Supplementary Material

The supplementary material is organized as follows. First, we prove Proposition [I|and Theorem 1}
We then provide some details on the overall communication complexity of FedRZO,,;. Lastly, we
present some additional numerical experiments.

A Proof of Proposition I

In this section we prove Proposition[I] and some preliminary lemmas. Before going into the proof
details, we introduce some basic notation for clarity.

A.1 Notation in proofs

Definition 4. Let the function d;(z) be defined as d (z) £ %dist2 (z, X;). Let x; j, be given by
Algorithmfor all ¢ € [m] and k > 0. Let us define the following terms:

. 1
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Here, 7}, is an auxiliary sequence that denotes the average iterates of the clients at any iteration k£ and
€ denotes an average consensus error at that iteration.

We will make use of the following notation for the history of the method. Let Fy = {Zo} and
Fp 22U, Ut 0 {flt,v”} U{#o}, forallk > 1.

Throughout, we assume that the ith client generates i.i.d. random samples &; € D, and v; € 7S.
These samples are assumed to be independent across clients.

We use O(-) to denote the big O notation and O(-) to denote a variation of O(-) that ignores
polylogarithmic and constant numerical factors.

A.2 Preliminary results

Proof of Lemmal[ll

Proof. (i) By definition, we have that
(&) = Bues b + )] = [ o+ qulp(u)du
B

Let p(u) denote the probablhty density function of w. Since w is uniformly distributed on the unit ball
B, we have that p(u) = for any u € B, where Vol,,(B) denotes volume of n dimensional

unit ball. We obtain

Vol (B)

B g (@ +nu)du
—/Bh(x—l—nu) u)du = BVOW

Next we compute the derivative V,h"(z) by leveraging Stoke’s theorem. Let us define p(v) =

m for all v. We have

f]B x+ 77“ du Stoke’s theorem
Vo (z) = v, |2 T AU stk
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(i) We have

Jensen’s ineq.
[h"(x) — B (y)| = [Eueslh(z + nu)] — Euelh(y + nu)]l < Euesllh(z +nu) — h(y + nu)]
<Eues[Lollz — yl]] = Lollz — yl|.
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||th77(x) - vzhn(y) H
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Lot — y)|Byers | f2f] = 2220 - gl
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Remark 4 (Compact local representation of Algorithm . Let us define Z £ {K, K>, ...} where

K, £ T, — 1 forr > 1. The following equation, for k£ > 0, compactly represents the update rules of
Algorithm[T]

m ,d
et (xj,k - (9;7k + v?,k)) , kel

(6)
win = (g0 + Vi) k¢ T

Tik+1 =

Lemma 2. Consider Algorithm[I|and Definition[d, For all k > 0, we have
Tpi1 =2p — (QZ + ?Z’d) :
Proof. Case 1: When k € Z, from equation @ we can write
Tikt1 = 5 gy (xj,k - (g;?’k + V?;f))
= LT i v S o+ VI = 3= (g + V7).
where the last equation is implied by the definition of Z, g; and ?Z’d. Averaging on both sides over
i=1,...,m, we obtain Ty, = Tp, — (g;’ + vZ’d)
Case 2: When k ¢ Z, from equation @) we can write

d
Tikt1 = Tik — V9 p + Vik-

Summing over ¢ = 1,...,m on both sides and then dividing both sides by m, we obtain
.d
o it Tiktl = o Doiey Tik — Vi S (9l + VD).
Invoking Definition 4] we obtain the desired result. O

Lemma 3 (Properties of zeroth-order stochastic local gradient). Let Assumption [hold. Consider
Algorithm Then, the following relations hold for all k¥ > 0 and all ¢ € [m] in an almost-sure sense.

HE [g?,k + VZ’,? | fk] = VI (zi k).
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) E [|lg7, + VI | F| < 12252 4+ 61302 + 2| V1)1

Gii) B [[[(6] ) + Vi) — VE (@in) | | Fe| < 22 + 31307
Proof. (i) From the definition of the zeroth-order stochastic gradient, we can write
n ~ ~
E {gzk | ]:k] =E,, , |:Efk |:772 (fi(wi,k + vk, &ik) — fi(ﬂﬂz',k,&,k)) Vi | Fr U {Ui,k}H
_ o ) _ Lemmaflfi) & empo
= ]Ev,‘,,k ) fz(xz,k + vz,k)vz,k | Fi = vfz (‘Tz,k)~

Adding the preceding equality to V?’,f, noting that V;’f = Vd](z; ), and using equation (@), we
obtain the relation in (i).

(ii) From the definition of g/, and that [|v; .|| = 7, we have
E U

Consider the term |f~l(xzk + ik, i) — f"t(xzk‘) & x)|?. Adding and subtracting f;(x;  + v; 1) and
fi(wi k), we can write

P u{vm}} (20) E [ fiCi + v 60 = fimi, €0 | Fi U {ig}] lon el
= (%ﬁ) E |:|f~2($zk + Vi, k) — fi(iﬁi,k7§¢,k)|2 | Fr U {Ui,k}} -

|f~1<xzk + Uik, Eik) — .]gi(xi,ka En)? < 3|f~z<xlk + Vi, k) — fi(xig +vik)]?
+ 3| filzin +vig) — filwir) >+ 3| filzin) — fi(zir, &in)?.

From the two preceding relations and invoking Assumption I] (ii), we obtain

E |

Taking expectations with respect to v; ;, on both sides and invoking Assumption |I| (i), we have

E |

From the preceding relation, we can write

.d
E {Hg:’k + V’,{ :

2
o IFkU{w,k}] 2 (607 + 3| fulwox + vi) — Filwi)]?).

2
ggk“ | ]—'k} < 2 (602 +3L3n7) . %

2| fk} <2E {IIng||2 | fk] +2VIEI? < 2227 4 6L3n? + 2| V12

(iii) Invoking the bounds given by (i) and (7)), and using equation (@), we have
E [ll(gf + V1) = VE @)l | Fe| =B [lgl, + VI = Vi) = VU2 | F
= g}, I2 + IV £ @i I? | F| = 2B g7,V 7 (i) | Fi]
= E [lg7, 12 | Fe| +E [IVA @)l | Fo] = 2B [IVF @ia)l? | Fe] < S22+ 3L8n?
O

Lemma 4 (Aggregated zeroth-order gradient). Let Assumption[TJhold. Consider Algorithm[I] Then,
for all £ > 0, the following results hold almost surely:

) E [lg7 + VR | | <2 (% +3L3) + 2|V (@e) | + 2ertle,
2mn?

) E [VE(2)7 (57 + VI | F] = HIVE@0)l1° — gt SO ik — 2l
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Proof. (i) Using the definition of g}/, we can write
_ . )
B [l + 9317 | 7 =B U\,; Sl + i [ fk} ©
2

emma3|(i) 2 . )
Lemmaf) o [Hm i=1 (gzk +vﬂd _Vf"(xi,k))H | Fi| + |5 S0, VE (@) |
Lemrﬁ@(i) 1 E

= 53

i=1

V) + & S (VE ) — VE )

2
o+ V= )| 7]

N (924 313) 4 2V 2 5 S (VE ) — V@)
Note that given vectors y; € R™ for i € [m], we have |- 37 ;[|> < LS |ly;||2. Utilizing
this inequality together with Lemma [T] (iv), we obtain
E{lgh+ V3 | o] <2 (% +313) + 2| V7@ | + 2L ST g — 2l
Recalling the definition of €, we obtain the required bound.
(i1) We have

E [VE(50)7 (3] + V) | Fi] = VE@0)TE [ S0 6 + V) | o
el O () (5 S VE i)

= VE(z)" L S (VE (wik) — VE(Z1) + VE (Z1))
= V1 (2p)" L Y0 (VE (@) — VE (Z3)) + | VE (28 ||
> — HIVET @) |IP = L || 0, (VE (i) — VE (Z1)) || + | VE ()2

> L|\VE (3|12 — 5k S IVE (i) — VE (7))

Lemmam(l L nal _
LIVET @)l = gt E Sk — >
The bound is obtained by recalling the definition of é. O

Lemma 5. Let Assumption [T hold. Consider Algorithml 1l For any k, we have
LS VIR < 8e + 25 + 483 |[VE (@) |1° + 4B3L3n

Proof. Invoking Definition @] we can write

AL IVEIR = £ SR IV - V@) + V] ()2
< 2NV =Vl @))? + 2 XL 1V @)
= 230 @ik — 3x) — (Px,(ik) = Px, (T + iz 2oy dist® (Zx, X5)
< 8, + oy 2y dist® (Ty, Xi),

where the last inequality is obtained using the nonexpansiveness of the projection operator. Employing
Assumption T] (iii), we obtain

Ly VR < se + 25

Ly P, (@)

2
e+ 2 2 H%z:; 3 1= P )|
2
= 8e, + 250 +2B3 | & 0, V) @)

= 8¢, + 281 1 2B3 || £ 00 (VE (z1) - V@)

< 8éy +

nle +4B3 | VE (@)|* + 483 |V £ (@) I
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Next, we find an upper bound on ||V £ (Z;,)||?. Using the definition of f(z) and invoking Lemma
for any  we have

2 2
IV @I < & S IVA@I = (2) & S0 [Bvemslfito + v g

- (%)E i— 1HE filx +v) — fi(x ))ule]HQ

< (5) & T Elfle + o) - fi@)P)

Aisumpllonm(l) 2
2 2
< (%) & S ELBl) = nL3,
From the two preceding inequalities, we obtain the result. O

Lemma 6. Suppose for 7, + 1 < k < T4, the nonnegative sequences {ay} and {6} satisfy a
recursive relatlon of the form a;, < (k — T;)7? Zt 7. (Bai + 04), where ar,, = 0 and 3 > 0. Then,
ar < Hv? Zt T (BH~? + 1)F=t=1¢, for all T + 1 < k < T},1. Moreover, if 0 < v <

then ar, < 3HA2Y K1 0

fH’

Proof. This can be shown using induction by unrolling a;, < (k—1T,.)v> Zt 7, (Bag+0y) recursively.
The proof is omitted. O

Lemma 7 (Bound on average consensus violation). Consider Algorithm [Tl Let Assumption [I]
hold and let H > 1 be given by Definition[2] Then, for any communication round r > 0, for all
T, <k<T,.41 —1wehave

2. 2 2
Elex] <920k —T) Doy, (258 + (64 8B3)Lan® + 16K [e)] + SBE [|V£1(z0)?])
Moreover, if 0 < v < 1" H, then
2 2
E ] < 3H%? (22058 4 (64 8B3)L3n?) + 24BHA? X4, B [|IVE7(30)]°)]

Proof. In view of Algorithm|[T] for any ¢ at any communication round 7 > 0, forall T, < k < T, 41—1
we have & 11 = ;) — ’y(gzk + VZ’:) Equivalently, we can write

wig=xip — (gl + VL), forall Tp +1 <k < Tryy.
This implies that ’ 7

Tik = TiT, *yz (g”+VI”t) forall T, +1 < k < Tpyq. )

Again from Algonthml we have &, = x; 7,.. From the definition of Z}, we can write 7, = Z,.
This implies that Z7,, = x; 7. for all ¢ and r. In view of Lemma|2|, we have

Te =i, — 7 Sorp (G0 + VP, forall T, +1 <k < Thy1. (10)
Utilizing (@) and (T0), for all 7). + 1 § k < T,,1 we have
Eler | Fr,] = = > B [l@ix — Zl? | Fr,]

15 it o v S @+ 91

IN

2(h—T)) ~~m k-1 d o emd|?
POt i B o+ 92 - @+ e 1 7

where the preceding relation is implied by the inequality || ZtT:l wl> < T ZtT:l lly¢||? for any
yr € R" for ¢t € [T']. We have

_ 2
e Y= [ BT ER S A
:'y(k T)Z an (EU

L (k=T:) Zt Y E {(QZt + Vz%d)T@? +V7Y | fTr} ,

E [ék | ]:TT]

| /\

n n,d
9it+ vi,t

2 fn] +E {Hgy + WvdHQ | fTTD
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Observing that

L5 [l + VT + VY | 7] = o

_ d2
+v?) H |]:Tr 5

we obtain

n n,d
9ir + Vi

Ele, | Fr,] <2 kT)Z DI 1E“

From the law of total expectation, for any T, < t < k — 1, we can write

E U i | ]:TT} =E {E U : | Fr, U (U, UiZT, {fi,t,vi,t})”

:]E[E“ 2|ft”

Lemma3](ii) 12n
< +6L3n2+2|| A

2
| ‘FT7:| :

n n,d n n,d
9ix + Vi Gir + Vi

n n,d
9i T vi,t

From the two preceding relations, we obtain
2 —
Eley | Fr,] < TET il s (1202 4 61302 + 2 V7).
Invoking Lemmal[5} we obtain

Elen | Fr,] <220k = T) Sy, (255 4+ (64 8B3)Lan® + 165, + 8B3 | VE7(2,)]%)

Taking expectations on both sides, we obtain the first result. The second bound is obtained by
invoking Lemma [6] O

A.3  Proof of Proposition ]
Proof. (i) Recall from Lemma [I| that each of the local functions f; is %—smooth. Also, d is
%—smooth. As such, 7 is (%)—smooth. Invoking Lemma we may obtain
£1(Zpy1) < £7(21) — YVE (Z3)T (g,’g + vy;;) Lann?||gh + VI
Taking expectations on both sides, we obtain

B[ (@e11)] < B E7(50)] — 1B [V () (57 + V20| + 520°E ] + V2412

Invoking Lemma[d] we obtain
E[f"(241)] < EIf(20)] - v (3E [IVE(@0)11%] — L5 E fey))
+Lny? (2 (5 4 313) + 2B [|IVET (@) 7] + 2L R gy )

m

Using v < g L — and rearranging the terms, we have

AE[IVE (@) ] < E[7(@0)] ~ B @re)] + T (S +3L8) + 2t E o]

2nm 4n2

Summing both sides over k = 1 = 0,..., K, then dividing both sides by X (K'H)

definition of £*, we obtain

_ £ (z 7 (z n3 2 n 2
E[IVE" (34 )|?] < A CO B Ema) | 2vbon® (62 4 377) 4 SGentll 53 R 6]

, and using the

From Lemma and the definition of k*, we obtain, we have

K = 12n%1% 44 B2
KT Lokeo E[ex] < 3H?? (% + (6 + SBS)Lgn2>
K k—1 _ 2
+UBHY ey Yo Yoy, B[ 987 (20)|

< 3K (R HBL L (64 8B3)L3n?) + 24BFH*E [| V" (34 )

],
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where in the preceding relation, we used

S X E[IVE @] < B E[IVe@l?] -

. . n . . .
Thus, invoking v < T2V3Bs (Lon i E from the preceding relations we obtain

_ (7o) —E[£7* n3 512
E[|Ve(ap )] < AECLEHOD y 2uken® (8 4 513)

2.2 2 2.2 2
- UL oA (L RABE (6 -+ 8B3) Lgn?) + 0.5E [ VE (24-)|)]

Rearranging the terms, we obtain the inequality in part (i).

(ii) Substituting y := /% and H := {/ % in the preceding bound, we obtain

wy, 12Lon® 2 36(Lon+1)? [ 6n°v>+2B7
B(ELF (20)] 7+ 1220 (200 ). (L0t ( 72k (34483 Lin?

_ 2 n n n
E [[|VE"(z-)[]?] < —
. . . . 3 2 L3n3 L2n4y? L2n2B2 B2LA4n4 2
This leads to iteration complexity of O ((LOZSV + 27" + 024” + 0’;4 L4 zng” ) m152>.

cen . . .. . K K
(iii) From the choice of H is (ii), we obtain R = O(£) = O < W) =0 ((mK)>*).
Proof of Proposition 2}

Proof. (1) The proof for this part follows from Proposition 2.2 in [33]].

(ii) From V£"(z) = 0, we have that V () + %(x —Px (z)) = 0. This implies that ||z — Px ()| <
1|V f7(x)||. Next, we obtain a bound as follows.

IV @) < & X2 IV @) = (%)  im1 ‘ Bv.enslfi(® +vi) HZEH}HQ
— () 257, [Eie+ 0 - sl
() A S Bl fur 4 )~ @)

Assumption 1 (i) n? 1 m 2 2 212
S (1) & S I ?) = n2E3

= n m

Thus, the infeasibility of x is bounded as ||« — Px (x)|| < nnLg. Recall that the §-Clarke generalized
gradient of I x at x is defined as

d5Lx () = conv {¢ : ¢ € Nx(y), lz — yll < 6},

where N'x (o) denotes the normal cone of X. In view of ||z — Px(z)|| < nnLg, for y := Px(z)
and n < m, we have ||z — y|| < . Next we show that for ¢ := | (z — Px(z)) we have
¢ € Nx(y). From the projection theorem, we may write

(& = Px(2))" (Px () = 2) 2 0, forallz € X.
This implies that (¥ (y — z) > 0 for all z € X. Thus, we have ¢ € Nx(y) which implies

%(x — Px(z)) € Osl(x). From (i) and that 2 < §, we have Vf7(x) € O0sf(x). Adding the

preceding relations and invoking V£"(x) = 0, we obtain 0 € 95 (f + Ix) ().
O

Remark 5. We note that the approximate Clarke stationary point is also referred to as Goldstein
stationary point. (e.g. [32]])

21



B Proof of Theorem [1]
Here, we prove Theorem ] and provide some preliminary lemmas and their proofs.

B.1 Notation in proofs

k

m

Definition 5. Let x; i, be given by Algorithm for alli € [m] and k > 0. Let d;(x), V;”’]i VAL
and ey, be given by Definition H Let us define an average delay term as éy,
Definition 6. Ler us define the following terms.

9in £ (.fz(xzk +or, y(@ig 4+ vr ), Eik) — fi(@ig, y(zir), &, k)) vT,
07 & (fz'(xi,k + o1, y(&r +v1.), Sik) — ﬂ($i,k7y(ir)7fi,k)) vT,,

gZ’IjT £ 7772 (fl(l‘hk + % yErr(j?T + UTT)? £i7k) - fi(mi,ka yé‘r(jr)a gi,k)) uT,.,

=

<
B3

B
3

n A ~n n n A _1NEr ~1 -n A 1 m n “MEr A 1 m 7,€r
Wik = Y9ik — Jikr Wik =9k — ik 9o = m Doie1 Yi k> I —m din 9i k
-n A 1 M A 1 xm
Wik = oy Zzzl Wi ks Wk =y Zz—l wi,k

Remark 6. In view of Definition @ we have g'c" = g} 4+ w! +w] . The term g} denotes a
zeroth-order stochastic gradient of the local implicit objective of client i at iteration k, g, denotes
a variant of g?  Where y(®) are obtained at delayed updates, and gf}f’" denotes the inexact variant
of g? » Where y(e) is only inexactly evaluated with prescribed accuracy €,. While in Algorithm

only gy" is employed at the local steps, we utilize the equations g}." = g\ +w}, +w], and
gZ Er gk + Wy, + Wy, to analyze the method.

We define the history of Algorithm 2l forT, <k <T,41—1landr >1las
Fie 2 (Ul UiZg {&ii}) U (UiZo{on }) U (Uj=oF) U {0},

andfor1 <k <Ty —LlasFj = (U, U) {&¢}) U{vn } UFZ U {do}, and Fo 2 {&o}. Here,
F? denotes the collection of all random Varlables generated in the two calls to the lower-level FL.
method (e.g., FedAvg) during the jth round of Algorithm 2}

B.2 Lipschitz continuity of the implicit function

As mentioned in Remark [2} the results in Theorem |I| are characterized in terms of the Lipschitz
continuity parameter of the random local implicit functions, denoted by Ly (&;). One may wonder
whether the local implicit functions are indeed Lipschitz continuous and whether L{™(¢;) can be
obtained in terms of the problem parameters in (FLy,). In the following lemma, we address both of
these questions.

Lemma 8 (Properties of the implicit function). Consider the implicit function f(x) and mapping
y(x) given by (FLg,). Let Assumption hold. Then, the following statements hold.

Vh

(i) The mapping y(e) is (Ll;’f ) -Lipschitz continuous, i.e., for any z1, z2 € R™, we have

ot = st < (52 oo = ol

er),y(ﬁi)Lov,:f

(ii) The random implicit function is Lipschitz continuous with constant L{™* (&;) :=
0 Hh

Jr
Lg,z(fi), i.e., for any xy,zo € R™

|fi(wn,y(@1), &) — Filwa, y(w2), &)] < (“) + L (a)) |21 — 2.
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Vh
LE, L3

o + L{;,x, i.e., for

(iii) The implicit function is Lipschitz continuous with parameter zg‘"’ =
any r1,x2 € R

Lf Lv:’EL
o) = flonl < (a4 18, ) o — ol

Proof. (i) From the strong convexity of h(x, ®), we can write for any x € R™ and all y;, 9, € R",
pnllyr = v2ll* < (1 — 92)™ (Vyh(z,41) — Vyh(z,ya)) . (11)
Substituting = := z1, y1 := y(x1), and yo := y(x1) in (1)), we obtain
pally(z1) = y(z2) 1 < (y(@1) = y(@2))" (Vyh(zr, y(@1)) = Vyh(z,y(zs))) .-
Similarly, substituting = := 22, y1 := y(z1), and yo := y(x1) in (II)), we obtain
pally(z1) = y(z2)|* < (y(@1) = y(@2))" (Vyh(zz, y(21)) = Vyh(wa, y(z2))) .-
Adding the preceding two inequalities together, we have

2unlly(z1) — y(a2)lI* < (y(x1) — y(22))" (Vyh(ar,y(21)) — Vyh(z1, y(z2))
+Vyh(z2,y(z1)) — Vyh(z2,y(22))) -

Note that from the definition of y(e), we have V h(z1,y(z1)) = Vyh(xs, y(z2)) = 0. As such,
from the preceding inequality we have

2unly(z1) — y(@2)|I* < (y(w1) — y(22))" (=Vyh(z1,y(z1)) — Vyh(z1, y(2s))
+Vyh(z2,y(21)) + Vyh(z2,y(22))) -

Using the Cauchy-Schwarz inequality and the triangle inequality, we obtain

2unlly(x1) = y(2)[I” < ly(21) — y(xa) || [Vyh(zz, y(21)) = Vyh(ar, y(z))|
+ ly(z1) = y(@2) || [Vyh(z2, y(22)) — Vyh(z1, y(z2))]l -
If 1 = x4, the relation in (i) holds. Suppose x1 # xo. Thus, y(z1) # y(z2). We obtain

2pn||ly(xr) — y(x2)|| < ||Vyh(re, y(21)) — Vyh(zy, y(z,))|
+ [IVyh(za, y(22)) — Vyh(z1,y(z2))|l -
From Assumption 2] we obtain
2unlly(z1) — y(a2)l| < Lok [lwr — ma| 4+ Lo 2 w1 — wal| -
This implies the bound in (i).
(ii) Let Ly™ (&;) denote the Lipschitz constant of f;(x, y(x), &;). We have
i1, y(21),&) — filwz, y(22),&)]
= filz1,y(21), &) — fi(z1,y(@2), &) + filwr,y(22), &) — fi(za, y(22), &)
< |filwr (1), &) — il y(x2), &) + | filwr, y(22), &) — filwa, y(22), &)
< Lf (&)lly(@1) — y(@2) || + Lf (&) ]lz1 — 22

LY ; LV}TL
< (B 16 ) o -

= Lg™ &)z — 2.

(iii) First, we show that for any x1, x2,y, we have | f;(z1,y) — fi(z2,y)] < L5,1|\$1 — xa]|. Also,
for any x, y1, y2, we have | f;(z,y1) — fi(z,y2)| < L(J;’yHyl — y2||. From Assumption we have
|fi(e1,y) = filz2,9) = B, [filw1,y, &) — filwa,y,6)]]
< Eg [l fi(z1,9,&) — filw2,9,&)]]
< B [L o (6)]lla1 — 2]
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From the Jensen’s inequality, we have (Eq, [Lg’w(&)])2 < Eg, [Lg’zz(&)]. Therefore,

Ee,[L] (6] < [Be, L, (€)]] < \/Ee, (L] (€))% < L ,.

From the preceding two relations, we obtain

fiz1,y) = filwa,y)| < L,y — o], (12)

Similarly, we obtain

fi(z, 1) — filz,yo)] < L§, lyr — well. (13)

Next, by invoking Assumption 2] we obtain
[f(@1) = f(@2)] = | f(21,y(21)) — f(22,y(22))]

= [f(@1,y(21)) = fz1,9(22)) + [ (21, y(22)) — [ (22, 9(22))]
|f(z1,y(z1)) = flzr, y(z2)| + [f (21, y (962)) = f(z2,y(x2))|

1 m

E;m(ﬂﬁhy(?ﬁl)) = filwy, y(@2))| + — Z|fz 21, y(w2)) — fi(z2, y(x2))]

.03
< L lly(an) = ylao) || + LY llay = aoll.

The bound in (iii) is obtained by invoking the bound in (i).

IN

IN

O

Remark 7. We note that the result in Lemma §] (i) has been studied in a more general setting in prior
work, e.g., see Lemma 2.2 in [6].

B.3 Preliminary lemmas

In the following, we analyze the error terms in Definition [6]

Lemma 9. Let Assumption [2/hold. Consider Algorithm 2] and Definition [f] Then, the following
statements hold in an almost-sure sense for all £ > 0 and i € [m].

() B [g7) | Fe| = V7 (@)

i) B llg?,]1?] < n2(Lg™)2.

(i) E :Hw;{kuﬂ < i (L,«KYE (s e — 2)1?] -
(i) E [, 7] < 42 (Lg;’y)er.

W) E [lg7 + ViI12] <25 (Lg)? +2E[||Vf"< OIF] + 2L g [y

”7
m

(vi) E Vf"(xk) (gg+?z»d)} E[|VE"(z )||] ME[ K-

.. 9 Lyh 2 an 1 f \2 o
(vii) E [[|@7]]?] < ( li’:) S (Loy)” Eléx].
(viii) B [[|@"]?] < 43 (LF )%,
Proof. (i) From Definition[6] we can write
E g | 7]
n ~ ~
=Eur, |:E£i,k [772 (fz‘(%’,k +or, y(@ik +vr,), Sk) — filzik, y(Ti), fzk)) vr, | Fr U{vr, }H

=Eyr, {%fz(mzk +vr., y(@ik + or))or, | Fr — VI (i)
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(ii) From the definition of ¢!, and that ||vy, || = 7, we have

Ey,p, “ QZkHQ | Fr U {fi,k}:|
=E,, [ I (fi(fﬂi,k tor, Yy + o), Cik) — fil@im y(Tig), &, k)) | Fr U{&, k}]
= (#) [ (s +onvtons +vn).00) = Filwnas vt 60) vr | pulon,) dor,
-

filzig +vn,y(@ir +vn), Gix) — filzin, y(zir), &, k)‘ HUTT” po(vr,) dvur,

-(#)

Assumption[2}, Remark [2](iii)
=

2 .
:7) / ((mep(fi,k))z ik + vr, — %kHQ) lor, I* po(vr,) dor,
nS
<w (L) | polon)do,
nS
= (Lo (§ik))*

Taking expectations with respect to &;; on both sides and invoking L

maxi—1..m \/E[(Lg™(&))?], we get E [Hg?kHQ | fk} < (L{™)2n2. Then, taking expecta-

imp

tions on both sides of the preceding inequality, we obtain E {H i ||2} < (L™)2n2.

(iii) Consider the definition of wf - We can write

E [?ll? | F U (€0}

= %E [H (.fi(xi,lc +ur,, y(@r + 1), &k) — Fi(@in, (@), &)

—Filik + vy (@i on), ) + Fi@iny(@ia) &) vr P | Fi U {6}

<R [”(]Ei(xi,k +or, y(@r +or,) k) = filwig + or,y(@ar + vr), Eor)or P | Fr U {ir)
+ 22 ([~ fiap y(@0), €6r) + Folwige y(@en), €n)or, |2 | Fe U {6} - (14)
Now consider the second term in the preceding relation. We have

E [l (~fi(ain, (@), &) + Filwins y(@in), Guo I | Fi L€}
:/ o @iy (@) i) = Fo (@i ey (@) i)
nS

ly(zim)—y(@m)? Hy(xl,k) - y(iT)HQ HUTr”zp'U(vTT) dvTr

Assumplion@ 9 9
< J(E) / ly(zik) — y(@n)|I? oz, |2po (vr, ) dor,

= 772(L5,y(§i,k)) ly (i) =y (@)

. 2
L a8 (i) f ) Vh
el ("L‘*y“"’“”f”) e — 2|2

Hh

We can obtain a similar bound on the first term in (T4). We obtain

E [l | Fi U {&i}]
2 2
> (LS &g LY . 2 (LI (& )LYP N
27% (f)y(ll:)l”) ||17i,k*xr||2+2niz <0y(;:)07 ||$i,k*$r||2

2
2 (Lf (&in)LYE .
— s (Ll ) 2
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Taking expectations with respect to &;, on the both sides, we get E [wakHz | }"k} <

2
2 (L LM . . . . .
o (W) Ee, . [llzix — r|?]. Then, taking expectations on the both sides of the preceding

o [ 1F IR\ 2
relation, we obtain E [||wznk||2} < 4”% (OZ}‘”) E [||zik — &%)
k) g3

(iv) Consider the definition of w;',. Then we may bound E [Hw? K ||2] as follows.

E [l | Fo U {gin}]
— %E N (fi(xi,k: oty Ye, (&0 +0r,), i) = filins ye, (), i)
~Fil@ik +vr Y@ +vn) En) + Fil@in y(@0), &) ) vr, I | Fi U{E)]
< 2R [||(fi(win + 01,0 e, (B +03,), €08) — Filwin + vr (e +on), a)on, I | Fie U L€}
o+ 28 (= Fiwihs e (), €i) + Filwin (@), & p))om, I | Fi U {in}]

2
2
S 417% (Lg,y(ghk)) Er.

The last inequality is obtained by following steps similar to those in (iii) and by invoking
E [[|ye, (z) — y(x)||* | z] < er. Next, we take expectations with respect to & j, on both sides
of the preceding relation. Then, we take expectations w.r.t. JFj on both sides of the resulting
inequality and obtain the desired bound.

(v) Using the definition of g, in Definition @ we can write

_ m 2 7
E [lgl + 921 1 73] =B || Sk + 92 1 7

2
=& |45 (oo Vi - Ve + ) (15

I
=i || & Sz (ath+ 92 - (2 + VIO [ 1A 1% 2 v P

emmaﬁi 1 i
e
+[|VE @) + L ST (VE (i) — VE (3)||

1 m
<z 2P U

L ii imp
emnzﬁ(u) nz(f:;; )2

2
ot~ 1)1 7]

2
ngH | fk} F2 V@7 + 2| A S (VE (@) — VE (21)]
F2 V@) + 2| L S (VE (@) — VE (7))

Note that given vectors y; € R" fori € [m], we have || = 3" 4;[|? < L 35" |ly;||%. Utilizing
this inequality, Lemma (iv), and that d;’(O) is %—smooth, we obtain

— n? imp 2 — impn 2 m _
E [llg + VP9I | Fo] <80 42 |9 (a) | + 2L Sl —

Recalling the definition of €5 and taking expectations on both sides, we obtain the bound in (i).
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(vi) We can write
E V(207 (5] + VP | Fu| = V@) E [ L S (0 + Vi) | e
B O ()T (5 S VE ()
= VE(z)" o Y (VE (@ix) — VE (21) + VE (21))
= VI (z) " o 0 (VE (i) — VE (@x)) + [ VE (2|12
> — LIVE @) | = L[| S (VE (k) — VE (20))|° + IVE7(25) 2
>IVE @) 7 = 2 S IVE (i) — VE (@)

Lcmmam(iv)

_ LMy, 1 1)2 _
LIV @) | — ot S ik — 2|2

The bound is obtained by recalling the definition of éj, and taking expectations on both sides.
(vii) We have
E [[lo7:)7] < 7B [ 22 wikl?] < SB[ lwikll?] = 5 S50 E [llwik]?]

, 2
h N
@ g (L1585 Bl
= n? Hh i=1 m :
(viii) We can write

E[Jo"/?] < 5B [| Sy wlell?] < 2B [S7 o], ?] = 2 S0 E {lef, )]

O

Next, we derive an upper bound on the average delay and average consensus violation, after perform-
ing k local steps by a client in Algorithm[2] We make use of the following result.

Lemma 10. Suppose for 7. + 1 < k < 1,41, for any r > 0, where T;, := 0, the nonnegative
sequences {ax}, {bx}, and {0y} satisfy a recursive relation of the form

k—1

max{ay, b} < (k= T)7* Y (Brar + Baby + 0y),
=T,

1
v/ 2max{fB1,82}H

k—1

ap + by < 6H'y2 Z 0;.
t=T,

where a7, = b, =0and 31,8, > 0. If0 <y < ,thenfor T, + 1 < k < Ty4q,

we have for any r > 0,

Proof. From the given recursive relation, we have for any k£ > 1,
k—1
ar < (k — Tr)72 Z (Bras + B2by + 04)
t=T,

and
k

b < (k—T,)v? (Bras + Baby + 04).
t
Summing the preceding inequalities, we have
k—1
ar, + by < 2(k — T,.)7* Z (Bras + Baby + 6;)
t=T,
-1
< (k-T.)v* (2max{f1, B2} (as + by) + 26;).

t=T,

|
—

T

S
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fo<vy< W, by invoking Lemmaﬁ from the preceding relation we have
max{S1,82
k—1 k—1
ar +by <3HY® Y 20, = 6HY> Y 0.
t=T, t=T,

O

Lemma 11 (Bounds on average delay and average consensus violation). Let Assumption 2] hold.
Consider Algorithm[2] The following holds.

(i) [Recursive bound] For any communication round > 0, forall 7,, < k < T,41 — 1, we have
k—1 1\’ an? (7 f N\2mrs
(B (6] B[]} < 06~ T) £, (sElal + (52 ) 4(2],)78le)

HABZE [|IVE (@) |*] + n2(Lg")?

2 im| 2
+258 L 4B2(Lg™)?n? + %(Lgﬁy)%r) .

(ii) [Non-recursive bound] Let 0 < v < <4H max {2, (L:vhg) % Lg,y}) _1' Then, for any
r>0,forall T, <k <T,1 — 1, we have
Eley] + E[e4] < 96B3H~ X423, B [|V67(2)
+ 24K (255 4 (4B3 + D)(LE")*n? + 45 (L] )%, )
Proof. (i) This proof is comprised of two steps. In the first step we show that the required bound

holds for E [éx]. Then, in the second step we show that it holds for [E [é;] as well.
(Step 1) In view of Algorithm 2] for any i at any communication round r» > 0, for all 7, < k <
Try1— 1wehave z; 1 = 25 — (91 4 V ) This implies that
Tik = Tig—1— V(G R 1 + VZ’,C_l), forall T, +1 < k < T,;.
Unrolling the preceding relation recurswely, we obtain
Tip =i, — 7 Sopg (gl + VI, forall T, +1 < k < Tpyy. (15)

From Algorlthml we have £, = z; 1.. Invoking the definition of Z;, we have 7, = Z,. This
implies that Z7,, = x; 7, for all 7 and r. Extending Lemma|z|, we can write

T = wim, — 7 o (G5 + VI, forall T + 1< k < Trpr. (16)
Using (T3) and (T6), for all T}, + 1 < k < T,.;; we have
Eler] = o 000 E [[loi ke — 2]

- z“EU!vZ gl VI 2 S @+ 9]

| /\

2
2(k—T, . . end
)Zz 1 t T {H (9 + — (g + Vv )H}’

where the preceding relation follows from the inequality || Zthl wl? < T Ethl l|ly¢||? for any
yr € R™ for t € [T]. Consequently,

b (k T,) Zt TTZ E |:H g?tsr v?,;&d) ( 7,Er vnd H }
_ 2
= PULL S ST (E U } +E Mgf + 9| D

— ) Y S B (gl + VI (@ + V)

E [ex]

| /\

g”T+V
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Observing that

2
m r , r —1,d r —1,d
%Zi:lE (gznts v:]t) (ns + VY )|-7:TT]: [Hgns + Vi H]’
we obtain

Efey) < DTS L S E U ]

4v2 (k=T k—1 ,d
< AT sy L S (E[IgZlP + IV + w2 + ]

Qmﬂ +V

‘)
n,d ‘2
7,
LN a2 g f e SN2 A2 rf 2
# (S 4226, Pl - a0 P+ S5 (L, P ).
Invoking Lemma 3] the following bound emerges.

Elex] < 42k = T) 4os, (n2(L§7)? + 8E [e0] + 254 + 4B3E | Ve7(2.)

LemmaBl 4247 ) k-1 i
<A S Y (2L + IV

2
im LV}L 2 R 2

+4B3(Lg")*n? + ( ) %(L{;’y)QE[ek] + 47?2([/54,)2&) .

(Step 2) Consider (T5). From Algorithm[2] we have &, = x; r,. Thus, we obtain
2
N k— . :
E [los - a0l) <2 Sk B o+ 02
Thus, forall T, + 1 < k < T,11 we have
n,e n,d 2
gz t " vz,;f H .

Blec) = & S B [los ) = ZELL AL 5 g |

Following the steps in (Step 1), we obtain the same bound on E [é].

(ii) The bound in (ii) is obtained by applying Lemma[I0]on the inequality in part (i). O

B.4 Proof of Theorem[Il

(Lg"™n+1)
n

Proof. (i) From the L-smoothness property of the implicit function, where L = , we have

£1(011) < 0(0) + V@) (rss = 2) + LD g — 2
In view of the recursion Zj, 1 = Zx — (g7 + V'), we have

£1(@he1) < 07(@8) — 7 VI (@) (g5 + V) + L2 grer 4 g2

In view of g;"“"

= g + @"), + w", we have

£(Zpy1) < £7(28) — yVEUER)T (@) + V) — yVEN(E) @ — A VE (25) T 0",
n (LT;’:]LH)Vz”gZ +@Z7d F @ + @2
< E1(@k) — Y VE (@) (G + VD) + ZIVE @)1 + 4y ]@kl|? + 4y ]| 07|
4 M 02 (gn 4 TR + @il + )

where in the second inequality, we utilized the following relation twice: |ufus| <
5 (]lu1]|® + 8||uz||?) for any uy,us € R™. Taking expectations on both sides, and requiring

that v < ——L—— we obtain
24(Ly"™n+1)

E [ (2141)] < E[(@0)] - 1E [VE(20)" (5] + VP + 7B [IVE @)

lepn B _ B ~
+ St 02 [|)gh + V2] + 5B [l + al?] . a7
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From Lemma[9](vi) and (v), we have

_ Pn
B [VE @) (6] + V)] < ~IE(IVE @] 4 S ], ()
and
_ 2 . imP" 2 B
E[lg] + V312] <22(257)? + 28 [|9e7(2)|°] + 2L R gy
respectively. In view of v < m, multiplying both sides of the preceding inequality by
0 n
%:H)’ﬂ, we obtain
3(L™Pnt1 e 3(LI™ 4+ 1)n2 im _
Mot y2g (g7 + Vi4)2] < SEE A2 (L50)2 1 R [||VE (24 1]
lmpn
+ ME[ k- (19)
Also, from Lemma[9] (vii) and (viii), we have
2
B B LYh n2 )
B (Il + i) < (452) 22, 2 Bl + ). 20)

From (T7)-(20), we obtain

imp n? im
E [f"(Zs1)] < E[F7(z)] — 1B [|VE(2)]2] + 2o tm a2 (L)

2
1mpn 2 _ Vﬁ n .
+ 72 a R (] 4+ (L) 2000”18 )7 (Eléx] +&r).

8n2 Kh n

This implies that

E[f7(Z411)] < B [£7(z1)] — 1E [||VE ()] + L2
+ ymax{Oq, O3} (E [ex] + E[ék]) + 7Oses.

. 2
Ll n n? im| Ly™n Lv: n?
where O, 3(27“)(110 )2, Oy = M and O3 := (“> 222 (Lgyy)z. From

ul 8n2 Hh

— 1 —1
Lemma for v < W, we have

E [e] +E [e4] < 96B3HA? 7, E [IIVE"@0)|*] + H2y2Oue, + H265,

where ©, = %% (Lf )2 and ©5 := 4§7§1 + (96B2 + 1)(L™)2p2. Since y <
(V8B max{v©;,v/65}) "

T , we have 96 B2 Hv? max{©5, O3} < gj7- Combining the two preceding
inequalities, we obtain

E[f(zr41)] < EIE(20)] — B [IVE (@) 2] + 57 Sioh, B [1987(20)]] + 52
+ v (H?*y* max{©,03}04 + O3) &, + H*7* max{O,, 03} 0.
Summing the preceding relation from k := 0, ..., K := Tr — 1 for some R > 1, we have
E[f"(27,)] < E[£7(z0)] - Si%5 " FE[IVE"@0)I12] + % Shty* s, B [IVE(z0) ]
+ Tm 1 4~ (HQV2 max{©s,03}0, + 63) ZR_ 1(Tr+1 - T, — e,
+ TRHQV3 max{©s, ©3}0;.
We obtain
Srto IR [|VE (@) |] < E[£7(70)] — E[f7(2r,)] + 1822
+ (Hny2 max{03,03}0, + @3) Hzr o Er
+ TrH?v® max{0,, 03} Os.
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Multiplying both sides by — and using the definition of £*, we obtain

E [|VE" (@ )|*] < 8(/Tr) ™ (EIE" (z0)] — £77) + 512

+ 8 (HQ’)/Q max{@27 @3}@4 + @3) Hzr 0 Er
+ 8H?~? max{0,, 03}Os.

(ii) Substituting y := /% and H := {/ % in the error bound in (i), we obtain

R—-1
E[f"(z £ max{©,,035}6 r—0 Er
E [|VE7(@-)|”] < SEGRLT) | 80y, 4 g (maniOn0n) 4+@)Z( el
+ 8max{65n,23}95 )

Invoking &, := O(—1— T ) where T, = O (m’l(r+ 1)%) we have 27 0 e, = O(R?) =
m Ry T
o (?) Substituting H := {/ £, we obtain "7l e, = O ((mK)%). Substituting this bound
3
in (2I), we obtain the iteration complexity.

(iii) From (ii), we obtain R = O(%) =0 (f/%) =0 ((mK)3/4)-

C Overall Communication Complexity of FedRZO,,; in Table|]

Consider FedRZOy, given by Algorithm[2] The overall communication complexity of FedRZOw;
depends on what type of FL scheme is employed in step 4 in Algorithm[2] Here, we elaborate on the
results summarized in Table[T] These include the following three cases:

Case 1: FedRZO,; employs Local SGD [26] with i.i.d. datasets in round 7 to obtain ¢,.-inexact
solution to the lower-level problem (FLy). In this case, in view of Corollary 1 in [26] under suitable

settings and terminating Local SGD after T'; iterations, we have

E [l (o) vl < 5= 0 ().

in R, = m round of communications (in the lower-level). Invoking Theorem (iii), the overall
communication complexity is m x O ((mK.)*/*) thatis O (m7/4Kf/4).

Case 2: FedRZOy,; employs FedAC [54] with i.i.d. datasets in round 7 to obtain &,.-inexact solution
to the lower-level problem (FL). Similarly, invoking Theorem 3.1 in [54], the communication
complexity of the lower-level calls is of the order m'/3. Invoking Theoreml (iii) again, the overall

communication complexity is m'/3 x O ((mK,)3/*) thatis O ( 13/12K§/4).

Case 3: FedRZO; employs LFD [20] with heterogeneous datasets in round r to obtain &,-inexact
solution to the lower-level problem ( m In view of Theorem 4.2 [20], the number of local steps in

the lower-level calls is of the order m =3 T3 , which implies the lower-level communication com-

plexity of the order ms T 5 Invoklng Theorem (iii) and T~ =0 (mf (r+1) 5), the overall
m 3/ = m / A [ A

communication complex1ty is Z K )% (mSTI%T) = 25:5(‘)3 ‘o (r¥%) =0 ((mKe)H/u) .

Remark 8. In Theorem ] if we take the problem dimension and smoothing parameter into account,

me mis5c0.8

6 4 8/3
. N . ~ (o + o o Z)
we may write the iteration complexity as K. := O 3 + + Faars | -
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D Additional Experiments

In this section, we provide some additional detail that was omitted in the numerical experiments
section.

D.1 Comparison of Algorithm[1] with other FL methods.

We compare FedRZO,,, with other FL. methods including FedAvg [34], FedProx [29], FedMSPP [535]],
and Scaffnew [35] when applied on neural networks with a smooth rectifier. Throughout this
experiment, 77 := 0.01 for FedRZO,,,. For the other methods, we use the softplus rectifier defined
as o (z) := B In(1 + exp(Bz)) as a smoothed approximation of the ReLU function. Our goal
lies in observing the sensitivity of the methods to 5 when we compare them in terms of the original
ReLU loss function. Figure [3| presents the results. We observe that the performance of the standard
FL methods is sensitive to the choice of 5. It is also worth noting that the smooth approximation

of activation functions, such as softplus, hypertangent, or sigmoid, involves the computation of an
exponential term which might render some scaling issues in large-scale datasets.

Setting B=1 B8 =10 B8 =150
1 - FedMSPP SN ~e-: FedMSPP 2SN ~e- FedMSPP
A 200 & —a-+ FedProx 200} % . —- FedProx 200) 4 RIS - —-- FedProx
8 i -®- Algorithm 1 0 N -®- Algorithm 1 \ “~a_ -E- Algorithm 1
- 1 Scaffnew 17504 ‘a. Scaffnew 17504 Scaffnew
\ ~, '
© iR e FedAvg 0 .. —e- FedAvg \ —e- FedAvg
en 1 1501} . 150114
< | e - i -, [}
5 il 125t 4Y = 1254
01 " i .. ¥
<,
% [ 100{ R ~ 00§
\ \ N
1A A >
s sld N 75t 4N 73 ‘\‘\\
! Y [ S
b0 [ (P S sol 1\ a— 50 Y
SR o SRS SRS — - » ‘*__’__.__(’ -~ - F T N S AR - -
5 T ey LA k- m-m-m - w2 25 B ety gy
0 20 40 60 80 100 0 20 40 80 100 0 20 40 60 80 100
Communication rounds Communication rounds

Communication rounds

225 225§ 25w =t —A— e —an
1 o FedMSPP T ———— o FedMSPP iy TS ol FedMsPP
2 2000 B —a:- FedProx 20,00\ -—g. —a- FedProx 2001 —4:- FedProx
d » —m- Algorithm 1 Y —m-- Algorithm 11 W —m- Algorithm 1
- 175 '{\\ Scaffnew 1750 Scaffnew 1751 4N Scaffnew
O .\‘i‘ - FedAvg \ i - FedAvg 1\\ - FedAvg
=) 15.0f 10|y 150011,
< LAY [I PR
éj 125 PR 1251\ 125 .
. 1 \ \ \
2 e Y ool | % ol g
1 T YO
qa 75 Tk 7sfl 4 \ 7.5 X R e T Srs
Lo \ Y Y
5.0 A A \ \
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Number of local gradient evaluations
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Figure 3: Comparison between FedRZO,, on ReLU NN and standard FL. methods when they are
implemented on an NN with a smoothed variant of ReLLU, characterized by a parameter 3. The
performance of the standard FL. methods appears to be sensitive to the choice of 5.

D.2 Additional experiments on Algorithm [}
We implement Algorithm[T]on the Cifar-10 dataset to test its performance on problems with higher

dimensions. We use the same objectives as defined in Section 5.1. We set the number of neurons in
the layer to be 4, 20, and 100 in three sets of experiments, receptively. The results are presented in
Figure[d]
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Figure 4: Performance of FedRZO,, on ReLU NN with different number of neurons in the layer and

different values of the smoothing parameter 7, using the Cifar-10 dataset. The method performs better
with smaller number of neurons and less communication frequency given a certain communication

rounds. We also observe that the smaller the smoothing parameter 7, the longer it takes for the method
to converge. This is aligned with our theory and analysis.
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