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Abstract

Federated learning (FL) has emerged as an enabling framework for communication-
efficient decentralized training. We study three broadly applicable problem classes
in FL: (i) Nondifferentiable nonconvex federated optimization; (ii) Federated
bilevel optimization; (iii) Federated minimax problems. Notably, in an implicit
sense, both (ii) and (iii) are instances of (i). However, the hierarchical problems
in (ii) and (iii) are often complicated by the absence of a closed-form expression
for the implicit objective function. Unfortunately, research on these problems
has been limited and afflicted by reliance on strong assumptions, including the
need for differentiability and L-smoothness of the implicit function. We address
this shortcoming by making the following contributions. In (i), by leveraging
convolution-based smoothing and Clarke’s subdifferential calculus, we devise a
randomized smoothing-enabled zeroth-order FL method and derive communica-
tion and iteration complexity guarantees for computing an approximate Clarke
stationary point. To contend with (ii) and (iii), we devise a unified randomized
implicit zeroth-order FL framework, equipped with explicit communication and
iteration complexities. Importantly, our method utilizes delays during local steps to
skip making calls to the inexact lower-level FL oracle. This results in significant
reduction in communication overhead when addressing hierarchical problems. We
empirically validate the theory on nonsmooth and hierarchical ML problems.

1 Introduction

Federated learning (FL) has recently emerged as a promising enabling framework for learning
predictive models from a multitude of distributed, privacy-sensitive, and possibly, heterogeneous
datasets. This is accomplished through the use of efficiently devised periodic communications
between a central server and a collection of clients. The FL algorithmic framework allows for
addressing several key obstacles in the development and implementation of standard machine learning
methods in a distributed and parallel manner. For instance, the conventional parallel stochastic
gradient descent (SGD) method requires the exchange of information among the computing nodes
at every single time step, resulting in excessive communication overhead. In contrast, FL methods
including FedAvg [34] and Local SGD [46] overcome this onerous communication bottleneck by
provably attaining the linear speedup of parallel SGD by using a significantly fewer communication
rounds [18, 54, 24, 7]. These guarantees have been further complemented by recent efforts [26,

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



38] where the presence of both data heterogeneity (i.e., variability of local datasets) and device
heterogeneity (i.e., variability of edge devices in computational power, memory, and bandwidth)
have been addressed. Despite recent advances, much needs to be understood about designing
communication-efficient decentralized methods for resolving three broadly applicable problem
classes, each of which is presented next.

(a) Nondifferentiable nonconvex locally constrained FL. Consider the prototypical FL setting:

min
x

{
f(x) ≜

1

m

m∑
i=1

Eξi∈Di
[ f̃i(x, ξi) ] |x ∈ X ≜

m⋂
i=1

Xi

}
, (FLnn)

where f is a nonsmooth nonconvex function and is associated with a group of m clients indexed by
i ∈ [m ] ≜ {1, . . . ,m}, Di denotes the local dataset, f̃i : Rn ×Di → R is the local loss function,
and Xi ⊆ Rn is an easy-to-project local constraint set. Notably, local datasets may vary across clients,
allowing for data heterogeneity. We also consider client-specific local sets to induce personalization.

(b) Nondifferentiable nonconvex bilevel FL. Overlaying a bilevel term in (FLnn) leads to

min
x∈X ≜

⋂m
i=1 Xi

{
f(x) | y(x) ∈ arg min

y∈Rñ

1

m

m∑
i=1

Eζi∈D̃i
[h̃i(x, y, ζi)]

}
, (FLbl)

where f(•) ≜ 1
m

∑m
i=1 Eξi∈Di

[ f̃i(•, y(•), ξi) ] denotes the implicit objective function and y(•) :

Rn → Rñ is a single-valued map returning the unique solution to the lower-level problem at x.

(c) Nondifferentiable nonconvex minimax FL. Finally, we consider the minimax setting, defined as

min
x∈X≜∩m

i=1Xi

max
y∈Rñ

1

m

m∑
i=1

Eξi∈Di
[ f̃i(x, y, ξi) ]. (FLmm)

where we assume that y(x) ∈ argmaxy∈Rñ
1
m

∑m
i=1 Eζi∈D̃i

[f̃i(x, y, ξi)] is unique for all x. Let
f(•) ≜ 1

m

∑m
i=1 Eξi∈Di [ f̃i(•, y(•), ξi) ] denote the implicit objective function. Indeed, prob-

lem (FLbl) subsumes this minimax formulation when we choose h̃i := −f̃i and D̃i := Di.

Notably, in an implicit sense, both (b) and (c) are instances of problem (a). However, these hierarchical
problems are often complicated by the absence of a closed-form expression for the implicit objective,
denoted by f(•). Indeed, f(•) is often nonsmooth, nonconvex, and unavailable. As such, the absence
of both zeroth and first-order information of f(•) in problems (b) and (c) makes the design and
analysis of FL methods for these problems more challenging than that for (a).

Gaps. To the best of our knowledge, there are no known efficient FL algorithms that can contend
with both nonsmoothness and nonconvexity in an unstructured sense. Generalizations that can
accommodate either a bilevel or a minimax structure also remain unaddressed in FL.

Goal. To develop a unified FL framework accommodating nondifferentiable nonconvex settings with
extensions allowing for bilevel or minimax interactions. We now describe the proposed framework.

1.1 A Smoothed Sampled Zeroth-order Framework

We consider a smoothed framework for contending with constrained, nonsmooth, and nonconvex
regimes. Specifically, given that f is an expectation-valued function and X is a closed and convex set,
both of which are defined in (FLnn), a smoothed unconstrained approximation is given as follows.{

min 1
m

∑m
i=1 Eξi [ f̃i(x, ξi) ]

subject to x ∈ ∩m
i=1Xi.

}
≡
{min 1

m

∑m
i=1[Eξi [ f̃i(x, ξi) ] + IXi

(x)︸ ︷︷ ︸
Indicator function

] }
Smoothing
≈

{
min 1

m

∑m
i=1 Eui ∈B[Eξi [ f̃i(x+ ηui, ξi) ]]︸ ︷︷ ︸

Convolution smoothing

+ IηXi
(x)︸ ︷︷ ︸

Moreau smoothing

}
. (FLη

nn)

If f is as defined in (FLnn) and d(x) ≜ 1
m

∑m
i=1 IXi

(x), then f and its smoothing fη are defined as

f(x) ≜ f(x) + d(x) and fη(x) ≜ fη(x) + dη(x), (1)

where fη(x) ≜ 1
m

m∑
i=1

[Eui ∈B[Eξi [ f̃i(x+ ηui, ξi) ]]] and dη(x) ≜ 1
m

m∑
i=1

IηXi
(x).
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(i) Clarke-stationarity. Consider the original problem (FLnn). Under the assumption that the
objective of (FLnn) is Lipschitz continuous, then Clarke-stationarity of x w.r.t. (FLnn) requires that
x satisfies 0 ∈ ∂f(x) +N∩m

i=1Xi(x), where ∂f(x) represents the Clarke generalized gradient [3]
of f at x. However, a negative result has been provided regarding the efficient computability of an
ϵ-stationary solution in nonsmooth nonconvex regimes [56]. Consequently, we focus on the smoothed
counterpart (FLη

nn), a smooth nonconvex problem. In fact, under suitable conditions, it can be shown
that stationary point of (FLη

nn) is a 2η-Clarke stationary point of the original problem, i.e.

[ 0 ∈ ∂fη(x) ] =⇒ [ 0 ∈ ∂2ηf(x) ], (2)

where ∂2ηf(x) represents the 2η-Clarke generalized gradient of f at x.

(ii) Meta-scheme for efficient resolution of (FLη
nn). We develop zeroth-order stochastic gradient

schemes for resolving (FLη
nn). This requires a zeroth-order gradient estimator for fη(x), denoted by

1
m

∑m
i=1 g

η
i (x, ξi, vi) where vi ∈ ηS for i ∈ [m] and S denotes the surface of the unit ball. Note that

the Moreau smoothing of the indicator function of Xi, denoted by IηXi
(x), admits a gradient, defined

as ∇xIηXi
(x) = 1

η (x− PXi(x)), where PXi(x) ≜ argmin
y∈Xi

∥y − x∥2. The resulting meta-scheme is

defined next.

xk+1 = xk − γ
(

1
m

∑m
i=1

(
gηi (xk, ξi,k, vi,k) +

1
η (xk − PXi

(xk))
))

, k ≥ 0. (Meta-ZO)

(iii) Inexact implicit generalizations for (FLbl) and (FLmm). In addressing the bilevel problem,
unlike in (FLnn), the clients in (FLbl) may not have access to the exact evaluation of the implicit
local objective f̃i(•, y(•), ξi). This makes a direct extension of FL schemes challenging. This is
because the evaluation of the implicit local function necessitates exact resolution of the lower-level
problem. We address this challenge by developing inexact implicit variants of the zeroth-order
scheme, where clients compute only an ε-approximation of y(x), denoted by yε(x) in a federated
fashion. This inexact framework, described next, is crucial in addressing hierarchy in bilevel FL
formulations. Let fη

i (•) denote the smoothed implicit local function. We estimate ∇xf
η
i (x) by

approximating the expectation by sampling in (a.1), as follows, while in (a.2), we replace y(x) by
an inexact form yε(x). This leads to the introduction of gη,εi (x, ξ, v) as captured below.

∇xf
η
i (x) = Eξi,v [g

η
i (x, ξi, v)]︸ ︷︷ ︸

cannot be tractably evaluated

(a.1)
≈ gηi (x, ξi,k, vTr

)︸ ︷︷ ︸
intractable since y(x) is unavailable

(a.2)
≈ gη,εi (x, ξi,k, vTr

),

where k is the local time index, Tr is the global time index of communication round r (k ≥ Tr),
and gη,εi (x, ξ, v) ≜ n

η (f̃ i(x + v, yε(x + v), ξ) − f̃ i(x, yε(x), ξ))
v

∥v∥ denotes an inexact implicit
zeroth-order gradient. Note that at each round of communication at the upper level, yε(x) can be
computed using calls to a standard FL method, e.g., FedAvg, in the lower level. Notably, such calls
to an FL oracle should be made only at the global step to preserve the communication efficiency of
the scheme. It follows that gη,εi (x, ξi,k, vTr

) = ∇xf
η
i (x) + ẽi,ε where the approximation error ẽi,ε

is a possibly biased random variable. This bias can be then controlled by carefully by updating the
accuracy level ε at each communication round, as we will address in this work.

1.2 Contributions

Our goal lies in extending (Meta-ZO) to federated nonsmooth nonconvex optimization and then
provide generalizations to bilevel and minimax regimes. In each instance, we intend to provide
iteration and communication-complexity bounds for computing an ϵ-accurate η-Clarke stationary
point of the original problem. Accordingly, we make the following contributions.

(i) FL for nondifferentiable nonconvex problems. To address (FLnn) with heterogeneous datasets, we
develop a Randomized Zeroth-Order Locally-Projected Federated Averaging method (FedRZOnn).
We derive iteration complexity of O

(
1

mϵ2

)
and communication complexity of O

(
m3/4K3/4

)
for

computing an approximate Clarke stationary point. Such guarantees appear to be new in the context
of resolving nondifferentiable nonconvex FL problems, e.g. in training of ReLU neural networks
(see Table 2). This is distinct from existing zeroth-order methods, including FedZO [12], that rely on
differentiability and L-smoothness of the local loss functions.

(ii) Federated bilevel optimization. In addressing (FLbl), we develop FedRZObl, an inexact implicit
extension of FedRZOnn. By skipping local calls to the lower-level FL oracle, FedRZObl is a
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Table 1: Communication complexity for nonsmooth nonconvex, bilevel, and minimax FL problems.
K and K̃ denote the maximum number of iteration used in upper level and lower level, respectively.

heterogeneous upper level (this work) lower level (standard FL schemes are employed) total for bilevel and minimax (this work)

O
(
(mK)

3
4

)
(Prop. 1, Thm. 1)

i.i.d. (Local SGD [26]) O (m) O
(
m

7
4 K

3
4

)
i.i.d. (FedAC [54]) O

(
m

1
3

)
O
(
m

13
12 K

3
4

)
heterogeneous (LFD [20]) O

(
m

1
3 K̃

1
3

)
O
(
(mK)

11
12

)

novel communication-efficient FL scheme with single-timescale local steps, resulting in significant
reduction in communication overhead. Table 1 summarizes the communication complexity of this
scheme. In all cases, we assume heterogeneous data at the upper level. In the lower level, depending
on which conventional FL scheme is employed, we obtain the communication complexity accordingly.

(iii) Federated minimax optimization. FedRZObl can be employed for addressing (FLmm) where
h̃i := −f̃i. As such, the complexity results in (ii) hold for solving (nondifferentiable nonconvex)-
(strongly concave) FL minimax problems. Such results are new for this class of FL problems.
Remark 1. There has been recent progress in addressing bilevel and minimax problems in FL,
including Local SGDA and FedNest [48, 43]. Our work in (ii) and (iii) has two main distinctions
with existing FL methods, described as follows. (1) We do not require the differentiability and L-
smoothness of the implicit objective function. This assumption may fail to hold, e.g., in constrained
hierarchical FL problems. (2) The existing FL methods for bilevel and minimax problems assume
that the lower-level problem is unconstrained. In fact, even in centralized regimes, addressing
hierarchical problems where the lower-level constraints depend on x have remained challenging.
For example, consider the problem minx∈[−1,1] maxy∈[−1,1], x+y≤0 x2 + y that admits a unique
solution (x∗, y∗) = (0.5,−0.5). Now consider a reversal of min and max in this problem, i.e.,
maxy∈[−1,1] minx∈[−1,1], x+y≤0 x2 + y, admitting the unique solution (x∗, y∗) = (−1, 1). As a
consequence, the well-known primal-dual gradient methods, that have been extensively employed for
addressing minimax problems with independent constraint sets, may fail to converge to a saddle-point
in minimax problems with coupling constrains. Our proposed algorithmic framework allows for
accommodating these challenging problems in FL.

2 Related work
Table 2: Comparison of our scheme with other FL schemes for nonconvex settings
Ref. Nonconvex Metric Rate Comm. rounds Assumption

[53] Smooth ∥∇xf(x)∥2 O
(

G2
√

mK

)
O
(
m3/4K3/4

) Bounded gradients,
L-smooth functions

[50] Smooth ∥∇xf(x)∥2 O
(

1√
mK

)
O
(
m3/2K1/2

)
L-smooth functions

[18] Smooth, PL-cond f(x) − f∗ O
(

1
mK

)
O
(
m1/3K1/3

)
L-smooth functions, PL-condition

This work Nonsmooth ∥∇xfη(x)∥2 O
(

1√
mK

)
O
(
m3/4K3/4

)
Lipschitz functions

(i) Nondifferentiable nonconvex optimization. Nonsmooth and nonconvex optimization has
been studied extensively with convergence guarantees to Clarke-stationary points via gradient sam-
pling [1, 2] and difference-of-convex approaches [5]. Most complexity and rate guarantees necessitate
smoothness of the nonconvex term [14, 51, 8, 9, 28] or convexity of the nonsmooth term [13], while
only a few results truly consider nonsmooth nonconvex objective function [32, 4, 42]. (ii) Nondiffer-
entiable nonconvex federated learning. The research on FL was initially motivated by decentralized
neural networks where local functions are nondifferentiable and nonconvex [34]. Nevertheless, theo-
retical guarantees that emerged after FedAvg required either nonsmooth convex or smooth nonconvex
local costs, under either iid [46, 58, 50, 47] or non-iid datasets [30, 26], while provable guarantees for
FL methods under nonconvexity [58, 53, 19] require L-smoothness of local functions. Unfortunately,
these assumptions do not hold either for ReLU neural networks or risk-averse learning and necessitate
the use of Clarke calculus [3]. Moreover, existing work on zeroth-order FL methods in convex [31]
and nonconvex settings [12] rely on the smoothness properties of the objective function. However,
there appear to be no provably convergent FL schemes with complexity guarantees for computing
approximate Clarke stationary points of nondifferentiable nonconvex problems. (iii) Federated
bilevel optimization. Hyperparameter tuning [21] and its federated counterpart [23] is a crucial,
and yet, computationally complex integrant of machine learning (ML) pipeline. Bilevel models
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where the lower-level is a parameterized training model while the upper-level requires selecting
the best configuration for the unknown hyperparameters [15, 22, 49]. Solving such hierarchical
problems is challenging because of nondifferentiable nonconvex terms and absence of an analytical
form for the implicit objective. These challenges exacerbate the development of provable guarantees
for privacy-aware and communication-efficient schemes. (iv) Federated minimax optimization.
Minimax optimization has assumed relevance in adversarial learning [17, 40, 44] and fairness in ML
[57], amongst other efforts. Recently, FL was extended to distributed minimax problems [36, 10, 43],
but relatively little exists in nonconvex-strongly concave settings [48, 43].

3 A Zeroth-order FL Framework for Nondifferentiable Nonconvex Settings

In this section, we introduce our framework for (FLnn), where we impose the following assumption.

Assumption 1. Consider problem (FLnn). The following hold.

(i) The function fi is Lipschitz continuous with parameter L0 > 0 for all i ∈ [m].

(ii) For any i ∈ [m], client i has access to a zeroth-order oracle f̃i(x, ξi) satisfying the following for
every x in an almost-sure sense:

(ii-a) E[f̃i(x, ξi) | x] = fi(x); (ii-b) There exists ν > 0 such that E[|f̃i(x, ξi)− fi(x)|2 | x] ≤ ν2.

(iii) The set Xi is nonempty, closed, and convex for all i ∈ [m]. In addition, the following bounded
set-dissimilarity condition holds for all x ∈ Rn and some scalars B1 and B2.

1
m

∑m
i=1 dist2(x,Xi) ≤ B2

1 +B2
2

∥∥x− 1
m

∑m
i=1 PXi(x)

∥∥2 . (3)

We note that the bounded set-dissimilarity condition is naturally analogous to the so-called bounded
gradient-dissimilarity condition that has been employed in the literature, e.g., in [25]. In particular,
when the bounded gradient-dissimilarity condition is stated for the Moreau smoothing of the indicator
function of Xi, denoted by IηXi

(x), we reach to (3). Notably, condition (3) holds for the generated
iterates by the algorithm when, for example, the iterates remain bounded.

Nonsmooth unconstrained reformulation. Consider an unconstrained reformulation of (FLnn)
given by minx∈Rn f(x) (see (1)), where the nonsmoothness of f arises from that of f and the
local indicator functions IXi

. The minimization of f is challenging, as noted by recent findings on
nonsmooth analysis where it is shown [56] that for a suitable class of nonsmooth functions, computing
an ϵ-stationary point, i.e., a point x̄ for which dist(0n, ∂f(x̄)) ≤ ϵ, is impossible in finite time.

Approximate Clarke stationarity. To circumvent this challenge, as a weakening of ϵ-stationarity, a
notion of (δ, ϵ)-stationarity is introduced [56] for a vector x̄ when dist(0n, ∂δf(x̄)) ≤ ϵ, where the set

∂δf(x) ≜ conv {ζ : ζ ∈ ∂f(y), ∥x− y∥ ≤ δ}

denotes the δ-Clarke generalized gradient of f at x [16]; i.e. if x is (δ, ϵ)-stationary, then there exists
a convex combination of gradients in a δ-neighborhood of x that has a norm of at most ϵ [41].

This discussion naturally leads to the following key question: Can we devise provably convergent FL
methods for computing approximate Clarke stationary points of minimization of f? The aim of this
section is to provide an affirmative answer to this question by proposing a zeroth-order FL method
that employs smoothing. To contend with the nonsmoothness, we employ the Moreau-smoothed
variant of IX(x), where X ≜

⋂m
i=1 Xi, and a randomized smoothed variant of f , as shown next.

Randomized smoothing of loss function. To smoothen the loss function f , we employ a randomized
smoothing approach where the smoothing parameter is maintained as sufficiently small. This
framework is rooted in the seminal work by Steklov [45], leading to progress in both convex [27, 52,
11] and nonconvex [37] regimes. We consider a smoothing of f , given by fη defined as fη(x) ≜
Eu∈B[f(x+ηu)], where u is a random vector in the unit ball B, defined as B ≜ {u ∈ Rn | ∥u∥ ≤ 1}.
Further, we let S denote the surface of the ball B, i.e., S ≜ {v ∈ Rn | ∥v∥ = 1} and ηB and ηS
denote a ball with radius η and its surface, respectively.

Lemma 1 (Randomized spherical smoothing). Let h : Rn → R be a given continuous function and
define hη(x) ≜ Eu∈B [h(x+ ηu)] . Then, the following hold.

5



(i) hη is continuously differentiable and ∇hη(x) =
(

n
η

)
Ev∈ηS[h(x+ v) v

∥v∥ ] for any x ∈ Rn.

Suppose h is Lipschitz continuous with parameter L0 > 0. Then, the following statements hold.

(ii) |hη(x)− hη(y)| ≤ L0∥x− y∥ for all x, y ∈ Rn; (iii) |hη(x)− h(x)| ≤ L0η for all x ∈ Rn; (iv)
∥∇hη(x)−∇hη(y)∥ ≤ L0n

η ∥x− y∥ for all x, y ∈ Rn. □

The discussion leads to the consideration of the following smoothed federated problem.
Definition 1 (Unconstrained smoothed approximate problem). Given η > 0, consider an uncon-
strained smoothed problem given as

min
x∈Rn

fη(x)
{
≜ 1

m

∑m
i=1 f

η
i (x)

}
,where fηi (x) ≜ Eξi,ui∈B[f̃i (x+ ηui, ξi)] +

1
2ηdist2(x,Xi).

(4)

Algorithm 1 Randomized Zeroth-Order Locally-Projected Federated Averaging (FedRZOnn)

1: input: Server chooses a random initial point x̂0 ∈ X , stepsize γ, smoothing parameter η,
synchronization indices T0 := 0 and Tr ≥ 1, where r ≥ 1 is the communication round index

2: for r = 0, 1, . . . do
3: Server broadcasts x̂r to all clients: xi,Tr := x̂r, ∀i ∈ [m]
4: for k = Tr, . . . , Tr+1 − 1 do in parallel by clients
5: Client i generates the random replicates ξi,k ∈ Di and vi,k ∈ ηS
6: gηi,k := n

η2

(
f̃i(xi,k + vi,k, ξi,k)− f̃i(xi,k, ξi,k)

)
vi,k

7: Client i does a local update as xi,k+1 := xi,k − γ
(
gηi,k + 1

η (xi,k − PXi(xi,k))
)

8: end for
9: Server receives xi,Tr+1

from all clients and aggregates, i.e., x̂r+1 := 1
m

∑m
i=1 xi,Tr+1

10: end for

To address (4), we propose FedRZOnn given by Algorithm 1. Here, client i employs a zeroth-order
stochastic gradient of the form gηi,k ≜ n

η2

(
f̃i(xi,k + vi,k, ξi,k)− f̃i(xi,k, ξi,k)

)
vi,k, augmented by

the gradient of the Moreau smoothed function. The random sample vi,k ∈ ηS is locally generated
by each client i, allowing for randomized smoothing. This is indeed in view of Lemma 1 (i) that
facilitates the development of a randomized zeroth-order gradient.

We define x̄k ≜
∑m

i=1 xi,k

m as an auxiliary sequence to denote the averaged iterates of the clients.
Definition 2. Consider Algorithm 1. Let H > 0 denote an upper bound on the number of local steps
per round, i.e., H ≥ maxr=0,1,... |Tr+1 − Tr|. Throughout, we assume that H is finite.
Proposition 1. Consider Algorithm 1. Let Assumption 1 hold.

(i) [Error bound] Suppose γ ≤ min
{

η
4L0n

, 1
4H , η

12
√
3B2(L0n+1)H

}
. Let k∗ denote an integer drawn

uniformly at random from {0, . . . ,K} and fη,∗ ≜ infx f
η(x). Then,

E
[
∥∇fη(x̄k∗)∥2

]
≤ 8(E[fη(x̄0)]−fη,∗)

γ(K+1) + 12γL0n
3

ηm

(
2ν2

η2 + L2
0

)
+ 36H2γ2(L0n+1)2

η2

(
6n2ν2+2B2

1

η2 + (3 + 4B2
2)L

2
0n

2
)
.

(ii) [Iteration complexity] Let γ :=
√

m
K and H :=

⌈
4

√
K
m3

⌉
where η > 0. Let ϵ > 0 be an arbitrary

scalar and Kϵ denote the number of iterations such that E
[
∥∇fη(x̄k∗)∥2

]
≤ ϵ. Then, the iteration

complexity is Kϵ := O
((

L0n
3ν2

η3 +
L3

0n
3

η +
L2

0n
4ν2

η4 +
L2

0n
2B2

1

η4 +
B2

2L
4
0n

4

η2

)2
1

mϵ2

)
.

(iii) [Communication complexity] Suppose Kϵ ≥ m3. Then, the number of communication rounds
to achieve the accuracy level in (ii) is R := O

(
(mKϵ)

3/4
)
.

We now formally relate the original nonsmooth problem and its smoothed counterpart.
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Proposition 2. Consider problem (4) and let Assumption 1 hold.

(i) Assume that Xi = Rn for all i ∈ [m]. Then, for any η > 0, we have ∇fη(x) ∈ ∂2ηf(x).

(ii) Assume that the sets Xi are identical for all i ∈ [m]. Let δ > 0 be an arbitrary scalar. If
∇fη(x) = 0 and η ≤ δ

max{2,nL0} , then 0n ∈ ∂δ (f + IX) (x).

4 Extensions to Bilevel and Minimax FL
4.1 Nondifferentiable nonconvex bilevel FL. In this section, we consider the federated bilevel
optimization problem defined earlier as (FLbl). We consider the following smoothed implicit problem.

Definition 3 (Unconstrained smoothed implicit problem). Given η > 0, consider an unconstrained
smoothed implicit problem given as

min
x∈Rn

fη(x)
{
≜ 1

m

∑m
i=1

(
Eξi,u∈B[f̃i (x+ ηu, y(x+ ηu), ξi)] +

1
2ηdist2(x,Xi)

)}
. (5)

Assumption 2. Consider problem (FLbl). Let the following assumptions hold.

(i) For all i ∈ [m], f̃i(•, y, ξi) is Lf
0,x(ξi)-Lipschitz for any y and f̃i(x, •, ξi) is Lf

0,y(ξi)-Lipschitz

for any x, where Lf
0,x ≜ max

i=1,...,m

√
E[(Lf

0,x(ξi))
2] < ∞ and Lf

0,y ≜ max
i=1,...,m

√
E[(Lf

0,y(ξi))
2] < ∞.

(ii) For all i ∈ [m], for any x, hi(x, •) is Lh
1,y-smooth and µh-strongly convex. Further, for any y,

the map ∇yhi(•, y) is Lipschitz continuous with parameter L∇h
0,x .

(iii) The sets Xi, for i ∈ [m], satisfy Assumption 1 (iii).

The outline of FedRZObl is presented in Algorithm 2. We make the following remarks: (i) At each
global step, the server makes two calls to a lower-level FL oracle to inexactly compute y(x̂r + vTr

)
and y(x̂r). These lower-level FL calls are performed by the same clients, on the lower-level FL
problem. (ii) The inexactness error is carefully controlled by terminating the lower-level FL oracle
after O(r) number of iterations, where r denotes the upper-level communication round index. (iii)
FedRZObl skips the calls to the lower-level FL oracle during the local steps. To accommodate this,
unlike in FedRZOnn, here we employ a global randomized smoothing denoted by vTr

during the
communication round r in the upper level.

Algorithm 2 Randomized Implicit Zeroth-Order Federated Averaging (FedRZObl)

1: input: Server chooses a random x̂0 ∈ X , stepsize γ, smoothing parameter η, synchronization
indices T0 := 0 and Tr ≥ 1, where r ≥ 1 is the upper-level communication round index

2: for r = 0, 1, . . . do
3: Server generates a random replicate vTr ∈ ηS
4: Server calls FedAvg to receive yεr (x̂r + vTr

) and yεr (x̂r), denoting the inexact evaluations
of y(x̂r + vTr

) and y(x̂r), respectively.
5: Server broadcasts x̂r, x̂r + vTr

, yεr (x̂r), and yεr (x̂r + vTr
) to all clients; xi,Tr

:= x̂r, ∀i
6: for k = Tr, . . . , Tr+1 − 1 do in parallel by clients
7: Client i generates the random replicates ξi,k ∈ Di

8: gη,εri,k := n
η2

(
f̃i(xi,k + vTr

, yεr (x̂r + vTr
), ξi,k)− f̃i(xi,k, yεr (x̂r), ξi,k)

)
vTr

9: Client i does a local update as xi,k+1 := xi,k − γ
(
gη,εri,k + 1

η (xi,k − PXi
(xi,k))

)
10: end for
11: Server receives xi,Tr+1 from all clients and aggregates, i.e., x̂r+1 := 1

m

∑m
i=1 xi,Tr+1

12: end for

Theorem 1 (FedRZObl when using an arbitrary inexact FL method for lower-level). Consider
Algorithm 2. Let Assumption 2 hold, k∗ be chosen uniformly at random from 0, . . . ,K := TR − 1,

and γ ≤ min

{
max{2,√0.1Θ3,4B2

√
3Θ2,4B2

√
3Θ3}−1

4H , η

24(L
imp
0 n+1)

}
. Let εr denote the inexactness in

obtaining the lower-level solution, i.e., E
[
∥yεr (x)− y(x)∥2 | x

]
≤ εr for x ∈ ∪R

r=0{x̂r, x̂r + vTr
}.
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(i) [Error bound] We have

E
[
∥∇fη(x̄k∗)∥2

]
≤ 8(γK)−1(E [fη(x0)]− fη,∗) + 8γΘ1

m + 8H2γ2 max{Θ2,Θ3}Θ5

+ 8
(
H2γ2 max{Θ2,Θ3}Θ4 +Θ3

)
H

∑R−1
r=0 εr
K ,

where Θ1 :=
3(L

imp
0 n+1)n2

2η (Limp
0 )2, Θ2 :=

5(L
imp
0 n+1)2

8η2 ,Θ3 :=

(
L∇h

0,x

µh

)2
20n2

η2 (Lf
0,y)

2,

Θ4 := 96n2

η2 (Lf
0,y)

2, and Θ5 :=
48B2

1

η2 + (96B2
2 + 1)(Limp

0 )2n2.

(ii) [Iteration complexity] Let γ :=
√

m
K and H :=

⌈
4

√
K
m3

⌉
where η > 0. Let ϵ > 0 be an arbitrary

scalar and Kϵ denote the number of iterations such that E
[
∥∇fη(x̄k∗)∥2

]
≤ ϵ. Also, suppose we em-

ploy an FL method in the lower level that achieves a sublinear convergence rate with a linear speedup
in terms of the number of clients, i.e., εr := Õ( 1

mT̃R̃r

) where R̃r denotes the number of communica-

tion rounds performed in the lower-level FL method when it is called in round r of FedRZObl and T̃R̃r

denotes the number of iterations performed in the lower-level FL scheme to do R̃r rounds of upper-
level communication. Further, suppose T̃R̃r

:= Õ
(
m−1(r + 1)

2
3

)
. Then, the iteration complexity of

FedRZObl (upper level) is Kϵ := Õ
((
Θ2

1 +max{Θ2,Θ3}2Θ2
5 +max{Θ2,Θ3}2Θ2

4 +Θ2
3

)
1

mϵ2

)
.

(iii) [Communication complexity] Suppose Kϵ ≥ m3. Then, the number of communication rounds
in FedRZObl (upper-level only) to achieve the accuracy level in (ii) is R := O

(
(mKϵ)

3/4
)
.

Remark 2. (i) Importantly, Theorem 1 is equipped with explicit communication complexity R :=
O
(
(mKϵ)

3/4
)
, matching that of single-level nonsmooth nonconvex problems in Proposition 1. This

implies that as long as the lower-level FL oracle has a rate of εr := Õ( 1
mT̃R̃r

), the inexactness does

not affect the communication complexity bounds of the method in the upper level.

(ii) As noted in the assumptions, in the upper level, we allow for heterogeneity. To elaborate on
overall communication complexity of FedRZObl, we provide detailed complexity results in Table 1
for three cases, where we employ Local SGD [26], FedAC [54], and LFD [20] for the lower-level
scheme. All these schemes meet the linear speedup condition in Theorem 1. Notably, among these
schemes, the last scheme allows for the presence of heterogeneity. As an example, we present in
Algorithm 3, the outline of FedAvg, if employed in step 4 of Algorithm 2.

Algorithm 3 FedAvg (x, r, y0,r,m, γ̃, H̃, T̃R̃) for lower level

1: input: x, r, server chooses a random initial point ŷ0 := y0,r ∈ Rñ, ar := max{m, 4κh, r}+ 1

where κh :=
Lh

1,y

µh
, γ̃ := 1

µhar
, T̃R̃r

:= 2ar ln(ar), and H̃ := ⌈ T̃R̃r

m ⌉
2: for r̃ = 0, 1, . . . , R̃r − 1 do
3: Server broadcasts ŷr̃ to all agents: yi,T̃r̃

:= ŷr̃, ∀i
4: for t = T̃r̃, . . . , T̃r̃+1 − 1 do in parallel by agents
5: Agent i does a local update as yi,t+1 := yi,t − γ̃∇yhi(x, yi,t, ξ̃i,t)
6: Agent i sends xi,Tr+1 to the server
7: end for
8: Server aggregates, i.e., ŷr̃+1 := 1

m

∑m
i=1 yi,Tr̃+1

9: end for

(iii) We use Limp
0 (ξi) to denote the Lipschitz continuity constant of the random local implicit function

f̃i(x, y(x), ξi), and let Limp
0 ≜ maxi=1,...,m

√
E[(Limp

0 (ξi))2] < ∞. As shown in supplementary
material, Limp

0 (ξi) can be obtained explicitly in terms of problem parameters.

Remark 3. A technical challenge in designing Algorithm 2 is that an inexact evaluation of y(x) must
be avoided during the local steps. This is because we consider bilevel problems of the form (FLbl)
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where both levels are distributed. Because of this, the inexact evaluation of y(x) by each client in the
local step in the upper level would require significant communications that is undesirable in the FL
framework. We carefully address this challenge by introducing delayed inexact computation of
y(x). In step 8 of Algorithm 2, we note how yε is evaluated at x̂r + vTr

which is a different than the
vector used by the client, i.e., xi,k + vTr

. At each communication round in the upper level, we only
compute y(x) inexactly twice in the global step and then use this delayed information in the local
steps. This delayed inexact computation of y renders a challenge in the convergence analysis which
makes the design and analysis of Algorithm 2 a non-trivial extension of Algorithm 1.

4.2 Nondifferentiable nonconvex-strongly concave minimax FL. Next, we consider the decentral-
ized federated minimax problem of the form (FLmm) introduced earlier. This problem is indeed a
zero-sum game and can be viewed as an instance of the non-zero sum game (FLbl) where h̃i := −f̃i.

Corollary 1. Consider Algorithm 2 for solving (FLmm). Let Assumption 2 hold for h̃i := −f̃i and
Di := D̃i. Then, all the results in Theorem 1 hold true.

5 Experiments

We present three sets of experiments to validate the performance of the proposed algorithms. In
Section 5.1, we implement Algorithm 1 on ReLU neural networks (NNs) and compare it with some
recent FL methods. In Sections 5.2 and 5.3 we implement Algorithm 2 on federated hyperparameter
learning and a minimax formulation in FL. Throughout, we use the MNIST dataset. Additional
experiments on a higher dimensional dataset (i.e., Cifar-10) are presented in supplementary material.

Setting (S1) with η = 0.1 (S2) with η = 0.01 (S3) with η = 0.001
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Figure 1: Performance of FedRZOnn on a single-layer ReLU NN in terms of communication rounds
for different no. of local steps and different values of the smoothing parameter η. FedRZOnn benefits
from larger number of local steps and shows robustness with respect to the choice of η.

5.1 Federated training of ReLU NNs. We implement FedRZOnn for federated training in a
single-layer ReLU NN with N1 neurons. This is a nondifferentiable nonconvex optimization
problem, aligning with (FLnn) and taking the form minx:=(Z,w)∈X

1
2m

∑m
i=1

∑
ℓ∈Di

(vi,ℓ −∑N1

q=1 wqσ(Z•,qUi,ℓ))
2+ λ

2

(
∥Z∥2F + ∥w∥2

)
, where m denotes the number of clients, Z ∈ RN1×N0 ,

w ∈ RN1 , N0 is the feature dimension, Ui,ℓ ∈ RN0 and vi,ℓ ∈ {−1, 1} are the ℓth input and output
training sample of client i, respectively, σ(x) := max{0, x}, and λ is the regularization parameter.

Setup. We distribute the training dataset among m := 5 clients and implement FedRZOnn for
the FL training with N1 := 4 neurons under three different settings for the smoothing parameter,
η ∈ {0.1, 0.01, 0.001}, γ := 10−5, and λ := 0.01. We study the performance of the method under
different number of local steps with H ∈ {1, 5, 10, 20}.

Results and insights. Figure 1 presents the first set of numerics for FedRZOnn under the aforemen-
tioned settings. In terms of communication rounds, we observe that the performance of the method
improves by using a larger number of local steps. In fact, in the case where H := 1, FedRZOnn
is equivalent to a parallel zeroth-order SGD that employs communication among clients at each
iteration, resulting in a poor performance, motivating the need for the FL framework. In terms of
η, while we observe robustness of the scheme in terms of the original loss function, we also note
a slight improvement in the empirical speed of convergence in early steps, as η increases. This is
indeed aligned with the dependence of convergence bound in Proposition 1 on η.
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Comparison with other FL methods. While we are unaware of other FL methods for addressing
nondifferentiable nonconvex problems, we compare FedRZOnn with other FL methods including
FedAvg [34], FedProx [29], FedMSPP [55], and Scaffnew [35] when applied on a NN with a smooth
rectifier. Details of these experiments are provided in the supplementary material.

5.2 Federated hyperparameter learning. To validate FedRZObl, we consider the following FL
hyperparameter learning problem for binary classification using logistic loss.

min
x∈X, y∈Rn

f(x, y) ≜ 1
m

∑m
i=1

∑
ℓ∈Di

log
(
1 + exp(−vi,ℓU

T
i,ℓy)

)
subject to y ∈ arg min

y∈Rn
h(x, y) ≜ 1

m

∑m
i=1(

∑
ℓ̃∈D̃i

log
(
1 + exp(−vi,ℓ̃U

T
i,ℓ̃
y)
)
+ xi

∥y∥2

2 ),

where m is number of clients, x denotes the regularization parameter for client i, Ui,ℓ ∈ Rn and
vi,ℓ ∈ {−1, 1} are the ℓth input and output testing sample of client i, respectively, Ui,ℓ′ ∈ Rn and
vi,ℓ′ ∈ {−1, 1} are the ℓ′th input and output training sample of client i, respectively. The constraint
set X is considered as X := {x ∈ Rm | x ≥

¯
µ1m}, where

¯
µ > 0. This problem is an instance of

(FLbl), where the lower-level problem is ℓ2-regularized and the regularization parameter is a decision
variable of the upper-level FL problem. The convergence results are presented in Fig. 2 (left).

5.3 Fair classification learning. Here, we study the convergence of FedRZObl in minimax FL. We
consider solving an FL minimax formulation of the fair classification problem [39] of the form

min
x∈Rn

max
y∈Rc

1
m

∑m
i=1

∑C
c=1

∑
ℓ∈Di,c

(vi,ℓ −
∑N1

q=1 wqσ(Z•,qUi,ℓ))
2 − λ

2 ∥y∥
2,

where c denotes the class index and Di,c denotes the a portion of local dataset associated with
client i that is comprised of class c samples. The loss function follows the same formulation in
Section 5.1, where an ReLU neural network is employed. This problem is nondifferentiable and
nonconvex-strongly concave, fitting well with the assumptions in our work in addressing minimax FL
problems. The performance of our algorithm is presented in Figure 2 (right).
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Figure 2: (Left) Convergence of FedRZObl in hyperparameter FL for ℓ2 regularized logistic loss,
where we plot the loss function on test data for different values of local steps with 95% CIs. (Right)
Convergence of FedRZObl in minimax FL, where we present test results in solving a nondifferentiable
nonconvex-strongly concave FL minimax formulation of the fair classification problem [39].

6 Concluding Remarks

Federated learning has assumed growing relevance in ML. However, most practical problems are char-
acterized by the presence of local objectives, jointly afflicted by nonconvexity and nondifferentiability,
precluding resolution by most FL schemes, which can cope with nonconvexity in only smooth settings.
We resolve this gap via a zeroth-order communication-efficient FL framework that can contend with
both nondifferentiability and nonsmoothness with rate and complexity guarantees for computing
approximate Clarke-stationary points. Extensions to nonconvex bilevel and nonconvex-strongly
concave minimax settings are developed via inexact generalizations.
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