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ABSTRACT

Markov chain Monte Carlo (MCMC) sampling-based maximum likelihood estima-
tion is a standard approach for training Energy-Based Models (EBMs). However,
its effectiveness and training stability in high-dimensional settings remain thorny
issues due to challenges like mode collapse and slow mixing of MCMC. To address
these limitations, we introduce a novel MCMC teaching-free learning framework
that jointly trains an EBM and a diffusion-based generative model, leveraging the
variational formulation of divergence between time-reversed diffusion paths. In
each iteration, the generator model is trained to align with both the empirical data
distribution and the current EBM, bypassing the need for biased MCMC sampling.
The EBM is then updated by maximizing the likelihood of the synthesized exam-
ples generated through a diffusion generative process that more accurately reflects
the EBM’s distribution. Moreover, we propose a novel objective function that
further improves EBM learning by minimizing the discrepancy between the EBM
and the generative model. Our proposed approach enhances training efficiency
and overcomes key challenges associated with traditional MCMC-based methods.
Experimental results on generative modeling and likelihood estimation demonstrate
the superior performance of our method.

1 INTRODUCTION

Energy-based models (EBMs) are an appealing class of probabilistic models that can model the
data distributions and generate various types of samples, such as images (LeCun et al., 2006a; Kim
& Bengio, 2016), reinforcement learning (Haarnoja et al., 2017; Boney et al., 2019), language
(Mireshghallah et al., 2022), and out-of-distribution detection (Liu et al., 2020). The maximum
likelihood estimation (MLE) based on Markov chain Monte Carlo (MCMC) is widely used to learn
EBMs. However, training EBMs on high-dimensional data is still a challenging problem since
MCMC is prone to mode collapse and slow mixing in high dimensions.

Recently, a line of work has been proposed to improve the learning of EBM by accelerating the
MCMC sampling process based on MCMC teaching. In MCMC teaching, a complementary generator
model is cooperatively learned to serve as the amortized initialization of MCMC (Xie et al., 2022).
Specifically, the synthesized samples generated by the generative model are revised by a short-run
MCMC toward the current EBM. Then, the refined synthesized samples serve as fair samples to
update the EBM and the generator by maximizing the likelihood of each model. Although the
MCMC revision process in MCMC teaching provides a useful gradient information for updating
the synthesized examples, the non-convergent nature of short-run MCMC typically generates biased
samples, leading to inaccurate estimations for updating generators and EBMs . To mitigate the bias
of short-run MCMC when updating the generator, Cui & Han (2023) proposed to train the generator
to match both the empirical data distribution and the EBM via dual-MCMC teaching. However, the
biased short-run MCMC can still lead to conventional biased training of the generator and the EBM.

In this paper, we propose a novel MCMC teaching-free diffusion-based EBM (DiffEBM) learning
framework to remove the bias of the short-run MCMC by jointly training an EBM and a diffusion-
based generative model. In DiffEBM, we introduce an objective function to train the EBM and the
generator to match with each other without MCMC revisions by leveraging the variational formulation
of divergence of the path measures between the inference process and the generative process of
probabilistic diffusion models (Richter & Berner, 2024). Training the EBM and the generator to
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match each other implies that we can directly regard the samples from the generator as fair samples
from the current EBM and avoid biased short-run MCMC revisions when updating both models. In
such a way, our method does not suffer from the bias issue of short-run MCMC revision of the current
MCMC teaching framework. Specifically, the generator is trained by maximizing the likelihood of
the empirical data and minimizing the difference with the current EBM. The EBM is then learned by
maximizing the likelihood of the empirical data where the synthesized examples are simulated from
the diffusion model within finite time and minimizing the discrepancy with the generator. Therefore,
we can avoid the non-convergent MCMC during the iterative joint learning process.

In summary, our innovations are:

• We propose an MCMC teaching-free framework to learn energy-based models based on
the variational formulation of divergence between forward and backward time-reversed
diffusion paths.

• Our method can avoid mode collapse and slowing mixing issues of traditional MCMC
sampling-based EBM learning methods.

• We demonstrate that our method achieves significant improvements in sample quality
compared to existing EBM learning approaches on benchmark simulation tasks.

2 RELATED WORK

Training Energy-based models Given the computational costs of MCMC inference until conver-
gence, numerous methods have been proposed to improve the learning of EBMs. For example, (Xie
et al., 2018; 2016; 2020) proposed amortizing MCMC sampling with learned networks by leveraging
the cooperative learning scheme. In (Xie et al., 2022), the authors train an energy-based model with a
normalizing flow as an amortized sampler to initialize the MCMC chains of the energy-based model.
Carbone et. al. (Carbone et al., 2023) point out that the approximations of the estimate of the gradient
of the cross entropy are uncontrolled and known to induce biases similar to those observed with
score-based methods and cannot handle well multimodal distributions. Therefore, they proposed a
sequential Monte Carlo sampling procedure with Jarzynski correction to estimate the cross-entropy
and its gradient with theoretical guarantees.

Diffusion probabilistic models for Energy-based models Diffusion models (Sohl-Dickstein et al.,
2015; Song et al., 2020; Ho et al., 2020) learn to reverse a constructed noising process to generate
high-quality data, which inspires a line of works to improve the training of EBM on generative
modeling. (Gao et al., 2021) proposed to learn a sequence of EBMs for the marginal distributions
of the diffusion process, where each EBM is learned with recovery likelihoods that are defined as
the conditional distributions of the reverse process. Zhu et al. (2023) introduced the cooperative
diffusion recovery likelihood that jointly trained EBMs and initializer models at multiple noise
levels to improve sample quality and generation performance, bridging the gap between EBMs
and other generative models like GANs and diffusion models. (Luo et al., 2023) proposed a novel
diffusion contrastive divergence, which replaces MCMC sampling in contrastive divergence with
diffusion processes, offering a more computationally efficient training method for EBMs that avoids
the difficulties of handling non-negligible gradient terms.

Diffusion probabilistic models for sampling The goal of sampling is to generate samples from
a known (unnormalized) density function (Liu & Wang, 2016; Cheng et al., 2023). Richter et al.
(Richter & Berner, 2024) propose a general framework for learning a diffusion model tailored to the
sampling task. Their approach involves minimizing the divergence between the diffusion sampling
process and the time-reversal of the noising process. Sampling has a close connection to EBM
learning since training EBM via MLE requires sampling from the current energy model. Our work is
inspired by the diffusion-based sampling method.
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3 PRELIMINARIES

This section provides a basic introduction to energy-based models, probabilistic diffusion models and
diffusion-based sampling. A comprehensive introduction to training energy-based models can be
found in (Song & Kingma, 2021).

Notation. In this paper, we denote X as the D-dimensional Euclidean space RD. Let P(X )
represent the sets of probability measures on X . For suitable functions ψ ∈ C(RD × [0, T ],RD) and
h ∈ C(RD × [0, T ],R), the stochastic and deterministic integrals are defined as

Dh(X) ∶= ∫
T

0
h(Xt, t)dt and Sψ(X) ∶= ∫

T

0
ψ(Xt, t) ⋅ dWt, (1)

where W is a standard D-dimensional Winner process.

3.1 ENERGY-BASED MODELS

Energy-based models (EBMs) are probabilistic models used to capture complex distributions (LeCun
et al., 2006b), which rely on an energy function Eθ(x). The probability distribution of a data point
x under an EBM is inversely proportional to the exponential of the negative energy and can be
expressed using the Boltzmann distribution as:

pθ(x) =
1

Z(θ)
exp{−Eθ(x)}, (2)

where Z(θ) is the intractable normalization constant.

EBMs can be learned by minimizing the Kullback-Leibler (KL) divergence of the empirical data
distribution pdata and the model distribution pθ, which is defined as

argmin
θ
LMLE(θ) = argmin

θ
DKL(pdata∥pθ) = argmin

θ
{Epdata[Eθ(X)] + logZ(θ)} .

The gradient for updating θ is given by:

d

dθ
LMLE(θ) =

d

dθ
Eqdata[Eθ(x)] −Epθ [

∂

∂θ
Eθ(X)]

≈
∂

∂θ
(
1

n

n

∑
i=1
Eθ(x

+
i ) −

1

m

m

∑
i=1
Eθ(x

−
i )) ,

(3)

where {x+i }
n
i=1 represents independent and identically distributed (i.i.d.) samples from the data

distribution qdata and {x−i }
m
i=1 are i.i.d. synthesized samples from the current learned EBM (pθ).

Sampling from the current learned distribution can be accomplished by using the following Langevin
dynamics-based MCMC sampling method (Welling & Teh, 2011):

xk+1 = xk − α∇xEθ(x
k
) +
√
2αzk, zk ∼ N(0, I) , (4)

where α is a predefined stepsize and x0 is sampled from a standard Gaussian distribution as the
MCMC initializer.

3.2 DIFFUSION MODELS FOR GENERATIVE MODELING

Diffusion models (Ho et al., 2020; Song et al., 2020) learn the data distribution by first perturbing the
data into an isotropic Gaussian distribution and then reversing this process to generate new samples.
The forward inference and backward generative process can be characterized by the following two
stochastic differential equations (SDE),

dXt = f(Xt, t)dt + g(t)dw, X0 ∼ pdata (5)

dXt = [f(Xt, t) − g
2
(t)∇X log pt(X)]dt + g(t)dw, XT ∼ pprior (6)

where w is the Brownian motion, t ∈ [0, T ], f(⋅, t) is a drift coefficient and g(⋅) is a diffusion
coefficient. An affine f(Xt, t) = −

1
2
β(t)Xt and g(t) =

√
β(t) lead to the variance preserving (VP)

SDE, where β(t) ∶ [0, T ]→ (0,1) is a variance schedule.
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Denoising score matching objective is widely used for estimating the score ∇X log pt(X) that is
required by the backward generative process, i.e.,

minLDSM(ϕ) = Et Ept(Xt) [∥sϕ(Xt, t) −∇Xt log pt(Xt)∥
2
2] . (7)

When the score function is learned, we can adopt the backward SDE in Equation 6 for generative
modeling.

3.3 DIFFUSIONS MODELS FOR SAMPLING

The task of the diffusion-based sampling aims to learn to sample from the known target density
ptarget = ρ/Z by transporting samples from a prior density pprior via a learnable controlled stochastic
process Xu that is defined as

dXu
t = [f(X

u
t , t) − g(t)uϕ(X

u
t , t)]dt + g(t)dw, Xu

T ∼ pprior , (8)

where the processXu is governed by a learnable control function uϕ(Xt, t) with parameter ϕ and the
desired form of uϕ(Xt, t) is the score function of the time-reversal of the reference process defined
in Equation 5 that transfers the noise into data under the target density.

Diffusion-based sampling differs from the generative modeling setting since there is no empirical data
available to calculate the noised version of data for estimating the control (score) function via score
matching methods. When only the density function is available for the sampling task, the control
function can be learned based on the variational formulation of divergence of the path measures
between the inference process and the generative process of probabilistic diffusion models. To
compute such a tractable divergence, Richter & Berner (2024) derived the following formulation of
the likelihood of path measures between the generative process and the time-reversal of the inference
process that is related to the unormalized target density.

Let PXu denote the path space measure of the processXu and define P ⃗X as the path space measure of
the time-reversal of X . To estimate the control function uϕ(Xt, t) based on the known unnormalized
density function, the likelihood of path measures between the generative process Xu and the target
process P ⃗X is defined as the following Radon-Nikodym derivative (Richter & Berner, 2024)

dPXu

dP ⃗X
(X

β
) = Z exp (Dhu,β

+ Su −R)(X
β
) , (9)

where Xβ is a reference process as defined in Equation 8 by replacing the function u with β, and the
integral functionsD andR are defined in Equation 1, and R(Xβ) ∶= log ρ(Xβ

0 )−log pprior(X
β
T )

and hu,β ∶= u ⋅ β − ∥u∥
2/2−∇ ⋅ f . The proof of likelihood formulation can be found in (Richter

& Berner, 2024).

Based on the likelihood of path measures, diffusion models can be trained to sample from a given
distribution by minimizing the following log-variance divergence (Richter & Berner, 2024)

D
PXβ

LV (PXu , P ⃗X ;ϕ) ∶= VPXβ
[log

dPXu

dP ⃗X
] (10)

= VPXβ
[Dgu,β

+ Su −R] , (11)

where PXβ is a reference measure and V [⋅] is the variance function. The normalizing constant Z is
omitted safely since the variance function is shift-invariant.

4 METHODS

In this section, we present DiffEBM, our novel MCMC-free framework designed to jointly train a
diffusion model and an energy-based model (EBM). The framework achieves this by minimizing
the path divergence between the generative process and the reference process, while simultaneously
maximizing the likelihood of the empirical data. We begin by describing the method for obtaining a
well-calibrated diffusion model based on both empirical data and the energy-based model in Section
4.1. Subsequently, in Section 4.2, we outline how the learned diffusion model is employed to
efficiently train the energy-based model. A comprehensive overview of the proposed framework is
provided in Algorithm 1.

4
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Algorithm 1 DiffEBM Algorithm
Input: (1) Empirical data {xi}ni ; (2) Initial parameters ϕ and θ for diffusion model uϕ and energy

function Eθ (3) hyper-parameters including weight coefficient η, α for diffusion model and EBM;
number of training steps K; batch size m.

Output: Optimized parameters {ϕ, θ}
for k ← 1, . . . ,K do

Sample empirical data {x+i }
m
i ∼ pdata(x)

Sample synthesized data {x∗i }
m
i by simulating the diffusion-based generator

Given {x+i }
m
i , {x∗i }

m
i and θ, compute LG by following Equation 12

Given {x+i }
m
i , {x∗i }

m
i and ϕ, compute LEBM by following Equation 14

Optimize ϕ by following the gradient of ∇ϕLG

Optimize θ by following the gradient of ∇θLEBM

end for

4.1 LEARNING DIFFUSION-BASED GENERATORS

To effectively train a diffusion model capable of guiding the learning of an energy-based model
(EBM) without relying on MCMC teaching, it is crucial that the diffusion model both accurately
captures the underlying data distribution and aligns with the evolving EBM.

To meet the first objective, we employ denoising score matching, as formulated in Equation 7,
ensuring that the diffusion model progressively learns to represent the empirical data distribution with
high fidelity. For the second objective, we introduce the use of log-variance divergence as a training
criterion to align the generator with the dynamic EBM distribution—a more complex challenge
compared to training with a fixed, known target distribution.

The final learning objective for the diffusion model is formalized as follows:

ϕ∗ = argmin
ϕ

LG(ϕ)

= argmin
ϕ

{(1 − η)LDSM + η D
PXβ

LV }

= argmin
ϕ

{(1 − η)LDSM + η VPXβ
[Dgϕ,β

+ Sϕ −R] }

(12)

Here, η ∈ [0,1] is a hyperparameter that balances the two learning objectives, and R(Xβ) ∶=

−Eθ(X
β
0 ) − log pprior(X

β
T ), where Xβ

T ∼ pprior.

The learning process of the generator in our framework is MCMC teaching-free. When updating
the generator to match the evolving EBM, we only need to generate samples from the current
generator without requiring MCMC revisions. Additionally, we stop the gradient flow from the
energy function when updating the generator’s control function ϕ, which is achieved by employing
the detach operation in PyTorch.

4.2 LEARNING ENERGY FUNCTIONS

In each iteration, once the diffusion model is updated to align with the current EBM, the generator
model is able to generate fare synthetic samples,which can be used to update EBM based on the MLE
principle without relying on non-convergent short-run MCMC revisions. Specifically, we substitute
the samples in Equation 3 with those generated via the generator as follows:

∇θLMLE(θ) =
∂

∂θ
(
1

n

n

∑
i=1
Eθ(x

+
i ) −

1

m

m

∑
i=1
Eθ(x

∗
i )) ,

where {x∗i }
m
i=1 are samples generated from the current learned diffusion model.

Since the diffusion model is also trained to maximize the likelihood of the empirical data via score
matching, the learning of EBM can be significantly enhanced if EBM can be simultaneously trained
to align with the current diffusion models. Moreover, MCMC teaching can be unstable in practice,
as two distributions of the generator and the EBM tend to chase each other,potentially leading to

5
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un-convergence. To mitigate the risk of excessively large gradient updates during training the EBM
under the MLE criterion, the following objective function is proposed to ensure that the updated
EBM would not diverge drastically from the current diffusion model, allowing the EBM to effectively
learn from the current generator if the diffusion model we trained is to maximize the empirical data
likelihood.

DPXη

LV (PXϕ , P ⃗X ; θ) ∶= VPXη [log
dPXϕ

dP ⃗X
]

= VXη [R] − 2EXη [AR] + 2EXη [A]EXη [R] + const.,
(13)

where X η is a reference process, A ∶= Dgϕ,η
+ Sϕ and R(Xη) ∶= −Eθ(X

η
0 ) − log pprior(X

η
T ).

The proof relies on the previously introduced definition of likelihood and a straightforward application
of the variance property, given by Var[A] = E[A2] − (E[A])2."

The final learning objective for the energy-based model to match the current generator and the
empirical distribution can be described as follows:

θ∗ = argmin
θ
LEBM(θ)

= argmin
θ

{(1 − α)LMLE + α D
PXη

LV },
(14)

where α ∈ [0,1] is a hyperparameter to balance two objective functions. Similarly, we stop the
gradient of the control function ϕ of the generator when learning the energy function, which can be
done by using the detach operation in PyTorch.

5 EXPERIMENTS

In this section, we validate the effectiveness of our proposed method on several benchmarks in density
estimation and generative modeling. Moreover, we show that our method can learn valid energy
functions that result in meaningful samples even using a long-run MCMC.

5.1 EXPERIMENTAL SETUP

Baselines We compare our proposed method with several classical EBM learning algorithms,
including MCMC sampling-based MLE method(MCMC) (Liu & Liu, 2001; Younes, 1999), denoising
score matching (DSM) (Vincent, 2011) and deep energy estimator networks (DEEN) (Saremi et al.,
2018).

Setup The architecture of the energy function is composed of three 1 × 1 convolutional layers with
the SiLU activation function (Elfwing et al., 2018). The encoder of the score function is a Fourier
multilayer perceptron (MLP) model (Zhang & Chen, 2022). We use the Prodigy optimizer with the
hyperparameters listing in Appendix. The same set of hyperparameters is used in our method for
all tested benchmark problems. We use the variance-preserving SDE for the reference process with
a linear scheduler as β(t) = βmin + t(βmax − βmin) where βmax = 10 and βmin = 0.1 for all tested
problems.

Dataset We use five classical simulation-based datasets to demonstrate the performance of our
algorithms, including two Gaussian mixture datasets with ground truth likelihood functions, Swissroll,
Checkerboard and 2spirals.

Evaluation The Sinkhorn distance (Cuturi, 2013) is used to evaluate the performance of different
algorithms. It is an entropy regularized version of the Wasserstein distance between the synthetic
distribution and the real data distribution. The average Sinkhorn distance is reported in Table 1 by
using 10 different seeds.

5.2 DENSITY ESTIMATION

We begin by conducting experiments to demonstrate that our proposed method can learn the
meaningful energy function on two Gaussian mixture model (GMM) datasets with known den-
sity functions. The probability density of the eight GMM dataset (8Gaussians) is defined as

6
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Ground truth data Synthesized data Estimated energy Ground truth energy

(a) Gaussian→Grid setup
Ground Truth Data Synthesized Data Ground Truth Energy Estimated Energy

(b) Gaussian→8g setup

Figure 1: Validation of our method in density estimation and generative modeling on Gaus-
sian→8Gaussians and Gaussian→Grid setup. The ground truth energy function in analytically
known for the GMM dataset. The synthesized data is obtained by simulating the diffusion model
starting from Gaussian noise.

p(x) = 1
8 ∑

8
i=1N (x;µi, I), where µi = (

√
2 ⋅ cos (θi) ,

√
2 ⋅ sin (θi)) and I denotes identity ma-

trix. The dataset Grid consists of a GMM with nine modes, arranged in a 3 × 3 grid. Each mode
is centered at coordinates derived from an evenly spaced grid over the range [−5,5] along both the
x-axis and y-axis. The probability density of Grid is defined as p(x) = 1

9 ∑
9
i=1N (x;µi, I), where

µi ∈ {(xi, yj) ∣ xi, yj ∈ {−5,0,5}} are positioned on a 3 × 3 grid. The covariance matrix Σ = σ2I,
where σ =

√
0.3, defines the spread of each Gaussian component.

We visualize the training data, synthetic samples, the ground truth density and the learned energy
function for two GMM datasets in Figure 1. Figure 1 shows that our method does not suffer from the
mode collapse issue and can capture all the modes, demonstrating that our proposed method performs
well both as a valid sampler and an effective energy function estimator.

5.3 GENERATIVE MODELING

We validate the generative modeling ability of our proposed method on three datasets including
2spirals, Swissroll and Checkerboard. We visualize the real dataset, the generated samples from the
trained diffusion models and the estimated energy function in Figure 2. We can see from Figure 2
that our joint training the generator and the EBM can learn an effective generative model that can
generate more samples similar to the given empirical dataset.

5.4 COMPARISONS TO THE BASELINES

We demonstrate the comparison of the learned energy function with several baselines in Table 1,
which summarizes the Sinkhorn distance that measures the discrepancy between the synthesized data
samples and the ground truth data. Table 1 shows that our method is effective in generating realistic
data. Figure 3 shows that our method can learn better energy function when comparing with the score
matching.

7
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Ground Truth Data Synthesized Data Estimated Energy

(a) Checkerboard
Ground Truth Data Synthesized Data Estimated Energy

(b) 2Spiral
Ground Truth Data Synthesized Data Estimated Energy

(c) Swissroll

Figure 2: Validation of our method in generative modeling on Swissroll, 2Spirals and Checkerboard.
The synthesized data is obtained by simulating the diffusion model starting from Gaussian noise.

Table 1: Performance comparison of different algorithms on benchmark problems in terms of the
Sinkhorn distance.

Methods Swissroll 2Spirals Checkerboard
MCMC (Liu & Liu, 2001; Younes, 1999) 0.31066 0.12194 0.43577
DEEN (Saremi et al., 2018) 0.12555 0.33339 0.74726
DSM (Vincent, 2011) 0.13140 0.32821 0.73577
Ours 0.12147 0.28954 0.37430

5.5 LIMITATIONS AND FUTURE WORK

One major limitation of the diffusion-based sampling is we need to simulate from the diffusion
models, which is time-consuming for high-dimensional data. Our future work is to develop fast
sampling method for learning EBM for modeling high-dimensional data.
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(a) Learned distribution on 2spirals via slice score matching

4 3 2 1 0 1 2 3 4
4
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1

0

1
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Ground truth data

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4
Sampled data Estimated energy Estimated scores Estimated logp (contour)

(b) Learned distribution on 2spirals via our method

Figure 3: Results on 2spirals via slice score matching. As we can see from the last two plots, the learned energy
function is not very well, although the generated samples seem great (the second plot). Our method has better

learned energy function. However, there are many noisy fake samples for our method (working on it).

6 CONCLUSION

In this paper, we propose a novel MCMC teaching-free framework to learn energy-based models. We
leverage the variational formulation of divergence between time-reversed diffusion paths to jointly
train an EBM and a diffusion-based generative model. By training the generator and the EBM to
match with each other, the samples simulated from the generator can be viewed directly as fair
synthesized data to update EBM via MLE, and the refined EBM model can directly be used to update
the generator based on the unnormalized density-guided path divergence, avoiding mode collapse and
slowing mixing issues of traditional MCMC sampling-based EBM learning methods. We verify the
effectiveness of the proposed method on the energy estimation, density estimation, score estimation,
and the quality of synthetic data on simulations.
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