (no aug) Diff (w aug) GAN (no aug) GAN (w aug)

SR(×4)

PSNR 26.655 24.633 26.006 24.228
SSIM 0.748 0.674 0.770 0.761
LPIPS 0.253 0.330 0.208 0.294

CLIP-IQA 0.719 0.773 0.706 0.751

SR(×4)
+ degradations

PSNR 22.012 22.387 22.075 22.459
SSIM 0.560 0.518 0.570 0.607
LPIPS 0.576 0.502 0.557 0.427

CLIP-IQA 0.159 0.513 0.144 0.730

We show a couple of samples for the dataset with Real-ESRGAN-augmented pipeline in Figure 5.
GAN-based and diffusion-based SR models yield samples of similar quality. GAN-based SR from
our study appears to be the best in terms of full-reference metrics. At the same time, human an-
notators show preference for SR models with diffusion priors (DiffBIR, SUPIR). We speculate that
presence of rich semantic information is more beneficial in the presence of degradations.

Table 4: Quantitative comparison between GAN, diffusion SR and current state-of-the-art on
SR(×4) with Real-ESRGAN degradations. Red - best, blue - second best result. Diffusion-based
SR approaches are marked with ⋄, GAN-based with ⋆.

Metrics Diff⋄ (ours) GAN⋆ (ours) SUPIR⋄ RealESRGAN⋆ DiffBIR⋄ ResShift⋄

PSNR ↑ 22.387 22.459 19.714 21.071 21.996 21.309
SSIM ↑ 0.518 0.607 0.491 0.543 0.544 0.472
LPIPS ↓ 0.502 0.427 0.479 0.472 0.457 0.535

CLIP-IQA ↑ 0.513 0.730 0.747 0.656 0.781 0.585

4.6 ARTIFACTS

Both SR paradigms suffer from specific artifacts. GAN-based SR models are prone to oversharp-
ening and generating unnatural textures. On the other hand, diffusion-based SR is usually inferior
at generating high-frequency details. In addition, diffusion-based SR models tend to generate pale,
dim images when compared to the original. We provide visualizations of these common artifacts in
Figure 13 and Figure 14.

5 ABLATIONS
Training with Adversarial Loss In agreement with the literature, we observe that training with
adversarial loss is essential for single-step SR to generate sharp details and realistic textures. Human
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Table 5: SbS comparison between GAN-based and diffusion-based SR with each other and current
state-of-the-art. The values in the table are win rates of Model 1 over Model 2. Green corresponds
to statistical advantage, red to statistical disadvantage, black to statistical indifference between two
models. Diffusion-based SR approaches are marked with ⋄, GAN-based with ⋆.

Model 1
Model 2 Diff⋄ (ours) GAN⋆ (ours) SUPIR⋄ RealESRGAN⋆ DiffBIR⋄ ResShift⋄

Diff (ours) x 34.0 18.4 71.7 29.3 72.1

GAN (ours) 66.0 x 30.0 66.2 30.6 80.2

Image LR Bicubic Diff (ours) GAN (ours) DiffBIR ResShift SUPIR aug RealESRGAN

Figure 5: Visual comparison between GAN and diffusion SR model from our work and the baselines on
SR(×4) + degradations. Zoom in for the best view.

annotators prefer the GAN model when compared to L1 pretrain. According to the results of the
SbS comparison a model trained with adversarial loss is preferred in ∼95% cases.

Finetuning on Full-Resolution Inputs Conventionally, papers on ISR adopt image crops for
training since they allow the utilization of larger batches and faster training. However, the infer-
ence network accepts full-resolution input rather than crops. Awareness of the overall content could
provide additional hints to the network. Therefore, it is questionable whether finetuning on full-
resolution inputs may improve quality.

In our experiments, we do not observe any improvement from finetuning on full-resolution images
for both SR paradigms. We have tried several choices of learning rate, and for a small enough
learning rate, quality remains unchanged according to human preferences according to Table 6,
whereas larger learning rates drive both models from good optima and result in degradation of
models’ performance.

Table 6: Human preferences for GAN SR models without finetuning on full resolution images and
with finetuning.

w/o full resolution finetuning Equal w full resolution finetuning

4.2% 90.4% 5.4%

Impact of Perceptual Loss SRGAN (Ledig et al., 2017a) introduced perceptual loss for GAN
training. It is defined as L2 distance between the features of upscaled and the high-resolution image
processed via some feature extractor, for instance, VGG19 (Simonyan & Zisserman, 2014). Typi-
cally, the addition of perceptual loss to the pixel and adversarial losses is reported to improve the end
quality of ISR models. To revisit the impact of perceptual loss, we follow Wang et al. (2021) and
use the {conv1, ...conv5} feature maps (with weights {0.1, 0.1, 1, 1, 1}) before activations.

9
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Intriguingly, we observe no significant improvement from using the perceptual loss term. According
to the SbS comparison between models trained with and without perceptual loss in Table 7 human
annotators do not show preference to model trained with perceptual loss. Based on that, we conclude
that perceptual loss has little, if any, impact on the end quality of trained models.

Table 7: Human preferences for GAN SR models trained with and w/o LPIPS loss.

w LPIPS Equal no LPIPS

5.0% 94.2% 0.8%

6 EFFICIENCY

Another important aspect from a practical perspective is the efficiency of the Super Resolution
pipeline. While one approach may offer better Super Resolution quality compared to another, this
advantage could be outweighed by a much larger inference cost and memory overhead. As one can
observe from Table 8, models differ by orders of magnitude in terms of the total number of pa-
rameters involved in all stages of the inference workflow. Some approaches can be easily deployed
on mobile devices, while others necessitate a compute accelerator with a large enough amount of
memory.

We carried out inference measurements on an NVIDIA A100 GPU for upscaling a single image
from 256 → 1024 (batch size is 1) and report the latency in Table 8. GAN-based methods produce a
high-resolution image given a low-resolution input in a fraction of a second, whereas diffusion-based
SR with generative priors requires dozens of seconds.

Table 8: Runtime and number of parameters (during inference) of compared models. Some of the
models are consisted of several stages with parameters distributed among them. The benchmarking
and parameter-counting protocol are explained in greater detail in Appendix H.5.

Diff (ours) GAN (ours) SUPIR RealESRGAN DiffBIR ResShift

Runtime, (s) 3.20± 0.21 0.24± 0.02 18.11± 0.85 0.065± 0.003 24.69± 0.03 1.19± 0.03
# Parameters, (M) 631 614 17846 17 1683 174

7 LIMITATIONS

This work considers the standard SR task and SR in the presence of corruptions from a predefined
degradation pipeline. The evaluation on the real-world low-quality images, such as the ones from
RealLR200 Wu et al. (2023) and RealPhoto60 Yu et al. (2024) datasets is left for future work.

We also do not consider cases when strong generative capabilities and the ability to sample diverse
outputs for a given input are required. We hypothesize that in this setup mode collapse can be an
issue for GAN-based models. It is also possible that, in these cases, textual information could be
necessary for accurate reconstructions. However, we do not consider these facts or the exact turning
point when such model capabilities become required.

Another interesting question not covered in our investigation is the study of scaling behavior for both
GAN and diffusion SR paradigms with respect to the model size and amount of training data and
compute. In preliminary experiments we observed that the training parameters adopted in our main
training setup do not transfer immediately to other model sizes and have to be tuned for specific
experimental setup.

8 CONCLUSION

In our work, we performed a systematic comparison between GAN and diffusion ISR under a fair
comparison setup when both approaches are matched in model size and training data available. Our
results suggest that GANs can achieve the quality level of modern diffusion models if trained with a
similar protocol. At the same time, GAN-based upscalers offer several practical advantages - faster
training and single-step inference instead of an iterative denoising procedure.

We hope that our work encourages researchers to conduct more careful examination when intro-
ducing new methods. Since the amount of available resources and data is constantly growing, more
recent works have the advantage of having more compute and higher-quality data relative to the prior
art. Therefore, it is vital to identify whether the improvement comes from one approach’s superiority
over the other or could be attributed merely to the increase of scale.
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A BACKGROUND ON GENERATIVE PARADIGMS

In this section, we provide a mathematical background for the generative models used in our study.

A.1 GENERATIVE ADVERSARIAL NETWORKS

To produce samples that resemble a target distribution, one can train an auxiliary critic network,
known as a discriminator, to distinguish generated data from real data. The discriminator, denoted
as Dθ, is optimized alongside the generator, denoted as Gθ, to solve the following adversarial min-
max problem:

min
θG

max
θD

EIout∼p(Iout)[logDθD (I
out)] + EIin∼p(Iin)[log(1−DθD (GθG(I

in)))] (5)

where Iin and Iout are the input and output spaces respectively. For instance, Iin can be the space of
random noise or low-resolution images (for the Super Resolution problem) and Iout may correspond
to the space of natural images. In the case of successful training, the generator learns to produce
samples that are difficult to classify by DθD and resemble the target distribution.

This approach was introduced in Goodfellow et al. (2014) and subsequently became a leading gen-
erative paradigm for an extended period. GANs have demonstrated the capability to generate high-
quality, photorealistic samples Karras et al. (2017; 2019; 2020). However, they are known to suffer
from issues such as unstable training and mode collapse Wiatrak et al. (2020).

A.2 DIFFUSION MODELS

Diffusion models (Ho et al. (2020)) have emerged as a promising technique in the landscape of
generative modeling. These models are primarily inspired by concepts from nonequilibrium ther-
modynamics, leveraging the idea of diffusion processes to gradually transform simple distributions
into complex data distributions and vice versa.

The forward process in diffusion models is a mechanism that systematically transforms structured
data into noise through a series of discrete steps. Starting with an original data point z0, this process
involves a Markov chain where each step zt given zt−1 is defined by a Gaussian distribution

q(zt|zt−1) = N (zt;
√
αtzt−1, (1− αt)I), (6)

with αt controlling the noise level. As the process progresses, the data is incrementally corrupted,
ensuring the distribution of zt given z0 remains Gaussian,

q(zt|z0) = N (zt;
√
γtz0, (1− γt)I), (7)

where γt =
∏t

i=1 αi. This results in zt becoming increasingly dominated by noise, converging to a
standard Gaussian distribution as t approaches T . The formulation allows for the derivation of the
posterior q(zt−1|zt, z0) = N (zt−1;µt, σ

2
t I), providing a basis for the reverse process that aims to

denoise the data back to its original form.

The backward diffusion process, or reverse process, in diffusion models, is essential for gener-
ating structured data from noise by reversing the forward diffusion steps. Starting from a noise
sample zT ∼ N (0, I), this process iteratively denoises the sample through a sequence of steps
zT , zT−1, . . . , z0, transforming it back into structured data z0. Each reverse step pθ(zt−1|zt) is
modeled as a Gaussian distribution:
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pθ(zt−1|zt) = N (zt−1;µθ(zt, t), σθ(zt, t)I), (8)

where µθ and σθ are parameterized by a neural network, trained to approximate the reverse of the
forward noise addition. The training objective typically maximizes a variational lower bound on the
data log-likelihood, encouraging the learned reverse process to closely match the true reverse pro-
cess. The posterior distribution from the forward process q(zt−1|zt, z0) = N (zt−1;µt, σ

2
t I) guides

the reverse process’s learning, ensuring that each step effectively reduces the noise incrementally
added during the forward process.

This objective can be reduced (Ho et al. (2020)) to a noise prediction one. Given the origi-
nal data point z0 and its noisy version zt at step t, produced by the forward process q(zt|z0) =
N (zt;

√
γtz0, (1− γt)I), the model is tasked with predicting the noise ϵ that was added. The neural

network, parameterized by θ, outputs the predicted noise ϵθ(zt, t), aiming to match the actual noise
added during the diffusion step. The training objective minimizes the mean squared error between
the predicted noise and the true noise:

Ldiff = Ez0,ϵ∼N (0,I),t∼U [0,1]

[
∥ϵ− ϵθ(zt, t)∥2

]
, (9)

where zt =
√
γtz0 +

√
1− γtϵ and ϵ ∼ N (0, I).

Finally, the diffusion framework can be extended to conditional modeling via appropriate condi-
tioning mechanisms. By incorporating conditional information c, such as class labels, text prompts
or images, the model is guided to generate data that is contextually relevant and aligned with the
specified conditions.

B QUALITATIVE COMPARISON

Below in Figures 6 and 7, we show additional qualitative comparisons between GAN and SR models
from our work. Images are chosen at random from validation datasets.

C ARCHITECTURE DETAILS

We employ Efficient U-Net architecture introduced in Imagen Saharia et al. (2022) for GAN and
diffusion SR models. The number of channels and residual blocks for each resolution is the same
as in the 256 × 256 → 1024 × 1024 Super Resolution model. The exact model configuration is
presented in the listing below.

1 blocks=[
2 {
3 "channels": 128,
4 "strides": (2, 2),
5 "kernel_size": (3, 3),
6 "num_res_blocks": 2
7 },
8 {
9 "channels": 256,

10 "strides": (2, 2),
11 "kernel_size": (3, 3),
12 "num_res_blocks": 4
13 },
14 {
15 "channels": 512,
16 "strides": (2, 2),
17 "kernel_size": (3, 3),
18 "num_res_blocks": 8
19 },
20 {
21 "channels": 1024,
22 "strides": (2, 2),
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23 "kernel_size": (3, 3),
24 "num_res_blocks": 8
25 }
26 ]

Listing 1: UNet model configuration

The core difference between GAN and diffusion SR models is the absence of timestep embedding
and concatenation of the input noise for the GAN SR model.

For text-conditional models, image caption is first processed via text encoder, and the condition
processing module outputs both the tokenized prompt (sequence of embeddings) and the pooled
embedding. Text condition is forwarded to the SR model via scale-shift modulation in the residual
blocks and cross-attention in transformer blocks. Cross-attention acts only at the lowest resolution
in encoder, decoder, and middle blocks. There is no self-attention between image patches.

The model with the smallest number of trainable parameters is a text-unconditional GAN generator
with 614M trainable parameters, and the largest one is diffusion U-Net, conditioned on UMT5
embeddings with 696M trainable parameters. Therefore, it is fair to say that the models considered
are of the same scale.

For training with adversarial loss, we adopt the discriminator from Real-ESRGAN Wang et al.
(2021) with the only difference that the number of channels is multiplied by 2 relative to the net-
work used in the original work. The generator model used in our work is significantly larger than
the RRDBNet Wang et al. (2018) from RealESRGAN. Therefore, we have decided to increase the
capacity of the discriminator. GAN is trained from scratch and for finetuning on full resolution
images we start from the last discriminator checkpoint from training on crops.

D TRAINING DETAILS

We use a linear warmup schedule over 1000 training steps to train the diffusion model on image
crops, followed by a constant learning rate of 3e-5. For full-resolution inputs, we decrease the
learning rate to 1e-6 and increase the duration of the warmup phase to 10k training steps.

For L1 pretrain of GAN SR we use the same learning rate schedule as for diffusion but with a higher
learning rate - 2e-4. When training with adversarial loss we adopt the same learning rate 1e-4 both
for generator and discriminator. Finetuning on high-resolution images is conducted with a learning
rate of 1e-5.

In both cases, models are trained with Adam Kingma & Ba (2017) optimizer without weight decay
with β1, β2 = (0.90, 0.99). For more stable training, we follow common practice and adopt an
exponential moving average (EMA) with a factor of 0.999.

Our experiments on crops were performed on two nodes with 8 NVIDIA A100 with 80Gb of VRAM.
Distributed communication is performed via Open MPI Message Passing Interface Forum (2021).
The optimal batch size for model training is 16, and we use two gradient accumulation steps to have
a total batch size of 512.

140k iterations for pretraining and training with the adversarial loss for the GAN-based SR model
take approximately three days. Training of diffusion model takes about a month with the same
resources.

We adopt Fully Sharded Data Parallel Zhao et al. (2023b) for parameter and optimizer state sharding
to reduce memory consumption and allow working with larger batch sizes.

E HUMAN EVALUATION

Our main tool for training early stopping is side-by-side (SbS) comparisons of Super Resolution
results between two subsequent checkpoints of the same model. For that, we use an internal crowd-
sourcing platform with non-expert assessors. Before labeling, each candidate assessor must pass an
exam and achieve at least an 80% accuracy rate among a pre-defined set of 20 assignments. After
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that, we ask assessors to select one of the two high-resolution images shown Side-by-Side based on
the following evaluation criteria placed in order of their importance:

• The presence of color distortions;
• The presence of added artifacts such as exploded pixels and unnatural textures;
• Image blurriness/detalization;
• Color saturation;
• The level of noise.

The assessed high-resolution images are generated from the same low-resolution image. We also
provide the initial low-resolution image as a condition to assess potential color distortions. Figure 8
showcases the main labeling interface. Users can also click on any images to open them in full-
screen mode and zoom in to better consider the finer details. After that, it becomes possible to
toggle between two high-resolution images using hotkeys to assess minor differences in an almost
pixel-wise manner.

From a mathematical point of view, human evaluation is a statistical hypothesis test. In particular,
we are using a two-sided binomial test and its implementation from scipy Virtanen et al. (2020)
library to test the null hypothesis of whether the two given models are equal in ISR (accessors follow
a special set of instructions when making their decisions). More precisely,

p−value = binom test((nwins,1 + neq//2, nwins,2 + neq//2), p = 0.5), (10)

where n winsi - is the number of generations produced by model i and preferred by accessors, n eq
- is the number of generations whose quality is indistinguishable according to our guideline. We
reject the null hypothesis if p value is less than 0.05, i.e., at the 5% significance level.

F DATASET PREPARATION

We start from a proprietary pool of several billion image-text pairs, initially collected to train image-
text models. The data pool originally contained samples with various quality images, texts, and
image-text relevance. The following filtering procedure aims to select high-quality samples suitable
for training competitive Super Resolution models.

First, we select samples with images with exactly 1024 px of height or width and not less than
1024 px in the other direction. For non-square images, we perform a center crop of 1024 × 1024 px.
This resolution allows us to achieve a reasonable trade-off between data quality and quantity. After
that, we pre-calculate a set of scores produced by multiple learned predictors for each image-text
pair. These predictors estimate the quality of images, texts, and image-text relevance.

Image quality predictors are fully connected classifiers, trained on top of image and text features,
extracted by our proprietary visual foundation model. In this work, we use estimators of image
quality trained on PIPAL Gu et al. (2020), KonIQ-10k Hosu et al. (2020) and KADID-10k Lin et al.
(2019) datasets, watermark and NSFW content detectors trained on internal data.

We use OpenCLIP Ilharco et al. (2021); Cherti et al. (2023) ViT-G/14 to obtain image-text relevance
scores.

We train quality predictor and English language detector for text based on our internal foundation
model and data.

After that, we filter the data based on the predictors mentioned above so that the resulting dataset
size does not contain obviously bad samples according to the predictor models. We also aim for
the resulting dataset size sufficient to train any of our models for up to several dozen epochs. The
resulting dataset consists of 17 million 1024 × 1024 px images and corresponding captions.

G SUPER RESOLUTION OF SYNTHETIC IMAGES

To test the robustness of Super Resolution models on the out-of-distribution (OOD) data, we apply
both models for upscaling of 4× downscaled 1024px generations produced by YaART Kastryulin
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et al. (2024) and SDXL Podell et al. (2024) models as two examples of modern text-conditional
generative models. The former is a cascaded pixel diffusion model. The latter operates in latent
space, and the generated sample is transformed to pixel space with the help of a decoder network.

We generate samples using prompts from DrawBench Saharia et al. (2022) and YaBasket Kastryulin
et al. (2024) with both models. (Add details about the generation setup - sampler, number of steps,
condition scale to Appendix). LR images are obtained by downscaling 1024px generations to 256px
via cv2.INTER AREA.Even though both models produce photorealistic samples of high quality,
generated images could still be different from the data observed during training. The discrepancy
between training and evaluation data may negatively affect the performance of SR models and cause
artifacts.

Results Below, we provide only qualitative evaluation since there is no actual ground truth for
this setting, as generative models produce outputs that only approximate real-world images. Hence,
the calculation of no-reference and full-reference metrics is not very meaningful. Representative
examples are shown in Figures 9,10, 11, 12. Models trained without augmentations appeared
to be robust enough for evaluation on synthetic images while providing sharper edges and better
representing high-frequency details.

H ADDITIONAL DETAILS

H.1 SAMPLER HYPERPARAMETERS SETTING FOR DIFFUSION MODEL

In our experiments, we evaluate the diffusion model using DPM-Solver++(2M) Lu et al. (2023)
with 13 sampling steps. This setup demonstrated robust outcomes with a relatively modest number
of steps, effectively balancing speed and output quality. To ensure this, we evaluated our diffusion
model with different samplers (DDIM Song et al. (2020), UNIPC Zhao et al. (2023a)) and a varying
number of sampling steps. The results are presented in Table 9. It is evident from the results that
increasing the number of steps beyond those used in our DPM-Solver++ baseline (13 steps) does
not enhance performance, whereas reducing the number of steps compromises visual quality.

Table 9: Comparison of different sampler settings to the one used in the experiments (DPM-
Solver++, 13). Side-by-side results and basic metrics are introduced. The setting used in this work
is optimal in terms of speed and output quality.

Sampler, #steps Wins Loses Ties p-value PSNR ↑ SSIM ↑ LPIPS ↓ CLIP-IQA ↑
DPM-Solver++, 13 - - - - 26.66 0.748 0.253 0.719
DPM-Solver++, 6 0.192 0.479 0.329 0.0 27.77 0.793 0.229 0.666
DPM-Solver++, 64 0.287 0.283 0.430 1.0 26.28 0.730 0.275 0.737
UniPC, 6 0.138 0.354 0.508 0.001 27.58 0.786 0.232 0.657
UniPC, 13 0.367 0.338 0.295 0.70 26.50 0.740 0.259 0.728
UniPC, 32 0.267 0.254 0.479 0.85 26.28 0.730 0.274 0.740
UniPC, 64 0.425 0.425 0.150 1.0 26.26 0.730 0.277 0.742
DDIM, 100 0.358 0.354 0.288 1.0 26.60 0.745 0.256 0.730
DDIM, 500 0.417 0.400 0.183 0.85 26.35 0.731 0.269 0.741
DDIM, 1000 0.421 0.383 0.183 0.61 26.32 0.729 0.272 0.735

H.2 FINE-TUNING ON FULL-RESOLUTION INPUTS

Our experiments show that fine-tuning on full-resolution inputs brings no benefit compared to train-
ing only on crops. Here, we present metrics computed based on the best checkpoints trained on crops
only and full-resolution images (Table 10), as well as a side-by-side comparison (Table 11). This
can be explained by the fact that both full-resolution and cropped inputs contain the same low-level
information, and the global-level semantic information appears to be irrelevant for the SR task.

We experimented with different learning rates for the full-resolution fine-tune: 1e-4, 1e-5 for GAN,
and 3e-5, 1e-6 for diffusion. While training models with the rates used for training on crops (1e-4
for GAN and 3e-5 for diffusion) degrades generation quality (color-shifting and blurred genera-
tion), fine-tuning both models even with the smallest rates for 300k iterations leads to no statistical
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Table 10: Comparison of only-crops traing vs fine-tuning on full-resolution images based on basic
metrics.

Models PSNR ↑ SSIM ↑ LPIPS ↓ CLIP-IQA ↑
GAN (crops) 26.00 0.770 0.208 0.806
GAN (full-res) 28.27 0.811 0.182 0.790

Diffusion (crops) 26.66 0.748 0.253 0.719
Diffusion (full-res) 26.83 0.761 0.236 0.715

Table 11: Side-by-side comparison of only-crops training vs fine-tuning on full-resolution images.

Wins Loses Ties p-value

GAN (crops) vs GAN (full-res) 0.425 0.441 0.133 0.847

Diff (crops) vs Diff (full-res) 0.213 0.320 0.467 0.109

improvements. We provide the results of human evaluations against crop-trained baselines for all
mentioned setups in Table 12.

Table 12: Side-by-side comparison of only-crops training vs fine-tuning on full-resolution images
with different learning rates.

Wins Loses Ties p-value

GAN (crops) vs GAN (full-res, 1e-5) 0.425 0.441 0.133 0.847
GAN (crops) vs GAN (full-res, 1e-4) 0.658 0.175 0.167 0.000

Diff (crops) vs Diff (full-res, 1e-6) 0.213 0.320 0.467 0.109
Diff (crops) vs Diff (full-res, 3e-5) 0.212 0.155 0.633 0.410

H.3 EARLY STOPPING WITH SIDE-BY-SIDE COMPARISON

In our experiments, we adopted a side-by-side comparison to determine the optimal time for early
stopping, when further changes in the output of the SR model become imperceptible to human
observers (see Appendix E for more detail). However, automated full-reference metrics are more
common in the SR literature, so it is interesting to track their evolution during training. We present
the measurement of some full-reference metrics in Table 13. One can observe that during pretrain-
ing, PSNR and SSIM continue to slightly improve, whereas for GAN training, the metrics stabilize
around a specific value after a certain number of iterations. This indicates that above a certain
threshold, further improvement in PSNR/SSIM is hardly discernible.

H.4 SUPER RESOLUTION ARTIFACTS

We visualize artifacts typical for GAN-based SR and diffusion-based SR in Figure 13 and 14.

H.5 EFFICIENCY CONSIDERATIONS

Model Size Different SR approaches may vary drastically in terms of the inference pipeline struc-
ture and the sizes of the models involved. The superior quality of one method over another could
be outweighed in real-world applications by the amount of memory needed to run inference. When
considering the size of SR models with diffusion priors (SUPIR, DiffBIR), we include the size of
the UNet, text encoders, and VAE decoder.

• Diff (631 M) = Denoiser (631 M)
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Table 13: Evolution throughout training of PSNR and SSIM.

L1-pretrain GAN Diff

Evaluation Step PNSR ↑ SSIM ↑ PNSR ↑ SSIM ↑ PNSR ↑ SSIM ↑
20k 28.21 0.834 25.84 0.767 20.57 0.659
40k 28.48 0.840 26.01 0.770 20.89 0.656
60k 28.66 0.843 26.01 0.770 21.33 0.663
100k 28.92 0.846 26.00 0.770 22.25 0.675
140k 29.03 0.847 26.00 0.770 22.89 0.681
220k - - - - 23.92 0.701
300k - - - - 25.66 0.733
460k - - - - 26.03 0.741
620k - - - - 26.66 0.748

• GAN (631 M) = Generator (614 M) + Discriminator (17 M)

• SUPIR (17846 M) = SDXL (3469 M) + ControlNet (1332 M) + LLaVA (13045 M)

• RealESRGAN (21 M) = Generator (17 M) + Discriminator (4 M)

• DiffBIR (1683 M) = SDv2.1 (1303 M) + Restoration Module (17 M) + ControlNet (363
M)

• ResShift (174 M) = Denoiser (119 M) + AutoEncoder (55 M)

One can see that different approaches may differ by orders of magnitude in model scale.

Evaluation Settings We conducted all inference measurements on 1 NVIDIA A100 GPU with
80GB of VRAM, batch size 1, PyTorch 2.4.0 Paszke et al. (2019), and CUDA 12.4. We evaluated
performance on a 256px → 1024px image super-resolution task.

As mentioned earlier, for our diffusion model, we used 13 steps to generate upscales, while for other
diffusion baselines we adopted the default settings from the corresponding papers and repositories:
4 sampling steps for ResShift, 100 sampling steps for SUPIR, and 50 sampling steps for DiffBIR.
Note that for these baselines, the reported time spent to produce one image also includes inference
of some extra networks such as VAE, LLaVa, BSRNet, etc.

Both our GAN and RealESRGAN models require 1 network evaluation to generate final images.

I DATA-SCALING EXPERIMENTS

In the main part we focused on performace comparison in case of data abundance of data. In this
section we explore impact of data size on performance of Super Resolution models.

Specifically, we selected subsets of {18k, 180k, 1.8M} samples from the original large training
dataset and trained both GAN-based and diffusion-based models for an identical number of steps.
We then calculated image quality assessment (IQA) metrics and performed side-by-side compar-
isons between models trained on the full dataset and those trained on the smaller subsets. Further-
more, we compared the corresponding GANs and diffusion models.

Results of IQA metric evaluation for different amount of training data are reported in Table 14
and Table 15. Additionally, we report results of user preference study between GAN-based and
diffusion-based SR models in Tables 16, 17, 18.

Remarkably, the performance of GAN-based SR saturates quickly with respect to the amount of
training data. We observed no significant difference in terms of standard SR metrics (PSNR/S-
SIM/LPIPS) between the model trained on the smallest amount of data (i.e 18k samples) vs the one
trained on 18M images. Only CLIP-IQA shows small improvement. However, Side-by-Side com-
parison between different GAN-base SR models shows equality with respect to human assessment
for models trained on various amounts of data.
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Table 14: Quantitative comparison between GAN-based models trained with different amounts of
data.

MetricsDataset size 1.8 · 104 1.8 · 105 1.8 · 106 1.8 · 107

PSNR ↑ 25.538 26.366 25.811 26.010
SSIM ↑ 0.747 0.770 0.763 0.770
LPIPS ↓ 0.241 0.233 0.237 0.208

CLIP-IQA ↑ 0.749 0.758 0.769 0.826

Table 15: Quantitative comparison between diffusion-based models trained with different amounts
of data.

Metrics
Dataset size

1.8 · 104 1.8 · 105 1.8 · 106 1.8 · 107

PSNR ↑ 24.830 25.330 25.020 26.670
SSIM ↑ 0.665 0.697 0.689 0.748
LPIPS ↓ 0.351 0.328 0.330 0.253

CLIP-IQA ↑ 0.620 0.602 0.647 0.719

At the same time, the diffusion model appears to be more sensitive to data. Whereas, models trained
on 180k, 1.8M match the model trained on large dataset in terms of quality, the one trained on the
smallest number of samples appears to be statistically worse. This finding suggests that diffusion-
based SR is likely to be more “data-hungry” compared to GAN-based SR.

Finally, our findings indicate that GAN-based models outperform diffusion-based models, regardless
of the amount of training data.

J LSDIR-TRAINED MODELS

To provide clearer insights into the advantages of GANs over diffusion models in super-resolution
(SR), we trained both paradigms using a random sample of 18,000 images from the open-source
LSDIR dataset Li et al. (2023). We then calculated image quality assessment (IQA) metrics and
performed a side-by-side comparison of the final models. Details can be found in Tables 19 and 20.

Experimental results suggest that the GAN paradigm outperforms diffusion in SR tasks, even when
models are trained on different datasets.

We further investigated the influence of the dataset on upscaling quality by conducting side-by-side
comparisons between models trained on the LSDIR dataset and those trained on different fractions
of our dataset. Results are presented in Tables 21 and 22 below.

For GANs, regardless of the fraction of our dataset used, the resulting model performed better than
the one trained on the LSDIR dataset. Conversely, the diffusion model trained on an 18k sample of
our dataset performed on par with the LSDIR-trained diffusion model, while the model trained on
the full dataset surpassed the LSDIR-trained one.

Table 16: SbS comparison between GAN-based SR models for different sizes of training dataset.
The values in the table are win rates of Model 1 over Model 2. Green corresponds to statistical
advantage, red to statistical disadvantage, black to statistical indifference between two models.

Model 1
Model 2 GAN1.8·104 GAN1.8·105 GAN1.8·106 GAN1.8·107

GAN1.8·107 50.1 53.3 48.5 x

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 17: SbS comparison between diffusion-based SR models for different sizes of training dataset.
The values in the table are win rates of Model 1 over Model 2. Green corresponds to statistical
advantage, red to statistical disadvantage, black to statistical indifference between two models.

Model 1
Model 2 Diff1.8·104 Diff1.8·105 Diff1.8·106 Diff1.8·107

Diff1.8·107 71.4 56.1 56.3 x

Table 18: SbS comparison between diffusion-based SR and GAN-based SR for different sizes of
training dataset. The values in the table are win rates of GAN over diffusion. Green corresponds
to statistical advantage, red to statistical disadvantage, black to statistical indifference between two
models.

1.8 ·104 1.8 ·105 1.8 ·106 1.8 ·107

GAN
Diffusion 90.5 86.7 88.4 91.0

Table 19: SbS comparison between diffusion-based SR and GAN-based SR trained on 18k sample
of LSDIR dataset. The values in the table are win rates of GAN over diffusion. Green corresponds
to statistical advantage, red to statistical disadvantage, black to statistical indifference between two
models.

Model 1
Model 2 Diff-LSDIR

GAN-LSDIR 76.2

Table 20: Quantitative comparison between GAN-based and diffusion-based models trained on ran-
dom 18k sample of LSDIR.

Metrics
Model GAN-LSDIR Diff-LSDIR

PSNR ↑ 24.290 26.431
SSIM ↑ 0.646 0.772
LPIPS ↓ 0.362 0.232

CLIP-IQA ↑ 0.651 0.757

Table 21: SbS comparison between GAN-based SR models train on LSDIR and different sizes of our
training dataset. The values in the table are win rates of Model 1 over Model 2. Green corresponds
to statistical advantage, red to statistical disadvantage, black to statistical indifference between two
models.

Model 1
Model 2 GAN1.8·104 GAN1.8·107

GAN-LSDIR 35.2 28.8

Table 22: SbS comparison between diffusion-based SR models train on LSDIR and different sizes
of our training dataset. The values in the table are win rates of Model 1 over Model 2. Green
corresponds to statistical advantage, red to statistical disadvantage, black to statistical indifference
between two models.

Model 1
Model 2 Diff1.8·104 Diff1.8·107

Diff-LSDIR 51.1 42.5
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Image LR Image HR Diff (ours) GAN (ours)

Figure 6: Qualitative comparison between GAN and SR models from our work on the original
dataset. Zoom in for the best view.
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Image LR Image HR Diff (ours) GAN (ours)

Figure 7: Qualitative comparison between GAN and SR models from our work on a test set with
Real-ESRGAN degradations. Zoom in for the best view.
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Figure 8: An example of a user interface for Human Evaluation with Side-by-Side comparisons.

Image LR Bicubic Diff (ours) GAN (ours) DiffBIR ResShift RealESRGAN

Figure 9: Qualitative comparison between SR models on images generated with SDXL on Draw-
Bench prompts. Zoom in for the best view.
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Image LR Bicubic Diff (ours) GAN (ours) DiffBIR RealESRGAN

Figure 10: Qualitative comparison between SR models on images generated with YaART on Draw-
Bench prompts. Zoom in for the best view.

Image LR Bicubic Diff (ours) GAN (ours) DiffBIR ResShift RealESRGAN

Figure 11: Qualitative comparison between SR models on images generated with SDXL on YaBas-
ket prompts. Zoom in for the best view.
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Image LR Bicubic Diff (ours) GAN (ours) DiffBIR ResShift RealESRGAN

Figure 12: Qualitative comparison between SR models on images generated with YaART on YaBas-
ket prompts. Zoom in for the best view.
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Image HR Diff GAN

Figure 13: GAN’s oversharpening leads to unnatural textures (e.g. fur or grass) and artifacts.
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Image HR Diff GAN

Figure 14: Diffusion is usually worse at high-frequency details (1 row). Additionally, even after big
number of training iterations may generate pale, dim images (rows 2-5).
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