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ABSTRACT

We study the problem of online low-rank matrix completion with M users, N items
and T rounds. In each round, the algorithm recommends one item per user, for
which it gets a (noisy) reward sampled from a low-rank user-item preference matrix.
The goal is to design a method with sub-linear regret (in T) and nearly optimal
dependence on M and N. The problem can be easily mapped to the standard
multi-armed bandit problem where each item is an independent arm, but that leads
to poor regret as the correlation between arms and users is not exploited. On
the other hand, exploiting the low-rank structure of reward matrix is challenging
due to non-convexity of the low-rank manifold. We first demonstrate that the
low-rank structure can be exploited using a simple explore-then-commit (ETC)
approach that ensures a regret of O(polylog(M + N)T2/3). That is, roughly only
polylog(M + N) item recommendations are required per user to get a non-trivial
solution. We then improve our result for the rank-1 setting which in itself is quite
challenging and encapsulates some of the key issues. Here, we propose OCTAL
(Online Collaborative filTering using iterAtive user cLustering) that guarantees
nearly optimal regret of O(polylog(M + N)T1/2). OCTAL is based on a novel
technique of clustering users that allows iterative elimination of items and leads to
a nearly optimal minimax rate.

1 INTRODUCTION

Collaborative filtering based on low-rank matrix completion/factorization techniques are the corner-
stone of most modern recommendation systems (Koren, 2008). Such systems model the underlying
user-item affinity matrix as a low-rank matrix, use the acquired user-item recommendation data to
estimate the low-rank matrix and subsequently, use the matrix estimate to recommend items for
each user. Several existing works study this offline setting (Candès & Recht, 2009; Deshpande &
Montanari, 2012; Jain et al., 2013; Chen et al., 2019; Abbe et al., 2020). However, typical recom-
mendation systems are naturally online and interactive – they recommend items to users and need to
adapt quickly based on users’ feedback. The goal of such systems is to quickly identify each user’s
preferred set of items, so it is necessary to identify the best items for each user instead of estimating
the entire affinity matrix. Moreover, items/users are routinely added to the system, so it should be
able to quickly adapt to new items/users by using only a small amount of recommendation feedback.

In this work, we study this problem of the online recommendation system. In particular, we study the
online version of low-rank matrix completion with the goal of identifying top few items for each user
using say only logarithmic many exploratory recommendation rounds for each user. In each round
(out of T rounds) we predict one item (out of N items) for each user (out of M users) and obtain
feedback/reward for each of the predictions – e.g. did the users view the recommended movie. The
goal is to design a method that has asymptotically similar reward to a method that can pick best items
for each user. As mentioned earlier, we are specifically interested in the setting where T� N i.e. the
number of recommendation feedback rounds is much smaller than the total number of items.

Moreover, we assume that the expected reward matrix is low-rank. That is, if R
(t)
ij is the reward

obtained in the tth round for predicting item-j for user-i, then ER
(t)
ij = Pij , where P ∈ RM×N

is a low-rank matrix. A similar low rank reward matrix setting has been studied in online multi-
dimensional learning problems (Katariya et al., 2017b; Kveton et al., 2017; Trinh et al., 2020). But in
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these problems, the goal is to find the matrix entry with the highest reward. Instead, our goal is to
recommend good items to all users which is a significantly harder challenge. A trivial approach is
to ignore the underlying low-rank structure and solve the problem using standard multi-arm bandit
methods. That is, model each (user, item) pair as an arm. Naturally, that would imply exploration of
almost all the items for each user, which is also reflected in the regret bound (averaged over users)
of O(

√
NT) (Remark 1). That is, as expected, the regret bound is vacuous when the number of

recommendation rounds T� N.

In contrast, most of the existing online learning techniques that leverage structure amongst arms
assume a parametric form for the reward function and require the reward function to be convex
in the parameters (Shalev-Shwartz et al., 2011; Bubeck, 2011). Thus, due to the non-convexity
of the manifold of low-rank matrices, such techniques do not apply in our case. While there are
some exciting recent approaches for non-convex online learning (Agarwal et al., 2019; Suggala &
Netrapalli, 2020), they do not apply to the above mentioned problem.

Our Techniques and Contributions: We first present a method based on the explore-then-commit
(ETC) approach (Algorithm 2). For the first few rounds, the algorithm runs a pure exploration strategy
by sampling random items for each user. We use the data obtained by pure exploration to learn a
good estimate of the underlying reward matrix P; this result requires a slight modification of the
standard matrix completion result in Chen et al. (2019). We then run the exploitation rounds based on
the current estimate. In particular, for the remaining rounds, the algorithm commits to the arm with
the highest estimated reward for each user. With the ETC algorithm, we achieve a regret bound of
O(polylog(M + N)T2/3) (Thm. 1). This bound is able to get rid of the dependence on N, implying
non-trivial guarantees even when T � N. That is, we require only polylog(M + N) exploratory
recommendations per user. However, the dependence of the algorithm on T is sub-optimal. To
address this, we study the special but critical case of rank-one reward matrix. The rank-1 setting is
itself technically challenging (Katariya et al., 2017b) and encapsulates many key issues. We provide
a novel algorithm OCTAL in Algorithm 3 and a modified version in Algorithm 8 that achieves nearly
optimal regret bound of O(polylog(M + N)T1/2) (see Theorems 2 and E). The key insight is that in
rank-one case, we need to cluster users based on their true latent representation to ensure low regret.

Our method OCTAL consists of multiple phases of exponentially increasing number of rounds. Each
phase refines the current estimate of relevant sub-matrices of the reward matrix using standard matrix
completion techniques. Using the latest estimate, we jointly refine the cluster of users and the estimate
of the best items for users in each cluster. We can show that the regret in each phase decreases very
quickly and since the count of phases required to get the correct clustering is small, we obtain our
desired regret bounds. Finally, we show that our method achieves a regret guarantee that scales
as Õ(T1/2) with the number of rounds T. We also show that the dependence on T is optimal (see
Theorem 3). Below we summarize our main contributions (Õ(·) hides logarithmic factors):

• We formulate the online low rank matrix completion problem and define the appropriate notion of
regret to study. We propose Algorithm 2 based on the explore-then-commit approach that suffers a
regret of Õ(T2/3). (Thm. 1)

• We propose a novel algorithm OCTAL (Online Collaborative filTering using iterAtive user cLuster-
ing) and a modified version (Alg. 3 and Alg. 8 respectively) for the special case of rank-1 reward
matrices and guarantee a regret of Õ(T1/2). Importantly, our algorithms provide non-trivial regret
guarantees in the practical regime of M� T and N� T i.e when the number of users and items is
much larger than the number of recommendation rounds. Moreover, OCTAL does not suffer an
issue of large cold-start time (possibly large exploration period) as in the ETC algorithm.

• We conducted detailed empirical study of our proposed algorithms (see Appendix A) on synthetic
and multiple real datasets, and demonstrate that our algorithms can achieve significantly lower
regret than methods that do not use collaboration between users. Furthermore, we show that for
rank-1 case, while it is critical to tune the exploration period in ETC (as a function of rounds and
sub-optimality gaps) and is difficult in practice (Lattimore & Szepesvári, 2020)[Ch. 6], OCTAL
still suffers lower regret without such side-information (see Figures 1a and 2b).

Technical Challenges: For rank-1 case, i.e., P = uvT, one can cluster users in two bins: ones with
ui ≥ 0 and ones with ui < 0. Cluster-2 users dislike the best items for Cluster-1 users and vice-versa.
Thus, we require algorithms that can learn this cluster structure and exploit the fact that within the
same cluster, relative ranking of all items remain the same. This is a challenging information to
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exploit, and requires learning the latent structure. Note that an algorithm that first attempts to cluster
all users and then optimize the regret will suffer the same T2/3 dependence in the worst case as in
the ETC algorithm; this is because the difficulty of clustering the users are widely different. Instead,
our proposed OCTAL algorithm (Algorithms 3 and 8) in each iteration/phase performs two tasks:
i) it tries to eliminate some of the items similar to standard phase elimination method (Lattimore &
Szepesvári, 2020)[Ch 6, Ex 6.8] for users that are already clustered, ii) it simultaneously tries to grow
the set of clustered users. For partial clustering, we first apply low rank matrix completion guarantees
over carefully constructed reward sub-matrices each of which correspond to a cluster of users and a
set of active items that have high rewards for all users in the same cluster, and then use the partial
reward matrix for eliminating some of the items in each cluster.

1.1 RELATED WORKS

To the best of our knowledge, we provide first rigorous online matrix completion algorithms. But,
there are several closely related results/techniques in the literature which we briefly survey below.

A very similar setting was considered in Sen et al. (2017) where the authors considered a multi-armed
bandit problem with L contexts and K arms with context dependent reward distributions. The authors
assumed that the L×K reward matrix is low rank and can be factorized into non-negative components
which allowed them to use recovery guarantees from non-negative matrix factorization. Moreover,
the authors only showed ETC algorithms that resulted in T2/3 regret guarantees. Our techniques
can be used to improve upon the existing guarantees in Sen et al. (2017) in two ways 1) Removing
the assumption of the low rank components being non-negative as we use matrix completion with
entry-wise error guarantees. 2) The dependence on T can be improved from T2/3 to T1/2 when the
reward matrix P is rank-1.

Multi-dimensional online decision making problems namely stochastic rank-1 matrix bandits was
introduced in Katariya et al. (2017b;a); Trinh et al. (2020). In their settings, at each round t ∈ [T],
the learning agent can choose one row and one column and observes a reward corresponding to an
entry of a rank-1 matrix. Here, the regret is defined in terms of the best (row ,column) pair which
corresponds to the best arm. This setting was extended to the rank r setting (Kveton et al., 2017), rank
1 multi-dimensional tensors (Hao et al., 2020), bilinear bandits (Jun et al., 2019; Huang et al., 2021)
and generalized linear bandits (Lu et al., 2021). Although these papers provide tight regret guarantees,
they cannot be translated to our problem. This is because, we solve a significantly different problem
with an underlying rank-1 reward matrix P where we need to minimize the regret for all users (rows
of P) jointly. Hence, it is essential to find the entries (columns) of P with large rewards for each
user(row) of P; contrast this with the multi-dimensional online learning problem where it is sufficient
to infer only the entry ((row,column) pair) in the matrix/tensor with the highest reward. Since the
rewards for each user have different gaps, the analysis becomes involved for our OCTAL algorithm.
Finally, (Dadkhahi & Negahban, 2018; Zhou et al., 2020) also consider our problem setting but they
only provide heuristic algorithms without any theoretical guarantees.

Another closely related line of work is the theoretical model for User-based Collaborative Filtering
(CF) studied in Bresler et al. (2014; 2016); Heckel & Ramchandran (2017); Bresler & Karzand
(2019); Huleihel et al. (2021). In particular, these papers were the first to motivate and theoretically
analyze the collaborative framework with the restriction that the same item cannot be recommended
more than once to the same user. Here a significantly stricter cluster structure assumption is made
over users where users in same cluster have similar preferences. Such models are restrictive as they
provide theoretical guarantees only on a very relaxed notion of regret (termed pseudo-regret).

In the past decade, several papers have studied the problem of offline low rank matrix completion on
its own (Mazumder et al., 2010; Negahban & Wainwright, 2012; Chen et al., 2019; Deshpande &
Montanari, 2012; Abbe et al., 2020; Jain et al., 2013; Jain & Kar, 2017) and also in the presence of
side information such as social graphs or similarity graphs (Xu et al., 2013; Ahn et al., 2018; 2021;
Elmahdy et al., 2020; Jo & Lee, 2021; Zhang et al., 2022). Some of these results namely the ones that
provide ‖ · ‖∞ norm guarantees on the estimated matrix can be adapted into Explore-Then-Commit
(ETC) style algorithms (see Sec. 4). Finally, there is significant amount of related theoretical work
for online non-convex learning (Suggala & Netrapalli, 2020; Yang et al., 2018; Huang et al., 2020)
and empirical work for online Collaborative Filtering (Huang et al., 2020; Lu et al., 2013; Zhang
et al., 2015) but they do not study the regret in online matrix completion setting.
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2 PROBLEM DEFINITION

Notations: We write [m] to denote the set {1, 2, . . . ,m}. For a vector v ∈ Rm, vi denotes the ith
element; for any set U ⊆ [m], let vU denote the vector v restricted to the indices in U . Ai denotes
the ith row of A and Aij denotes the (i, j)-th element of matrix A. [n] denotes the set {1, 2, . . . , n}.
For any set U ⊂ [m],V ⊂ [n], AU,V denotes the matrix A restricted to the rows in U and columns in
V . Also, let ‖A‖2→∞ be the maximum `2 norm of the rows of A and ‖A‖∞ be the absolute value
of the largest entry in A. We write EX to denote the expectation of a random variable X .

Consider a system with a set of M users and N items. Let P = UVT ∈ RM×N be the unknown reward
matrix of rank r < min(M,N) where U ∈ RM×r and V ∈ RN×r denote the latent embeddings
corresponding to users and items respectively. In other words, we can denote Pij , 〈ui,vj〉 where
ui,vj ∈ Rr denotes the r-dimensional embeddings of i-th user and the j-th item, respectively.
Often, we will also use the SVD decomposition of P = ŪΣV̄ where Ū ∈ RM×r, V̄ ∈ RN×r are
orthonormal matrices i.e. ŪTŪ = I and V̄TV̄ = I and Σ , diag(λ1, λ2, . . . , λr) ∈ Rr×r is a
diagonal matrix. We will denote the condition number of the matrix P by κ , (maxi λi)(mini λi)

−1.

Consider a system that recommends one item to every user, in each round t ∈ [T]. Let, R
(t)
uρu(t) be

the reward for recommending item ρu(t) ∈ [N] for user u. Also, let:

R
(t)
uρu(t) = Puρu(t) + E

(t)
uρu(t) (1)

where E
(t)
uρu(t) denotes the unbiased additive noise. Each element of {E(t)

uρu(t)}u∈[M],t∈[T] is assumed

to be i.i.d. zero mean sub-gaussian random variables with variance proxy σ2. That is, E[E
(t)
uρu(t)] = 0

and E[exp(sE
(t)
uρu(t))] ≤ exp(σ2s2/2) for all u ∈ [M], t ∈ [T]. The goal is to minimize the expected

regret where the expectation is over randomness in rewards and the algorithm:

Reg(T) ,
T

M

∑
u∈[M]

max
j∈[N]

Puj − E[
∑
t∈[T]

1

M

∑
u∈[M]

R
(t)
uρu(t)]. (2)

In this problem, the interesting regime is (N,M) � T as is often the case for most practical
recommendation systems. Here, treating each user separately will lead to vacuous regret bounds as
each item needs to be observed at least once by each user to find the best item for each user. However,
low-rank structure of the rewards can help share information about items across users.
Remark 1. If T � N, then we can treat each user as a separate multi-armed bandit problem. In
that case, in our setting, the well-studied Upper Confidence Bound (UCB) algorithm achieves an
expected regret of at most O(σ

√
NT logT) (Theorem 2.1 in Bubeck & Cesa-Bianchi (2012)).

3 PRELIMINARIES

Let us introduce a different observation model from (1). Consider an unknown rank r matrix
P ∈ RM×N. For each entry i ∈ [M], j ∈ [N], we observe:

Pij + Eij with probability p, 0 with probability 1− p, (4)

where Eij are independent zero mean sub-gaussian random variables with variance proxy σ2 > 0.
We now introduce the following result from Chen et al. (2019):
Lemma 1 (Theorem 1 in Chen et al. (2019)). Let rank r = O(1) matrix P ∈ Rd×d with SVD
decomposition P = ŪΣV̄T satisfy ‖Ū‖2,∞ ≤

√
µr/d, ‖V̄‖2,∞ ≤

√
µr/d and condition

number κ = O(1). Let 1 ≥ p ≥ Cµ2d−1 log3 d for some sufficiently large constant C > 0,

σ = O
(√

pd
µ3 log d‖P‖∞

)
. Suppose we observe noisy entries of P according to observation model

in (4). Then, with probability exceeding 1−O(d−3), we can compute a matrix P̂ by using Algorithm
4 (Appendix B) with parameters (U = [M],V = [N], σ2, r, p) s.t.,

‖P̂−P‖∞ ≤ O
( σ

mini λi
·

√
µd log d

p
‖P‖∞

)
. (5)
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Algorithm 1 ESTIMATE

Require: Set of users U ⊆ [M], set of items V ⊆ [N], total rounds m, set of indices Ω ⊆ U × V ,
rounds in each iteration b = maxu∈U |v ∈ V | (u, v) ∈ Ω|, regularization parameter λ. Index of
round t is relative to the first round when the algorithm is invoked; hence t = 1, 2, . . . ,m.

1: for ` = 1, 2, . . . ,m/b do
2: For all (i, j) ∈ Ω, set Maskij = 0.
3: for `′ = 1, 2, . . . , b do
4: for each user u ∈ U in round t = (`− 1)b+ `′ do
5: Recommend an item ρu(t) in {j ∈ V | (u, j) ∈ Ω,Maskuj = 0} and set Maskuρu(t) = 1.

If not possible then recommend any item ρu(t) in V s.t. (u, ρu(t)) 6∈ Ω. Observe R
(t)
uρu(t).

6: end for
7: end for
8: end for
9: For each (u, j) ∈ Ω, compute Zuj to be average of bm/bc observations corresponding to user u

being recommended item j i.e. Zuj = avg{R(t)
uρu(t) for t ∈ [m] | ρu(t) = j}. Discard all other

observations corresponding to indices not in Ω.
10: Without loss of generality, assume |U| ≤ |V|. For each i ∈ V , independently set δi to be a value

in the set [d|V|/|U|e] uniformly at random. Partition indices in V into V(1),V(2), . . . ,V(k) where
k = d|V|/|U|e and V(q) = {i ∈ V | δi = q} for each q ∈ [k]. Set Ω(q) ← Ω ∩ (U × V(q)) for
all q ∈ [k]. #If |U| ≥ |V|, we partition the indices in U .

11: for q ∈ [k] do
12: Solve convex program

min
Q(q)∈R|U|×|V(q)|

1

2

∑
(i,j)∈Ω(q)

(
Q

(q)
iπ(j) − Zij

)2 + λ‖Q(q)‖?, (3)

where ‖Q(q)‖? denotes nuclear norm of matrix Q(q) and π(j) is index of j in set V(q).
13: end for
14: Return Q̃ ∈ RM×N s.t. Q̃U,V(q) = Q(q) for all q ∈ [k] and for every (i, j) 6∈ U × V , Q̃ij = 0.

Note there are several difficulties in using Lemma 1 directly in our setting which are discussed below:

Remark 2 (Matrix Completion for Rectangular Matrices). Lemma 1 is described for square matrices
and a trivial approach to use Lemma 1 for rectangular matrices with M rows and N columns (say
N ≥ M) by appending N−M zero rows leads to an undesirable (N/M)1/2 factor (Lemma 5) in the
error bound (the (N/M)1/2 factor does not arise if we care about spectral/Frobenius norm instead of
L∞ norm). One way to resolve the issue is to partition the columns into N/M groups by assigning
each column into one of the groups uniformly at random. Thus, we create N/M matrices which are
almost square and apply Lemma 1 to recover an estimate that is close in L∞ norm. Thus we can
recover an estimate of the entire matrix which is close in L∞ norm up to the desired accuracy without
suffering the undesirable (N/M)1/2 factor (Lemma 6 and Steps 10-12 in Algorithm 1).

Remark 3 (Observation Models). The observation model in equation 4 is significantly different
from equation 1. In the former, a noisy version of each element of P is observed independently
with probability p while in the latter, in each round t ∈ [T], for each user u ∈ [M], we observe
noisy version of a chosen element ρu(t). Our approach to resolve this discrepancy theoretically is to
first sample a set Ω of indices according to equation 4 and subsequently use equation 1 to observe
the indices in Ω (see Steps 3-6 in Algorithm 1 and Corollary 1). Of course, this implies obtaining
observations corresponding to indices in a super-set of Ω (see Step 5 in Algorithm 1) and only using
the observations in Ω for obtaining an estimate of the underlying matrix. In practice, this is not
necessary and we can use all the observed indices to obtain the estimate in Step 12 of Algorithm 1.

Remark 4 (Repetition and Median Tricks). The smallest error that is possible to achieve by us-
ing Lemma 1 is by substituting p = 1 and thereby obtaining ‖P̂ − P‖∞ ≤ O

(
σ(mini λi)

−1 ·
√
µd log d‖P‖∞

)
and moreover, the probability of failure is polynomially small in the dimension d;

however, this is insufficient when d is not large enough. Two simple tricks allow us to resolve this
issue: 1) First we can obtain repeated observations from the same entry of the reward matrix and
take its average; s repetitions can bring down the noise variance to σ2/s 2) Second, we can use the
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median trick where we obtain several independent estimates of the reward matrix and compute the
element-wise median to boost the success probability (see proof of Lemma 2).

We address all these issues (see Appendix B for detailed proofs) and arrive at the following lemma:
Lemma 2. Let rank r = O(1) reward matrix P ∈ RM×N with SVD decomposition P = ŪΣV̄T

satisfy ‖Ū‖2,∞ ≤
√
µr/M, ‖V̄‖2,∞ ≤

√
µr/N and condition number κ = O(1). Let d1 =

max(M,N), d2 = min(M,N) such that d2 = Ω(µr log(rd2)) and 1 ≥ p ≥ Cµ2d−1
2 log3 d2 for

sufficiently large constant C > 0. Suppose we observe noisy entries of P according to observation

model in (1). For any positive integer s > 0 satisfying σ√
s

= O
(√

pd2
µ3 log d2

‖P‖∞
)

, there exists

an algorithm A with parameters s, p, σ that uses m = O
(
s log(MNδ−1)(Np +

√
Np logMδ−1)

)
rounds to compute a matrix P̂ such that with probability exceeding 1−O(δ log(MNδ−1))

‖P− P̂‖∞ ≤ O
( σr√

sd2

√
µ3 log d2

p

)
. (6)

Remark 5. Alg. A repeats the following process O(log(MNδ−1)) times: 1) sample subset of indices
Ω ⊆ [M]× [N] such that every (i, j) ∈ [M]× [N] is inserted into Ω independently with probability p.
2) By setting b = maxi∈[M] |j ∈ [N] | (i, j) ∈ Ω|, Algorithm A invokes Alg. 1 with total rounds bs,
number of rounds in each iteration b, set Ω, set of users [M], items [N] and regularization parameter
λ = Cλσ

√
min(M,N)p for a suitable constant Cλ > 0 in order to compute an estimate of P. The

final estimate P̂ is computed by taking an entry-wise median of each individual estimate obtained as
output from several invocations of Alg. 1. Alternatively, Alg. A is detailed in Alg. 7 in Appendix B.

Note that the total number of noisy observations made from the matrix P is m ·M ≥ MN · p · s.
Therefore, informally speaking, the average number of observations per index is p · s which results in
an error of Õ(σ/

√
sp) ignoring other terms (contrast with error Õ(σ/

√
p) in equation 5.)

Remark 6 (Setting parameters s, p in lemma 2). Lemma 2 has three input parameters namely
s ∈ Z, 0 ≤ p ≤ 1 and 0 ≤ δ ≤ 1. For any set of input parameters (η, ν), our goal is to set s, p, δ
as functions of known σ, r, µ, d2 such that we can recover ‖P − P̂‖∞ ≤ η with probability 1 − ν
for which the conditions on σ and p are satisfied. From (17), we must have

√
sp = cσr√

d2

√
µ3 log d2
η

for some appropriate constant c > 0. If r = O(1) and η ≤ ‖P‖∞, then an appropriate choice

of c also satisfies the condition σ√
s

= O
(√

pd2
µ3 log d2

‖P‖∞
)

. More precisely, we are going to set

p = Cµ2d−1
2 log3 d2 and s =

⌈(
cσr
√
µ

η log d2

)2⌉
in order to obtain the desired guarantee.

4 EXPLORE-THEN-COMMIT (ETC) ALGORITHM

In this section, we present an Explore-Then-Commit (ETC) based algorithm for online low-rank
matrix completion. The algorithm has two disjoint phases of exploration and exploitation. We will
first jointly explore the set of items for all users for a certain number of rounds and compute an
estimate P̂ of the reward matrix P. Subsequently, we commit to the estimated best item found for
each user and sample the reward of the best item for the remaining rounds in the exploitation phase
for that user. Note that the exploration phase involves using a matrix completion estimator in order
to estimate the entire reward matrix P from few observed entries. Our regret guarantees in this
framework is derived by carefully balancing exploration phase length and the matrix estimation error
(detailed proof provided in Appendix C).
Theorem 1. Consider the rank-r online matrix completion problem with M users, N items, T
recommendation rounds. Set d2 = min(M,N). Let R

(t)
uρu(t) be the reward in each round, defined

as in equation 1. Suppose d2 = Ω(µr log(rd2)). Let P ∈ RM×N be the expected reward matrix
that satisfies the conditions stated in Lemma 2 , and let σ2 be the noise variance in rewards. Then,
Algorithm 2, applied to the online rank-r matrix completion problem guarantees the following regret:

Reg(T) = O
((

T
2
3 (σ2r2‖P‖∞)

1
3

(µ3N log d2

d2

)1/3

+
Nµ2‖P‖∞

d2

)
log5(MNT) +

‖P‖∞
T2

)
. (7)
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Algorithm 2 ETC ALGORITHM

Require: users M, items N, rounds T, noise σ2, rank r of P, upper bound on magnitude of expected
rewards ||P||∞, no. of estimates f = O(log(MNT)).

1: Set d2 = min(M,N) and v = (N‖P‖∞)−2/3
(

Tσr√
d2

√
µ3 log d2

)2/3

. Set p = Cµ2d−1
2 log3 d2,

s = dvp−1e and λ = Cλσ
√
d2p for some constants C,Cλ > 0.

2: for k = 1, 2, . . . , f do
3: For each tuple of indices (i, j) ∈ [M]× [N], independently set δij = 1 with probability p and

δij = 0 with probability 1− p.
4: Denote Ω = {(i, j) ∈ [M] × [N] | δij = 1} and b = maxi∈[M] | |j ∈ [N] | (i, j) ∈ Ω| to be

the maximum number of index tuples in a particular row. Set total number of rounds to be bs.
5: Compute the kth estimate P̂(k) = ESTIMATE([M], [N], bs,Ω, b, λ). # (Algorithm 1 is used to

recommend items to every user for bs rounds.
6: end for
7: Compute final estimate estimate P̂ by taking the entry-wise median of P̂(1), P̂(2), . . . , P̂(f).
8: for each of remaining rounds do
9: Recommend argmaxj∈[N]P̂ij for each user i ∈ [M]. # Number of remaining rounds is T− bsf .

10: end for

Remark 7 (Non-trivial regret bounds). Theorem 1 provides non-trivial regret guarantees in the key
regime when N � T and M > N where the regret scales only logarithmically on M,N. This is
intuitively satisfying since in each round we are obtaining M observations, so more users translate
to more information which in-turn allows better understanding of the underlying reward matrix.
However, the dependence of regret on T (namely T2/3) is sub-optimal. In the subsequent section, we
provide a novel algorithm to obtain regret guarantees with T1/2 for rank-1 P.

Remark 8 (Gap dependent bounds). Define the minimum gap to be ∆ =
minu∈[M]

∣∣Puπu(1) −Puπu(2)

∣∣ where πu(1), πu(2) corresponds to the items with the highest
and second highest reward for user u respectively. If the quantity ∆ is known then it is possible to
design ETC algorithms where length of the exploration phase is tuned accordingly in order to obtain
regret bounds that scale logarithmically with the number of rounds T.

5 OCTAL ALGORITHM

In this section we present our algorithm OCTAL (Algorithm 3) for online matrix completion where
the reward matrix P is rank 1. The set of users is described by a latent vector u ∈ RM and the set of
items is described by a latent vector v ∈ RN. Thus P = uvT with SVD decomposition P = λ̄ūv̄T.

Algorithm Overview: Our first key observation is that as P is rank-one, we can partition the set of
users into two disjoint clusters C1, C2 where C1 ≡ {i ∈ [M] | ui ≥ 0} and C2 ≡ [M] \ C1. Clearly,
for all users u ∈ C1, the item that results in maximum reward is jmax = argmaxt∈[N]vt. On the other
hand, for all users u ∈ C2, the item that results in maximum reward is jmin = argmint∈[N]vt. Thus,
if we can identify C1, C2 and estimate items with high reward (identical for users in the same cluster)
using few recommendations per user, we can ensure low regret.

But, initially C1, C2 are unknown, so all users are unlabelled i.e., their cluster is unknown. In
each phase (the outer loop indexed by `), Algorithm 3 tries to label at least a few unlabelled users
correctly. This is achieved by progressively refining estimate Q̃ of the reward matrix P restricted to
the unlabelled users and all items (Step 12). Subsequently, unlabelled users for which the difference
in maximum and minimum reward (inferred from estimated reward matrix) is large are labelled
(Step 19). At the same time, in Step 13 users labelled in previous phases are partitioned into two
clusters (denoted byM(`,1) andM(`,2)) and for each of them, the algorithm refines an estimate of
two distinct sub-matrices of the reward matrix P by recommending items only from a refined set
(N (`,1) and N (`,2) respectively) containing the best item (jmax or jmin). We also identify a small set
of good items for each labelled user (including users labelled in previous phases), which correspond
to large estimated rewards. We partition all these users into two clusters (M(`+1,1) andM(`+1,2))
such that the set of good items for users in different clusters are disjoint. We can prove that such a
partitioning is possible; users in same cluster have same sign of user embedding.
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Algorithm 3 OCTAL (ONLINE COLLABORATIVE FILTERING USING ITERATIVE USER CLUSTERING)

Require: Number of users M, items N, rounds T, noise σ2, bound on the entry-wise magnitude of
expected rewards ||P||∞, incoherence µ.

1: SetM(1,1) =M(1,2) = φ and B(1) = [M]. Set N (1,1) = N (1,2) = φ. Set f = O(log(MNT))
and suitable constants a, c, C,C ′, Cλ > 0.

2: for ` = 1, 2, . . . , do
3: Set ∆` = C ′2−` min

(
‖P‖∞,

σ
√
µ

log N

)
.

4: for k = 1, 2, . . . , f do
5: for each pair of non-null sets (B(`),N), (M(`,1),N (`,1)), (M(`,2),N (`,2)) ⊆ [M]× [N] do
6: Denote (T (1), T (2)) to be the considered pair of sets and i ∈ {0, 1, 2} to be its index.

7: Set d2,i = min(|T (1)|, |T (2)|). Set p`,i = Cµ2d−1
2,i log3 d2,i and s`,i =

⌈(
cσ
√
µ

∆` log d2,i

)2⌉
.

8: For each tuple of indices (u, v) ∈ T (1)×T (2), independently set δuv = 1 with probability
p`,i and δuv = 0 with probability 1− p`,i.

9: Denote Ω(i) = {(u, v) ∈ T (1) × T (2) | δuv = 1} and b`,i = maxu∈U |v ∈ V | (u, v) ∈
Ω|. Set total number of rounds to be m`,i = b`,is`,i.

10: end for
11: Set m` = maxi∈{0,1,2}m`,i.
12: Compute Q̃(`,k) = ESTIMATE(|B(`)|, [N],m`,Ω

(0), b`,0, λ = Cλσ
√
d2,0p`). # Algorithm

1 is used to recommend items to every user in B(`) for m` rounds.
13: For i ∈ {1, 2}, compute P̃(`,i,f) = ESTIMATE(|M(`,i)|, |N (`,i)|,m`,Ω

(i), b`,i, λ =

Cλσ
√
d2,ip`). # Algorithm 1 recommends items to every user inM(`,i) for m` rounds.

14: end for
15: Compute Q̃(`) =Entrywise Median({Q̃(`,k)}fk=1), P̃(`,i) =Entrywise Median({P̃(`,i,k)}fk=1)

for i ∈ {1, 2}.
16: Set B(`+1) ≡

{
u ∈ B(`) |

∣∣∣maxt∈[N] Q̃
(`)
ut −mint∈[N] Q̃

(`)
ut

∣∣∣ ≤ 2a∆`

}
17: Compute T (`+1)

u = {j ∈ [N]} | Q̃(`)
uj + ∆` > maxt∈[N] Q̃

(`)
ut } for all u ∈ B(`) \ B(`+1).

18: For i ∈ {1, 2}, for all users u ∈ M(`,i), compute T (`+1)
u = {j ∈ N (`,i) | P̃

(`,i)
uj + ∆` >

maxt∈N (`,i) P̃
(`,i)
ut }.

19: Set v to be any user in [M]\B(`+1). SetM(`+1,1) = {u ∈ [M]\B(`+1) | T (`+1)
u ∩T (`+1)

v 6= φ}.
SetM(`+1,2) = [M] \ (B(`+1) ∪M(`+1,1)).

20: Compute N (`+1,1) =
⋂
u∈M(`+1,1) T (`+1)

u , N (`+1,2) =
⋂
u∈M(`+1,2) T (`+1)

u .
21: For i ∈ {1, 2}, if |M(`+1,i)| ≤ M√

T
, then set B(`+1) ← B(`+1)∪M(`+1,i) andM(`+1,i) ← φ.

22: end for

We also prove that the set of good items contain the best item for each labelled user (jmax or jmin). So,
after each phase, for each cluster of users, we compute the intersection of good items over all users in
the cluster. This subset of items (joint good items) must contain the best item for that cluster and
therefore we can discard the other items (Step 20). We can show that all items in the set of joint good
items (N (`+1,1) and N (`+1,2)) have rewards which is close to the reward of the best item. Therefore
the algorithm suffers small regret if for each group of labelled users, the algorithm recommends items
from the set of joint good items (Step 13) in the next phase. We can further show that for the set of
unlabelled users, the difference in rewards between the best item and worst item is small and hence
the regret for such users is small, irrespective of the recommended item (Step 12). Note that until
the number of labelled users is sufficiently large, we do not consider them separately (Step 21). A
crucial part of our analysis is to show that for any subset of users and items considered in Step 5, the
number of rounds sufficient to recover a good estimate of the expected reward sub-matrix is small
irrespective of the number of considered items (if the number of users is sufficiently large).

Remark 9 (Practical considerations). In general OCTAL (Alg. 3) is computationally faster than the
ETC Algorithm (Alg. 2) with a higher exploration length. This is because OCTAL eliminates large
chunks of items in every phase and therefore has to solve easier optimization problems; on the other
hand, ETC has to solve a low rank matrix completion problem in MN variables that becomes slower
with the exploration length (datapoints). Moreover, OCTAL algorithm runs in phases with the initial
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phases being very small; hence the users do not have to wait for a long time to even get personalized
recommendations like in ETC. These features make OCTAL much more practical than ETC.

To summarize, in Algorithm 3, the entire set of rounds [T] is partitioned into phases of exponentially
increasing length. In each phase, for the set of unlabelled users, we do pure exploration and
recommend random items from the set of all possible items (Step 12). The set of labelled users are
partitioned into two clusters; for each, we follow a semi-exploration strategy where we recommend
random items from a set of joint good items (Steps 13). We now introduce the following definition:

Definition 3 ((α, µ)-Local Incoherence). For 0 ≤ α ≤ 1, a vector v ∈ Rm is (α, µ)-local incoherent
if for all sets U ⊆ [m] satisfying |U| ≥ αm, we have ‖vU‖∞ ≤

√
µ
|U|‖vU‖2.

Local incoherence for a vector v implies that any sub-vector of v having a significant size must be
incoherent as well. Note that the local incoherence condition is trivially satisfied if the magnitude of
each vector entry is bounded from below. We are now ready to state our main result:

Theorem 2. Consider the rank-1 online matrix completion problem with T rounds, M users s.t.
M ≥

√
T and N items. Denote d2 = min(M,N). Let R

(t)
uρu(t) be the reward in each round, defined

as in equation 1. Let σ2 be the noise variance in rewards and let P ∈ RM×N be the expected reward
matrix with SVD decomposition P = λūv̄T such that ū is (T−1/2, µ)-locally incoherent, ‖v̄‖∞ ≤√
µ/N, d2 = Ω(µ log d2) and |v̄jmin

| = Θ(|v̄jmax
|). Then, by suitably choosing parameters

{∆`}`, positive integers {s(`,0), s(`,1), s(`,2)}` and 1 ≥ {p(`,0), p(`,1), p(`,2)}` ≥ 0 as described
in Algorithm 3, we can ensure a regret guarantee of Reg(T) = O(

√
T‖P‖∞ + J

√
TV) where

J = O
(

log
(

1√
VT−1

min
(
‖P‖∞,

σ
√
µ

log N

)))
and V =

(
max(1, N

√
T

M )σ2µ3 log2(MNT)
)

.

Similar to Algorithm 2, Algorithm 3 allows non-trivial regret guarantees even when N� T provided
the number of users is significantly large as well i.e. M = Ω̃(N

√
T).

Remark 10. Under slightly stronger local incoherence conditions on the vector ū, we can analyze a
modified version of OCTAL (Alg. 8) without requiring users M to be large. When |C1| ≈ |C|2, the
regret guarantee (Thm. E) scales as Õ(

√
NT/M). Due to space limitations, details of Algorithm 8

and the proof of Theorem E can be found in Appendix E

Finally, we show that the above dependence on N,M,T matches the lower bound that we obtain by
reduction to the well-known multi-armed bandit problem.

Theorem 3. Let P ∈ [0, 1]M×N be a rank 1 reward matrix and the noise variance σ2 = 1. In that
case, any algorithm for online matrix completion problem will suffer regret of Ω(

√
NTM−1).

6 CONCLUSIONS

We studied the problem of online rank-one matrix completion in the setting of repeated item recom-
mendations and blocked item recommendations, which should be applicable for several practical
recommendation systems. We analyzed an explore-then-commit (ETC) style method which is able
to get the regret averaged over users to be nearly independent of number of items. That is, per
user, we require only logarithmic many item recommendations to get non-trivial regret bound. But,
the dependence on the number of rounds T is sub-optimal. We further improved this dependence
by proposing OCTAL that carefully combines exploration, exploitation and clustering for different
users/items. Our methods iteratively refines estimate of the underlying reward matrix, while also
identifying users which can be recommended certain items confidently. Our algorithms and proof
techniques are significantly different than existing bandit learning literature. We believe that our work
only scratches the surface of an important problem domain with several open problems. For example,
Algorithm 3 requires rank-1 reward matrix. Generalizing the result to rank-r reward matrices would
be interesting. Furthermore, relaxing assumptions on the reward matrix like stochastic noise or
additive noise should be relevant for several important settings. Finally, collaborative filtering can
feed users related items, hence might exacerbate their biases. Our method might actually help mitigate
the bias due to explicit exploration, but further investigation into such challenges is important.
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(a) Regret comparison computed by Alg. 2 for explo-
ration periods (5, 15, 45, 50), Alg. 3 and UCB when
T = 1000. The average regret is plotted with gap in
reward between best and worst item for all users.

(b) Comparison of the regret incurred in each round
(M−1∑

u∈[M] µ
?
u−E 1

M

∑
u∈[M] R

(t)

uρu(t)) by Algo-
rithm 2 (for exploration period m = 25, 70), Algo-
rithm 3 and the UCB algorithm when T = 1000.

Figure 1: Comparison of regret incurred by OCTAL algorithm (Algorithm 3, and ETC algorithm 2
against UCB, when expected reward matrix is rank-1. See Section A.1 for data generation process.
Clearly, both OCTAL and ETC have significantly lower regret than baseline UCB method which does
not exploit reward matrix’s low-rank structure.

A EXPERIMENTS

A.1 SYNTHETIC DATASETS

We set the total number of users M = 100, the total number of items N = 150. For the total number
of rounds, we look at two settings namely 1) T = 1000 (T � N) and 2) T = 100 (T � N). The
former one allows us to demonstrate the tension between exploration and exploitation clearly as the
number of rounds is large and moreover, it also allows us to compare with the Upper Confidence
Bound (UCB) algorithm (see Remark 1) that does not use the low rank structure of the algorithm. In
the latter setting, we demonstrate empirically that our regret bounds are non-trivial even when the
number of rounds is significantly smaller than the number of items. We design the unknown reward
matrix P = uvT by designing u ∈ RM,v ∈ RN corresponding to the embeddings of the users and
items respectively in the following manner: the entries of u are randomly sampled from the set
{1,−1}. All the entries in the vector v are uniformly sampled from the interval [Gap/2,−Gap/2]
where Gap is a parameter unknown to the implemented algorithms. With such a construction, we
ensure almost surely that the difference between the reward of the best item and second best item
also increases with Gap. The algorithms are allowed to make observations from a noisy version of
P (say Pnoisy) where Pnoisy ← P+E where every entry of E is sampled i.i.d according toN (0, 0.1).

We vary Gap and run Algorithm 2 with different exploration periods m. For each configuration of
Gap,m we run Algorithm 2 10 times and store the regret (see the relevant definition in equation 1)
averaged across the 10 runs. In Figure 2b, we compare the regret of Algorithm 2 with different values
of Gap as we change the exploration periods for T = 1000. Clearly, with a small exploration period,
the algorithm commits to the wrong item more often and with a large exploration period, the cost of
exploration is too high. The existence of a sweet spot can be noticed from the U-curves in Figure 2b.

Similarly, we run Algorithm 3 for the same values of Gap, each for 10 times and store the average
regret. We also run the Upper Confidence Bound ((1, 1)-UCB) algorithm Bubeck & Cesa-Bianchi
(2012) for each user separately and compute the regret (averaged over 10 simulations). In Figure
1a, we compare the regrets incurred by Algorithm 2, Algorithm 3 and the UCB algorithm when
T = 1000. Similarly, in Figure 2a, we compare the regrets incurred by Algorithm 2 and Algorithm
3 when T = 100. Note that when T = 1000, the tension between exploration and exploitation is
clearer as the number of exploitation rounds is larger for Algorithm 2; Algorithm 3 performs better
than ETC algorithms for all the different values of exploration periods used for many of the different
values of Gap. However, even for T = 100, the performance of Algorithm 3 is quite close to that of
Algorithm 2 with the best performing exploration period parameter.
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(a) Comparison of the regret computed by Algorithm
2 for exploration periods 5, 15, 25, 60 (5, 15 are the
optimal exploration periods for Algorithm 2) and Algo-
rithm 3 when T = 100. The average regret is plotted
with gap in reward between best and worst item for all
users.

(b) Comparison of the regret computed by Algorithm 2
for 4 different gaps in reward between best and worst
item when T = 1000. The average regret is plotted
with different exploration periods for four different
values of Gap resulting in U-curves.

Figure 2: Simulation results on Regret averaged over a few runs (See Defintion 2) of Algorithms 2 and 3

For Algorithm 3, in phase indexed by `, we use the number of rounds to be m` = 10 + 2`. We also
make Step 11 in Algorithm 3 more robust by taking those items inN (`+1,1),N (`+1,2) that are present
in at least 2/3 of the set T (`+1)

u for users u in the setsM(`+1,1),M(`+1,2) respectively. If, due to
some failure event, N (`+1,1) = φ (or N (`+1,2) = φ) then we set N (`+1,1) (N (`+1,2)) to be the item
that is present is maximum number of sets T (`+1)

u for users u in the setsM(`+1,1) (M(`+1,2)).

In our final experiment in the repeated setting with T = 1000, we plot the regret
M−1

∑
u∈[M] maxj∈[N] Puj − 1

M

∑
u∈[M] Puρu(t) at time t (up to t < 150) as t is increased for

Algorithms 2, 3 and the UCB Algorithm (the reported values are averaged over 10 simulations). For
Algorithm 2, the regret is high at all times during the exploration period and then it experiences a
sharp drop in the exploitation period. On the other hand, for Algorithm 3, the regret decreases in
each phase and so we observe a more gradual decrease in the regret; thus Algorithm 3 is an anytime
algorithm. Also note that the regret of the UCB algorithm does not decrease during the first 150
rounds.

A.2 REAL DATASETS

MovieLens: Next, we demonstrate experimental results on the MovieLens dataset on the lines of
Kveton et al. (2017). The MovieLens 1M dataset comprises of 1 million ratings provided by 6K users
to 4K movies. We cluster the users into disjoint groups (241) where each cluster represents a unique
combination of gender, age group, and occupation in the MovieLens dataset. Moreover, we use a
random subset of movies (300) for which the average rating is between 2.5 and 3.5 ( in order to avoid
movies which are too good or too bad). For each pair of (user group, movie), we take the average of
all the ratings provided by users in that group for that movie. Around 33% of the 241× 300 ratings
matrix could be filled in this manner. In order to complete the matrix, we optimized a convex program
for low rank matrix completion (see eq. (6) and (Chen et al., 2019)) by minimizing the MSE with a
nuclear norm regularizer.

We randomly take M = 128 user groups, N = 128 movies and take the total rounds T = 100. Note
that the number of rounds is less than the number of items (movies) and therefore, the UCB algorithm
implemented separately for each user group can only explore and incur a regret of 179.61. For the
ETC Algorithm (Alg. 2), as a baseline (for a fair comparison with OCTAL), we consider the rank
1-approximation of the estimated reward matrix P̂ (ETC Rank-1). From Figure 3a, note that the
OCTAL Algorithm (Alg. 3 with the same minor mofications as in the synthetic datasets) outperforms
ETC with the rank-1 approximation by a significant margin. In fact, in Figure 3c, we can see that the
OCTAL Algorithm has smaller cumulative regret in every round as compared to ETC with rank-1
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approximation for different exploration periods. All results that are reported are an average of 10
independent runs.

Although the OCTAL algorithm crucially uses the rank 1 structure, it has reasonable performance
even when the reward matrix has a larger rank but can still be approximated well with a rank 1 matrix;
in our experiment, it turns out that the highest singular value of the ratings matrix is ≈ 10 times larger
than the second largest singular value. In figure 3b, we also compare the round-wise incurred regret
at different rounds t ∈ [100].

(a) Comparison of regret at T = 100
for UCB, OCTAL and ETC (with
rank-1 approxmiation) for different
exploration periods

(b) Comparison of regret at every
round for OCTAL and ETC with
rank-1 approximation and explo-
ration period m = 20, 40

(c) Comparison of cumulative regret
until every round for OCTAL and
ETC with rank-1 approximation and
different exploration periods

Figure 3: Comparison of regret incurred by OCTAL algorithm (Algorithm 3, ETC algorithm 2 with
rank-1 approximation of the estimated matrix against UCB for the MovieLens dataset. In Figure
3a, we show that OCTAL and both versions of ETC have significantly lower regret than baseline
UCB method. In Figure 3b, we show that the regret of OCTAL decreases in every phase unlike ETC
algorithms. In Figure 3c, we show that the cumulative regret of OCTAL is lower than that of ETC
with rank 1 approximation at every round t ≤ T.

Notice from Figure 3b that the regret of the OCTAL algorithm decreases continuously making it
anytime which is extremely useful in practical applications. On the other hand, the regret of the ETC
algorithm only decreases after the exploration period is over which is undesirable. In fact, for a large
number of initial rounds, the OCTAL algorithm outperforms the ETC algorithms.

Jester Dataset: Next, we consider the Jester dataset (Goldberg et al., 2001) which consists data
from 24983 users who have provided ratings for 100 jokes that are between −10.0 to +10.0. We
select M = 100 users who have rated all the N = 100 jokes and use the corresponding 100 × 100
ratings matrix as the underlying reward matrix; we select the number of recommendation rounds
T = 100 However, this reward matrix is not well-approximated by a low rank matrix unlike the
MovieLens dataset since there exists a long tail of singular values with large magnitude. Despite this,
we demonstrate the efficacy of our algorithms. First, we run the UCB algorithm for each of the 100
users separately for 100 rounds and thus incur an average regret of 734.66.

As in the Movielens setting, we run Algorithm 2 namely the ETC Algorithm (with rank-1 approxima-
tion) for different exploration periods and the OCTAL algorithm (Algorithm 3 with the same minor
mofications as in the synthetic datasets) in this setting. Note from Figure 4a that both the ETC and
OCTAL algorithm have improved performances as compared to the UCB algorithm. Again, from
Figure 4c, the cumulative regret of OCTAL is lower than that of ETC with rank-1 approximation
for different exploration periods at every round. In Figure 4b, we show the regret at every round
incurred by OCTAL and ETC with rank-1 approximation; the regret of OCTAL decreases in every
phase which is useful in practical recommendation systems. Recall that the ETC algorithm with
rank-1 approximation has a poor performance since it suffers from the T2/3 dependence in the
worst case. Again, we must point out that it is critical to tune the exploration period in ETC (as a
function of rounds and sub-optimality gaps - unknown in practice and therefore difficult) (Lattimore
& Szepesvári, 2020)[Ch. 6], OCTAL still suffers lower regret without such side-information.

Book-Crossing Dataset: Next we consider the Book-Crossing Dataset (Ziegler et al., 2005) which
consists of ratings from 278K users (with demographic information) for 271K books. As in the
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(a) Comparison of regret at T = 100
for UCB, OCTAL and ETC (with
rank-1 approxmiation) for different
exploration periods

(b) Comparison of regret at every
round for OCTAL and ETC with
rank-1 approximation and explo-
ration period m = 20, 40

(c) Comparison of cumulative regret
until every round for OCTAL and
ETC with rank-1 approximation and
different exploration periods

Figure 4: Comparison of regret incurred by OCTAL algorithm (Algorithm 3, ETC algorithm 2 with
rank-1 approximation of the estimated matrix against UCB for the Jester dataset. In Figure 4a, we
show that OCTAL and both versions of ETC have significantly lower regret than baseline UCB
method. In Figure 4b, we show that the regret of OCTAL decreases in every phase unlike ETC
algorithms. In Figure 4c, we show that the cumulative regret of OCTAL is lower than that of ETC
with rank 1 approximation at every round t ≤ T.

Movielens setting, we identify M = 70 disjoint clusters of users as a unique combination of country
and age bin (0-25,25-50,50-75,75-100) that have rated at least 100 books. Next we take N = 150
books that have the most ratings. For each user cluster and each chosen book, we take the average
rating of all users in the cluster for that book. We select the number of rounds T = 100 and as
before, we run the UCB algorithm separately for each user, ETC algorithm (Alg. 2) with the rank-1
approximation of the estimated reward matrix, OCTAL Algorthm (Alg. 3 with the same minor
mofications as in the synthetic datasets). The results are demonstrated in Figures 5a,5b and 5c. As
before the UCB algorithm has the worst performance; OCTAL has a superior performance to ETC
with rank-1 approximation for different exploration periods (and at all rounds). The conclusions are
very similar to that obtained in the Jester dataset.

(a) Comparison of regret at T = 100
for UCB, OCTAL and ETC (with
rank-1 approxmiation) for different
exploration periods

(b) Comparison of regret at every
round for OCTAL and ETC with
rank-1 approximation and explo-
ration period m = 20, 40

(c) Comparison of cumulative regret
until every round for OCTAL and
ETC with rank-1 approximation and
different exploration periods

Figure 5: Comparison of regret incurred by OCTAL algorithm (Algorithm 3, ETC algorithm 2 with
rank-1 approximation of the estimated matrix against UCB for the Book Crosssing dataset. In Figure
5a, we show that OCTAL and both versions of ETC have significantly lower regret than baseline
UCB method. In Figure 5b, we show that the regret of OCTAL decreases in every phase unlike ETC
algorithms. In Figure 5c, we show that the cumulative regret of OCTAL is lower than that of ETC
with rank 1 approximation at every round t ≤ T.

B MISSING PROOFS IN SECTION 3

We start with the following corollary:
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Algorithm 4 ESTIMATE LOW RANK MATRIX (SUB-MATRIX) OFFLINE (CHEN ET AL., 2019)

Require: rows U ⊆ [M], columns V ⊆ [N], noise σ2, rank r of P, bernoulli sampling probability
0 ≤ p ≤ 1.

1: Set d2 = min(|U| , |V|) and λ = Cλσ
√
d2p for some constant Cλ > 0.

2: For each tuple of indices (i, j) ∈ U ×V , independently set δij = 1 with probability p and δij = 0
with probability 1− p.

3: Denote Ω = {(i, j) ∈ U × V | δij = 1}. Observe Zij (noisy version of Pij) for all (i, j) ∈ Ω
4: Solve convex program

min
P̂∈R|U|×|V|

1

2

∑
(i,j)∈Ω

(
P̂ij − Zij

)2

+ λ‖P̂‖? (8)

where ‖P̂‖? denotes nuclear norm of matrix P̂

5: Return P̂.

Lemma 4 (Theorem 1 in Chen et al. (2019)). Let P = ŪΣV̄T ∈ Rd×d such that Ū ∈
Rd×r, V̄ ∈ Rd×r and Σ , diag(λ1, λ2, . . . , λr) ∈ Rr×r with ŪTŪ = V̄TV̄ = I and
‖Ū‖2,∞ ≤

√
µr/d, ‖V̄‖2,∞ ≤

√
µr/d. Let 1 ≥ p ≥ Cµ2d−1 log3 d for some sufficiently large con-

stant C > 0, σ = O
(√

pd
µ3 log d‖P‖∞

)
, rank r = O(1) and condition number κ , maxi λi

mini λi
= O(1).

Then, with probability exceeding 1 − O(d−3), we can compute a matrix P̂ ∈ RM×N by using
Algorithm 4 with parameters (U = [M],V = [N], σ2, r, p) s.t.,

‖P̂−P‖∞ ≤ O
( σ

mini λi
·

√
µd log d

p
‖P‖∞

)
. (9)

Next, we extend Lemma 4 to rectangular matrices in the following result:
Lemma 5. Let P = ŪΣV̄T ∈ RM×N such that Ū ∈ RM×r, V̄ ∈ RN×r and Σ ,
diag(λ1, λ2, . . . , λr) ∈ Rr×r with ŪTŪ = V̄TV̄ = I and ‖Ū‖2,∞ ≤

√
µr/M, ‖V̄‖2,∞ ≤√

µr/N. Let d1 = max(M,N) and d2 = min(M,N). Let 1 ≥ p ≥ Cµ2d1d
−2
2 log3 d1 for some

sufficiently large constant C > 0, σ = O
(√

pd32
d21µ

3 log3 d1
‖P‖∞

)
, rank r = O(1) and condition

number κ , maxi σi
mini σi

= O(1). Then, with probability exceeding 1 − O(d−3
1 ), we can compute a

matrix P̂ ∈ RM×N by using Algorithm 4 with parameters (U = [M],V = [N], σ2, r, p) s.t.,

‖P̂−P‖∞ = O
( σr√

d2

(d1

d2

)1/2

√
µ3 log d1

p

)
(10)

Proof of Lemma 5. Without loss of generality, let us assume that the matrix P is tall i.e. M ≥ N.
Now, let us construct the matrix

Q = [P 0M×M−N] = ŪΣ[V̄T 0T
N−M]

where Q ∈ RM×M. Clearly, the decomposition Q = ŪΣ[V̄T 0T
N−M] also coincides with the SVD of

Q since both matrices Ū and [V̄T 0T
N−M]T are orthonormal matrices while Σ remains unchanged.

In case when N > M, we can construct Q similarly by vertically stacking P with a zero matrix
of dimensions (N−M) × M. Hence, generally speaking, let us denote d1 = max(M,N) and
d2 = min(M,N).

The matrix Q is µ̄-incoherent where µ̄r(d1)−1 = µrd−1
2 implying that µ̄ = µd1/d2. Moreover,

we also have ‖Q‖∞ = ‖P‖∞ implying that maxij |Pij | = maxij |Qij |. Therefore, by invoking
Lemma 1, the sample size must obey

p ≥ Cµ2d1

d2
2

log3(d1) and σ = O
(√ pd3

2

d2
1µ

3 log3 d1

‖P‖∞
)

Then with probability at least O(d−3
1 ), we can recover a matrix Q̂ such that

‖Q̂−Q‖∞ ≤ O
( σ

mini λi

√
µd1d2 d1 log d1

p
‖P‖∞

)
.
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Algorithm 5 ESTIMATE LOW RANK MATRIX (SUB-MATRIX) OFFLINE - RECTANGULAR MATRI-
CES

Require: rows U ⊆ [M], columns V ⊆ [N], noise σ2, rank r of P, bernoulli sampling probability
0 ≤ p ≤ 1.

1: Set d2 = min(|U| , |V|) and λ = Cλσ
√
d2p for some constant Cλ > 0.

2: For each tuple of indices (i, j) ∈ U ×V , independently set δij = 1 with probability p and δij = 0
with probability 1− p.

3: Denote Ω = {(i, j) ∈ U × V | δij = 1}. Observe Zij (noisy version of Pij) for all (i, j) ∈ Ω
4: Without loss of generality, assume |U| ≤ |V|. For each i ∈ V , independently set ζi to be a value

in the set [d|V|/|U|e] uniformly at random. Partition indices in V into V(1),V(2), . . . ,V(k) where
k = d|V|/|U|e and V(q) = {i ∈ V | ζi = q} for each q ∈ [k]. Set Ω(q) ← Ω ∩ (U × V(q)) for
all q ∈ [k]. #If |U| ≥ |V|, we partition the indices in U .

5: for q ∈ [k] do
6: Solve convex program

min
P̂(q)∈R|U|×|V(q)|

1

2

∑
(i,j)∈Ω(q)

(
P̂

(q)
iπ(j) − Zij

)2

+ λ‖P̂(q)‖?, (11)

where ‖P̂(q)‖? denotes nuclear norm of matrix P̂(q) and π(j) is index of j in set V(q).
7: end for
8: Return P̂ ∈ RM×N s.t. P̂U,V(q) = P̂(q) for all q ∈ [k] and for every (i, j) 6∈ U × V , P̂ij = 0.

Using the fact that ‖P‖∞ ≤ maxi λi‖Ū‖2,∞‖V̄‖2,∞ = maxi λiµr/
√
d1d2 =⇒

‖P‖∞/mini λi = κ · µr/
√
d1d2 = O

(
µr/
√
d1d2

)
(using the fact that κ = O(1) , we obtain

a matrix P̂ such that

‖P̂−P‖∞ ≤ O
( σµr√

d1d2

(d1

d2

)1/2

√
µd1 log d1

p

)
= O

( σr√
d2

(d1

d2

)1/2

√
µ3 log d1

p

)
.

Here we recall the discussion in Remark 2. From Lemma 5, we saw that in the guarantee provided in
equation 10, the entry-wise error guarantee has an undesirable (d1/d2)1/2 factor on the right hand
side. This is because appending a zero matrix to make the rectangular matrix square leads to an
increase in the incoherence factor by (d1/d2)1/2 since there are many zero entries. This is what leads
to the undesirable factor; but we can get around this by splitting the rectangular matrix randomly
into approximately square sub-matrices and completing each of them individually. The improved
algorithm for rectangular matrices is described in Algorithm 5 - note that in Step 4, we split the
rectangular matrix into approximately square matrices and in Steps 5-7, we complete each of the
approximately square sub-matrix individually. Finally, in Step 8, we join the estimated sub-matrices
to get an estimate of the entire matrix and return it. In the main paper, the corresponding steps are
done in Lines 10-14 in Algorithm 1. We provide a formal proof in the following lemma:
Lemma 6. Let the matrix P ∈ RM×N satisfy the conditions as stated in Lemma 5. Let d1 =
max(M,N), d2 = min(M,N) such that d2 = Ω(µr log(rd2)), 1 ≥ p ≥ Cµ2d−1

2 log3 d2 for some

sufficiently large constant C > 0 and σ = O
(√

pd2
µ3 log d2

‖P‖∞
)

. We can use Algorithm 5 with

parameters (U = [M],V = [N], σ2, r, p) to compute a matrix P̂ ∈ RM×N such that for any pair of
indices (i, j) ∈ [M]× [N],

|P̂ij −Pij | ≤ O
( σr√

d2

√
µ3 log d2

p

)
(12)

with probability exceeding 1−O(d−3
2 ). Again, with probability exceeding 1−O(d1d

−4
2 ), the output

matrix P̂ also satisfies ‖P− P̂‖∞ ≤ O
(
σr√
d2

√
µ3 log d2

p

)
.

Proof. Let us assume that the matrix P is tall i.e. M ≥ N. Now, let us partition the set of rows
into M

N groups by assigning each group uniformly at random to each row. Notice that the expected
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number of rows in each group is N and by using Chernoff bound, the number of rows in each group
lies in the interval [N2 ,

3N
2 ] with probability at least 1− 2 exp(−N/12). When M ≤ N, we partition

the set of columns in a similar manner into N/M groups so the number of columns in each group
lies in the interval [M2 ,

3M
2 ] with probability at least 1− 2 exp(−M/12). Hence, generally speaking,

let us denote d1 = max(M,N) and d2 = min(M,N); we constructed d1/d2 sub-matrices of P
denoted by P(1),P(2), . . . ,P(d1/d2). With probability at least 1 − 2 exp(−d2/12), the matrices
P(1),P(2), . . . ,P(d1/d2) are approximately square i.e. the ratio of their dimensions is a constant and
lie in the interval [1/2, 3/2].

Let us analyze the guarantees on estimating P(1). The analysis for other matrices follow along similar
lines. Note that P(1) = UΣVT

sub where Vsub denotes the M′ × r matrix where the rows in Vsub

corresponds to the M′ rows in V assigned to P(1).

First we will bound from below the minimum eigenvalue of the matrix VT
subVsub. Note that every

row of V is independently sampled with probability p , d2/d1 for the matrix P(1). Hence, we have

1

p
VT

subVsub =
1

p

∑
i∈[d1]

δiViV
T
i =

∑
i∈[d1]

W(i)

where δi denotes the indicator random variable which is true when Vi (the ith row of V) is chosen
for P(1) and W(i) = 1

pδiViV
T
i . Notice that the random matrices W(i) are independent with

EW(i) = ViV
T
i . Hence we define Z(i) = W(i) − EW(i) satisfying EZ(i) = 0. Moreover, for all

i ∈ [d1], we have ‖Z(i)‖2 ≤
(

1 + 1
p

)
‖ViV

T
i ‖2 ≤

(
1 + 1

p

)
maxi ‖Vi‖22 ≤

2µr
pd1

. Next, we can show
the following:

‖
∑
i∈[d1]

Z(i)(Z(i))T‖2 ≤ ‖
(1

p
− 1
) ∑
i∈[d1]

(ViV
T
i )(ViV

T
i )T‖2 ≤ ‖

(1

p
− 1
)
‖Vi‖2

∑
i∈[d1]

(ViV
T
i )‖2

≤ µr

pd1
λmax(VTV).

Similarly, we will also have

‖
∑
i∈[d1]

(Z(i))TZ(i)‖2 ≤
µr

pd1
λmax(VTV) ≤ µr

pd1

where we used that VTV is orthogonal. Therefore, by using Bernstein’s inequality for matrices
(Theorem 1.6 in Tropp (2012)), we have with probability at least 1− δ,

‖1

p
VT

subVsub −VTV‖ ≤ 2µr

3pd1
log

2r

δ
+

√
µr

pd1
log

2r

δ
.

Hence, by using Weyl’s inequality, we will have with probability 1− δ

λmin(VT
subVsub) ≥ p−

2µr

3d1
log

2r

δ
−
√
pµr

d1
log

2r

δ
.

Hence, by substituting δ = d−3
2 we have that with probability at least 1−d−3

2 , if d2 = Ω(µr log(rd2)),
then λmin(VT

subVsub) ≥ p/2 (since p = d1/d2) implying that VT
subVsub is invertible. Also, under

the same condition, note that we can show similarly that λmax(VT
subVsub) ≤ 3p/2 implying that the

condition number of each sub-matrix also stays O(1) with probability at least 1− d−3
2 . Now, note

that Vsub is not orthogonal and therefore, we have

P(1) = UΣ(VT
subVsub)

1/2(VT
subVsub)

−1/2VT
sub = UÛΣ̂V̂(VT

subVsub)
−1/2VT

sub

where ÛΣ̂V̂ is the SVD of the matrix Σ(VT
subVsub)

1/2. Since Û is orthogonal, ÛU is orthog-
onal as well. Similarly, (V̂(VT

subVsub)
−1/2VT

sub)
T is orthogonal as well whereas Σ̂ is diagonal.

Hence UÛΣ̂V̂(VT
subVsub)

−1/2VT
sub indeed corresponds to the SVD of P(1) and we only need to
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argue about the incoherence of ÛU and V̂(VT
subVsub)

−1/2VT
sub. Notice that maxi ‖(UÛ)Tei‖ ≤

‖UTei‖ ≤
√

µr
d2

. On the other hand,

max
i
‖V̂(VT

subVsub)
−1/2VT

subei‖ ≤ max
i
‖(VT

subVsub)
−1/2VT

subei‖

≤ ‖Vsub‖2,∞√
λmin(VT

subVsub)
≤ ‖V‖2,∞√

p/2
≤
√

2µr

d2
.

Hence, with probability 1− 2 exp(−d2/12)−O(d−3
2 ), we can recover an estimate P̂(1) and apply

Lemma 5 to conclude that (recall that the rank of P(1) is O(1), we have proved that the condition
number of P(1) is O(1) w.p. at least 1−O(d−3

2 ), the incoherence factor of P(1) has increased by a
factor of at most 2 w.p. at least 1−O(d−3

2 ) and the ratio of the dimensions of P(1) is in the interval
[1/2, 3/2] w.p. at least 1− exp(−d2/12) implying that the conditions of Lemma 5 are satisfied for
P(1) w.h.p)

‖P(1) − P̂(1)‖∞ ≤ O
( σr√

d2

√
µ3 log d2

p

)
.

as long as the conditions stated in the Lemma are satisfied. This implies that for any pair of indices
(i, j) ∈ [M]× [N], we must have

|P̂ij −Pij | ≤ O
( σr√

d2

√
µ3 log d2

p

)
(13)

with probability exceeding 1−O(d−3
2 )

Finally, by taking a union bound over all the d1/d2 partitions, we can compute estimates of all the
sub-matrices P(1),P(2), . . . ,P(d1/d2) that have similar guarantees as above with probability at least
1− 2d1d

−1
2 exp(−d2/12)−O(d1d

−4
2 ). Hence, by combining all the estimates, we can obtain a final

estimate P̂ of the matrix P that satisfies

‖P− P̂‖∞ ≤ O
( σr√

d2

√
µ3 log d2

p

)
.

Notice that the theoretical guarantees presented in Lemmas 4, 5 and 6 hold for the offline low rank
matrix completion problem when each (noisy) entry of the low rank matrix P ∈ RM×N is observed
independently with some probability p (Bernoulli sampling model with probability p - see eq. 4). To
summarize, if the observed set of entries is Ω ⊆ [M]× [N] (each index (i, j) ∈ [M]× [N] is present
in Ω with probability p), then we can solve several convex optimization problems (see Steps 5-7 in
Algorithm 5) restricted to observations in Ω to compute an estimate P̂ of the low rank matrix P.

However, in our problem setting (Section 2), recall that in each round t ∈ [T], for each user u ∈ [M],
some item ρu(t) is recommended. Our goal is to translate the theoretical guarantees under Bernoulli
sampling model with probability p (for some pre-determined p) to our setting. A simple approach
(as mentioned in Remark 3) is the following (described in Algorithm 6): we first sample a set of
indices Ω ⊆ [M] × [N] such that each index (i, j) ∈ [M] × [N] is present in Ω with probability p
(Step 2 in Algorithm 6). Subsequently, we aim to obtain a single observation (noisy) corresponding
to each pair of indices in Ω; in each round, for each user i ∈ [M], we recommend an item j ∈ [N]
such that (i, j) ∈ Ω and has not been observed yet . If such an item is unavailable for the user i,
we recommend any arbitrary item j such that (i, j) 6∈ Ω (Step 5 in Algorithm 6) but ignore the
observation while reconstruction of the reward matrix; note that this is unnecessary in practice. Once
we have obtained observations corresponding to all pairs of indices in Ω (we discard all observations
corresponding to entries not in Ω), we can solve the convex optimization problems restricted to the
observed entries in Ω (Steps 8-10 in Algorithm 6) to compute an estimate P̂ of the reward matrix P
and apply the theoretical guarantees in Lemma 6 directly. The total number of rounds needed will
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Algorithm 6 ESTIMATE REWARD MATRIX (SUB-MATRIX) ONLINE

Require: users U ⊆ [M], items V ⊆ [N], noise σ2, rank r of P, bernoulli sampling probability
0 ≤ p ≤ 1. Index of round t is relative to the first round when the algorithm is invoked; hence
t = 1, 2, . . . .

1: Set d2 = min(|U| , |V|) and λ = Cλσ
√
d2p for some constant Cλ > 0.

2: For each tuple of indices (i, j) ∈ [M] × [N], independently set δij = 1 with probability p and
δij = 0 with probability 1− p.

3: Denote Ω = {(i, j) ∈ U × V | δij = 1} and m = maxi∈[M] | |j ∈ V | (i, j) ∈ Ω| to be the
maximum number of index tuples in a particular row. For all (i, j) ∈ Ω, set Maskij = 0.

4: for rounds t = 1, 2, . . . ,m do
5: For each user u ∈ U , recommend an item ρu(t) in {j ∈ V | (u, j) ∈ Ω,Maskuj = 0} and

set Maskuρu(t) = 1. If not possible then recommend any item ρu(t) in V s.t. (u, ρu(t)) 6∈ Ω.
Observe R

(t)
uρu(t).

6: end for
7: Without loss of generality, assume |U| ≤ |V|. For each i ∈ V , independently set ζi to be a value

in the set [d|V|/|U|e] uniformly at random. Partition indices in V into V(1),V(2), . . . ,V(k) where
k = d|V|/|U|e and V(q) = {i ∈ V | ζi = q} for each q ∈ [k]. Set Ω(q) ← Ω ∩ (U × V(q)) for
all q ∈ [k]. #If |U| ≥ |V|, we partition the indices in U .

8: for q ∈ [k] do
9: Solve convex program

min
P̂(q)∈R|U|×|V(q)|

1

2

∑
(i,j)∈Ω(q)

(
P̂

(q)
iπ(j) − Zij

)2

+ λ‖P̂(q)‖?, (14)

where ‖P̂(q)‖? denotes nuclear norm of matrix P̂(q) and π(j) is index of j in set V(q).
10: end for
11: Return P̂ ∈ RM×N s.t. P̂U,V(q) = P̂(q) for all q ∈ [k] and for every (i, j) 6∈ U × V , P̂ij = 0.

be maxi∈[M] |(i, j) ∈ Ω | j ∈ [N]| i.e. the maximum number of indices in a particular row present in
Ω (which we will show to be bounded from above with high probability in the following corollary).
This is because we wait until we have one noisy observation for every pair of indices in Ω.

In Algorithm 1 in the main paper, the aforementioned procedure is incorporated in Steps 10-14.

Corollary 1. Consider a set Ω ⊆ [M] × [N] of indices such that every index (i, j) ∈ [M] × [N] is
present in Ω independently with probability p. Consider algorithm 6 with parameters (U = [M],V =
[N], σ2, r, p) that recommends items to users according to Step 5 from the set Ω. Suppose the rank r
reward matrix P and parameters p, σ satisfies the conditions stated in Lemma 6. In that case, using
m = O

(
Np+

√
Np logMδ−1

)
rounds, Algorithm 6 is able to compute a matrix P̂ such that for any

(i, j) ∈ [M]× [N], we have with probability exceeding 1− δ −O(d−3
2 )

|P̂ij −Pij | ≤ O
( σr√

d2

√
µ3 log d2

p

)
. (15)

Proof of Corollary 1. Recall that d1 = max(M,N) and d2 = min(M,N). Suppose, with some
parameter p = Ω(µ2d−1

2 log3 d2), we sample a set Ω ∈ [M]× [N] of indices (Step 2 in Algorithm 6).
Let us define the event F1 which is true when the maximum number of indices observed in some
row m , maxi∈[M] |(i, j) ∈ Ω | j ∈ [N]| satisfies m = Ω

(
Np +

√
Np logMδ−1

)
. Recall that our

goal is to obtain a single noisy reward observation for every (user,item) pair whose corresponding
indices is present in Ω. In Step 5 of Algorithm 6, in each round, one item is recommended to every
user -clearly the total number of rounds needed to achieve our goal is m.

We will bound the probability of the event F1 from above by using Chernoff bound. Let us denote the
number of items observed for user i ∈ [M] to be Yi i.e. Yi = |(i, j) ∈ Ω | j ∈ [N]|. Algorithm A can
then obtain the noisy entries of P corresponding to the set Ω by doing the following: in each round,
for each user i ∈ [M], if there is an unobserved tuple of indices (i, j) ∈ Ω, then A will recommend
j to user i and obtain an noisy observation Pij + Eij ; on the other hand, if there no unobserved
entry, then A will simply recommend a random item j such that (i, j) 6∈ Ω (Step 5 in Algorithm
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6). Subequently, Algorithm 6 discards the observations corresponding to indices not in Ω and only
utilizes the observations in Ω to compute an estimate of the reward matrix P. Notice that each of the
random variables Y1, Y2, . . . , YM ∼ Binomial(N, p) and are independent. By using Chernoff bound,
we have that for each i ∈ [M],

Pr
(
∪i∈[M] |Yi − Np| ≥ Npε

)
≤ 2M exp

(
− ε2Np

3

)
=⇒ Yi ≤ Np+O

(√
Np logMδ−1

)
for all i ∈ [M]

with probability 1− δ implying that Pr(F1) ≤ δ. Let F2 be the event when the recovered matrix P̂

does not satisfy the guarantee on ‖P̂−P‖∞ as stated in Lemma 6 equation 12 given a set of observed
indices Ω sampled according to equation 4. From Lemma 6, we know that Pr(F2) = O(d−3

2 ) where
d1 = max(M,N). Hence we can conclude Pr(F1 ∪ F2) ≤ Pr(F1) + Pr(F2) = δ +O(d−3

2 ). Note

that conditioned on the event thatF1 does not hold true, we need onlym = O
(
Np+

√
Np logMδ−1

)
rounds to obtain a set of noisy observations corresponding to Ω′ ⊇ Ω.

Hence, to conclude, with only m = O
(
Np +

√
Np logMδ−1

)
rounds, Alg. 6 can obtain a single

noisy reward observation corresponding to each set of indices in Ω (where every tuple of indices is
present with probability p); note that observations for indices outside Ω are discarded completely.
Subsequently, the noisy reward observations in Ω are used to compute an estimate P̂ of the reward
matrix P with the (Steps 8-11 in Algorithm 6) theoretical guarantees presented in Lemma 6 holding
true. This completes the proof of the corollary.

Remark 11. [Remark 3 in Chen et al. (2019)] Note the failure probability in Corollary 1, Lemmas 6,
5 and 4 is O(d−3

2 ). However the constant 3 can be replaced by any arbitrary constant c for example
c = 100 without any change in the guarantees on ‖P̂−P‖∞. Hence, the guarantees presented in
Lemma 6 and Corollary 1 hold with probability at least 1−O(d−c2 ) for any arbitrary constant c.

As mentioned in Remark 4, the drawbacks of Lemma 6 and Corollary 1 are that the smallest error
that is possible to achieve by using Lemma 1 is by substituting p = 1 and thereby obtaining
‖P̂−P‖∞ ≤ ζ = O

(
σ(mini λi)

−1 ·
√
µd log d‖P‖∞

)
and moreover, the probability of failure is

polynomially small in d2 (see Remark 11). The former issue is substantial when we need an estimate
P̂ of the low rank matrix P with a smaller entry-wise estimation error than ζ. The second issue is
substantial when the shorter dimension d2 is small. We provide an improved algorithm (Algorithm 7)
with technical modifications to fix the two aforementioned issues. Below, we describe our main ideas
at a high level first:

Repeated recommendations for small estimation error: Recall that our strategy for computing an
estimate P̂ with theoretical guarantees was the following two-step procedure 1) obtain a subset of
indices Ω ⊆ [M]× [N] such that each index (i, j) is present with probability p > 0 2) obtain noisy
reward observations corresponding to all indices ((user,item) pairs) in Ω - in each round, for each
user i ∈ [M] we recommended an item j ∈ [N] such that (i, j) ∈ Ω if such a j exists otherwise we
recommend any item j ∈ [N] such that (i, j) 6∈ Ω.

In our problem, an algorithm has the flexibility of recommending an item more than once to the
same user. Suppose we have sampled a subset of indices Ω ⊆ [M] × [N] as described above and
is fixed. We modify the second step in the following way: for some fixed s > 0, our modified
aim is to obtain s noisy observations corresponding to all entries ((user,item) pairs) in Ω. To do
so, we repeat the process of recommending items to users corresponding to indices in Ω s times
(See Step 5 in Algorithm 7). Clearly, if the total number of rounds required to obtain noisy reward
observations corresponding to all pairs of indices in Ω once is m (bounded from above w.h.p - see
Corollary 1), then the total number of rounds required for obtaining s observations corresponding to
each entry in Ω is ms. As before, all reward observations outside the indices in Ω are discarded. For
each entry (i, j) ∈ Ω, we take Zij to be the average of the s reward observations corresponding to
the recommendation of item j to user u- clearly, the variance proxy of the averaged observation is
σ2/s. Thus, we can again solve similar convex optimization problems as before (see Steps 13-15
in Algorithm 7) to obtain the same theoretical guarantee as in Corollary 1 but with noise variance
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Algorithm 7 ESTIMATE REWARD MATRIX (SUB-MATRIX) ONLINE - IMPROVED ALGORITHM

Require: users U ⊆ [M], items V ⊆ [N], noise σ2, rank r of P, bernoulli sampling probability
0 ≤ p ≤ 1, repetitions s and number of independent estimates f . Index of round t is relative to
the first round when the algorithm is invoked; hence t = 1, 2, . . . .

1: Set d2 = min(|U| , |V|) and λ = Cλσ
√
d2p for some constant Cλ > 0.

2: for z = 1, 2, . . . , f do
3: For each tuple of indices (i, j) ∈ [M]× [N], independently set δij = 1 with probability p and

δij = 0 with probability 1− p.
4: Denote Ω = {(i, j) ∈ U × V | δij = 1} and mz = maxi∈U | |j ∈ V | (i, j) ∈ Ω| to be the

maximum number of index tuples in a particular row.
5: for ` = 1, 2, . . . , s do
6: For all (i, j) ∈ Ω, set Maskij = 0.
7: for `′ = 1, 2, . . . ,mz do
8: For each user u ∈ U in round t =

∑z−1
z′=1 smz′ + (` − 1)s + `′, recommend an item

ρu(t) in {j ∈ V | (u, j) ∈ Ω,Maskuj = 0} and set Maskuρu(t) = 1. If not possible then
recommend any item ρu(t) in V s.t. (u, ρu(t)) 6∈ Ω. Observe R

(t)
uρu(t).

9: end for
10: end for
11: For each tuple (u, j) ∈ Ω, compute Zuj to be average of {R(t)

uρu(t) for t ∈
[
∑z−1
z′=1 smz′ ,

∑z
z′=1 smz′ ] | ρu(t) = j}. # Zuj is the average of s independent observations

at each index (u, j) ∈ Ω for a fixed z
12: Without loss of generality, assume |U| ≤ |V|. For each i ∈ V , independently set ζi to be a value

in the set [d|V|/|U|e] uniformly at random. Partition indices in V into V(1),V(2), . . . ,V(k)

where k = d|V|/|U|e and V(q) = {i ∈ V | ζi = q} for each q ∈ [k]. Set Ω(q) ← Ω∩(U×V(q))
for all q ∈ [k]. #If |U| ≥ |V|, we partition the indices in U .

13: for q ∈ [k] do
14: Solve convex program

min
P̂(q)∈R|U|×|V(q)|

1

2

∑
(i,j)∈Ω(q)

(
P̂

(q)
iπ(j) − Zij

)2

+ λ‖P̂(q)‖?, (16)

where ‖P̂(q)‖? denotes nuclear norm of matrix P̂(q) and π(j) is index of j in set V(q).
15: end for
16: Compute P̂(z) ∈ RM×N s.t. P̂

(z)

U,V(q) = Q(q) for all q ∈ [k] and for every (i, j) 6∈ U × V ,

P̂
(z)
ij = 0. #We are computing independent estimates P̂(z)

17: end for
18: Obtain estimate P̂ by taking the entry-wise median of P̂(1), P̂(2), . . . , P̂(f). Return P̂.

σ2/s. This intuition is formalized in Lemma 2 below. In the main paper, the process of repeatedly
recommending the items in a fixed subset of indices Ω is described in the For Loop in Steps 1-8 in
Algorithm 1 - note that Ω is fixed in For Loop in Step 1 and in beginning of every iteration, we restart
the recommendation procedure.

Independent estimates and entry-wise median for small error probability:

To increase the probability of success, we can compute f independent estimates of P (Line 2 and
Line 16 in Algorithm 7) namely P̂(1), P̂(2), . . . , P̂(f) and compute their entry-wise median i.e.
P̂ij = median(P̂

(1)
ij , . . . , P̂

(f)
ij ) for all (i, j) ∈ [M]× [N]. From our previous argument, the number

of rounds for obtaining a single estimate P̂ of the matrix P is O(ms) (where the noise variance is
reduced to σ2/s) with high probability. Hence the total number of rounds for obtaining f estimates
will be Õ(msf) with high probability. If we set f = O(log(MNδ−1)) for some fixed δ > 0, then by
taking a union bound over all MN entries, we can show that our guarantees hold with probability at
least 1− δ (thus we remove the dependence of the failure probability on d2). Again, this intuition is
formalized in Lemma 2 below. In Algorithm 2, note that the f independent estimates are computed
in Lines 2-6 and the entry-wise median is computed in Line 7. In Algorithm 3, the f independent
estimates for each sub-matrix are computed in Lines 4-10 and the entry-wise median is computed in
Line 15.
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Lemma 7 (Restatement of Lemma 2). Let rank r = O(1) reward matrix P ∈ RM×N with SVD
decomposition P = ŪΣV̄T satisfy ‖Ū‖2,∞ ≤

√
µr/M, ‖V̄‖2,∞ ≤

√
µr/N and condition number

κ = O(1). Let d1 = max(M,N) and d2 = min(M,N) such that 1 ≥ p ≥ Cµ2d−1
2 log3 d2 for

sufficiently large constant C > 0. Suppose we observe noisy entries of P according to observation

model in (1). For any positive integer s > 0 satisfying σ√
s

= O
(√

pd2
µ3 log d2

‖P‖∞
)

, there exists an

algorithm A (See Algorithm 7 with input parameters U = [M],V = N, σ2, r, p, s, f ) with parameters

s, p, σ that uses m = O
(
s log(MNδ−1)(Np +

√
Np logMδ−1)

)
rounds to recommend items for

users and compute a matrix P̂ such that with probability exceeding 1−O(δ log(MNδ−1)), we have

‖P− P̂‖∞ ≤ O
( σr√

sd2

√
µ3 log d2

p

)
. (17)

Proof.

Claim 1. Fix any index (i, j) ∈ [M] × [N]. Then, if the conditions in the Lemma statement are
satisfied, for any z ∈ [f ] in Line 2 of Alg. 7, the computed estimate P̂(z) in Line 16 in Alg. 7 satisfies
the following: 1) with probability exceeding 9/10, we have

|P̂(z)
ij −Pij | ≤ O

( σr√
sd2

√
µ3 log d2

p

)
2) the total number of rounds required to compute P̂(z) is given by smz = O

(
s(Np +√

Np log(Mδ−1))
)

.

Proof. Repeated Recommendations for small estimation error: Consider Lines 5-10 in Algo-
rithm 7 prior to which we have a fixed subset of indices Ω ⊆ [M]× [N] where every index tuple (i, j)
is present in Ω with probability p. In Line 8, for each user i ∈ [M], Algorithm 7 recommends an item
j ∈ [N] such that (i, j) ∈ Ω if such a j exists otherwise we recommend any item j ∈ [N] such that
(i, j) 6∈ Ω. Because of the For Loop in Line 5, Algorithm 7 does the aforementioned step s times for
the same fixed subset of indices Ω. After discarding all observations corresponding to indices outside
Ω, at the end of the For Loop in Line 10, we have s noisy iid observations (sub-gaussian random
variables) R

(t1)
ij ,R

(t2)
ij , . . . ,R

(ts)
ij each with expectation Pij and variance proxy σ2 i.e. we have for

all h ∈ [s]

E exp
(
λ(R

(th)
ij −Pij)

)
≤ exp(σ2λ2/2) ∀λ ∈ R.

In Line 11 in Algorithm 7, we take Zij = s−1
∑s
h=1 R

(th)
ij . Clearly, we have EZij = Pij and

further, Zij has a variance proxy of σ2/s as shown below:

E exp
(
λ(Zij −Pij)

)
= E

s∏
h=1

exp
(
λs−1(R

(th)
ij −Pij)

)
=

s∏
h=1

E exp
(
λs−1(R

(th)
ij −Pij)

)
≤ exp(σ2λ2/2s) ∀λ ∈ R.

Therefore, for any z ∈ [f ], if we solve the convex programs in Lines 13-16 of Algorithm 7, then we
directly apply the guarantees in Corollary 1 to conclude that the computed matrix in Line 16 P̂(z)

satisfies the following: for any (i, j) ∈ [M]× [N], we have with probability exceeding 1− δ−O(d−c2 )
(see Remark 11 - we can set c such that the failure probability δ +O(d−c2 ) < 1/10)

|P̂(z)
ij −Pij | ≤ O

( σr√
sd2

√
µ3 log d2

p

)
(18)
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where with mz = maxi∈[M] | |j ∈ [N] | (i, j) ∈ Ω|, the total number of rounds required to compute

P̂(z) is given by smz = O
(
s(Np+

√
Np log(Mδ−1))

)
. Also, note that since the new and reduced

noise variance proxy is σ2/s, hence the condition σ = O
(√

pd2
µ3 log d2

‖P‖∞
)

stated in Lemma 6

(referred to in Corollary 1 that is being invoked) translates to σ/
√
s = O

(√
pd2

µ3 log d2
‖P‖∞

)
. This

is the new condition on σ that is stated in the current lemma.

Claim 2. Fix any index (i, j) ∈ [M× [N]]. Suppose the conditions in the Lemma statement hold true.
Consider the final estimate P̂ computed by taking the entry-wise median of P̂(1), P̂(2), . . . , P̂(f).
With f = O(log(MNδ−1)), the (ij)th entry of the final estimate P̂ij satisfies

|P̂ij −Pij | = O
( σr√

sd2

√
µ3 log d2

p

)
with probability 1− δ/MN.

Proof. Independent estimates and entry-wise median for small probability of error: Con-
sider Lines 2,3 and 18 in Algorithm 7. Algorithm 7 basically computes f independent esti-
mates P̂(1), P̂(2), . . . , P̂(f) of the reward matrix P in order to boost the probability of success.
Furthermore, we can compute a final estimate P̂ (Line 18) by computing the entry-wise me-
dian of the matrix estimates P̂(1), P̂(2), . . . , P̂(f) i.e. for all (i, j) ∈ [M] × [N], we compute
P̂ij = median(P̂

(1)
ij , . . . , P̂

(f)
ij ).

Our goal is to increase the probability of success to 1 − δ and we will show that the entry-wise
median of the f estimates P̂ does have the increased probability of success. As mentioned in the
claim statement, fix the pair of indices (i, j). Consider the random variable

Y (z) = 1
[
|P̂(z)

ij −Pij | = O
( σr√

sd2

√
µ3 log d2

p

)]
which is 1 with probability at least 9/10 (from Claim 1). Since the estimates P̂(1), P̂(2), . . . , P̂(f) are
independently computed , the random variables Y (1), Y (2), . . . , Y (f) are independent as well. Hence
consider the median P̂ij = median(P̂

(1)
ij , P̂

(2)
ij , . . . , P̂

(f)
ij ). Note that the median P̂ij will satisfy

|P̂ij − Pij | = O
(

σr√
sd2

√
µ3 log d2

p

)
if at least half of the random variables Y (1), Y (2), . . . , Y (f)

are non-zero. Hence, we can apply Chernoff bound directly to state that Pr(
∑f
i=1 Y

(i) < f/2) ≤
2 exp(−4f/75) Therefore, by setting f = O(log(MNδ−1)), we must have that Pr(

∑f
i=1 Y

(i) <

f/2) ≤ δ/MN. Hence we must have that P̂ij satisfies

|P̂ij −Pij | = O
( σr√

sd2

√
µ3 log d2

p

)
(19)

with probability 1− δ/MN.

Now, to complete the proof of the lemma, by taking a union bound over all indices, we must have that

‖P̂−P‖∞ ≤ O
( σr√

sd2

√
µ3 log d2

p

)
(20)

with probability at least 1− δ. Also, note that the total number of rounds needed to compute these
estimates is at most

∑
zmzsf . From Corollary 1, we know that for any z ∈ [f ], mz is bounded from

above by O(Np+
√
Np log(Mδ−1)) with probability 1− δ. Hence, by taking a union bound over all

z ∈ [f ], the total number of rounds needed to compute all the f estimates must be bounded from
above by ∑

z

mzsf = O
(
sf(Np+

√
Np log(Mδ−1))

)

25



Published as a conference paper at ICLR 2023

with probability at least 1− δf . Therefore, by a union bound over both failure events, the total failure
probability is 1−O(δ + δ log(MNδ−1)) = 1−O(δ log(MNδ−1)). This completes the proof of the
lemma.

C MISSING PROOFS IN SECTION 4

Theorem (Restatement of Theorem 1). Consider the rank-r online matrix completion problem with
M users, N items, T recommendation rounds. Set d2 = min(M,N). Let R

(t)
uρu(t) be the reward in

each round, defined as in equation 1. Suppose d2 = Ω(µr log(rd2)). Let P ∈ RM×N be the expected
reward matrix that satisfies the conditions stated in Lemma 2 , and let σ2 be the noise variance in
rewards. Then, Algorithm 2, applied to the online rank-r matrix completion problem guarantees the
following regret:

Reg(T) = O
((

T
2
3 (σ2r2‖P‖∞)

1
3

(µ3N log d2

d2

)1/3

+
Nµ2

d2
log3 d2

)
log2(MNT) +

‖P‖∞
T2

)
.

(21)

Proof of Theorem 1. Suppose we explore for a period of S rounds such that the exploration period
(Steps 3-7 in Algorithm 2) succeeds with a probability of 1 − ν i.e. conditioned on the event
that the exploration period succeeds, we obtain an estimate P̂ of the reward matrix P satisfying
‖P− P̂‖∞ ≤ η. In that case, conditioned on the event that the exploration period succeeds, at each
step of the online algorithm in the exploitation phase (Step 9 in Algorithm 2), we suffer a regret of
at most 2η. To see this, fix any user u ∈ [M]. Let i = argmaxt∈[N]Put and i′ = argmaxtP̂ut be the
items with the largest rewards in the matrices P, P̂ respectively for the user u. In that case, using the
fact that ‖P− P̂‖∞ ≤ η, we have

Pui′ −Pui = Pui′ − P̂ui′ + P̂ui′ − P̂ui + P̂ui −Pui ≥ −2η.

Conditioned on the event that the exploration fails (and therefore the exploration stage as well), the
regret at each step can be bounded from above by 2‖P‖∞. In that case, we have

Reg(T) =
T

M

∑
u∈[M]

µ?u −
∑
t∈[T]

1

M

∑
u∈[M]

Puπu(t) ≤ max
u∈[M]

(
Tµ?u −

∑
t∈[T]

Puπu(t)

)
≤ 2S‖P‖∞ + 2(T− S)ηPr(Exploration succeeds) + 2(T− S)‖P‖∞ Pr(Exploration fails)
≤ 2S‖P‖∞ + 2Tη + 2Tν‖P‖∞.

Now, with d2 = min(M,N) satisfying d2 = Ω(µr log(rd2)), we can directly use Lemma 2 with S =

O(s log(MNδ−1)(Np+
√
Np logMδ−1) such that η = O( σr√

sd2

√
µ3 log d2

p ) and ν = δ log(MNδ−1).
Hence, we have

Reg(T) ≤ O
(
s log(MNδ−1)(Np+

√
Np logMδ−1

)
‖P‖∞︸ ︷︷ ︸

Term 1

+TO
( σr√

sd2

√
µ3 log d2

p

)
︸ ︷︷ ︸

Term 2

+ T(δ log(MNδ−1))‖P‖∞.

For the sake of simplicity, we ignore some of the logarithmic terms and lower order terms in the regret
while choosing the value of sp that makes the regret small. To be precise, sp is chosen by minimizing

the quantity Nsp‖P‖∞ + T
(
σr
√
µ3 log d2√
spd2

)
. It can be seen that the aforementioned quantity is

minimized when the two terms are equal giving us Nsp‖P‖∞ = T
(
σr
√
µ3 log d2√
spd2

)
implying that

sp = (N‖P‖∞)−2/3
(
T
σr
√
µ3 log d2√
d2

)2/3

. Moreover, we will also choose δ = (MNT)−4. Also,
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notice that Np ≥ 1 since p ≥ Cµ2d−1
2 log3 d2 (for some appropriate constant C ≥ 1) and µ ≥ 1;

therefore Np+
√
Np logMδ−1 = O(Np

√
logMδ−1). Subsequently, we have that

Reg(T) = O
(
T2/3(σ2r2‖P‖∞)1/3

(µ3N log d2

d2

)1/3

log2(MNT)︸ ︷︷ ︸
Bound 1

+‖P‖∞T−2
)
. (22)

There exists an edge case when sp ≤ Cµ2d−1
2 log3 d2. Then we can substitute s = 1

and p = Cµ2d−1
2 log3 d2. In that case, Term 2 will still be bounded by Bound 1 in equa-

tion 22 since sp ≤ Cµ2d−1
2 log3 d2. On the other hand Term 1 will now be bounded by

O(Nµ2

d2
log3 d2 log2(MNT)‖P‖∞). Hence, our regret will be bounded by

Reg(T) = O
(
T2/3(σ2r2‖P‖∞)1/3

(µ3N log d2

d2

)1/3

log2(MNT) +
Nµ2

d2
log5(MNT)‖P‖∞ + ‖P‖∞T−2

)
.

D MISSING PROOFS IN SECTION 5

In this section, we will consider the reward matrix P = uvT = λūv̄T ∈ RM×N to be a rank-1 matrix
with ‖ū‖2 = ‖v̄‖2 = 1. We make the following mild assumptions in line with Theorem 2: (recall
that jmax = argmaxi vi and jmin = argmini vi

1. If M = Tζ for ζ > 1
2 , then the vector ū is (M−1/2ζ , µ)-incoherent i.e. for any subset

U ⊆ [M] of indices such that |U| ≥ M1−(2ζ)−1

, we must have ‖v̄U‖∞ ≤
√

µ
|U|‖v̄U‖2.

2. β = max
( ∣∣∣ v̄jmax

v̄jmin

∣∣∣ , ∣∣∣ v̄jmin

v̄jmax

∣∣∣ ) for some positive constant β > 0. Note that if we represent

P = uvT where u is the user embedding and v is the item embedding, then we have
β = max

( ∣∣∣vjmax

vjmin

∣∣∣ , ∣∣∣ vjmin

vjmax

∣∣∣ ). In the definition of β, the second term can be larger than the
first because of the absolute value.

In each phase `, we will maintain three groups of users (user groups B(`),M(`,1),M(`,2) are disjoint
and form a partition of [M]) and three corresponding groups of items (not necessarily disjoint)
namely 1) (B(`), [N]) (initialized by ([M], [N]), 2) (M(`,1),N (`,1)) (initialized with (φ, φ)) and 3)
(M(`,2),N (`,2)) (initialized with (φ, φ)) such that B(`)∪M(`,1)∪M(`,2) = [M] andN (`,1),N (`,2) ⊆
[N]. Suppose we have a sequence of tuples (m`,∆`)` that is going to be characterized precisely
later. In every phase indexed by `, we will compute three matrices Q̃(`), P̃(`,1), P̃(`,2) ∈ RM×N

(using m` rounds for each) that correspond to estimates of three relevant sub-matrices of P namely
PB(`),[N],PM(`,1),N (`,1) and PM(`,2),N (`,2) respectively. We will define the event E(`)

1 when the
following holds true ∣∣∣∣∣∣Q̃(`)

B(`),[N]
−PB(`),[N]

∣∣∣∣∣∣
∞
≤ ∆`/2∣∣∣∣∣∣P̃(`,1)

M(`,1),N (`,1) −PM(`,1),N (`,1)

∣∣∣∣∣∣
∞
≤ ∆`/2∣∣∣∣∣∣P̃(`,2)

M(`,2),N (`,2) −PM(`,2),N (`,2)

∣∣∣∣∣∣
∞
≤ ∆`/2

by using a number of rounds m` that is bounded from above by
O
(

max(1, N
M1−(2ζ)−1 )σ

2µ3 log2(MNT)
∆`

)
. The randomness stems from the inherent randomness in the

algorithm.

At each phase indexed by `, we will compute a temporary set of active items T (`+1)
u for all users

u ∈ [N]. We update B(`+1) ≡
{
u ∈ B(`) |

∣∣∣maxt P̃
(`)
ut −mint P̃

(`)
ut

∣∣∣ ≤ 2a∆`

}
where an appropriate
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value of a will be determined later. This corresponds to the sets of users whose rewards are almost
similar across items and hence, it does not no matter which items are picked in the next phase. We set
T (`+1)
u = [N] for all users u ∈ B(`+1) and for the rest of the users (namely u ∈ [N] \ B(`+1)), we set
T (`+1)
u according to Steps 17,18 in Algorithm 3 for combined users in the set B(`) \ B(`+1),M(`,1)

andM(`,2) respectively. Subsequently, we update the following groups of users and corresponding
items:

1. We will set v to be any user in [M]\B(`+1). Subsequently, we will define the setM(`+1,1) =

{u ∈ [M] \ B(`+1) | T (`+1)
u ∩ T (`+1)

v 6= φ}. We update N (`+1,1) =
⋂
u∈M(`+1,1) T (`+1)

u .

2. Finally, we will identify the setM(`+1,2) ≡ [M] \ (B(`+1) ∪M(`+1,1)) to be the remaining
users. As before, we update N (`+1,2) =

⋂
u∈M(`+1,2) T (`+1)

u .

For any phase indexed by `, we define the event E(`)
2 such that for every user u ∈ M(`,1), the

following holds: ∣∣∣∣Put − max
t′∈[N]

Put

∣∣∣∣ ≤ 2∆`−1 for all t ∈ N (`,1), u ∈M(`,1)∣∣∣∣Put − max
t′∈[N]

Put′

∣∣∣∣ ≤ 2∆`−1 for all t ∈ N (`,2), u ∈M(`,2)∣∣∣∣Put − max
t′∈[N]

Put′

∣∣∣∣ ≤ (2a+ 2)∆`−1 for all t ∈ [N], u ∈ B(`).

Define the event E(`)
3 which is true whenM(`,1) ⊆ C1, jmax ∈ N (`,1) andM(`,2) ⊆ C2, jmin ∈

N (`,2). Finally, let E(`)
4 be the event which is true whenM(`,2) ⊆ C1, jmin ∈ N (`,1) andM(`,1) ⊆

C2, jmax ∈ N (`,2).

We now present a series of Lemma required for the proof of Theorem 2.

Lemma 8. Consider two users u, v such that u ∈ C1 and v ∈ C2. Suppose the event E(`)
1 is true

and furthermore, either E(`)
3 or E(`)

4 is true. In that case, T (`+1)
u ∩ T (`+1)

v 6= φ only if either
maxt∈[N] Put −mint∈[N] Put ≤ 4∆` or maxt∈[N] Pvt −mint∈[N] Pvt ≤ 4∆` holds true.

Proof of Lemma 8. Since either E(`)
3 or E(`)

4 holds true, it must happen that jmax ∈ N (`,1) for all
u ∈ C1 and jmin ∈ N (`,2) for all u ∈ C2. Further, suppose there exists an item j ∈ [N] such that
j ∈ T (`+1)

u ∩ T (`+1)
v . Hence this implies that

− P̃
(`,1)
uj + max

t∈N (`,1)
P̃

(`,1)
ut ≤ ∆`

=⇒ −P̃
(`,1)
uj + Puj −Puj + Pujmax −Pujmax

+ P̃
(`,1)
ujmax

− P̃
(`,1)
ujmax

+ max
t∈N (`,1)

P̃
(`,1)
ut ≤ ∆`

=⇒ Pujmax −Puj ≤ 2∆`

where we used the following facts: (a) −Pujmax
+ P̃

(`,1)
ujmax

≥ −∆`/2 (b) −P̃
(`,1)
ujmax

+

maxt∈N (`,1) P̃
(`,1)
ut ≥ 0 (c)−P̃

(`,1)
uj +Puj ≥ −∆`/2. Similarly, we must have Pvjmin−Pvj ≤ 2∆`.

Without loss of generality, assume that uu ≤ −uv . In that case, we will have

Pujmax
−Pujmin

≤ Pujmax
−Puj + Puj −Pujmin

≤ Pujmax
−Puj −Pvj + Pvjmin

≤ 4∆`

where we used the fact that P is a rank-1 matrix and hence Puj − Pujmin
= uu(vj − vjmin

) ≤
−uv(vj − vjmin

) = −Pvj + Pvjmin
. This leads to a contradiction and therefore completes the proof

of the lemma.
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Lemma 9. Recall that in Step 16 of Algorithm 3, we have B(`+1) ≡
{
u ∈ B(`) |∣∣∣maxt∈[N] Q̃

(`)
ut −mint∈[N] Q̃

(`)
ut

∣∣∣ ≤ (2a+ 1)∆`

}
for a > 3. Conditioned on the event E(`)

1 , the set

of users B(`+1) must contain all users u ∈ [N] satisfying maxt∈[N] Put − mint∈[N] Put ≤ 2a∆`.
Furthermore, all users u ∈ B(`+1) must satisfy maxt∈[N] Put −mint∈[N] Put ≤ (2a+ 2)∆`.

Proof of Lemma 9. Recall that B(`+1) ≡
{
u ∈ B(`) | maxt∈[N] Q̃

(`)
ut − mint∈[N] Q̃

(`)
ut ≤ (2a +

1)∆`

}
for some appropriate constant a > 0 that will be chosen later. Suppose for a user u ∈ B(`), we

have maxt∈[N] Put − mint∈[N] Put ≤ 2a∆`. Let t1 = argmaxt∈[N] Q̃
(`)
ut , t2 = argmint∈[N] Q̃

(`)
ut

and t3 = argmint∈[N] Put. Since E(`)
1 is true, we must have∣∣∣Q̃(`)

ut1 −Put1

∣∣∣ ≤ ∆`/2,
∣∣∣Q̃(`)

ut1 −Put1

∣∣∣ ≤ ∆`/2,

and
∣∣∣Q̃(`)

ut2 −Put2

∣∣∣ ≤ ∆`/2.

Therefore, we must have

Q̃
(`)
ut1 − Q̃

(`)
ut2

≤ Q̃
(`)
ut1 −Put1 + Put1 −max

t∈[N]
Put + max

t∈[N]
Put

− min
t∈[N]

Put + min
t∈[N]

Put −Put2 + Put2 − Q̃
(`)
ut2 ≤ (2a+ 1)∆`

where we used the fact that Put1 −maxt∈[N] Put ≤ 0 and mint∈[N] Put −Put2 ≤ 0. Now, consider
a user u such that Q̃

(`)
ut1 − Q̃

(`)
ut2 ≤ (2a+ 1)∆`. In that case, we will have

max
t∈[N]

Put − min
t∈[N]

Put

≤ max
t∈[N]

Put −Put1 + Put1 − Q̃
(`)
ut1 + Q̃

(`)
ut1 − Q̃

(`)
ut2

+ Q̃
(`)
ut2 − Q̃

(`)
ut3 + Q̃

(`)
ut3 − min

t∈[N]
Put ≤ (2a+ 2)∆`

where we used the fact that maxt∈[N] Put −Put1 ≤ 0 and Q̃
(`)
ut2 − Q̃

(`)
ut3 ≤ 0.

Lemma 10. Suppose the event E(`)
1 is true and furthermore, either E(`)

3 or E(`)
4 is true. In that case,

for every user u ∈ [M] \ B(`+1), we will have that argmaxt∈[N] Put ∈ T (`+1)
u .

Proof of Lemma 10. Without loss of generality, let us assume that E(`)
3 is true. Hence, this implies

thatM(`,1) ⊆ C1 and for every user u ∈ M(`,1), jmax ∈ N (`,1) and furthermore, M(`,2) ⊆ C2
and for every user u ∈ M(`,2), jmin ∈ N (`,2). Recall that for every user u ∈ M(`,1), we
compute T (`+1)

u = {j ∈ N (`,1)} | P̃
(`,1)
uj + ∆` > maxt∈N (`,1) P̃

(`,1)
ut } for all u ∈ M(`,1).

Clearly argmax
t∈T (`+1)

u
P̃

(`,1)
ut = argmax

t∈N (`,1)
u

P̃
(`,1)
ut . Let t1 = argmaxt∈[N] P

(`,1)
ut and

t2 = argmaxt∈N (`,1) P̃
(`,1)
ut . By using triangle inequality, we will have

P̃
(`,1)
ut1 − P̃

(`,1)
ut2 ≤ P̃

(`,1)
ut1 −Put1 + Put1

−Put2 + Put2 − P̃
(`,1)
ut2 ≤ ∆`

where we used the fact that |P̃(`,1)
ut1 −Put1 | ≤ ∆`/2, |P̃(`,1)

ut2 −Put2 | ≤ ∆`/2 and Put1 −Put2 ≤ 0.
Hence, t1 ∈ T (`+1)

u for any user u ∈ M(`,1). By a similar analysis this holds for any user
u ∈M(`,2) ∪ (B(`) \ B(`+1)) as well.

Lemma 11. Suppose the event E(`)
1 is true and furthermore, either E(`)

3 or E(`)
4 is true. In that case

the event E(`+1)
2 is true and one of E(`+1)

3 , E(`+1)
4 is also true.
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Proof of Lemma 11. From Lemma 9 (and using the fact that a > 3 in Step 16 of Algorithm 3), we
know that B(`+1) must contain all users u ∈ [N] satisfying maxt∈[N] Put − mint∈[N] Put ≤ 4∆`.
Therefore, from Lemma 8, there cannot exist users u, v ∈ [N] \ B(`+1) such that u ∈ C1, v ∈ C2
and T (`+1)

u ∩ T (`+1)
v 6= φ. Without loss of generality, suppose the user v described in Line 10

in Algorithm 3 is in C1. SinceM(`+1,1) contains all those users not in B(`+1) such that T (`+1)
u ∩

T (`+1)
u 6= φ, M(`+1,1) can only contain users in C1. Conversely, for any user u ∈ C1 \ B(`+1),
jmax ∈ T (`+1)

u (using Lemma 10) and therefore u ∈ M(`+1,1). In that case, it must happen that
M(`+1,1) = C1 \ B(`+1) and similarlyM(`+1,2) = C2 \ B(`+1). Therefore, again by using Lemma
10, jmax ∈ N (`+1,1) for all users u ∈ M(`+1,1) and jmin ∈ N (`+1,2) for all users u ∈ M(`+1,2)

implying that E(`+1)
3 holds true. On the other hand, if v ∈ C2, then by a similar analysis, E(`+1)

4 holds
true.

Next, we will show that E(`+1)
2 is also going to hold true. From Lemma 9, we know that all users

u ∈ B(`+1) must satisfy maxt∈[N] Put−mint∈[N] Put ≤ (2a+2)∆`. Now, without loss of generality,
assume that E(`)

3 is true. Consider any item j ∈ N (`+1,1) implying that j ∈ T (`+1)
u for all users

u ∈M(`+1,1). Let t1 = argmax
t∈T (`+1)

u
P̃ut. We must have

Put1 −Puj = Put1 − P̃ut1 + P̃ut1 − P̃uj + P̃uj −Puj .

On the other hand, since jmax ∈ T (`+1)
u , we also have

Pujmax
−Put1 = Pujmax

− P̃
(`,1)
ujmax

+ P̃
(`,1)
ujmax

− P̃
(`,1)
ut1 + P̃

(`,1)
ut1 −Put1 .

Adding up the previous two equations, we get that

Pujmax
−Puj = Pujmax

− P̃
(`,1)
ujmax

+ P̃
(`,1)
ujmax

− P̃
(`,1)
ut1

+ P̃
(`,1)
ut1 − P̃

(`,1)
uj + P̃

(`,1)
uj −Puj ≤ 2∆`

where we used the fact that P̃
(`,1)
ut1 − P̃uj ≤ ∆`, P̃

(`,1)
ujmax

− P̃
(`,1)
ut1 ≤ 0, Pujmax

− P̃
(`,1)
ujmax

≤ ∆`/2

and P̃
(`,1)
uj −Puj ≤ ∆`/2. By showing a similar analysis for all users u ∈M(`+1,2) and all items

j ∈ N (`+1,2). we prove that E(`+1)
2 holds true.

We will say that a user has been ignored in the phase indexed by ` under the following circumstances:

1. The size of the set of usersM(`,1) (orM(`,2)) in Step 19 is smaller than M1−(2ζ)−1

. In
that case, those users are put back in the set B(`) (Step 21). In that case the users in the set
M(`,1) (respectivelyM(`,2)) will be ignored.

2. The size of the set of users B(`) in Step 6 is smaller than M1−(2ζ)−1

. In this case, even if it
is added withM(`,1) orM(`,2), it size becomes at most 2M1−(2ζ)−1

(the size of the added
set in Step 21 must also be less than M1−(2ζ)−1

due to the first point above). In that case,
the users in B(`) will be ignored.

Corollary 2. 1. Suppose the event E(`)
2 is true for all iterations indexed by `. In that case, in

any phase indexed by `, for every user u ∈ [M] that is not ignored in Algorithm 3 in the
`th iteration, Algorithm 3 only recommends items that have reward at most (2a+ 2)∆`−1

smaller than the reward of the best item argmaxj∈[N]Puj .

2. Furthermore, at each iteration indexed by `, at most 2M1−(2ζ)−1

users are ignored in
Algorithm 3.

Proof. The proof of the first part follows directly from Lemma 11 and the definition of E(`)
2 . Note

that for the first phase (` = 1), we have B(1) = [M] and therefore E(1)
1 being true implies that E(2)

2 is
true and one of E(2)

3 or E(2)
4 is true as well.
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Let us now move on to the proof of the second part. Since the three setsM(`,1),M(`,2),B(`) (before
Step 12) partition the set of users [M], at most two of them can be smaller than M1−(2ζ)−1

and can be
ignored. Hence, the total number of ignored users can be at most 2M1−(2ζ)−1

.

Lemma 12 (Incoherence). Suppose a > 3 max(1 + β, 1 + 1
β ) in Step 6 of Algoithm 3. For any

iteration in Algorithm 3 indexed by ` > 0, we will have

‖vN (`+1,1)‖∞
‖vN (`+1,1)‖2

≤ 3 max(β, β−1)

2
√
|N (`+1,1)|

and
‖vN (`+1,2)‖∞
‖vN (`+1,2)‖2

≤ 3 max(β, β−1)

2
√
|N (`+1,2)|

Proof. Consider any user u ∈ [M] such that 1) u ∈ B(`) in the `th iteration but in the (`+1)th iteration,
u ∈ [N]\B(`+1) and 2) uu > 0. In this case, we must have uu(vjmax

−vjmin
) ≥ 2a∆` from Lemma

9 where a > 3 max(1 + β, 1 + 1
β ). Now consider any item j ∈ [N] such that Pujmax −Puj > 2∆`.

In that case, by triangle inequality we have

P̃
(`,1)
ujmax

− P̃(`,1)
u > P̃

(`,1)
ujmax

−Pujmax + Pujmax −Puj + P̃
(`,1)
ujmax

> 2∆` −
∆`

2
− ∆`

2
> ∆`

and therefore j 6∈ T (`+1)
u . Hence consider any item j ∈ [N] that belongs to T (`+1)

u ; it must happen that
uu(vjmax

−vj) ≤ 2∆` ≤
uu(vjmax−vjmin

)

a implying that vj ≥ vjmax

(
1− (β+1)

a

)
. Due to our choice

of a, we get that vj ≥ 2vjmax

3 . Therefore ‖vT (`+1)
u
‖∞ ≥ 2vjmax

3 . Since we construct the setsN (`+1,1)

and N (`+1,2) by taking intersections of the sets T (`+1)
u of items for users in M(`,1) and M(`,2)

respectively, one of these sets (sayN (`+1,1)) must correspond to users with positive embedding while
the other will correspond to users with a negative embedding (see Lemma 11). Hence, we will have
‖vN (`+1,1)‖2 ≥

√
|N (`+1,1)| 2|vjmax |

3 and ‖vN (`+1,1)‖∞ ≤ max(β, β−1)|vjmax | thus completing
the proof. By an analogous argument, the conclusion of the lemma is also true for users u ∈ [M] with
a negative embedding i.e. uu < 0.

Estimation of matrix PB(`),N in Step 3 of Algorithm 3 in `th iteration: We will only provide
guarantees on estimation of the matrix PB(`),N under the condition that the number of users in B(`)

is at least M1−(2ζ)−1

(recall that Tζ = M). Suppose the SVD of the matrix P is λūv̄ satisfying
‖ū‖ = 1, ‖v̄‖ = 1. In that case, SVD of the matrix PB(`),N is λ‖ūB(`)‖2

ūB(`)
‖ūB(`)‖2

v̄. For brevity, we

will write ũ =
ūB(`)
‖ūB(`)‖2

. From our local incoherence assumption (we know that ū is (T−1/2, µ)-
locally incoherent), we know that

‖ũ‖2 = 1, ‖ũ‖∞ ≤
√

µ

|B(`)|
and ‖v̄‖∞ ≤

√
µ

N
.

By directly using the result in Lemma 2 for the r = 1 setting (rank 1) restricted to users in B(`)

and items in [N], we can recover an estimate Q̃
(`)

B(`),N
of PB(`),N using m` = s` log(MNδ−1)(Np` +√

Np` logMδ−1) = O(s` log(MNδ−1)(Np`
√

logMδ−1)) rounds (where s` and p` corresponds to
the parameters s, p in Lemma 2) such that

‖Q̃(`)

B(`),N
−PB(`),N‖∞ ≤ O

( σ√
s`d′2

√
µ3 log d′2

p`

)
with probability 1−O(δ log(MNδ−1)) where d′2 = min(M1−(2ζ)−1

,N). In other words, by denoting
q` = p`s`, we have that by using m` = O(q`N log2(MNT))) rounds, we get

‖Q̃(`)

B(`),N
−PB(`),N‖∞ ≤ O

(σ√µ3 log d′2√
q`d′2

)
(23)
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with probability at least 1 − T−4. Hence, if we need an estimate Q̃
(`)

B(`),N
such that ‖Q̃(`)

B(`),N
−

PB(`),N‖∞ ≤ ∆` for some input parameter ∆`, then
σ
√
µ3 log d′2√
q`d′2

≤ c′∆` for some appro-

priate constant c′ implying that q` =
σ2µ3 log d′2
c′2d′2∆2

`
and therefore, the total number of rounds is

O
(

max(1, N

M1−(2ζ)−1 )σ
2µ3 log2(MNT)

∆2
`

)
with probability 1 − T−4. By using the result in Lemma

2, we will need to use s`, p` such that p` ≥ Cµ2(d′2)−1 log3 d′2 and σ√
s`

= O
(√

p`d′2
µ3 log d′2

‖P‖∞
)

.

The latter condition implies that q` = s`p` =
σ2µ3 log d′2
c22d
′
2‖P‖2∞

for some constant c2. Putting everything

together, we have that a sufficient value of q` is σ2µ3 log d′2
c22d
′
2‖P‖2∞

provided ∆` ≤ ‖P‖∞.

Estimation of matrix PM(`,1),N (`,1) (and similarly PM(`,2),N (`,2) ) in `th iteration: In this case
again, we will show guarantees only when

∣∣M(`,1)
∣∣ ≥ M1−(2ζ)−1

(recall that Mζ = T). There are
two sub-cases in this setting:

1. (N ≥ |N (`,1)| ≥ M1−(2ζ)−1

). In this case, as in the analysis for estimating PB(`),N, we can

find an estimate P̃(`,1) ∈ RM×N such that ‖P̃(`,1)

M(`,1),N (`,1) −PM(`,1),N (`,1)‖ ≤ ∆` for an

input parameter ∆` using O
(

max(1, N

M1−(2ζ)−1 )σ
2µ3 log2(MNT)

∆2
`

)
rounds with probability

1−T−4 (by using Lemma 2 for users inM(`,1) and items inN (`,1)). In the above analysis,
we used the fact that after clustering (see Lemma 12), we have |

√
N (`,1)|‖vN (`,1)‖∞ =

O(‖vN (`,1)‖2). In addition, we also used the fact that the u is (T−1/2, µ)-locally incoherent.

2. (|N (`,1)| ≤ M1−(2ζ)−1

) This is the more interesting case. Again, let us write the SVD of
PM(`,1),N (`,1) = λ̃ũṽ with ũ ∈ R|M(`,1)|, ṽ ∈ R|N (`,1)|. We know that ũ is µ-incoherent
(since |M(`,1)| ≥ M1−(2ζ)−1

) and moreover ṽ is O(1)-incoherent (see lemma 12). Again,
by directly using the result in Lemma 2 for the r = 1 setting (rank 1) for users inM(`,1)

and items in N (`,1)), we can recover an estimate P̃
(`,1)

M(`,1),N (`,1) of PM(`,1),N (`,1) (where

P̃(`,1) ∈ RM×N) using m` = O(s` log(MNδ−1)(|N (`,1)|p`
√

logMδ−1)) rounds (where
s` and p` corresponds to the parameters s, p in Lemma 2) such that

‖P̃(`,1)

M(`,1),N (`,1) −PM(`,1),N (`,1)‖∞ ≤ O
( σ√

s`|N (`,1)|

√
µ3 log |N (`,1)|

p`

)
with probability 1 − O(δ log δ−1). As before, let us denote q` = p`s`. We have that by
using m` = O(q`|N (`,1)| log2 MNT)) rounds, we get

‖P̃(`,1)

M(`,1),N (`,1) −PM(`,1),N (`,1)‖∞ ≤ O
(σ√µ3 log |N (`,1)|√

q`|N (`,1)|

)
(24)

with probability at least 1 − T−4. Hence, if we need an estimate P̃
(`,1)

M(`,1),N (`,1) such

that ‖P̃(`,1)

M(`,1),N (`,1) − PM(`,1),N (`,1)‖∞ ≤ ∆` for some input parameter ∆`, then
σ
√
µ3 log |N (`,1)|√
q`|N (`,1)|

≤ c′∆` for some appropriate constant c′ implying that a sufficient value

of q` = σ2µ3 log N
c′2|N (`,1)|∆2

`

and therefore, the total number of rounds is O
(
σ2µ3 log N log2(MNT)

∆2
`

)
with probability 1 − T−4. Again, by using the result in Lemma 2, we will need to use

s`, p` such that p` ≥ Cµ2(|N (`,1)|)−1 log3 |N (`,1)| and σ√
s`

= O
(√

p`|N (`,1)|
µ3 log |N (`,1)|‖P‖∞

)
.

Again, the latter condition implies that q` = s`p` = σ2µ3 log |N (`,1)|
c22|N (`,1)|‖P‖2∞

for some constant c2.

Putting everything together, we have that a sufficient value of q` is σ2µ3 log |N (`,1)|
c22|N (`,1)|∆2

`

provided
∆` ≤ ‖P‖∞.
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Remark 12. There is an edge case when
∣∣N (`,1)

∣∣ becomes so small that the condition∣∣N (`,1)
∣∣ = Ω(µ log

∣∣N (`,1)
∣∣) is not satisfied. Hence, we must have

∣∣N (`,1)
∣∣ = O(µ). If

this becomes true, then in theory, a condition in Lemma 2 becomes violated and low rank
matrix completion will not work. However, an easy fix in this situation is to implement the
standard Upper-Confidence Bound algorithm for each user inM(`,1) separately until the
end of rounds (from the phase ` when the condition becomes false) with the set of items
N (`,1) (and also for users in B(`) that are inserted intoM(`,1) in subsequent phases). From

Remark 1, this step will only add a regret of O(σ
√∣∣N (`,1)

∣∣T logT) = O(σ
√
µT logT)

which is a significantly lower order term than the regret guarantee proved in Theorem 2.

Again, by using the result in Lemma 2, we will use s` to be the minimum positive integer

satisfying σ√
s`

= O
(

∆`

√
|N (`,1)|

µ3 log |N (`,1)|

)
and
√
p` = σr√

s`|N (`,1)|

√
µ3 log |N (`,1)|

c∆`
for some

appropriate constant c > 0.

Now, we are ready to state and prove the main theorems:

Theorem (Restatement of Theorem 2). Consider the rank-1 online matrix completion problem with
T rounds, M users s.t. M ≥

√
T and N items. Denote d2 = min(M,N). Let R

(t)
uρu(t) be the reward

in each round, defined as in equation 1. Let σ2 be the noise variance in rewards and let P ∈ RM×N

be the expected reward matrix with SVD decomposition P = λūv̄T such that ū is (T−1/2, µ)-locally
incoherent, ‖v̄‖∞ ≤

√
µ/N, d2 = Ω(µ log d2) and |v̄jmin

| = Θ(|v̄jmax
|). Then, by suitably choos-

ing parameters {∆`}`, positive integers {s(`,0), s(`,1), s(`,2)}` and 1 ≥ {p(`,0), p(`,1), p(`,2)}` ≥ 0

as described in Algorithm 3, we can ensure a regret guarantee of Reg(T) = O(
√
T‖P‖∞ + J

√
TV)

where J = O
(

log
(

1√
VT−1

min
(
‖P‖∞,

σ
√
µ

log N

)))
and V =

(
max(1, N

√
T

M )σ2µ3 log2(MNT)
)

.

Proof of Theorem 2. In the `th iteration, we set ∆` = C ′2−` min
(
‖P‖∞,

σ
√
µ

log N

)
for some appro-

priate constant C ′ > 0. In the `th iteration, our goal is to obtain estimates of the matrices PB(`),N

(using Lemma 2 with parameters (s(`,0), p(`,0)) corresponding to s, p in Lemma 2), PM(`,1),N (`,1)

(using Lemma 2 with parameters (s(`,1), p(`,1))) and PM(`,2),N (`,2) (using Lemma 2 with parameters
(s(`,2), p(`,2)) up to an error of ∆`/2 with high probability.

From Lemma 2, for any sub-matrix Psub ∈ RM′×N′ of Psub, we can compute an estimate P̂sub

satisfying ‖P̂sub −Psub‖∞ ≤ ∆`/2 with high probability by setting the parameters s`, p` such that

σr√
s`d′2

√
µ3 log d′2

p`
= c∆` (25)

for some constant c > 0 where d′2 = min(M′,N′). The largest possible error ∆` that is possible
to obtain by using the matrix completion technique is obtained by substituting s = 1 and p =

Cµ2(d′2)−1 log3 d′2; we obtain that ∆` ≤
σr
√
µ

log d′2
. Note that d′2 ≤ N (in both cases when M ≥ N and

vice-versa) and therefore, if we choose ∆` ≤ C ′min
(
σ
√
µ

log N

)
for some appropriate constant C ′ > 0,

then there exists s` and p` for which we can obtain ‖P̂sub −Psub‖∞ ≤ ∆`/2 with high probability.

Moreover, if ∆` ≤ ‖P‖∞, we can also ensure that σ√
s`

= O
(√

p`|N (`,1)|
µ3 log |N (`,1)|‖P‖∞

)
. Hence, we

can ignore any lower bounds on p` and upper bounds on σ as they are automatically satisfied due to
the instantiation of ∆`.

Also from the analysis above (see equations 23 and 24), we know that by using a total number of
rounds in the `th phase that is bounded from above by O

(
max(1, N

M1−(2ζ)−1 )σ
2µ3 log N log2(MNT)

∆2
`

)
(see the analysis for the sufficient number of rounds for estimating PB(`),N in the `th iteration) , we
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have with probability 1−O(T−4) (the event E(`)
1 for the `th iteration)∣∣∣∣∣∣Q̃(`)

B(`),[N]
−PB(`),[N]

∣∣∣∣∣∣
∞
≤ ∆`

2
(26)∣∣∣∣∣∣P̃(`,1)

M(`,1),N (`,1) −PM(`,1),N (`,1)

∣∣∣∣∣∣
∞
≤ ∆`

2
(27)∣∣∣∣∣∣P̃(`,2)

M(`,2),N (`,2) −PM(`,2),N (`,2)

∣∣∣∣∣∣
∞
≤ ∆`

2
. (28)

We condition on the events E(`)
1 being true for all `. The probability that there exists any ` such that

the event E(`)
1 is false is O(T−4); hence the probability that E(`)

1 is true for all ` is at least 1−O(T−3

( the total number of iterations can be at most T). In case, one such event E(`)
1 is false, we can bound

the regret trivially by O(T−3‖P‖∞). By an inductive argument (See Lemma 10 and the first part of
Corollary 2), we know that the events E(`)

2 will be true for all `. We will also denote the set of rounds
in phase ` by T` ⊆ [T] (therefore |T`| = m`). Let us compute the regret restricted to the rounds in
T (`) conditioned on the events E(`)

1 , E(`)
2 being true for all ` as follows:

m`

M

∑
u∈[M]

µ?u −
∑
t∈T (`)

1

M

∑
u∈[M]

P
(t)
uρu(t)

=
m`

M

∑
u∈[M]:u not ignored

µ?u −
∑
t∈T (`)

1

M

∑
u∈[M]:u not ignored

P
(t)
uρu(t)︸ ︷︷ ︸

Term 1

+
m`

M

∑
u∈[M]:u ignored

µ?u −
∑
t∈T (`)

1

M

∑
u∈[M]:u ignored

P
(t)
uρu(t)︸ ︷︷ ︸

Term 2

The second term can be bounded from above by O(m`M
1−(2ζ)−1‖P‖∞/M) =

O(m`M
−(2ζ)−1‖P‖∞) (see second part of Corollary 2).The first term can be bounded by

using Corollary 2 conditioned on the events E(`)
1 , E(`)

2 being true for all `,

(2a+ 1)∆`−1m` = O
(

max(1,
N

M1−(2ζ)−1 )
σ2µ3 logN log2(MNT)

∆`

)
. (29)

Putting everything together, we can now bound the total regret as follows (using ∆`−1 = 2∆`):

Reg(T) =
T

M

∑
u∈[M]

(µ?u −
∑
t∈[T]

ER
(t)
uρu(t))

=
∑
`

O
(

∆`m` | E(`)
1 , E(`)

2 is true for all `
)

+O(M−(2ζ)−1

‖P‖∞m` | E(`)
1 , E(`)

2 is true for all `) +O(T−3‖P∞‖)

≤
∑
`

O
(

∆`m` | E(`)
1 , E(`)

2 is true for all `
)

+O(
√
T‖P‖∞)

where we used the fact that
∑
`m` = T and Tζ = M. As stated in the theorem, let V =(

max(1, N

M1−(2ζ)−1 )σ2µ3 logN log2(MNT). Moving on, we can decompose the first term into
two parts:

Reg(T) ≤ O(
√
T‖P‖∞) +O

( ∑
`:∆`≤Φ

∆`m` | E(`)
1 , E(`)

2 is true for all `
)

+O
( ∑
`:∆`>Φ

∆`V∆−2
` | E

(`)
1 , E(`)

2 is true for all `
)

≤ O(
√
T‖P‖∞) + TΦ +O

( ∑
`:∆`>Φ

V∆−1
`

)

34



Published as a conference paper at ICLR 2023

Since we chose ∆` = C ′2−` min
(
‖P‖∞,

σ
√
µ

log N

)
for some constant C ′ > 0, the maximum number

of phases ` for which ∆` > Φ can be bounded from above by J = O
(

log
(

1
Φ min

(
‖P‖∞,

σ
√
µ

log N

)))
.

Hence, we have

Reg(T) ≤ O(
√
T‖P‖∞) +O(TΦ) +O

(
JVΦ−1

)
= O(

√
T‖P‖∞) +O(J

√
TV)

where we substituted Φ =
√
VT−1 and hence J = O

(
log
(

1√
VT−1

min
(
‖P‖∞,

σ
√
µ

log N

)))
in the

final step.

Theorem (Restatement of Theorem 3). Let P be a rank 1 matrix such that 0 ≤ Pij ≤ 1 for all
i, j ∈ [M] × [N] and the noise variance σ2 = 1. In that case, for problem P1, any algorithm will
suffer a regret of at least Ω(

√
NTM−1).

Proof of Theorem 3. Recall that the well-known multi-armed bandit (MAB) problem is a special case
of our setting when the number of users M = 1. We can cast the reward matrix as a 1× N matrix P
whose ith element is denoted by Pi. In that case, the expected regret RegMAB(T) over a time period
of T steps is Tmaxj∈[N] Pj −

∑
t∈[T] Pρ(t) where ρ(t) is the item recommended at time t. For the

MAB problem, it is known that any algorithm must suffer a regret of at least Ω(
√
NT) (see Theorem

15.2 in Lattimore & Szepesvári (2020)). Consider our problem with M users and N items when all
users u ∈ [M] are identical and furthermore, in each round, the item recommended for the ith user
can depend on the rewards obtained for users 1, 2, . . . , i− 1 in that round and the rewards obtained in
the previous rounds. In that case, any algorithm that achieves a regret Reg(T) in the repeated setting
and will achieve a regret of M−1RegMAB(MT) in the MAB problem and vice-versa. Hence, we have
that Reg(T) = M−1RegMAB(MT) = Ω(

√
(NT/M)).

E SMALL NUMBER OF USERS M (PROOF OF THEOREM E)

As in section D, we will consider the reward matrix P = λūv̄T ∈ RM×N to be a rank-1 matrix with
‖ū‖2 = ‖v̄‖2 = 1. We make the following assumptions where we use the notations presented in
Section D:

1. We assume that the vector ū is (min(|C1| , |C2|), µ)-incoherent. This is stricter than the first
assumption presented in Section D.

2. β = max
( ∣∣∣ v̄jmax

v̄jmin

∣∣∣ , ∣∣∣ v̄jmin

v̄jmax

∣∣∣ ) for some positive constant β > 0. Note that if we represent

P = uvT where u is the user embedding and v is the item embedding, then we have
β = max

( ∣∣∣vjmax

vjmin

∣∣∣ , ∣∣∣ vjmin

vjmax

∣∣∣ ).

Here, we have a slight modification of the phased algorithm (see Algorithm 8). In each phase `, we will
maintain three groups of users and items (B(`),N (`,1)∪N (`,2)), (M(`,1),N (`,1)) and (M(`,2),N (`,2))
such that B(`) ∪M(`,1) ∪M(`,2) = [M] and N (`,1),N (`,2) ⊆ [N]. Here B(`),M(`,1),M(`,2) are
initialized by [M], φ, φ respectively and N (`,1),N (`,2) are initialized by [N], φ respectively.

Suppose we have a sequence of tuples (m`,∆`)` that is going to be characterized precisely later. In
every phase indexed by `, we will compute two matrices P̃(`,1), P̃(`,2) ∈ RM×N (using m` rounds
for each) that correspond to estimates of two relevant sub-matrices of P namely PM(`,1)∪B(`),N (`,1)

and PM(`,2)∪B(`),N (`,2) respectively. We will define the event E(`)
1 when the following holds true∣∣∣∣∣∣P̃M(`,1)∪B(`),N (`,1) −PM(`,1)∪B(`),N (`,1)

∣∣∣∣∣∣
∞
≤ ∆`/2∣∣∣∣∣∣P̃M(`,2)∪B(`),N (`,2) −PM(`,2)∪B(`),N (`,2)

∣∣∣∣∣∣
∞
≤ ∆`/2
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Algorithm 8 OCTAL ALGORITHM FOR SMALL NUMBER OF USERS M

Require: Number of users M, items N, rounds T, noise σ2, bound on the entry-wise magnitude of expected
rewards ||P||∞, incoherence µ.

1: SetM(1,1) = M(1,2) = φ and B(1) = [M]. Set N (1,1) = N (1,2) = φ. Set f = O(log(MNT)) and
suitable constants a, c, C,C′, Cλ > 0.

2: for ` = 1, 2, . . . , do
3: Set ∆` = C′2−` min

(
‖P‖∞, σ

√
µ

log N

)
.

4: for k = 1, 2, . . . , f do
5: for each pair of non-null sets (M(`,1) ∪ B(`),N (`,1)), (M(`,2) ∪ B(`),N (`,2)) ⊆ [M]× [N] do
6: Denote (T (1), T (2)) to be the considered pair of sets and i ∈ {1, 2} to be its index.

7: Set d2,i = min(|T (1)|, |T (2)|). Set p`,i = Cµ2d−1
2,i log3 d2,i and s`,i =

⌈(
cσ
√
µ

∆` log d2,i

)2⌉
.

8: For each tuple of indices (u, v) ∈ T (1) × T (2), independently set δuv = 1 with probability p`,i
and δuv = 0 with probability 1− p`,i.

9: Denote Ω(i) = {(u, v) ∈ T (1) × T (2) | δuv = 1} and b`,i = maxu∈U |v ∈ V | (u, v) ∈ Ω|. Set
total number of rounds to be m`,i = b`,is`,i.

10: end for
11: For i ∈ {1, 2}, compute P̃(`,i,f) = ESTIMATE(m`,i, b`,i,Ω

(i), |M(`,i)|, |N (`,i)|, λ =

Cλσ
√
d2,ip`,i). # Algorithm 1 recommends items to every user inM(`,i) ∪ B(`) for m`,i rounds.

Since users in B(`) get recommended items for m`,1 +m`,2 rounds, for i ∈ {1, 2} we can recommend
arbitrary items inN (`,i) for users inM(`,i) for the additional m(`,3−i) rounds.

12: end for
13: Compute P̃(`,i) =Entrywise Median({P̃(`,i,k)}fk=1) for i ∈ {1, 2}.
14: Set B(`+1) ⊆ B(`) to be the set{

u ∈ B(`) |
∣∣∣∣max( max

t∈N (`,1)
P̃

(`,1)
ut , max

t∈N (`,2)
P̃

(`,2)
ut )−min( min

t∈N (`,1)
P̃

(`,1)
ut , min

t∈N (`,2)
P̃

(`,2)
ut )

∣∣∣∣ ≤ 2a∆`

}
.

15: Set Au = max(maxt∈N (`,1) P̃
(`,1)
ut ,maxt∈N (`,2) P̃

(`,2)
ut ). Compute T (`+1)

u = {j ∈ N (`,1)} | P̃(`,1)
uj +

∆` > Au} ∪ {j ∈ N (`,2)} | P̃(`,2)
uj + ∆` > Au} for all u ∈ B(`) \ B(`+1).

16: For i ∈ {1, 2}, for all users u ∈ M(`,i), compute T (`+1)
u = {j ∈ N (`,i) | P̃

(`,i)
uj + ∆` >

maxt∈N (`,i) P̃
(`,i)
ut }.

17: Set v to be any user in [M] \ B(`+1). SetM(`+1,1) = {u ∈ [M] \ B(`+1) | T (`+1)
u ∩ T (`+1)

v 6= φ}. Set
M(`+1,2) = [M] \ (B(`+1) ∪M(`+1,1)).

18: ComputeN (`+1,1) =
⋂
u∈M(`+1,1) T (`+1)

u , N (`+1,2) =
⋂
u∈M(`+1,2) T (`+1)

u .
19: end for

by using a number of rounds m` that is bounded from above by
O
(

max(1, N

M1−(2ζ)−1 )σ
2µ3 log2(MNT)

∆`

)
.

Thus, the only difference with the analysis in Section D is that for the users in B(`), we consider the
items in N (`,1) ∪N (`,2) (which can be shown to comprise the best arms for both clusters); therefore
we combine the users in B(`) with users inM(`,1) and users inM(`,2) separately to obtain the matrix
estimates. Since users in B(`) need to recommended more items in each phases, we can recommend
arbitrary items to users inM(`,1) (M(`,1)) from N (`,1) (N (`,1) respectively.)

At each phase indexed by `, we will compute a temporary set of active items T (`+1)
u for all users

u ∈ [N]. We update B(`+1) as given in Step 14 of Algorithm 8. We update the sets of usersM(`+1,1),
M(`+1,2) as in Section D (see Steps 17,18 in Algorithm 8). For any phase indexed by `, we define
the event E(`)

2 such that for every user u ∈M(`,1), the following holds:∣∣∣∣Put −max
t∈[N]

Put

∣∣∣∣ ≤ 2∆`−1 for all t ∈ N (`,1), u ∈M(`,1)∣∣∣∣Put −max
t∈[N]

Put

∣∣∣∣ ≤ 2∆`−1 for all t ∈ N (`,2), u ∈M(`,2)∣∣∣∣Put −max
t∈[N]

Put

∣∣∣∣ ≤ (2a+ 2)∆`−1 for all t ∈ N (`,1 ∪N (`,2), u ∈ B(`).
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As before, we define the events E(`)
3 which is true whenM(`,1) ⊆ C1, jmax ∈ N (`,1) andM(`,2) ⊆

C2, jmin ∈ N (`,2). Finally, let E(`)
4 be the event which is true whenM(`,2) ⊆ C1, jmin ∈ N (`,1) and

M(`,1) ⊆ C2, jmax ∈ N (`,2). By a similar analysis as in Section D, we can show that Lemmas 8, 9,
10 and 11, the first part of 2 (note that no users are ignored in this analysis) and 12 all hold true with
very minor modifications wherever required.

Estimation of matrix PM(`,1)∪B(`),N (`,1) (and similarly PM(`,2)∪B(`),N (`,2) ) in `th iteration: In
this case, notice that the size of

∣∣M(`,1) ∪ B(`)
∣∣ ≥ min(|C1|, |C2|) since the combination of the two

sets must comprise the users of the clusterM(`,1) corresponds to. There are two sub-cases in this
setting:

1. (N ≥ |N (`,1)| ≥ min(|C1|, |C2|)). In this case, as in the analysis for esti-
mating PB(`),N, we can find an estimate P̃M(`,1)∪B(`),N (`,1) ∈ RM×N such that∣∣∣∣∣∣P̃M(`,1)∪B(`),N (`,1) −PM(`,1)∪B(`),N (`,1)

∣∣∣∣∣∣
∞
≤ ∆`/2 for an input parameter ∆` using

O
(

max(1, N
min(|C1|,|C2|) )σ

2µ3 log2(MNT)
∆2
`

)
rounds with probability 1−T−4 (by using Lemma

2 for users inM(`,1) and items in N (`,1)). In the above analysis, we used Lemma 12 and
the fact that the u is (M−1 min(|C1|, |C2|), µ)-locally incoherent.

2. (|N (`,1)| ≤ min(|C1|, |C2|)) Again, by a similar analysis as in Section D and by using
Lemma 12 and the fact that the u is (M−1 min(|C1|, |C2|), µ)-locally incoherent, the total
number of sufficient rounds is O

(
σ2µ3 log N log2(MNT)

∆2
`

)
with probability 1− T−4.

Now, we are ready to state and prove the main theorems:
Theorem. Consider the rank-1 online matrix completion problem with M users, N items, T recom-
mendation rounds such that M ≥

√
T. Denote d2 = min(M,N). Let R

(t)
uρu(t) be the reward in each

round, defined as in equation 1. Let σ2 be the noise variance in rewards and let P ∈ RM×N be
the expected reward matrix with SVD decomposition P = λūv̄T such that ū is (min(|C1|, |C2|), µ)-
locally incoherent, ‖v̄‖∞ ≤

√
µ/N, d2 = Ω(µ log d2) and |v̄jmin

| = Θ(|v̄jmax
|). Then, by suitably

choosing parameters {∆`}`, positive integers {s(`,1), s(`,2)}` and 1 ≥ {p(`,1), p(`,2)}` ≥ 0 as de-
scribed in Algorithm 3, we can ensure a regret guarantee of Reg(T) = O(

√
T‖P‖∞+J

√
TV) where

J = O
(

log
(

1√
VT−1

min
(
‖P‖∞,

σ
√
µ

log N

)))
and V =

(
max(1, N

min(|C1|,|C2|) )σ2µ3 log3(MNT)
)

.

Proof of Theorem E. The proof follows on similar lines as the proof in Theorem 2. The only change
is in m` which is reflected in the result (more specifically in V). Also, note that in Algorithm 8, no
users are ignored and so we do not need to bound the regret for ignored users.
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