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ABSTRACT

Memorization with neural networks is to study the expressive power of neural networks
to interpolate a finite classification dataset, which is closely related to the generalizability
of deep learning. However, the important problem of robust memorization has not been
thoroughly studied. In this paper, several basic problems about robust memorization
are solved. First, we prove that it is NP-hard to compute neural networks with certain
simple structures, which are robust memorization. A network hypothesis space is called
optimal robust memorization for a dataset if it can achieve robust memorization for any
budget less than half the separation bound of the dataset. Second, we explicitly construct
neural networks with O(Nn) parameters for optimal robust memorization of any dataset
with dimension n and size N . We also give a lower bound for the width of networks to
achieve optimal robust memorization. Finally, we explicitly construct neural networks
with O(Nn log n) parameters for optimal robust memorization of any binary classification
dataset by controlling the Lipschitz constant of the network.

1 INTRODUCTION

Memorization with neural networks is to study the expressive power of neural networks to interpolate a given
dataset. The main focus of the study is to determine the number of parameters that a neural network needs to
memorize the dataset. To be precise, for a classification dataset D = {(xi, yi)}Ni=1 with data xi ∈ Rn and
labels yi ∈ [L] = {1, . . . , L}, a network F : Rd → R is called a memorization for D if F(xi) = yi for all
i ∈ [N ]. Many important advances have been made in the memorization with neural networks by Huang &
Babri (1998); Yun et al. (2019); Huang (2003); Vershynin (2020); Daniely (2020); Bubeck et al. (2020); Park
et al. (2021); Zhang et al. (2021); Vardi et al. (2021). Memorization has been shown to help generalization on

∗Corresponding author.

1



Published as a conference paper at ICLR 2024

complex learning tasks (Ma et al., 2018; Belkin et al., 2019; Feldman & Zhang, 2020), because data with the
same label have quite diversified features and need to be nearly memorized.

However, in many fields, the required neural networks must not only be able to interpolate the dataset, but also
be robust on the dataset. For example, in the field of automatic driving, the automatic driving system must be
able to accurately recognize all road traffic signs, but many traffic signs may have noise on themselves, such
as graffiti, stickers, and dirty, and networks that lack strong robustness will generate incorrect classification
results on them, which can lead to traffic accidents. Therefore, in the field of autonomous driving, a robust
network that can withstand all kinds of noise is crucial. The same is true in some other areas, such as
autonomous aviation and safety monitoring systems.

Another area closely related to network security is adversarial examples (Szegedy et al., 2013; Goodfellow
et al., 2014); that is, it is possible to intentionally make imperceptible modifications to a standard sample
so that the network outputs a wrong label. Unfortunately, adversarial examples are hard to eliminate for
commonly used networks (Azulay & Weiss, 2019; Shafahi et al., 2019; Bastounis et al., 2021; Gao et al.,
2022; Yu et al., 2023). The existence of adversarial examples makes it vulnerable to use neural networks in
safety-critical systems, which provides another reason to find robust networks.

So, some natural questions are raised: How many parameters does a network need to give a correct answer
for a given dataset even if certain noises exist, and what is the computational complexity to find such a robust
network? Strictly speaking, for a classification dataset D = {(xi, yi)}Ni=1 ⊂ Rn × [L] with separation bound
λD = minyi ̸=yj ||xi−xj ||∞ and a robust budget µ < λD/2, a neural network F : Rn → R is called a robust
memorization of D with budget µ if F̂(x) = argminl∈[L]|F(x)− l| = yi for all x satisfying ||x− xi||∞ ≤ µ.
Furthermore, a hypothesis space H of neural networks is called an optimal robust memorization (with respect
to the robust radius) of D, if for any µ < λD/2 there exists an F ∈ H that is a robust memorization of D
with budget µ. Notice that if µ ≥ λD/2, then B(xi, µ) ∩ B(xj , µ) ̸= ∅ for some yi ̸= yj , and thus there exist
no networks that can robustly memorize D with a robust budget µ, so µ < λD/2 is always assumed.

There exist significant works on robust memorization. The existence of robust memorization was proved
by Yang et al. (2020); Bastounis et al. (2021), which may have an exponential number of parameters, since
the universal approximation theorem was used. In a recent work (Li et al., 2022), a robust memorization
was constructed, but this result limits the robust budget < λ/4 which is not optimal compared to the largest
possible budget λD/2. A lower bound for the number of parameters for robust interpolation was also given
by (Li et al., 2022). In this paper, a systematic study of robust memorization is presented by answering the
following three questions.

Question Q1: What is the computational complexity to decide whether a fixed structure neural network is a
robust memorization of a given dataset D? This problem is often encountered in reality because we usually
train pre-designed networks, such as VGG16 (Simonyan & Zisserman, 2014) and ResNet18 (He et al., 2016).

For this question, we show that, for certain small networks, robust memorization is NP-hard.
Theorem 1.1 (Informal). For α ∈ R+ and a classification dataset D, it is NP-hard to decide whether there
exists a network of depth 2 and width 2, which is a robust memorization of D with budget α.

This theorem shows that it is computationally difficult to find robust memorization of a given dataset using
a network of certain simple structure. To our knowledge, this theorem is the first result on computational
complexity for robust memorization. It has been proven that finding memorization for a given dataset using a
certain small networks is NP-hard (refer to Section 2 for details). However, the NP-hardness of computing
robust memorization for a non-zero budget and the NP-hardness of computing memorization cannot be
deduced from each other as shown below. For a given dataset D and a given robust radius µ, the existence of
memorization of D does not mean the existence or absence of robust memorization of D with budget µ; the
absence of robust memorization of D with budget µ does not mean the existence or absence of memorization
of D.

2



Published as a conference paper at ICLR 2024

A natural question is: Can the network structure in Theorem 1.1 be replaced by a general network structure?
This problem is very challenging because it is difficult to relate the problem to NP-hard problems. It should
be noted that all NP-hardness results for computing memorization are also for small networks.

Question Q2: As said in question Q1, for a given dataset D and robust radius µ, it is NP-hard to find a robust
memorization of D with budget µ within a given small network structure, so we want to know what kind of
structure (can relate to D and µ) of network can be a robust memorization of D with budget µ.

To answer this question, we give some necessary conditions of robust memorization, and we also give a
network structure that can be robust for any µ < λD/2, as following:

Theorem 1.2 (Informal). Let D ⊂ Rn × [L] be a dataset of size N and µ < λD/2 the robust budget. A
network with width smaller than n cannot be robust memorization for some D and µ. Furthermore, we can
explicitly construct a network in polynomial time, which has width 3n+ 1, depth 2N + 1, O(Nn) non-zero
parameters, and is a robust memorization of D with budget µ.

This result shows that the networks with constant width used in many works of memorization such as
(Vardi et al., 2021) cannot guarantee robustness, and a network with O(Nn) parameters is enough to reach
robustness for any D and µ. In (Li et al., 2022), it was shown that for a binary classification dataset D, there
exists a robust memorization network with budget µ < λD/4, which has O(Nn log( n

λD
) +Npolylog( N

λD
))

parameters. This result has several differences compared to Theorem 1.2. First, their robust memorization
does not reach optimal robust budget, since the budget is < λD/4, while our theorem does not have such a
limit. Second, the number of parameters O(Nn) given by us is smaller, which does not have factors log n,
log λD and polylog( N

λD
). Third, our conclusions are not limited to binary classification. Also note that the

number of parameters of this robust memorization does not depend on the λD, L and µ, and these values
affect the parameter value of the network.

Question Q3: As said in question Q2, a network with O(Nn) parameters is enough to ensure robustness for
any given dataset D and µ < λD/2. Unfortunately, when µ is very close to λD/2, the value of parameters of
such a network will be very large and tend toward ∞, which will be far beyond the scale of the computation.
So, a natural question is can we find a robust networks with limited parameter value? We try to control the
Lipschitz constant of the network to answer this question in the case of binary classification problem.

Theorem 1.3 (Informal). Let D ⊂ Rn × {−1, 1} be a dataset of size N . Then we can explicitly construct
a network F : Rn → R in polynomial time, which has width O(n), depth O(N log(n)), O(Nn log(n))
non-zero parameters, and is a memorization of D. Furthermore, the Lipschitz constant of F is optimal to
guarantee robust memorization and the value of its parameters is O(max(x,y)∈D ||x||∞ + 1/λD).

This theorem requires more parameters compared to Theorem 1.2, but is more practical when the budget is
close to λD/2 because the values of the parameters are much smaller. Two necessary conditions for robust
memorization via Lipschitz are also given.

2 RELATED WORK

Memorization. Baum (1988) showed that =networks with depth 2 and width O([Nn ]) can memorize a generic
binary dataset in Rn with size N . Huang & Huang (1990); Sartori & Antsaklis (1991); Bubeck et al. (2020)
showed that networks with depth 2 and O(N) parameters can memorize an arbitrary dataset. Huang & Babri
(1998); Zhang et al. (2021); Huang (2003); Yun et al. (2019); Vershynin (2020); Hardt & Ma (2016); Nguyen
& Hein (2018) further showed that networks with O(N) (ignoring some small quantities) parameters can be a
memorization for various networks and activation functions. Park et al. (2021) gave the first sub-linear result
by showing that a network with O(N2/3) parameters is enough for memorization under certain assumptions.
Vardi et al. (2021) further gave the optimal number of parameters Õ(

√
N). Since the VC dimension of
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neural networks with N parameters and with ReLU as activation function is O(N2) (Goldberg & Jerrum,
1993; Bartlett et al., 1998; Goldberg & Jerrum, 1993; Bartlett et al., 2019), memorizing datasets of size N
requires at least Ω(

√
N) parameters. Bartlett et al. (2019) showed that depth helps in memorization; that is, a

network with depth L need Ω( N
L ln(N) ) parameters for memorization under certain assumptions. Properties of

memorization were studied in (Daniely, 2020; Patel & Sastry, 2021; Xu et al., 2021).

Robust Memorization. Existence of accurate and robust networks was proved based on the approximation of
functions (Yang et al., 2020; Bastounis et al., 2021). In a recent work (Li et al., 2022), a robust interpolation
network was constructed and a lower bound was given for the number of parameters for robust interpolation.
Furthermore, it was shown that robust memorization of two disjoint infinite sets requires an exponential
number of parameters.

Computational Complexity. The first NP-hardness result was given in (Blum & Rivest, 1992), which
showed that it is NP-complete to train certain networks with three nodes and with step activation function.
The computational complexities for networks with step activation functions were further studied in (Klivans
& Sherstov, 2009; Shai & Shai, 2014). The computational complexities of networks with the ReLU activation
function were studied (DasGupta et al., 1994; Livni et al., 2014; Arora et al., 2016; Boob et al., 2022;
Froese et al., 2022). Recently, it was proven that even training a single ReLU node is NP-hard (Manurangsi
& Reichman, 2018; Dey et al., 2020; Goel et al., 2020). It is worth noting that all NP-hard results for
memorization with neural networks are for simple networks.

3 PRELIMINARIES

For L ∈ N+, denote [L] = {1, . . . , L}. For a matrix W and a vector b, denote by W j,k the element of W
at the j-th row and the k-th column and by b(j) the j-th element of b. For µ ∈ R+ and x ∈ Rn, denote
B∞(x, µ) = {x ∈ Rn : ||x− x||∞ ≤ µ}.

We consider feedforward neural networks F : Rn → R with D hidden layers and with σ = Relu as the
activation function. The l-th hidden layer of F can be written as

Xl = σ(WlXl−1 + bl) ∈ Rnl , l ∈ [D], (1)
and the output is F(X0) = XD+1 =WD+1XD+bD+1 ∈ RnD+1 , where n0 = n,Wl ∈ Rnl×nl−1 , bl ∈ Rnl ,
and nD+1 = 1. F is said to have depth depth(F) = D + 1 and width width(F) = maxD+1

i=1 ni. Denote
Fl(X0) = Xl as the output of the l-th hidden layer of F(X0) and F j

l (X0) the j-th element of Fl(X0). The
classification result of the network is F̂(x) = argminl∈[L]|F(x)− l|, that is, the label closest to F(x).

In this paper, we will explicitly construct networks from the following hypothesis space.
Definition 3.1. Denote the set of neural networks with depth d, width w, and p parameters by

Hn,d,w,p = {F : Rn → R : depth(F) = d,width(F) = w, para(F) = p}, (2)

where para(F) = p means that there exist two fixed sets Iw ⊂ N3 and Ib ⊂ N2, such that Iw ∪ Ib has p
elements, W i,j

l ̸= 0 for (l, i, j) ∈ Iw, b(s)l ̸= 0 for (l, s) ∈ I, and all other parameters are zero. For brevity,
we do not explicitly give the sets Iw and Ib, when we say para(F) = p. We use ∗ to denote an arbitrary
number in N. For example, Hn,d,∗,∗ = {F : Rn → R : depth(F) = d} is the set of networks with depth d,
and the width and number of parameters can be any number in N+.
Definition 3.2. Let N,n, L ∈ N+, and D = {(xi, yi)}Ni=1 ⊂ Rn × [L] a dataset in Rn with size N and label
set [L]. Denote Dn,L,N to be the set of all such datasets. We exclude non-interesting cases by assuming
n > 9 and L ≥ 2. All datasets in this paper are considered to be in Dn,L,N unless otherwise mentioned. The
separation bound for a dataset D is defined as

λD = min{||xi − xj ||∞ : (xi, yi), (xj , yj) ∈ D and yi ̸= yj}.
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We assume λD > 0. Otherwise, D does not have a proper classification.

The robust accuracy of a network F on a dataset D with respect to a given robust budget µ ∈ R+ is

RAD(F , µ) =
1

|D|
∑

(x,y)∈D

1(∀x ∈ B∞(x, µ), F̂(x) = y).

The problem of memorization for a dataset D ∈ Dn,L,N is to construct a neural network F : Rn → R, such
that F(x) = y, ∀(x, y) ∈ D. In this paper, we consider the problem of robust memorization.
Definition 3.3. The problem of robust memorization for a given dataset D ∈ Dn,L,N with a robust
budget µ is to build a network F : Rn → R satisfying RAD(F , µ) = 1. A network hypothesis space H is
said to be an optimal robust memorization for a dataset D, if for any µ < λD/2, there exists an F ∈ H
such that RAD(F , µ) = 1.

4 OPTIMAL ROBUST MEMORIZATION

In this section, we investigate the existence and computation of robust memorization from three perspectives.
First, we show that the computation of robust memorization for certain networks is NP-hard. Second, we
provide some necessary conditions for the existence of optimal robust networks. Finally, we show that for
any given dataset, optimal robust memorization exists and can be computed in polynomial time. Note that
Theorem 1.1 follows from Theorems 4.1, and Theorem 1.2 follows from Theorems 4.3 and 4.8.

4.1 ROBUST MEMORIZATION FOR CERTAIN SIMPLE NETWORK IS NP-HARD

In this section, we prove that computing robust memorization with certain simple structures is NP-hard. For
α ∈ R+ and a dataset D ⊂ Dn,L,N , denote by RobM(D, α) the decision problem for the existence of an
F ∈ Hn,2,2,∗, which is a robust memorization of D with budget α. We have the following result.
Theorem 4.1. RobM(D, α) is NP-hard. As a consequence, it is NP-hard to compute F ∈ Hn,2,2,∗, which is
a robust memorization of D with budget α.

We prove the theorem by showing that RobM(D, α) is computationally equivalent to the following NPC
problem. The proof details are in Appendix B.1.
Definition 4.2. Let φ be a Boolean formula and φ the formula obtained from φ by negating each variable.
The Boolean formula φ is called reversible if either both φ and φ are satisfiable or both are not satisfiable.
The reversible satisfiability problem is to recognize the satisfiability of reversible formulae in conjunctive
normal form (CNF). By the reversible 6-SAT, we mean the reversible satisfiability problem for CNF formulae
with six variables per clause. In (Megiddo, 1988), it was shown that the reversible 6-SAT is NPC.

4.2 NECESSARY CONDITIONS FOR THE EXISTENCE OF ROBUST NETWORKS

In this section, we give two necessary conditions for the existence of robust neural networks, which imply
that robust memorization is essentially harder than memorization in that more complex networks and more
parameters are needed. These results are in line with the theoretical and experimental observations that, in
order to increase the robustness, the network needs more expressive power, even if the original set is linearly
separable (Madry et al., 2017; Gao et al., 2019; Li et al., 2022).

The first necessary condition is in terms of the width of the network.
Theorem 4.3. For any d < n and N ≥ n+ 1, Hn,∗,d,∗ is not an optimal robust memorization for Dn,L,N .
In other words, there exist a dataset D ∈ Dn,L,N and a µ < λD/2 such that any F with width smaller than
n is not a robust memorization of D with radius µ.
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Proof Sketch. Let F : Rn → R be a network and let W1 be the weight matrix of the first layer of F . Then
W1 ∈ RK×n. If F has a width smaller than n, then K < n, that is, W1 is not of full-row rank. Based on this
property, we can construct a dataset D such that F is not an optimal robust memorization of D. Details of the
proof are in B.2. ■
Remark 4.4. It was widely observed that the width of the network plays a key role in robustness. Gao et al.
(2019) showed that increasing the width of the network is necessary for robust memorization. In (Allen-Zhu
et al., 2019; Du et al., 2019a;b; Li & Liang, 2018; Zou et al., 2018), it was shown that when the width is large
enough, the gradient descent converges to a global minimum point. Theorem 4.3 gives more evidence of the
importance of width in robustness, that is, to be a robust memorization for an arbitrary dataset, the width of
the network must be at least equal to the dimension of the data.

The lower bound of width given in Theorem 4.3 is still necessary even in more general cases, as shown by the
following proposition whose proof is similar to that of Theorem 4.3 and is given in Appendix B.3.

Proposition 4.5. For any λ > 2µ > 0, there exists a dataset D ∈ Dn,L,N such that λD ≥ λ and any network
in Hn,∗,d,∗ is not a robust memorization of D with budget µ if d < n.

The following proposition shows that depth 2 networks are optimal robust memorization for any dataset.
Furthermore, a necessary condition for depth 2 networks to be an optimal robust memorization of Dn,L,N is
that the width of the network must be greater than N .

Proposition 4.6. For neural networks with depth 2, we have the following results.

(1) Hn,2,∗,∗ is an optimal robust memorization for Dn,L,N .

(2) For any L ≥ 5 and N > 9, Hn,2,N,∗ is not an optimal robust memorization for Dn,L,N . In other words,
there exist a dataset D ∈ Dn,L,N and a µ < λD/2 such that any F with depth 2 and width N is not
a robust memorization of D with radius µ.

Proof Sketch. For a dataset D ∈ Dn,N,L and a budget µ < λD/2, since D is finite, we can assume that D
is in [−C,C]n for some C ∈ R. There clearly exists a continuous function E : [−C,C]n → R such that
E(x̂) = y for x̂ ∈ B(x, µ) and (x, y) ∈ D. Then (1) of Proposition 4.6 can be obtained using the universal
approximation theorem (Cybenko, 1989; Leshno et al., 1993) to function E. The proof for (2) of Proposition
4.6 can be found in Appendix B.4. ■
Remark 4.7. We give a detailed comparison with memorization networks. In (Vardi et al., 2021), it was shown
that for any dataset D ∈ Dn,L,N , there exists a network F ∈ Hn,Õ(

√
N),12,Õ(

√
N), which can memorize

D; that is, networks with width 12 are enough for memorization. By Theorem 4.3, networks with fixed
width cannot be optimal robust memorization. Here, Õ(·) hides certain logarithmic factors. In (Zhang et al.,
2021), it was shown that for any dataset D ∈ Dn,L,N , there exists a network F ∈ Hn,2,N,O(N+n), which can
memorize D; that is, networks with depth 2 width N are enough for memorization. By (2) of Proposition 4.6,
networks with depth 2 width N cannot be optimal robust memorization. In summary, robust memorization is
essentially harder than memorization.

4.3 OPTIMAL ROBUST MEMORIZATION WITH NEURAL NETWORK

The following theorem gives an optimal robust memorization for any given dataset. Notice that the network is
constructed explicitly.

Theorem 4.8. The hypothesis space Hn,2N+1,3n+1,O(Nn) is an optimal robust memorization for Dn,L,N .
More precisely, for any D ∈ Dn,L,N and µ < λD/2, there exists a robust memorization network F of D with
budget µ such that width(F) = 3n + 1, depth(F) = 2N + 1, para(F) = (N − 1)(12n + 5) + 2, and the
absolute values of the parameters are O(max(x,y)∈D ||x||∞ + L

λD−2µ ).
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Proof sketch. Let D = {(xi, yi)}Ni=1 ⊂ Rn × [L]. It suffices to show that for any µ < λD/2, there exists
a network F : Rn → R with depth 2N + 1, width 3n + 1, and O(Nn) parameters, which can robustly
memorize D with robust budget µ. From equation 1, a neural network F : Rn → R can be constructed as
follows: starting from the input x ∈ Rn, performing affine transformations over R and taking the activation
function σ recursively. In what follows, we will give a sketch of the construction of F . The details of the
proof are given in Appendix B.5.

Let x ∈ Rn be the input and C ∈ R+ satisfy C > |x(j)i | + µ > 0 for all i ∈ [N ] and j ∈ [n]. First,
we need to know x in each layer of the network, which can be achieved with neural networks by the fact
σ(x(j) + C) = x(j) + C for j ∈ [n], x ∈ B∞(xi, µ), and i ∈ [N ].

Second, for each i ∈ [N ], we construct a neural network Ei(x) : Rn → R:

Ei(x) = yi −
yi

λD − 2µ

∑n

j=1
(σ(x

(j)
i − x(j) − µ) + σ(x(j) − x

(j)
i − µ))

which satisfies the following properties: (1) Ei(x) = yi for x ∈ B∞(xi, µ); (2) Ei(x) < yi for x /∈
B∞(xi, µ); (3) Ei(x) ≤ 0 for x ∈ B∞(xk, µ) and yk ̸= yi.

Finally, the output is F(x) = maxi∈[N ]{Ei(x), 0}, which can be achieved with neural networks by the
property: max{y, z} = y + σ(z − y) for y, z ∈ R.

Now we show that F is the required network. Let x ∈ B∞(xs, µ) for s ∈ [N ]. Then Es(x) = ys. For
i ̸= s, there exist two cases: if yi = ys, then Ei(x) < ys; if yi ̸= ys, then Ei(x) ≤ 0. In summary,
F(x) = maxi∈[N ]{Ei(x), 0} = Es(x) = ys, that is, F is robust at xs with budget µ. ■
Remark 4.9. Note that the network constructed in the proof of Theorem 4.8 satisfies F(x) = yi for all
x ∈ B∞(xi, µ) and i ∈ [N ], which is a special type of robust memorization. The following proposition
shows that these two types of robust memorization essentially need the same number of parameters. More
details on the number of parameters and the proof of the proposition are given in Appendix B.6.
Proposition 4.10. Let D = {(xi, yi)}Ni=1 ∈ Dn,L,N . If the network F is a robust memorization of D with
budget µ, then there exists a network G : R → R with depth(G) = 2, width(G) = 2L, and para(G) = 6L,
such that F1 = G(σ(F)) satisfies F1(x) = yi for all x ∈ B∞(xi, µ) and i ∈ [N ].
Remark 4.11. In this paper, we focus on robust memorization under the norm L∞, because adversarial attacks
with the norm L∞ are the most widely used attacking methods in the image classification problem. Theorem
4.8 can be generalized to any norm p ≥ 1; see Appendix B.7.

5 OPTIMAL ROBUST MEMORIZATION VIA LIPSCHITZ

In this section, we construct optimal memorization networks by controlling the Lipschitz constant of the
network. Theorem 1.3 follows from Theorem 5.2.

The L∞ norm Lipschitz constant for F : Rn → R is defined as

Lip∞(F) = max
x,x̃∈Rn; x ̸=x̃

{
|F(x)−F(x̃)|
||x− x̃||∞

}
.

In this section, we consider binary classification problems and the dataset has the following form

D = {(xi, yi)}Ni=1 ⊂ Rn × {−1, 1}. (3)

Denote Bn,N to be the set of all D of the form in equation 3. In order to achieve robust memorization by
controlling the Lipschitz constant of F , the classification result of F is defined as F̂(x) = Sgn(F(x)), which
is the commonly used setting for binary classification data in equation 3.
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Because there exist (xi, 1), (xj ,−1) ∈ D such that ||xi − xj ||∞ = λD, so if F memorizes D, then
Lip∞(F) ≥ |F(xi)−F(xj)|/||xi − xj ||∞ = 2

λD
, which motivates the following definition.

Definition 5.1. A network F is called a robust memorization of a dataset D via Lipschitz with budget
µ < λD/2, if F is a memorization of D and Lip∞(F) ≤ 1/µ. Furthermore, F is called an optimal robust
memorization of D via Lipschitz, if F is a memorization of D and Lip∞(F) = 2/λD.

5.1 OPTIMAL ROBUST MEMORIZATION VIA LIPSCHITZ

The following theorem gives an optimal robust network via Lipschitz for any binary classification dataset.

Theorem 5.2. For any dataset D ∈ Bn,N , the hypothesis space Hn,O(N log(n)),O(n),O(Nn log(n)) contains a
network F that is an optimal robust memorization of D via Lipschitz, and the values of parameters of F are
O(max(x,y)∈D ||x||∞ + 1

λD
).

Proof Sketch. Let D be defined in equation 3. Let x ∈ Rn be the input and C ∈ R+ satisfy C >

|x(j)i |+ 0.5λD > 0 for all i ∈ [N ] and j ∈ [n]. The construction of the network F has three main gradients.

First, we need to know x in each layer of the network, which can be achieved with neural networks by the
property σ(x(j) + C) = x(j) + C for j ∈ [n], x ∈ B∞(xi, µ), and i ∈ [N ].

Second, for each k ∈ [N ], we construct a neural network Ek(x) = ||x−xk||∞, which can be achieved by the
properties σ(x) + σ(−x) = |x| and max{x, y} = x+ σ(y − x) for x, y ∈ R, since ||z||∞ = maxni=1 |z(i)|.

Finally, the network is F(x) = ywN
σ(1− 2

λD
||x− xwN

||∞), where wN = argmini∈[N ]||x− xi||∞. wN can
be computed by the property min{x, y} = x− σ(x− y) for x, y ∈ R.

We now show that F satisfies the condition of the theorem, that is, F a memorization of D and satisfies
Lip∞(F) = 2

λD
. If x = xk, then wN = argmini∈[N ]||x − xi||∞ = k. So, F(xk) = yk, that is, F is a

memorization of D. If x ∈ B(xk, 0.5λD) for some k ∈ [N ], thenwN = k and F(x) = yk(1− 2
λD

||x−xk||∞),
so Lip∞(F) = 2

λD
over B(xk, 0.5λD), since yi ∈ {−1, 1}. If x is not in B = ∪N

i=1B(xi, 0.5λD), then
||x− xwN

||∞ > 0.5λD and hence F(x) = 0. As a consequence, we have Lip∞(F) = 2
λD

. Thus, F is an
optimal robust memorization of D via Lipschitz. Details of the proof are given in Appendix C.2. ■
Remark 5.3. We compare robust memorization with robust memorization via Lipschitz. By Theorem 4.8, it
requires O(Nn) parameters for optimal robust memorization. By Theorem 5.2, optimal robust memorization
via Lipschitz needsO(Nn log n) parameters. Therefore, to achieve optimal robust memorization via Lipschitz,
more parameters are required according to these results. However, robust memorization via Lipschitz also has
advantages. First, there indeed exists a network that is an optimal robust memorization via Lipschitz, while
for robust memorization according to Definition 3.3, optimal robust memorization exists for a hypothesis
space of networks. Second, robust networks via Lipschitz have controlled parameter values.

5.2 NECESSARY CONDITIONS FOR ROBUST MEMORIZATION VIA LIPSCHITZ

It is easy to see that robust memorization via Lipschitz implies robust memorization, so the necessary
conditions given in Section 4.2 are also valid for robust memorization via Lipschitz. In this section, we give
more necessary conditions for robust memorization via Lipschitz. In the following proposition, we show that
a necessary condition for F to be an optimal robust memorization via Lipschitz is that depth(F) > 2, whose
proof is given in Appendix C.3.

Proposition 5.4. Assume N ≥ n+ 1. There exists a dataset T ∈ Bn,N , such that any network F with depth
2 is not an optimal robust memorization for T via Lipschitz.
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By (1) of Theorem 4.6, networks of depth 2 is an optimal robust memorization for any dataset, so Proposition
5.4 implies that robust memorization via Lipschitz is harder than robust memorization. The following
proposition shows that this fact is also true in a more relaxed case which does not reach optimal robustness.
The proof of the proposition is given in Appendix C.4.
Proposition 5.5. Let H = {F :Rn → R : depth(F) = 2,width(F) = 4n[ N

n+1 ]} and assume N ≥ n + 1.
Then there exists a dataset D ∈ Bn,N such that the following results hold.

(1) H is an optimal robust memorization for D; that is, for any µ < λD/2, there exists a network F ∈ H,
which is a robust memorization for D with budget µ.

(2) There exists a µ < λD/2 such that any F ∈ H is not a robust memorization for D via Lipschitz with
budget µ; that is, if F is a memorization for D then Lip∞(F) > 1/µ.

Note that (2) of Proposition 5.5 cannot be deduced from Proposition 5.4, because D in Proposition 5.5 must
satisfy both (1) and (2), and the robust budgets for Propositions 5.4 and 5.5 are λD/2 and µ, respectively.

6 CONCLUSION

This paper extends previous work on memorization with neural networks to robust memorization. We study
robust memorization in three aspects. First, we prove that for depth 2 and width 2 neural networks, it is NP-
hard to compute robust memorization. Second, we give explicit construction of optimal robust memorization
networks for a given dataset in polynomial time and several necessary conditions for the existence of robust
memorization. Third, we give explicit construction of optimal robust memorization networks for any binary
classification dataset by controlling the Lipschitz constant of the network.

Problems for further study. In this paper, we consider the L∞ norm due to the fact that the L∞ norm is
the most widely used norm in adversarial attacks for image classification. It is interesting to consider robust
memorization for other norms. We already have partial results on this problem. In Appendix B.7, we extend
Theorem 4.8 to the case of Lp norm with p ≥ 1.

In (Li et al., 2022), a lower bound Ω(
√
Nn) is given for the number of parameters of a robust memorization

network. There exists a gap between the current best result O(Nn) of Theorem 4.8 and the lower bound. An
open problem is to find the optimal number of parameters needed for optimal robust memorization.

In this paper, we consider the expressive power of the network for robust memorization, and generalizability
is not studied. In (Li et al., 2022), it was shown that an exponential number of parameters is needed to
robustly memorize a manifold, which was closely related with generalizability. However, the result is not in
the standard form of generalization bound, which gives an upper bound for the difference between the loss
over the whole data distribution and the loss over a finite training set. The generalizability of memorization
networks needs to be studied.

Theorem 1.3 is for binary classification problem, it seems a challenge problem to extend such a result to
multiple classification problems.
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A PRELIMINARY RESULTS ABOUT LINEAR REGIONS OF DEPTH 2 NETWORK

In the proofs for Sections 4 and 5, we need results on the linear regions of neural networks with depth 2,
which will be given in this section. Note that σ is ReLU.

Let F : Rn → R be a network with depth 2 and width k. Since σ(−x) = σ(x)− x and σ(ax) = aσ(x) for
a ∈ R+, F(x) can be written as the following normal form

F(x) =
∑k

i=1
aiσ(Uix+ bi) +Qx+ b (4)

where ai ∈ {−1, 1}, bi ∈ R, Ui ∈ R1×n and Ui ̸= 0,Q ∈ R1×n, and there exist no i ̸= j such that Ui = qUj

and bi = qbj for q ∈ R.

For a network F in normal-form equation 4, we define the concept of linear region. Let H+
i = {x ∈

Rn : Uix+ bi > 0} and H−
i = {x ∈ Rn : Uix+ bi < 0}. If

R = ∩k
i=1H

si
i ̸= ∅,

then R is called a linear region of F , where si ∈ {+,−}. The interior of a linear region R is the set of points
x ∈ R such that Uix+ bi ̸= 0 for all i ∈ [k]. An edge of R is the set of points x ∈ R such that Uix+ bi = 0
for some i.
Definition A.1. Let R be a linear region. Define Si(R) = 1 if there exists an interior point x of R such that
Uix+bi > 0; and Si(R) = −1 in the opposite case. Two linear regionsR1 andR2 are said to be neighboring
linear regions, if there exists only one s such that Ss(R1)Ss(R2) = −1. For two neighboring linear regions
R1 and R2, the boundary of R1 and R2 is R1 ∩ R2 ∩ {x : Usx + bs = 0}, which is said to be defined by
(Us, bs).

We give several properties for linear regions that will be used in this paper.
Lemma A.2 (Montufar et al. (2014)). Let R be a linear region of F .

(1) Over R, F(x) = (
∑

i∈SaiUi +Q)x+
∑

i∈Saibi =WRx+ bR is an linear function, where S = {i ∈
[k] :Si(R) = 1}, WR ∈ R1×n, bR ∈ R.

(2) R is a closed and n-dimensional convex polyhedron. The set of interior points of R is an open set of
dimension n. An edge of R is of dimension ≤ n− 1.

(3) Rn is the union of all linear regions.

(4) For two linear regions R1 and R2, R1 ∩R2 has dimension ≤ n− 1 and the sets of interior points of R1

and R2 are disjoint. The boundary of two neighboring linear regions has dimension n− 1.
Lemma A.3. Let x ∈ Rn satisfy Usx+ bs = 0 for some s ∈ [k]. Then for any ϵ > 0, there exist two linear
regions R1, R2, and two points x1 and x2 satisfying

(1) ||x1 − x||∞ ≤ ϵ and ||x2 − x||∞ ≤ ϵ;

(2) xi is in the interior of Ri for i = 1, 2;

(3) R1 and R2 are neighboring linear regions and their boundary is defined by (Us, bs).

Proof. Let Hi be the hyperplane defined by Uix+ bi = 0. Consider two cases.

Case 1. If x satisfies that Ujx + bj = 0 if and only if j = s; that is s is the only element of [k] such that
Usx+ bs = 0. Let η = minj∈[k]/{s} |Ujx+ bj | and
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x1 = x+min{ϵ/2, η
2maxj∈[k]||Uj ||2 }

Uτ
s

||Us||2 ;

x2 = x−min{ϵ/2, η
2maxj∈[k]||Uj ||2 }

Uτ
s

||Us||2 .
For any k = {1, 2}, ||xk − x||∞ ≤ ||xk − x||2 ≤ ϵ/2, so (1) is proved.

Note that Usx1 + bs = min{ϵ/2, η
2maxj∈[k]||Uj ||2 } > 0. Similarly, we can show Usx2 + bs < 0. Thus, x1

and x2 are on the opposite sides of Hs. Furthermore, for j ̸= s and xk ∈ {1, 2}, we have

|Ujxk + bj |
≥ |Ujx+ bj | − |min{ϵ/2, η

2maxj∈[k]||Uj ||2 }
1

||Us||2Uj · Uτ
s |

≥ η − η
2maxj∈[k]||Uj ||2||Us||2Uj · Uτ

s

≥ η/2.

Therefore, xk is an interior point of a linear region Rk. By Lemma A.2, (2) is proved.

Since for any j ̸= s and k ∈ {1, 2}, |Ujx+ bj − Ujxk − bj | ≤ η/2 < |Ujx+ bj |, we have Ujx1 + bj and
Ujx2 + bj have the same sign with Ujx+ bj , so (3) is proved.

Case 2. Ujx+ bj = 0 for more than one j ∈ [k]. We claim that there exists an x̃ such that ||x− x̃||∞ < ϵ/2
and Uj x̃+ bj = 0 implies j = s.

Let S = {j ∈ [k] :Ujx+ bj = 0}. Since for j ∈ S, Hj are hyperplanes passing x, any two of them cannot
be parallel, or equivalently, Uj ̸= qUs for any q ∈ R and j ∈ S, j ̸= s. Let V ⊥

j = {v ∈ Rn :Ujv = 0} for
j ∈ [k]. Let v ∈ V ⊥

s \ (∪j∈S,j ̸=sV
⊥
j ), and let η = minj∈[k]\S |Ujx+ bj |.

Define tv = min{ϵ/2, η
2maxj∈[k]||Uj ||2 }

1
||v||2 > 0 and x̃ = x + tvv. Then ||x̃ − x||∞ ≤ ||x̃ − x||2 =

||tvv||2 ≤ ϵ/2. We have Usx̃+ bs = 0 and Uj x̃+ bj = Ujtvv + Ujx+ bj = Ujtvv ̸= 0 when j ∈ S/{s}.
|Uj x̃ + bj | = |Ujtvv + Ujx + bj | ≥ η − η

2maxj∈[k]||Uj ||2||v||2Ujv ≥ η/2 when j ∈ [k] \ S. So x̃ ∈ Hj if
and only if j = s. Now, combining Case 1 for x̃, we can construct the required x1 and x2. The lemma is
proved.

x1x0x2

x2 + v

x2 − v

Figure 1: An illustration for Lemma A.4. The blue line is Hs : Usx+ bs. The green lines are Hj : Ujx+ bj
(j ̸= s). The red segments are λx1 + (1− λ)(x2 + v) and λx1 + (1− λ)(x2 − v).

Lemma A.4. Let x1, x0 ∈ Rn satisfy Usx1 + bs = 0 and Usx0 + bs = 0 for some s ∈ [k]. Then for any
ϵ > 0 and η > 0, there exist x2, v ∈ Rn such that

(1) ||x2 − x0||∞ ≤ ϵ, ||v||∞ ≤ η;

(2) Ujx2 + bj = 0 if and only if j = s;
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(3) Let pλ = λx1 + (1− λ)(x2 + v) and qλ = λx1 + (1− λ)(x2 − v), where λ ∈ [0, 1]. Let I ⊂ [0, 1] be
the set of λ, such that pλ is in the interior of a linear region R1,λ, qλ is in the interior of a linear
region R2,λ, and R1,λ and R2,λ are neighboring linear regions with boundary (Us, bs). Then I is a
set of intervals with total length |I| ≥ 0.5.

Proof. Since Hj = {x :Ujx + bj = 0} is an (n − 1)-dimensional hyperplane in Rn and Hi ̸= Hj for
i ̸= j, Hi ∩Hj is of dimension at most (n − 2). Let x2 be a point in B∞(x0, ϵ) ∩Hs \ (∪j ̸=sHj). Then
||x2 − x0||∞ ≤ ϵ and Ujx2 + bj = 0 if and only if j = s.

For j ̸= s, since x2 /∈ Hj , there exists at most one λ ∈ R such that λx1 + (1− λ)x2 ∈ Hj and let λj be such
a value if it exists.

Let Γ = [0, 1] \ ((1 − 1
4k , 1] ∪ (∪j ̸=s(λj − 1

4k , λj +
1
4k ))). Then Γ ⊂ [0, 1) is a closed set with length at

least 1− k 1
2k = 0.5.

Let W = maxi∈[k] ||Ui||2, xλ = λx1+(1−λ)x2, θj = minλ∈Γ{|Ujxλ+ bj |}, and θ = minj ̸=s{θj}. Since
Γ is a closed set and λj /∈ Γ, we have θ > 0.

Let v0 ∈ R1×n satisfy v0Uj ̸= 0 for all j ∈ [k] and v = min{η, θ
2W } v0

||v0||2 . It is easy to see that ||v||∞ ≤ η.
Then for all λ ∈ Γ, we have that

(a1) xλ + (1− λ)v = pλ and xλ − (1− λ)v = qλ.

(a2) Us(xλ + (1 − λ)v) + bs and Us(xλ − (1 − λ)v) + bs have different signs for all λ ∈ Γ, because
Usxλ + bs = 0 and Usv ̸= 0.

(a3) |Ujv| ≤ θUjv
2W ||v0||2 ≤ θ/2 ≤ |Ujxλ+bj | for all j ̸= s and λ ∈ Γ, which means thatUj(xλ+(1−λ)v)+bj

and Uj(xλ − (1− λ)v) + bj have the same sign.

(a2) and (a3) show that if λ ∈ Γ, then R1,λ and R2,λ are neighboring linear regions with boundary (Us, bs).
So x2 and v satisfy the properties in the lemma, and Γ ⊂ I has length at least 0.5.

B PROOFS FOR SECTION 4

B.1 PROOF OF THEOREM 4.1

Denote Hn,2 = Hn,2,2,∗. Then an F(x) ∈ Hn,2 can be written as

F = s1σ(U1x+ b1) + s2σ(U2x+ b2) + c (5)

where si ∈ {−1, 1}, Ui ∈ R1×n, bi ∈ R, c ∈ R.

For i ∈ [n], let 1i ∈ Rn, whose i-th entry is 1 and all other entries are 0.

Denote F̃(x) = ψ(F(x)), where ψ is the sign function. First, we prove a lemma.

Lemma B.1. Let F ∈ Hn,2 be of the form equation 5 and zi = i11 ∈ Rn. If F̃(z1) = F̃(z−1) = −1 and
F̃(z2) = F̃(z−2) = 1, then s1s2 < 0 when c ≥ 0 and s1s2 > 0 when c < 0.

Proof. Let F be of the form equation 5. We just need to prove the lemma for n = 1. Consider two cases.

(c1): Assume c ≥ 0. Since −1 = F̃(z1) = ψ(s1σ(U1z1 + b1) + s2σ(U2z1 + b2) + c) ≥ ψ(s1σ(U1z1 +
b1) + s2σ(U2z1 + b2)), at least one of s1 = −1 or s2 = −1 holds. Assume that s2 = −1. We will show that
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s1 = 1. If this is not true, then s1 = s2 = −1. Since −σ(a)/4− 3/4σ(b) ≤ −σ(a/4 + 3b/4), we have

0

< 1
4F(z2) +

3
4F(z−2)

= (−σ(U1z2 + b1)− σ(U2z2 + b2) + c)/4 + 3(−σ(U1z−2 + b1)− σ(U2z−2 + b2) + c)/4

= (−σ(U1z2 + b1)− 3σ(U1z−2 + b1))/4 + (−σ(U2z2 + b2)− 3σ(U2z−2 + b2))/4 + c

≤ −σ(U1z−1 + b1)− σ(U2z−1 + b2) + c

= F(z−1) < 0,

which is a contradiction.

(c2): Assume c < 0. Since 1 = F̃(z2) = ψ(s1σ(U1z2 + b1) + s2σ(U2z2 + b2) + c) ≤ ψ(s1σ(U1z2 + b1) +
s2σ(U2z2 + b2)), at least one of s1 = 1 or s2 = 1 holds. Assume s1 = 1. We will show that s2 = 1. If this
is not true, then s2 = −1. Then

1 = F̃(z2) = ψ(σ(U1z2 + b1)− σ(U2z2 + b2) + c) ≤ ψ(σ(U1z2 + b1) + c),

so σ(U1z2+ b1)+ c > 0. From c < 0, we have U1z2+ b1 > 0. Similarly, we have U1z−2+ b1 > 0. It is easy
to see that U1z1 + b1 ≥ min{U1z2 + b1, U1z−2 + b1}, so σ(U1z1 + b1) + c > 0, and hence U1z1 + b1 > 0.
Similarly, we have U1z−1 + b1 > 0. From F̃(z1) = −1 and σ(U1z1 + b1) + c > 0, we have

0 > F(z1) = σ(U1z1 + b1)− σ(U2z1 + b2) + c > −σ(U2z1 + b2),

so U2z1 + b2 > 0. Similarly, we have U2z−1 + b2 > 0. Now consider the linear function L(x) =
(U1x+ b1)− (U2x+ b2) + c.

Since c < 0, U1z1 + b1 > 0, U2z1 + b2 > 0, and F(z1) = −1, we have L(z1) = (U1z1 + b1) − (U2z1 +
b2) + c = σ(U1z1 + b1)− σ(U2z1 + b2) + c = F(z1) < 0. Similarly, L(z−1) < 0.

Since c < 0, U1z2 + b1 > 0, and F(z2) = 1, we have L(z2) = (U1z2 + b1) − (U2z2 + b2) + c =
σ(U1z2 + b1)− (U2z2 + b2) + c ≥ σ(U1z2 + b1)− σ(U2z2 + b2) + c > 0. Similarly, we have L(z−2) > 0.

Hence L(0) = (L(z1) + L(z−1))/2 < 0 and L(0) = (L(z2) + L(z−2))/2 > 0, a contradiction, so
s2 = 1.

We now give the proof of Theorem 4.1.

Proof. Let φ(k,m) = ∧m
i=1φi(k,m) be a 6-SAT for k variables, where φi(k,m) = ∨6

j=1x̃i,j and x̃i,j is
either xs or ¬xs for some s ∈ [k] (see Definition 4.2).

For i ∈ [m], define Qφ
i ∈ Rk as follows: Qφ

i [j] = 1 if xj occurs in φi(k,m); Qφ
i [j] = −1 if ¬xj occurs in

φi(k,m); Qφ
i [j] = 0 otherwise. Then six entries in Qφ

i are 1 or −1 and all other entries are zero.

We define a binary classification dataset D(φ) = {(xi, yi)}m+4k
i=1 ⊂ Rk × [2] as follows.

(1) For i ∈ [k], xi = k1i, yi = 1.

(2) For i ∈ {k + 1, k + 2, . . . , 2k}, xi = −k1i−k, yi = 1.

(3) For i ∈ {2k + 1, 2k + 2, . . . , 3k}, xi = 2k1i−2k, yi = 2.

(4) For i ∈ {3k + 1, 3k + 2, . . . , 4k}, xi = −2k1i−3k, yi = 2.

(5) For i ∈ {4k + 1, 3k + 2, . . . , 4k +m}, xi = k/4 ·Qφ
i−4k, yi = 1.
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D(φ) has separation bound ≥ k/4 > 1, because k ≥ 6 for 6-SAT problem. Let the robust radius be
α = 0.5− γ, where γ < 1

10k . It is clear that both D and α require poly(m, k) byte representation.

We claim that RobM(D(φ), α) has a solution F ∈ Hn,2,2,∗ if and only if the reversible 6-SAT φ(k,m)
has a solution J = {xj = vj}kj=1. Furthermore, F and J can be deduced from each other in polynomial
time; that is, RobM(D(φ), α) is computationally equivalent to φ(k,m). Since reversible 6-SAT is NPC
Megiddo (1988), by the claim, RobM(D(φ), α) is NPC, which implies that RobM(D, α) is NP-hard for
D ∈ Dn,L,N . This proves the theorem.

Before proving the claim, we first introduce a notation. Let J = {xj = vj}kj=1 be a solution to the reversible
6-SAT problem φ and φi(k,m) = ∨6

j=1x̃i,j a clause of φ, where vi ∈ {−1, 1}. Then denote by q(J, φi) the
number of x̃i,j which has value 1 on the solution J . If q(J, φi) = 0, then φi is not true. If q(J, φi) = 6, then
¬φi is not true. Since J is a solution to the reversible 6-SAT problem φ, we have 1 ≤ q(J, φi) ≤ 5. It is easy
to see that q(J, φi) = |{j ∈ [k] :Qφ

i [j] = vj}|.
The claim will be proved in two steps.

Step 1. We prove that if φ(k,m) has a solution J = {xj = vj}kj=1, then RobM(D(φ), 0.5 − γ) has a
solution F , where vi ∈ {−1, 1}. Let U1 = (v1, v2, . . . , vk), U2 = −(v1, v2, . . . , vk). Define F ∈ Hk,2 to
be F(x) = σ(U1x− 1.5k) + σ(U2x− 1.5k) + 1.5− γ. It is clear that F can be obtained from J in poly(k).
We will show that F(x) is a robust memorization of D(φ) with budget α = 0.5− γ.

It suffices to show that for any i ∈ [4k +m], F is robust at xi with budget α. For x ∈ B(xi, α), there exists
an ϵ ∈ [−α, α]k such that x = xi + ϵ. The proof will be divided into three cases: (c1) - (c3).

(c1). Assume i ∈ [2k]. It suffices to prove the result for i ∈ [k] and the result for i = k + 1, . . . , 2k can be
proven similarly. Since vi ∈ {−1, 1}, we have ||U1||1 = k. Then for i ∈ [k], we have xi = k1i and hence
U1(xi + ϵ)− 1.5k ≤ k|vi|+ ϵ||U1||1 − 1.5k ≤ k|vi|+ (0.5− γ)||U1||1 − 1.5k = −γk < 0. Similarly, we
have U2(xi + ϵ)− 1.5k < 0. Then,

F(x) = F(xi + ϵ) = σ(U1(xi + ϵ)− 1.5k) + σ(U2(xi + ϵ)− 1.5k) + 1.5− γ < 1.5.

Therefore, |F(x)− 1| < |F(x)− 2|. Thus F̂(x) = 1 and F is robust at xi with budget α = 0.5− γ. Case
(c1) is proved.

(c2). Assume i ∈ {2k + 1, . . . , 4k}. We need only prove i ∈ {2k + 1, . . . , 3k}, and the other cases
can be proved similarly. Since U1 = −U2, at least one of the following two equations U1xi − 1.5k =

U
(i)
1 x

(i−2k)
i − 1.5k = 0.5k and U2xi − 1.5k = U

(i)
2 x

(i−2k)
i − 1.5k = 0.5k is true, say the first is true. Then,

for any ||ϵ||∞ ≤ 0.5− γ, we have
F(xi + ϵ) = σ(U1(xi + ϵ)− 1.5k) + σ(U2(xi + ϵ)− 1.5k)− γ + 1.5 ≥ σ(U1(xi + ϵ)− 1.5k)− γ + 1.5.

We have U1(xi + ϵ)− 1.5k = 0.5k+U1ϵ ≥ 0.5k− (0.5− γ)k = γk. So F(xi + ϵ) ≥ γk− γ +1.5 > 1.5,
since k > 1. Therefore, |F(x)− 2| < |F(x)− 1|. Thus F̂(x) = 2, so F is robust at xi with budget 0.5− γ.
Case (c2) is proved.

(c3). Assume i ∈ {4k + 1, 4k + 2, . . . , 4k +m}. It is clear that q(J, φi−4k) + q(J, φi−4k) = 6.

Then
k
4U1Q

φ
i−4k

=
∑

j : xj ∈ φi−4k

k
4vjQ

φ
i−4k[j]

=
∑

j : xj ∈ φi−4k, Sgn(Q
φ
i−4k[j])=Sgn(vj)

k/4−
∑

j : xj ∈ φi−4k, Sgn(Q
φ
i−4k[j]) ̸=Sgn(vj)

k/4

= q(J, φi−4k)k/4− q(J, φi−4k)k/4

∈ {0, k/2, k,−k/2,−k},
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which means |k4U1Q
φ
i−4k| ≤ k. Similarly, we also have |k4U2Q

φ
i−4k| ≤ k. As a consequence, U1xi − 1.5k =

U1Q
φ
i−4k · k/4− 1.5k ≤ −0.5k. Since ||U1||1 = k, for any ||ϵ||∞ ≤ 0.5− γ, we have U1(xi + ϵ)− 1.5k ≤

−0.5k + ||U ||1(0.5− γ) = −γk < 0. Similarly, U1(xi + ϵ)− 1.5k < 0. We thus have

F(xi + ϵ) = σ(U1(xi + ϵ)− 1.5k) + σ(U2(xi + ϵ)− 1.5k)− γ + 1.5 ≤ 0 + 0− γ + 1.5 < 1.5.

Thus F̂(x) = 2 and F is robust at xi with budget 0.5− γ.

From (c1) to (c3), F is a robust memorization of D(φ) with budget α = 0.5− γ, and Step 1 is proved.

Step 2. We prove that if RobM(D(φ), 0.5−γ) has a solution F(x) = s1σ(U1x+b1)+s2σ(U2x+b2)+C ∈
Hk,2 which is a robust memorization of D(φ) with budget α = 0.5− γ, then φ(k,m) has a solution J .
Since aσ(b) = Sgn(a)σ(|a|b), we can assume that s1, s2 ∈ {−1, 1}.

Let c = −1.5 + C, which means F(x)− 1.5 = s1σ(U1x+ b1) + s2σ(U2x+ b2) + c. Therefore, we have
F̂(x) = 1 if F(x)− 1.5 < 0, and F̂(x) = 2 if F(x)− 1.5 > 0.

The proof of Step 2 is divided into two sub-steps, and we prove Step 2.1 in two cases.

Step 2.1. Assuming c ≥ 0, we will show that J = {xi = Sgn(U (i)
1 )}ki=1 is the solution to the reversible

6-SAT problem φ(k,m). We will prove Step 2.1 by proving six properties: (d1) - (d6).

(d1): We have s1s2 = −1. Without loss of generality, we let s1 = 1 and s2 = −1. Since F(x1) − 1.5 =
F(xk+1)− 1.5 < 0 and F(x2k+1)− 1.5 = F(x3k+1)− 1.5 > 0, (d1) is a consequence of Lemma B.1.

(d2): We have −k|U (q)
2 |+ b2 + p||U2||1 > 0 for any p ∈ [−0.5 + γ, 0.5− γ] and q ∈ [k]. We just need to

prove the case q = 1. We first assume U (1)
2 ≤ 0. Since F is a robust memorization of D(φ) with budget

α = 0.5− γ, we have F(x1 + pSgn(U2)) < 1.5, so

0 > σ(U1(x1 + pSgn(U2)) + b1)− σ(U2(x1 + pSgn(U2)) + b2) + c

≥ −σ(U2(x1 + pSgn(U2)) + b2) + c

= −σ(−k|U (1)
2 |+ p||U2||1 + b2) + c

≥ −σ(−k|U (1)
2 |+ p||U2||1 + b2) (by c ≥ 0)

which means σ(−k|U (1)
2 |+ p||U2||1 + b2) > 0. Then we have −k|U (1)

2 |+ p||U2||1 + b2 > 0. For the case
U

(1)
2 ≥ 0, we only need to consider xk+1 instead of x1. So property (d2) is proved.

(d3): We have U (q)
1 U

(q)
2 > 0 and |U (q)

1 | > |U (q)
2 | for any q ∈ [k]. We just need to prove it for q = 1. First,

we show that U (1)
2 ̸= 0. If U (1)

2 = 0, we first assume U (1)
1 ≤ 0. Since F(x1) < 1.5 and F(x2k+1) > 1.5,

we have

0 > F(x1)− 1.5

= σ(U1x1 + b1)− σ(U2x1 + b2) + c

= σ(kU
(1)
1 + b1)− σ(b2) + c (by U

(1)
2 = 0)

≥ σ(2kU
(1)
1 + b1)− σ(b2) + c (by U

(1)
1 ≤ 0)

= σ(2kU
(1)
1 + b1)− σ(2kU

(1)
2 + b2) + c (by U

(1)
2 = 0)

= σ(U1x2k+1 + b1)− σ(U2x2k+1 + b2) + c

= F(x2k+1)− 1.5

> 0,
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a contradiction, and thus U (1)
2 ̸= 0. If U (1)

1 ≥ 0, we only need to consider xk+1 and x3k+1.

Now we prove (d3). Let h = 1 if U (1)
2 > 0, and h = k + 1 if U (1)

2 < 0. Because xh+2k = 2xh and
F(xh+2k)− 1.5 > 0 > F(xh)− 1.5, we have

F(xh+2k)− 1.5

= σ(U1xh+2k + b1)− σ(U2xh+2k + b2) + c

= σ(2U1xh + b1)− σ(2U2xh + b2) + c

= σ(2kU
(1)
1 Sgn(U (1)

2 ) + b1)− σ(2k|U (1)
2 |+ b2) + c

> 0 (by F(xh+2k)− 1.5 > 0)

> σ(U1xh + b1)− σ(U2xh + b2) + c (by F(xh)− 1.5 < 0)

= σ(kU
(1)
1 Sgn(U (1)

2 ) + b1)− σ(k|U (1)
2 |+ b2) + c

which means σ(2kU (1)
1 Sgn(U (1)

2 ) + b1)− σ(2k|U (1)
2 |+ b2) > σ(kU

(1)
1 Sgn(U (1)

2 ) + b1)− σ(k|U (1)
2 |+ b2),

so we have

0 < σ(2kU
(1)
1 Sgn(U (1)

2 ) + b1)− σ(2k|U (1)
2 |+ b2)− (σ(kU

(1)
1 Sgn(U (1)

2 ) + b1)− σ(k|U (1)
2 |+ b2))

= (σ(2kU
(1)
1 Sgn(U (1)

2 ) + b1)− σ(kU
(1)
1 Sgn(U (1)

2 ) + b1))− (σ(2k|U (1)
2 |+ b2)− σ(k|U (1)

2 |+ b2))

= (σ(2kU
(1)
1 Sgn(U (1)

2 ) + b1)− σ(kU
(1)
1 Sgn(U (1)

2 ) + b1))− ((2k|U (1)
2 |+ b2)− (k|U (1)

2 |+ b2)) (by (d2))

= (σ(2kU
(1)
1 Sgn(U (1)

2 ) + b1)− σ(kU
(1)
1 Sgn(U (1)

2 ) + b1))− kU
(1)
2 .

Then σ(2kU (1)
1 Sgn(U (1)

2 )+b1)−σ(kU (1)
1 Sgn(U (1)

2 )+b1) > kU
(1)
2 ≥ 0, which means 2kU (1)

1 Sgn(U (1)
2 )+

b1 > 0. And according to that, we have:

0 < (σ(2kU
(1)
1 Sgn(U (1)

2 ) + b1)− σ(kU
(1)
1 Sgn(U (1)

2 ) + b1))− k|U (1)
2 |

= ((2kU
(1)
1 Sgn(U (1)

2 ) + b1)− σ(kU
(1)
1 Sgn(U (1)

2 ) + b1))− k|U (1)
2 |

≤ ((2kU
(1)
1 Sgn(U (1)

2 ) + b1)− (kU
(1)
1 Sgn(U (1)

2 ) + b1))− k|U (1)
2 |

= kU
(1)
1 Sgn(U (1)

2 )− k|U (1)
2 |.

So we get U (1)
1 Sgn(U (1)

2 ) > |U (1)
2 | > 0, which means Sgn(U (1)

1 ) = Sgn(U (1)
2 ), and |U (1)

1 | > |U (1)
2 |. (d3)

is proved.

(d4): We have 2k|U (q)
1 |+ b1 + p||U1||1 > 0 for any p ∈ [−0.5 + γ, 0.5− γ] and q ∈ [k].

We just need to prove it for q = 1. Let h = 1 if U (1)
1 > 0, and h = k + 1 if U (1)

1 < 0. Because
F(xh+2k + pSgn(U1))− 1.5 > 0 > F(xh + pSgn(U1))− 1.5, we have that:

F(xh+2k + pSgn(U1))− 1.5

= σ(U1(xh+2k + pSgn(U1)) + b1)− σ(U2(2xh+2k + pSgn(U1)) + b2) + c

= σ(2k|U (1)
1 |+ b1 + p||U1||1)− σ(2k|U (1)

2 |+ b2 + p||U2||1) + c (by (d3))

= σ(2k|U (1)
1 |+ b1 + p||U1||1)− (2k|U (1)

2 |+ b2 + p||U2||1) + c (by (d2))

> 0 (by F(xh+2k + pSgn(U1))− 1.5 > 0)

> σ(U1(xh + pSgn(U1)) + b1)− σ(U2(xh + pSgn(U1)) + b2) + c (by 0 > F(xh + pSgn(U1))− 1.5)

= σ(k|U (1)
1 |+ b1 + p||U1||1)− σ(k|U (1)

2 |+ b2 + p||U2||1) + c (by (d3))

= σ(k|U (1)
1 |+ b1 + p||U1||1)− (k|U (1)

2 |+ b2 + p||U2||1) + c (by (d2))
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which means σ(2k|U (1)
1 |+ b1 + p||U1||1)− (2k|U (1)

2 |+ b2 + p||U2||1) + c > σ(k|U (1)
1 |+ b1 + p||U1||1)−

(k|U (1)
2 |+ b2 + p||U2||1) + c, so we have

σ(2k|U (1)
1 |+ b1 + p||U1||1) > σ(k|U (1)

1 |+ b1 + p||U1||1) + k|U (1)
2 | > 0.

(d4) is proved.

(d5): We have maxz∈[k](|U
(z)
1 | − |U (z)

2 |) < 2(1− 2γ)(||U1||1 − ||U2||1).

For any z ∈ [k], let h = z ifU (z)
1 > 0, and h = z+k ifU (z)

1 < 0. We have F(xh+(0.5−γ)Sgn(U1))−1.5 <
0, which means

0

> σ(U1(xh + (0.5− γ)Sgn(U1)) + b1)− σ(U2(xh + (0.5− γ)Sgn(U1)) + b2) + c

= σ(k|U (z)
1 |+ (0.5− γ)||U1||1 + b1)− σ(k|U (z)

2 |+ (0.5− γ)||U2||1 + b2) + c (by (d3))

= σ(k|U (z)
1 |+ (0.5− γ)||U1||1 + b1)− (k|U (z)

2 |+ (0.5− γ)||U2||1 + b2) + c (by (d2))

≥ (k|U (z)
1 |+ (0.5− γ)||U1||1 + b1)− (k|U (z)

2 |+ (0.5− γ)||U2||1 + b2) + c

= k|U (z)
1 | − k|U (z)

2 |+ (0.5− γ)(||U1||1 − ||U2||1) + b1 − b2 + c.

We thus have k|U (z)
1 | − k|U (z)

2 | < −b1 + b2 − c− (0.5− γ)(||U1||1 − ||U2||1). Then we have F(xh+2k −
(0.5− γ)Sgn(U1))− 1.5 > 0, which means

0

< σ(U1(x2k+h − (0.5− γ)Sgn(U1)) + b1)− σ(U2(x2k+h − (0.5− γ)Sgn(U1)) + b2) + c

= σ(2k|U (z)
1 | − (0.5− γ)||U1||1 + b1)− σ(2k|U (z)

2 | − (0.5− γ)||U2||1 + b2) + c (by (d3))

= (2k|U (z)
1 | − (0.5− γ)||U1||1 + b1)− σ(2k|U (z)

2 | − (0.5− γ)||U2||1 + b2) + c (by (d4))

≤ (2k|U (z)
1 | − (0.5− γ)||U1||1 + b1)− (2k|U (z)

2 | − (0.5− γ)||U2||1 + b2) + c

= 2k|U (z)
1 | − 2k|U (z)

2 | − (0.5− γ)(||U1||1 − ||U2||1) + b1 − b2 + c.

So, we have k|U (z)
1 | − k|U (z)

2 | > −b1+b2−c+(0.5−γ)(||U1||1−||U2||1)
2 , and thus

k|U (z)
1 | − k|U (z)

2 |
< −b1 + b2 − c− (0.5− γ)(||U1||1 − ||U2||1)
= 2−b1+b2−c+(0.5−γ)(||U1||1−||U2||1)

2 − (1− 2γ)(||U1||1 − ||U2||1)
< 2k|U (z)

1 | − 2k|U (z)
2 | − (1− 2γ)(||U1||1 − ||U2||1)

which means k|U (z)
1 | − k|U (z)

2 | > (1− 2γ)(||U1||1 − ||U2||1) for any z ∈ [k]. Using this inequality, we have

k|U (z)
1 | − k|U (z)

2 |
= k(||U1||1 − ||U2||1)−

∑
z′ ̸=z(k|Uz′

1 | − k|Uz′

2 |)
< (k − (1− 2γ)(k − 1))(||U1||1 − ||U2||1)
< 1.1(||U1||1 − ||U2||1) (by (d3) and γ < 1/(10k))

< 2 ∗ (1− 2γ)(||U1||1 − ||U2||1) (by (d3))

which proves (d5).
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(d6): We have that {xi = Sgn(U (i)
1 )}ki=1 is a solution to the reversible 6-SAT problem φ(k,m).

If this is not valid, then there exists an i ∈ [m] such that q({Sgn(U (w)
1 )}kw=1, ϕi) = 6

or q({Sgn(U (w)
1 )}kw=1, ϕi) = 0. We just need to consider the first case, because when

q({Sgn(U (w)
1 )}kw=1, ϕi) = 0, there exists a j ∈ [m] such that ϕj = ϕi, so q({Sgn(U (w)

1 )}kw=1, ϕj) = 6.

Without loss of generality, we assume that the index of the six entries in ϕi are 1, 2, 3, 4, 5, 6. By the definition
of x4k+i, we know that U1x4k+i =

k
4

∑6
j=1 |U

(z)
1 |, and by (d3), we know that U2x4k+i =

k
4

∑6
j=1 |U

(z)
2 |.

Using (d2), we know that

0 < −k|U (1)
2 |+ b2 + (0.5− γ)||U2||1 < k

4

∑6
j=1 |U

(z)
2 |+ b2 + (0.5− γ)||U2||1. (6)

Without loss of generality, we assume U (1)
1 > 0. Since F(x2k+1 − (0.5− γ)Sgn(U1))− 1.5 > 0, we have

0

< σ(U1(x2k+1 − (0.5− γ)Sgn(U1)) + b1)− σ(U2(2x2k+1 − (0.5− γ)Sgn(U1)) + b2) + c

= σ(2k|U (1)
1 |+ b1 − (0.5− γ)||U1||1)− σ(2k|U (1)

2 |+ b2 − (0.5− γ)||U2||1) + c (by (d3))

≤ σ(2k|U (1)
1 |+ b1 − (0.5− γ)||U1||1)− (2k|U (1)

2 |+ b2 − (0.5− γ)||U2||1) + c

= (2k|U (1)
1 |+ b1 − (0.5− γ)||U1||1)− (2k|U (1)

2 |+ b2 − (0.5− γ)||U2||1) + c. (by (d4))

(7)

So 0 < (2k|U (1)
1 |+ b1 − (0.5− γ)||U1||1)− (2k|U (1)

2 |+ b2 − (0.5− γ)||U2||1) + c. If U (1)
1 < 0. We only

need to consider x3k+1, and the others are the same. The conclusions are the same for U (i)
1 , i = 1, . . . , 6.

Then because F(x4k+i + (0.5− γ)Sgn(U1))− 1.5 < 0, we have

0

> σ(U1(x4k+i + (0.5− γ)Sgn(U1)) + b1)− σ(U2(x4k+i + (0.5− γ)Sgn(U1)) + b2) + c

= σ(U1x4k+i + b1 + (0.5− γ)||U1||1)− σ(U2x4k+i + b2 + (0.5− γ)||U2||1) + c (by (d3))

= σ(k4
∑6

j=1 |U
(z)
1 |+ b1 + (0.5− γ)||U1||1)− σ(k4

∑6
j=1 |U

(z)
2 |+ b2 + (0.5− γ)||U2||1) + c

= σ(k4
∑6

j=1 |U
(z)
1 |+ b1 + (0.5− γ)||U1||1)− (k4

∑6
j=1 |U

(z)
2 |+ b2 + (0.5− γ)||U2||1) + c (by (6))

≥ k
4

∑6
j=1 |U

(z)
1 |+ b1 + (0.5− γ)||U1||1 − (k4

∑6
j=1 |U

(z)
2 |+ b2 + (0.5− γ)||U2||1) + c

= 1
6

∑6
j=1(2k|U

(z)
1 |+ b1 − (0.5− γ)||U1||1 − 2k|U (z)

2 | − b2 + (0.5− γ)||U2||1 + c)

− k
12

∑6
k=1(|U

(z)
1 | − |U (z)

2 |) + (1− 2γ)(||U1||1 − ||U2||1)
≥ − k

12

∑6
k=1(|Uk

1 | − |Uk
2 |) + (1− 2γ)(||U1||1 − ||U2||1) (by (7)

> 0 (by (d5))

a contradiction, and Step 2.1 is proved.

Step 2.2. Assuming c < 0, we will show that J = {xi = Sgn(U (i)
1 )}ki=1 is a solution to the reversible

6-SAT problem φ(k,m). The proof is divided into six steps: (e1) - (e6).

(e1): There must be s1 = s2 = 1.

Just use Lemma B.1.

(e2): U (q)
1 U

(q)
2 < 0 for any q ∈ [k].
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We just need to prove it for q = 1. First we prove that U (1)
1 ̸= 0. If not, that is U (1)

1 = 0. Without loss of
generality, let U (1)

2 ≤ 0. Since F(x1)− 1.5 < 0 and F(x2k+1)− 1.5 > 0, we have

0

> F(x1)− 1.5

= σ(U1x1 + b1) + σ(U2x1 + b2) + c

= σ(b1) + σ(kU
(1)
2 + b2) + c (by U

(1)
1 = 0)

≥ σ(b1) + σ(2kU
(1)
2 + b2) + c (by U

(1)
2 ≤ 0)

= σ(2kU
(1)
1 + b1) + σ(2kU

(1)
2 + b2) + c (by U

(1)
1 = 0)

= σ(U1x2k+1 + b1)− σ(U2x2k+1 + b2) + c

= F(x2k+1)− 1.5

> 0

which is a contradiction, and hence U (1)
1 ̸= 0. When U (1)

2 ≥ 0, we just need to consider xk+1 and x3k+1.

Now we prove (e2), let h = 1+k if U (1)
1 > 0, or h = 1 if U (1)

1 < 0. Then, we have that F(xh+2k)−1.5 > 0
and F(xh)− 1.5 < 0, which means

σ(U1xh+2k + b1) + σ(U2xh+2k + b2)− c

= σ(−2k|U (1)
1 |+ b1) + σ(−2kU

(1)
2 Sgn(U (1)

1 ) + b2)− c

> 0

(8)

and
σ(U1xh + b1) + σ(U2xh + b2)− c

= σ(−k|U (1)
1 |+ b1) + σ(−kU (1)

2 Sgn(U (1)
1 ) + b2)− c

< 0.

(9)

These two inequalities illustrate that σ(−k|U (1)
1 | + b1) + σ(−kU (1)

2 Sgn(U (1)
1 ) + b2) < σ(−2k|U (1)

1 | +
b1) + σ(−2kU

(1)
2 Sgn(U (1)

1 ) + b2). Furthermore, since σ(−k|U (1)
1 | + b1) ≥ σ(−2k|U (1)

1 | + b1), we have
σ(−kU (1)

2 Sgn(U (1)
1 ) + b2) < σ(−2kU

(1)
2 Sgn(U (1)

1 ) + b2), which means (−kU (1)
2 Sgn(U (1)

1 ) + b2) <

(−2kU
(1)
2 Sgn(U (1)

1 ) + b2). Then U (1)
2 Sgn(U (1)

1 ) < 0, that is U (1)
1 U

(1)
2 < 0, which is what we want.

(e3): k|U (q)
2 | > (1− 2γ)||U2||1 for any q ∈ [k].

We just need to prove it for q = 1. Let h = 1 if U (1)
2 > 0, or h = k + 1 if U (1)

2 < 0. We have
F(xh+2k − (0.5− γ)Sgn(U2))− 1.5 > 0 and F(xh + (0.5− γ)Sgn(U2))− 1.5 < 0, which means

σ(U1(xh+2k − (0.5− γ)Sgn(U2)) + b1) + σ(U2(xh+2k − (0.5− γ)Sgn(U2)) + b2)− c

= σ(−2k|U (1)
1 |+ (0.5− γ)||U1||1 + b1) + σ(2k|U (1)

2 | − (0.5− γ)||U2||1 + b2)− c (by (e2))

> 0
(10)

and

σ(U1(xh + (0.5− γ)Sgn(U2)) + b1) + σ(U2(xh + (0.5− γ)Sgn(U2)) + b2)− c

= σ(−k|U (1)
1 | − (0.5− γ)||U1||1 + b1) + σ(k|U (1)

2 |+ (0.5− γ)||U2||1 + b2)− c (by (e2))

< 0.

(11)
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Next, consider two situations:

(e3.1): If −2k|U (1)
1 |+ (0.5− γ)||U1||1 + b1 ≤ 0, then we can prove that k|U (1)

2 | > (1− 2γ)||U2||1.

By equation 10 and the fact −2k|U (1)
1 |+(0.5−γ)||U1||1+ b1 ≤ 0, we have σ(2k|U (1)

2 |− (0.5−γ)||U2||1+
b2)− c > 0.

By equation 11, we have σ(k|U (1)
2 |+ (0.5− γ)||U2||1 + b2)− c ≤ σ(−k|U (1)

1 | − (0.5− γ)||U1||1 + b1) +

σ(k|U (1)
2 |+ (0.5− γ)||U2||1 + b2)− c < 0.

So σ(k|U (1)
2 |+ (0.5− γ)||U2||1 + b2) < c < σ(2k|U (1)

2 | − (0.5− γ)||U2||1 + b2), which means (k|U (1)
2 |+

(0.5− γ)||U2||1 + b2) < (2k|U (1)
2 | − (0.5− γ)||U2||1 + b2). Then we get (1− 2γ)||U2||1 < k|U (1)

2 |. This
is what we want.

(e3.2): If −2k|U (1)
1 |+ (0.5− γ)||U1||1 + b1 > 0, then we can prove −2k|U (1)

2 |+ (0.5− γ)||U2||1 + b2 ≤ 0

and k|U (1)
2 | > (1− 2γ)||U2||1.

Since F(xh − (0.5− γ)Sgn(U2)) = −1 < 0, we have that

σ(U1(xh − (0.5− γ)Sgn(U2)) + b1) + σ(U2(xh − (0.5− γ)Sgn(U2)) + b2)− c

= σ(−k|U (1)
1 |+ (0.5− γ)||U1||1 + b1) + σ(k|U (1)

2 | − (0.5− γ)||U2||1 + b2)− c (by (e2))

< 0.

(12)

Since −2k|U (1)
1 | + (0.5 − γ)||U1||1 + b1 > 0, it holds −k|U (1)

1 | + (0.5 − γ)||U1||1 + b1 > 0. Then by
equation 10 and equation 12 and −2k|U (1)

1 |+ (0.5− γ)||U1||1 + b1 > 0, we have that

σ(−k|U (1)
1 |+ (0.5− γ)||U1||1 + b1) + σ(k|U (1)

2 | − (0.5− γ)||U2||1 + b2)− c

= (−k|U (1)
1 |+ (0.5− γ)||U1||1 + b1) + σ(k|U (1)

2 | − (0.5− γ)||U2||1 + b2)− c

< 0

< σ(−2k|U (1)
1 |+ (0.5− γ)||U1||1 + b1) + σ(2k|U (1)

2 | − (0.5− γ)||U2||1 + b2)− c

= (−2k|U (1)
1 |+ (0.5− γ)||U1||1 + b1) + σ(2k|U (1)

2 | − (0.5− γ)||U2||1 + b2)− c

(13)

which means k|U (1)
1 | < σ(2k|U (1)

2 |− (0.5−γ)||U2||1+ b2)−σ(k|U (1)
2 |− (0.5−γ)||U2||1+ b2) ≤ k|U (1)

2 |
(Use σ(x)− σ(y) ≤ |x− y| here). So |U (1)

1 | < |U (1)
2 |.

Similarly, if −2k|U (1)
2 |+ (0.5− γ)||U2||1 + b2 > 0, then we have |U (1)

1 | > |U (1)
2 |. But |U (1)

1 | < |U (1)
2 | and

|U (1)
1 | > |U (1)

2 | cannot stand simultaneously, so −2k|U (1)
2 |+ (0.5− γ)||U2||1 + b2 > 0 can not stand. Then

we have −2k|U (1)
2 |+ (0.5− γ)||U2||1 + b2 ≤ 0.

Now using equation 10 and equation 11, we have

σ(−2k|U (1)
1 |+ (0.5− γ)||U1||1 + b1) + σ(2k|U (1)

2 | − (0.5− γ)||U2||1 + b2)− c

= (−2k|U (1)
1 |+ (0.5− γ)||U1||1 + b1) + σ(2k|U (1)

2 | − (0.5− γ)||U2||1 + b2)− c

> 0

> σ(−k|U (1)
1 | − (0.5− γ)||U1||1 + b1) + σ(k|U (1)

2 |+ (0.5− γ)||U2||1 + b2)− c

≥ (−k|U (1)
1 | − (0.5− γ)||U1||1 + b1) + σ(k|U (1)

2 |+ (0.5− γ)||U2||1 + b2)− c
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which means (−k|U (1)
1 | − (0.5− γ)||U1||1 + b1)− (−2k|U (1)

1 |+ (0.5− γ)||U1||1 + b1) < σ(2k|U (1)
2 | −

(0.5− γ)||U2||1 + b2)− σ(k|U (1)
2 |+ (0.5− γ)||U2||1 + b2). Since −2k|U (1)

2 |+ (0.5− γ)||U2||1 + b2 ≤ 0,
similar to (e3.1), we have (1− 2γ)||U1||1 < k|U (1)

1 |.
So we can obtain

0

< −(1− 2γ)||U1||1 + k|U (1)
1 | (by equc3)

= (−k|U (1)
1 | − (0.5− γ)||U1||1 + b1)− (−2k|U (1)

1 |+ (0.5− γ)||U1||1 + b1)

< σ(2k|U (1)
2 | − (0.5− γ)||U2||1 + b2)− σ(k|U (1)

2 |+ (0.5− γ)||U2||1 + b2)

which implies σ(2k|U (1)
2 | − (0.5− γ)||U2||1 + b2) > 0. Then we have

0

< σ(2k|U (1)
2 | − (0.5− γ)||U2||1 + b2)− σ(k|U (1)

2 |+ (0.5− γ)||U2||1 + b2)

= (2k|U (1)
2 | − (0.5− γ)||U2||1 + b2)− σ(k|U (1)

2 |+ (0.5− γ)||U2||1 + b2)

≤ (2k|U (1)
2 | − (0.5− γ)||U2||1 + b2)− (k|U (1)

2 |+ (0.5− γ)||U2||1 + b2)

= k|U (1)
2 | − (1− 2γ)||U2||1.

This is what we want.

(e4): k|U (q)
1 | > (1− 2γ)||U1||1 for any q ∈ [k].

Similar to (e3).

(e5): J = {xi = Sgn(U (i)
1 )}ki=1 is the solution to the reversible 6-SAT problem φ(k,m).

If not, as said in (d6), there is an i ∈ [m] such that q({Sgn(U (w)
1 )}kw=1, ϕi) = 6. And there is a j ∈ [k] such

that ϕj = ϕi.

Without loss of generality, we assume that the indexes of the six entries in ϕi are 1, 2, 3, 4, 5, 6. By the
definition of x4k+i, we know that U1x4k+i = k

4

∑6
j=1 |U

(z)
1 |, and by (e2), we know that U2x4k+i =

−k
4

∑6
j=1 |U

(z)
2 |. By the definition of x4k+j , we know that U1x4k+j = −k

4

∑6
j=1 |U

(z)
1 |, and by (e2), we

know that U2x4k+j =
k
4

∑6
j=1 |U

(z)
2 |.

As said in (e3.2), we have −2k|U (j)
1 |+ (0.5− γ)||U1||1 + b1 < 0 or −2k|U (j)

2 |+ (0.5− γ)||U2||1 + b2 < 0
standing for any z ∈ [k]. Let the last stand for z = 7. If the first one stands, it is similar.

Now we will show that

σ(2k|U (7)
1 | − (0.5− γ)||U1||1 + b1)

< σ(k4
∑6

j=1 |U
(z)
1 |+ (0.5− γ)||U1||1 + b1) + σ(−

∑6
j=1 |U

(z)
2 |+ (0.5− γ)||U1||1 + b1)

< σ(2k|U (7)
1 | − (0.5− γ)||U1||1 + b1),

(14)

which lead to a contradiction.

(e5.1): We prove that σ(k4
∑6

j=1 |U
(z)
1 |+(0.5−γ)||U1||1+b1)+σ(−k

4

∑6
j=1 |U

(z)
2 |+(0.5−γ)||U1||1+b1) <

σ(2k|U (7)
1 | − (0.5− γ)||U1||1 + b1).
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Let h = 7 if U (7)
1 > 0, and h = k + 7 if U (7)

1 < 0. Because F(x2k+h − (0.5− γ)Sgn(U1))− 1.5 > 0 and
−2k|U (7)

2 |+ (0.5− γ)||U2||1 + b2 − 1.5 < 0, we have

σ(U1(xh+2k − (0.5− γ)Sgn(U1)) + b1) + σ(U2(xh+2k − (0.5− γ)Sgn(U1)) + b2) + c

= σ(2k|U (7)
1 | − (0.5− γ)||U1||1 + b1) + σ(−2k|U (7)

2 |+ (0.5− γ)||U2||1 + b2) + c (by (e2))

= σ(2k|U (7)
1 | − (0.5− γ)||U1||1 + b1) + c

> 0.
(15)

Because F(x4k+i + (0.5− γ)Sgn(U1))− 1.5 < 0, we have that:

σ(U1(x4k+i + (0.5− γ)Sgn(U1)) + b1) + σ(U2(x4k+i + (0.5− γ)Sgn(U1)) + b2) + c

= σ(k4
∑6

j=1 |U
(z)
1 |+ (0.5− γ)||U1||1 + b1) + σ(−

∑6
j=1 |U

(z)
2 |

+(0.5− γ)||U1||1 + b1) + c (by (e2))

< 0.

(16)

By equation 15 and equation 16, it holds σ(k4
∑6

j=1 |U
(z)
1 |+ (0.5− γ)||U1||1 + b1) + σ(−

∑6
j=1 |U

(z)
2 |+

(0.5− γ)||U1||1 + b1) < σ(2k|U (7)
1 | − (0.5− γ)||U1||1 + b1). This is what we want.

(e5.2) We prove that σ(k4
∑6

j=1 |U
(z)
1 |+(0.5−γ)||U1||1+b1)+σ(−

∑6
j=1 |U

(z)
2 |+(0.5−γ)||U1||1+b1) >

σ(2k|U (7)
1 | − (0.5− γ)||U1||1 + b1).

By (e4), we have that:

2k|U (7)
1 | − (0.5− γ)||U1||1

= 2k(||U1||1 −
∑

z ̸=7 |U
(z)
1 |)− (0.5− γ)||U1||1

< 2k(||U1||1 − (k − 1)(1− 2γ)||U1||1/k)− (0.5− γ)||U1||1 (by (e4))

= (1.5 + 4γk − 3γ)||U1||1
< (1.5(1− 2γ) + (0.5− γ))||U1||1 (by γ < 1/(10k))

< k
4

∑6
j=1 |U

(z)
1 |+ (0.5− γ)||U1||1 (by (e4)).

So σ(k4
∑6

j=1 |U
(z)
1 |+(0.5−γ)||U1||1+b1) > σ(2k|U (7)

1 |−(0.5−γ)||U1||1+b1). Then σ(k4
∑6

j=1 |U
(z)
1 |+

(0.5− γ)||U1||1 + b1) + σ(−
∑6

j=1 |U
(z)
2 |+ (0.5− γ)||U1||1 + b1) > σ(2k|U (7)

1 | − (0.5− γ)||U1||1 + b1).
(e5.2) is proved.

From (e5.1) and (e5.2), the assumption is wrong and (e5) is proved.

B.2 PROOF OF THEOREM 4.3

Proof. It suffices to show that there exists a dataset D such that if F has width less than n and memorizes D
(that is F̂(x) = y for (x, y) ∈ D), then RAD(F , 0.4λD) ≤ 1− 1

n+1 ; that is, F is not a robust memorization
of D with budget 0.4λD.

Denote by 1 the vector all whose entries are 1 and 1k the vector whose k-th entry is 1 and all other entries are
0. Without loss of generality, let N satisfy (n+ 1)|N . We define a dataset D = {xi, yi}N−1

i=0 with separation
bound 1 as follows:
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(1) x0 = 01 and y0 = 0; xi = 1i and yi = 1 for i ∈ [n];

(2) for i = k(n + 1), . . . , k(n + 1) + n and k = 1, . . . , N
n+1 − 1, xi = xi + 1 and yi = yi, where i = i

mod (n+ 1). It is easy to see that λD = 1.

Let F : Rn → R be a network that memorizes the dataset D defined above and let W1 be the weight matrix
of the first layer of F . Then W1 ∈ RK×n. Since F has a width smaller than n, we have K < n. We
will show that there exists an s in [n] such that ∃δ0, δs ∈ Rn, satisfying ||δ0||∞ < 0.4, ||δs||∞ < 0.4, and
W1(x0 + δ0) =W1(xs + δs).

Since K < n, W1 ∈ RK×n is not of full row rank and, therefore, there exists a vector v ∈ Rn such that
W1v = 0 and ||v||∞ = 1. For such a v, let |v(s)| = 1 for some s ∈ [n]. We define δ0, δs ∈ Rn as follows:

δ
(s)
0 = 1/3 and δ(k)0 = −v(s)v(k)/3 for k ̸= s; δ

(s)
s = 0 and δ(k)s = v(s)v(k)/3 for k ̸= s.

It is clear that ||δ0||∞ = 1
3 < 0.4 and ||δs||∞ = 1

3 < 0.4. Also, xs + δs − x1 − δ0 = 2
3v

(s)v. Thus,
W1(x0 + δ0)−W1(xs + δs) =W1(x0 + δ0 − xs − δs) =W1(

2
3v

(s)v) = 0.

It is easy to see that for any x, z ∈ Rn, W1x =W1z implies F(x) = F(z). Since W1(x0 + δ0) =W1(xs +

δs), we have F(x0 + δ0) = F(xs + δs). Since F memorizes D, we have F̂(x0) = 0, F̂(xs) = 1. Therefore,
F̂(x0+δ0) ̸= 0 or F̂(xs+δs) ̸= 1 must be valid. In other words, F cannot be robust at x0 or xs for the robust
budget 0.4. Similarly, F cannot be robust for at least one point in {xi}k(n+1)+n

i=k(n+1) for k ∈ {1, . . . , N
n+1 − 1}.

In summary, F cannot be robust for at least N
n+1 points in D, so RAD(F , 0.4) ≤ 1− 1

n+1 .

B.3 PROOF OF PROPOSITION 4.5

Proof. It is easy to construct a dataset {xi}Ni=1 ⊂ Rn such that ∪N
i=2B∞(xi, µ) = B∞(x1, 2µ + λ) \

B∞(x1, λ). Then, we let D = {(x1, 1)} ∪ {(x2, 2)}Ni=2. It is easy to see that D satisfies λD ≥ λ, so the first
part of the proposition is proved.

The rest of the proof is similar to that of Theorem 4.3, so we just give a sketch of the proof. Let F ∈ Hn,∗,d,∗
be a network and let W1 be the weight matrix of the first layer of F . If d < n, then W1 is not of
full row rank, so there exists a v ∈ Rn such that F(x) = F(x + kv) for any x ∈ Rn and k ∈ R.
We take x = x1 and kv ∈ B∞(0, 2µ + λ) \ B∞(0, λ), so F(x1) = F(x1 + kv). If F is a robust
memorization of D with budget µ, then it must hold |F(x1)− 1| < 0.5 and |F(x1 + kv)− 2| < 0.5, because
∪N
i=2B∞(xi, µ) = B∞(x1, 2µ+ λ) \ B∞(x1, λ), which is in contradiction to F(x1) = F(x1 + kv). So F

is not a robustness memorization of F with budget µ. The proposition is proved.

B.4 PROOF OF (2) OF PROPOSITION 4.6

Proof. Let us first consider n = 1. Let D be {(xi, yi)}Ni=1, where xi = i ∈ R1 and y1 = 1, y2 = 3, y3 = 5;
yi = 2 if i > 1 and i are even; otherwise yi = 4. Let µ = 0.4. It is easy to see that λD = 1 > 2µ. Let
F(x) = U2σ(U1x+B1) + b2 be a network with depth 2 and width w, where U1 = (u1, . . . , uw)

τ ∈ Rw×1,
B1 = (b1, . . . , bw)

τ ∈ Rw×1, U2 ∈ R1×w, B2 ∈ R.

It suffices to show that if F is a robust memorization of D with radius µ, then w > N .

We will show that, for any k ∈ {4, 5, . . . , N − 1} there exist i, j ∈ [w] and i ̸= j so that uix+ bi = 0 and
ujx + bj = 0 have solutions in (k, k + 1). Also note that for different k, the corresponding i, j must be
different. Thus w ≥ 2(N − 4) > N , which is what we want. The proof of such a conclusion is given below.
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We prove only the case k = 4, and other cases can be proved similarly. We know that F(5 + ϵ) ∈ (3.5, 4.5)
and F(4 + ϵ) ∈ (1.5, 2.5) when ϵ ∈ [−0.4, 0.4], because F is a robust memorization of D. Thus, we have
F(4.6)−F(4.4)

4.6−4.4 ≥ 3.5−2.5
4.6−4.4 = 5, so there exists an interval A ⊂ (4.4, 4.6) such that the slope of F in A is at

least 5. We consider four cases.

(c1): The intervals (4, 4.4) and (4.6, 5) are linear regions of F .

Since |F(4)−F(4.4)
4.4−4 | ≤ | 2.5−1.5

4.4−4 | = 2.5, the absolute value of the slope of F in (4, 4.4) is at most 2.5.
Similarly, the absolute value of the slope of F in (4.6, 5) is at most 2.5.

Note that A = (al, ar) ⊂ (4.4, 4.6) and that the slope of F in A is at least 5. Since F has the same slope
in the same linear region, A and (4, 4.4) are not in the same linear region, which means that there exists an
i ∈ [w] such that the active states of σ(uix+ bi) are different in A and (4, 4.4). In other words, uix+ bi = 0
has a solution in (4.4, al). Similarly, there is a j ∈ [w] such that ujx + bj = 0 has a solution in (ar, 4.6).
This is what we want.

(c2): The interval (4, 4.4) is a linear region of F and the interval (4.6, 5) is not a linear region of F .

Because (4.6, 5) is not a linear region of F , there must be a j ∈ [w] that makes ujx+ bj = 0 have a solution
in (4.6, 5). As proved in case c1, there exists an i such that uix+ bi = 0 has a solution in (4.4, al). This is
what we want.

(c3): The interval (4.6, 5) is a linear region of F and the interval (4, 4.4) is not a linear region of F . This
case can be proved similar to case (c2).

(c4): Both the intervals (4.6, 5) and (4, 4.4) are not linear regions of F . This case can be proved similar to
case (c2).

For n > 1, we just need to take xi = (i, 0, 0, . . . , 0) ∈ Rn, and the proof is the same.

B.5 PROOF OF THEOREM 4.8

Proof. It suffices to show that for any µ < 0.5λD, there exists a network with depth 2N + 1, width 3n+ 1,
and O(Nn) non-zero parameters, which can robustly memorize D with robust budget µ.

Let D = {(xi, yi)}Ni=1 ⊂ Rn × [L]. Let C ∈ R+ satisfy C > |x(j)i |+ µ > 0 for all i ∈ [N ] and j ∈ [n]. F
will be defined in three steps for an input x ∈ Rn.

Step 1. The first layer has width 3n + 1 and is used to check whether x ∈ B(x1, µ). Specifically, x ∈
B∞(x1, µ) if and only if F j

1 (x) = 0 for all j ∈ [2n]. The second layer has width n+ 2 and computes E1(x)
in Property 2 given below. The two layers are given below.

(1-1.1) F0
1 (x) = 0;

(1-1.2) F j
1 (x) = σ(x

(j)
1 − x(j) − µ), Fn+j

1 (x) = σ(x(j) − x
(j)
1 − µ), where j ∈ [n];

(1-1.3) F2n+j
1 (x) = σ(x(j) + C), where j ∈ [n];

(1-2.1) F0
2 (x) = 0;

(1-2.2) F1
2 (x) = σ(y1 − y1

λD−2µ

∑2n
k=1Fk

1 (x));

(1-2.3) F j+1
2 (x) = σ(F2n+j

1 (x)), where j ∈ [n].
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Step 2. For i = 2, 3, . . . , N , the (2i−1)-th layer has width 3n+1 and is used to check whether x ∈ B(xi, µ).
Specifically, x ∈ B∞(xi, µ) if and only if F j

2i−1(x) = 0 for all j ∈ [2n]. The 2i-th layer has width n + 2
and is used to calculate Ei(x) in Property 2 given below.

(i-1.1) F0
2i−1(x) = σ(F0

2i−2(x) + F1
2i−2(x));

(i-1.2) F j
2i−1(x) = σ((x

(j)
i + C)−F j+1

2i−2(x)− µ) and Fn+j
2i−1(x) = σ(F j+1

2i−2(x)− (x
(j)
i + C)− µ),

where j ∈ [n];

(i-1.3) F2n+j
2i−1 (x) = σ(F j+1

2i−2(x)), where j ∈ [n];

(i-2.1) F0
2i(x) = σ(F0

2i−1(x));

(i-2.2) F1
2i(x) = σ(yi − yi

λD−2µ

∑2n
k=1Fk

2i−1(x)−F0
2i−1(x));

(i-2.3) F j+1
2i (x) = σ(F2n+j

2i−1 (x)), where j ∈ [n].

Step 3. The output layer is F(x) = F0
2N (x) + F1

2N (x).

Next, we will show that F has the following properties.

Property 1. F j+1
2i (x) = x(j) + C for i ∈ [N ], j ∈ [n], and x ∈ B∞(xi, µ), that is, F2n+j

i (x) for j ∈ [n]

are used to maintain the value x(j).

From (1-1.3) and (1-2.3), since C + x
(j)
i > µ > 0 for all i ∈ [N ] and j ∈ [n], we have F j+1

2 (x) =

F2n+j
1 (x) = σ(xj + C) = xj + C. From (i-2.3) and (i-1.3), we have F j+1

2i (x) = σ(F2n+j
2i−1 (x)) =

σ(F j+1
2i−2(x)) = · · · = σ(F j+1

2 (x)) = x(j) + C, for all i ∈ [N ] and j ∈ [n]. Property 1 is proved.

Property 2. Let Ei(x) = yi − yi

λD−2µ

∑2n
j=1F

j
2i−1(x) for i ∈ [N ]. Then Ei(x) = yi for x ∈ B∞(xi, µ), and

Ei(x) < yi for x /∈ B∞(xi, µ).

Due to Property 1, for j ∈ [n], step (i-1.2) becomes

F j
2i−1(x) = σ((x

(j)
i + C)−F j+1

2i−2(x)− µ) = σ(x
(j)
i − x(j) − µ)

Fn+j
2i−1(x) = σ(F j+1

2i−2(x)− (x
(j)
i + C)− µ) = σ(x(j) − x

(j)
i − µ).

Then x ∈ B∞(xi, µ) if and only if σ(x(j)i −x(j)−µ) = σ(x(j)−x(j)i −µ) = 0, or equivalently F j
2i−1(x) = 0

for j ∈ [2n]. Thus, Ei(x) = yi for x ∈ B∞(xi, µ). If x ̸∈ B∞(xi, µ), then ||xi − x − µ||∞ > 0 or
||x− xi − µ||∞ > 0, which means that F j

2i−1(x) > 0 for at least one j ∈ [2n]. Since F j
i (x) ≥ 0 for all i

and j, we have Ei(x) < yi.

Property 3. If x ∈ B∞(xk, µ) for yk ̸= yi, then Ei(x) ≤ 0.

Since x ∈ B∞(xk, µ) and yk ̸= yi, we have ||xi−x−µ||∞ ≥ λD−2µ > 0 or ||x−xi−µ||∞ ≥ λD−2µ > 0,
because the separation bound is λD. Then F j

2i−1(x) ≥ λD − 2µ for at least one j ∈ [2n] and thus
Ei(x) ≤ yi − yi

λD−2µF
j
2i−1(x) ≤ yi − yi

λD−2µ (λD − 2µ) = 0.

Property 4. F(x) = maxi∈[N ]{Ei(x), 0} for x ∈ Rn.

Since max{x, y} = x+ σ(y − x) for x, y ∈ R and F j
i (x) ≥ 0 for all i and j, we have that
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σ(F0
2i(x) + F1

2i(x)) = F0
2i(x) + F1

2i(x)

= σ(F0
2i−1(x)) + σ(Ei(x)−F0

2i−1(x))

= max{F0
2i−1(x), Ei(x)}

= max{σ(F0
2i−2(x) + F1

2i−2(x)), Ei(x)}.

Using the above equation repeatedly, we have F(x) = σ(F0
2N (x) + F1

2N (x)) = maxNi=1{Ei(x), F0
2 (x)} =

maxNi=1{Ei(x), 0}.

We now show that F satisfies the conditions of the theorem. Let x ∈ B∞(xs, µ) be s ∈ [N ]. By Property
2, Es(x) = ys; and if i ̸= s and yi = ys, then Ei(x) < ys. By Property 3, if yi ̸= ys, then Ei(x) ≤ 0. By
Property 4, F(x) = maxi∈[N ]{Ei(x), 0} = Es(x) = ys; that is, F is robust at xs with budget µ.

The network F has width 3n+ 1 and depth 2N . We now estimate the number of non-zero parameters. For
i ∈ [N ], constructions (i-1.1) and (i-2.1) need 3 parameters; (i-1.2) needs 8n parameters; (i-1.3) and (i-2.3)
need 2n parameters; (i-2.2) need 2n+ 2 parameters. In total, (N − 1)(12n+ 5) + 2 parameters are needed.
Finally, F can clearly be constructed in polynomial time.

B.6 MORE ON THE NUMBER OF PARAMETERS AND PROOF OF PROPOSITION 4.10

In this subsection, we give more detailed explanation on Remark 4.9.

Definition B.2. Let PG
n,N,L be the minimum K such that the hypothesis space H = {F : Rn →

R : para(F) = K} is an optimal robust memorization for any dataset in Dn,L,N . PR
n,N,L can be defined

similarly for the following strict optimal robust memorization networks that satisfy F(x) = yi for all
x ∈ B∞(xi, µ) and i ∈ [N ].

The upper bound given in the proof of Theorem 4.8 is for PR
n,N,L. Proposition 4.10 implies that PR

n,N,L and
PG
n,N,L are essentially the same, as shown by the following proposition and Corollary B.4.

Proposition B.3. We have that 0 ≤ PR
n,N,L − PG

n,N,L ≤ 6L.

Proof. It is easy to see that PR
n,N,L,µ ≥ PG

n,N,L,µ, because if a network is a strict robust memorization, then
it is also a robust memorization for the same dataset and the same µ. This proves the left side of the inequality
in Proposition B.3. The right side follows from Proposition 4.10, whose proof is given below.

By Theorem 4.8 and Li et al. (2022), we have that O(
√
Nn) ≤ PR

n,N,L ≤ O(Nn). Since L≪ Nn for most
dataset, Proposition B.3 implies

Corollary B.4. PR
n,N,L ≃ PG

n,N,L = O(Nn), if L≪ Nn.

We now prove Proposition 4.10.

Proof. Since F is a robust memorization of D with budget µ, it holds that F(x) ∈ (yi − 0.5, yi + 0.5)
for all x ∈ B∞(xi, µ) and i ∈ [N ]. Since B∞(xi, µ) is a closed set, there exists an ϵ > 0 such that
F(x) ∈ [yi − 0.5 + ϵ, yi + 0.5− ϵ] for all x ∈ B∞(xi, µ), i ∈ [N ], and a small ϵ ∈ R>0.

We claim that there exists a network G with depth(G) = 2 and width(G) = 2L, such that G(k + v) = k for
any k ∈ [N ] and v ∈ [−0.5 + ϵ, 0.5− ϵ]. As a consequence, we have G(σ(F(x))) = G(F(x)) = yi for all
x ∈ B∞(xi, µ) and i ∈ [N ], and the proposition follows.
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G is given below

G(x) = 1

2ϵ

L∑
i=1

(σ(x− 0.5− i+ ϵ)− σ(x− 0.5− i− ϵ)) + 1.

It is easy to see that:

(c1) σ(x− 0.5− i+ ϵ)− σ(x− 0.5− i− ϵ) = 0 when x ≤ 0.5 + i− ϵ;

(c2) σ(x− 0.5− i+ ϵ)− σ(x− 0.5− i− ϵ) = 2ϵ when x ≥ 0.5 + i+ ϵ.

So for k ∈ [L] and x0 ∈ [k − 0.5 + ϵ, k + 0.5− ϵ], we have

(d1) σ(x0 − 0.5− i+ ϵ)− σ(x0 − 0.5− i− ϵ) = 0 when k ≤ i;

(d2) σ(x0 − 0.5− i+ ϵ)− σ(x0 − 0.5− i− ϵ) = 2ϵ when k ≥ i+ 1;

and thus
G(x0)

= 1
2ϵ

∑L
i=1(σ(x0 − 0.5− i+ ϵ)− σ(x0 − 0.5− i− ϵ)) + 1

= 1
2ϵ

∑k−1
i=1 (σ(x0 − 0.5− i+ ϵ)− σ(x0 − 0.5− i− ϵ)) + 1

= 1
2ϵ

∑k−1
i=1 (2ϵ) + 1

= k − 1 + 1 = k.

Thus, G(k + v) = k for any k ∈ [N ] and v ∈ [−0.5 + ϵ, 0.5 − ϵ]. The claim and hence the proposition is
proved.

B.7 OPTIMAL ROBUST MEMORIZATION FOR POSITIVE NORM

In this section, we compute the optimal robust memorization networks for the Lp norm with p ≥ 1, that is,
we extend Theorem 4.8 from ∞-norm to Lp norm.

For any p > 1, µ > 0, and x ∈ Rn, let Bp(x, µ) = {x ∈ Rn : ||x − x||p = (
∑n

i=1 |xi − xi|p)1/p ≤ µ}.
The robust accuracy of a network F on D with respect to a given robust budget µ ∈ R+ is

RAp
D(F , µ) = P(x,y)∼D(∀x̃ ∈ Bp(x, µ), |F(x̃)− y| < 0.5).

The p-separation bound for a dataset D is defined to be

λpD = min{||xi − xj ||p : (xi, yi), (xj , yj) ∈ D and yi ̸= yj}.

The problem of p-robust memorization for a given dataset D ∈ Dn,L,N with budget µ is to construct a
network F : Rn → R satisfying RAp

D(F , µ) = 1. A network hypothesis space H is said to be an p-optimal
robust memorization for a dataset D, if for any µ < λpD/2, there exists an F ∈ H such that RAp

D(F , µ) = 1.
Then, we have:
Theorem B.5. For any dataset D ∈ Dn,L,N , the hypothesis space Hn,O(N),O(n),O(Nn) is a 1-optimal robust
memorization for D.

Proof Sketch. The proof is similar to that of Theorem 4.8.

Step 1: For any i ∈ [N ], calculate |x(j) − x
(j)
i | for all j ∈ [n] at first and then calculate |x(j) − x

(j)
i | for all

j ∈ [n]. Let µ be a given robustness radius and µ < λ1D/2.

Step 2: Calculate
∑n

j=1 |x(j) − x
(j)
i | − (λ1D/2 + µ)/2.
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Step 3: Use maxi∈[N ]{yi − 4
3λ1

D−6µ
Lσ(

∑n
j=1 |x(j) − x

(j)
i | − (λ1D/2 + µ)/2)} as the label of x.

Let x ∈ B1(xw, µ). Since µ < λ1D/2, we have yw − 4
3λ1

D−6µ
Lσ(

∑n
j=1 |x(j) − x

(j)
w | − (λ1D/2 + µ)/2) ≥

yw − 4
3λ1

D−6µ
Lσ(µ− (λ1D/2 + µ)/2) = yw.

For all yj ̸= yw, there must be ||x− xj ||1 ≥ ||xj − xw||1 − ||xw − x||1 ≥ λ1D − µ, so

yj − 4
3λ1

D−6µ
Lσ(

∑n
j=1 |x(j) − x

(j)
j | − (λ1D/2 + µ)/2)

≤ yj − 4
3λ1

D−6µ
Lσ(λ1D − µ− (λ1D/2 + µ)/2)

= yj − 4
3λ1

D−6µ
Lσ(3λ1D/4− 3µ/2)

= yj − 4
3λ1

D−6µ
L(3λ1D/4− 3µ/2)

= yj − L

≤ 0

We thus have yw = yw − 4
3λ1

D−6µ
Lσ(

∑n
j=1 |x(j) − x

(j)
w | − (λ1D/2 + µ)/2) ≤ maxi∈[N ]{yi −

4
3λ1

D−6µ
Lσ(

∑n
j=1 |x(j)−x

(j)
i |−(λ1D/2+µ)/2)} = maxi∈[N ],yi=yw

{yi− 4
3λ1

D−6µ
Lσ(

∑n
j=1 |x(j)−x

(j)
i |−

(λ1D/2+µ)/2)} ≤ maxi∈[N ],yi=yw
{yi} = yw, which means maxi∈[N ]{yi− 4

3λ1
D−6µ

Lσ(
∑n

j=1 |x(j)−x
(j)
i |−

(λ1D/2 + µ)/2)} = yw. The theorem is proved.

Theorem B.6. For any dataset D ∈ Dn,L,N satisfies D ⊂ [−∆,∆]n where ∆ ≥ 1, p ∈ N>1, and
λpD/2 > γ > 0, there is a network with width O(n), depth O(Np(log( n

γp ) + p log∆ + log p)), and
O(Nnp(log(n/γp) + p log∆ + log p)) parameters, which is a p-robust memorization for D with radius
λpD/2− γ.

The proof of this theorem needs the following lemma.

Lemma B.7 (Proposition 3.5 of Elbrächter et al. (2021)). For all p ∈ N+, ∆ ≥ 1, and ϵ < 0.5, there is a
network G : R → R with width 9 and depth O(p(log(1/ϵ) + p log(∆) + log(p))) such that |G(x)− xp| ≤ ϵ
for all x ∈ [−∆,∆].

Proof Sketch The proof is similar to that of Theorem 4.8.

Step 1: For any i ∈ [N ], calculate |x(j) − x
(j)
i | for all j ∈ [n] at first and then calculate G(|x(j) − x

(j)
i |) for

allj ∈ [n], where G(x) is obtained from Lemma B.7 and satisfies |G(x)− xp| ≤ ϵ for all x ∈ [−10∆, 10∆]

and ϵ = (λp
D/2−γ/3)p−(λp

D/2−γ)p

n . Since (λp
D/2−γ/3)p−(λp

D/2−γ)p

n ≥ (2/3γ)p

n , by Lemma B.7, G has depth
O(p(log( n

γp ) + plog(∆) + log(p))).

Step 2: Calculate
∑n

j=1 G(|x(j) − x
(j)
i |)− (λpD/2− γ/3)p. We will show that if ||x− xi||p ≤ λpD/2− γ,

then
∑n

j=1 G(|x(j)−x
(j)
i |)− (λpD/2−γ/3)p ≤ 0; if ||x−xi||p ≥ λpD/2+γ, then

∑n
j=1 G(|x(j)−x

(j)
i |)−

(λpD/2− γ/3)p ≥ 2( 1
3γ )

p. Thus, Step 2 follows from (2.1) and (2.2) to be proved in the following.

(2.1): Assume ||x− xi||p ≤ λpD/2− γ. Since
∑n

i=1 G(|x− xi|)− nϵ ≤ ||x− xi||pp, we have that

n∑
j=1

G(|x(j)−x
(j)
i |)−(λp

D/2−γ/3)p ≤ ||x−xi||pp+nϵ−(λp
D/2−γ/3)p ≤ (λp

D/2−γ)p+nϵ−(λp
D/2−γ/3) = 0.
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(2.2): Assume ||x− xi||p ≥ λpD/2 + γ. Since
∑n

i=1 G(|x− xi|) + nϵ ≥ ||x− xi||pp, we have∑n
j=1 G(|x(j) − x

(j)
i |)− (λpD/2− γ/3)p

≥ ||x− xi||pp − nϵ− (λpD/2− γ/3)p

≥ (λpD/2 + γ)p − nϵ− (λpD/2− γ/3)p

= (λpD/2 + γ)p + (λpD/2− γ)p − 2(λpD/2− γ/3)p

≥ 2(λpD/2)
p − 2(λpD/2− γ/3)p

≥ 2( 1
3γ )

p.

Step 3: Use maxi∈[N ]{yi − (3γ)pLσ(
∑n

j=1 G(|x(j) − x
(j)
i |)− (λpD/2− γ/3)p)} as the label of x.

Let x ∈ Bp(xw, λ
p
D/2−γ). By (2.1), we have yw−(3γ)pLσ(

∑n
j=1 G(|x(j)−x

(j)
w |)−(λpD/2−γ/3)p) = yw;

and for all yj ̸= yw, there must be ||x− xj ||p ≥ ||xj − xw||p − ||xw − x||p ≥ λpD/2 + γ, so by (2.2), we
have yj − (3γ)pLσ(

∑n
j=1 G(|x(j) − x

(j)
j |)− (λpD/2− γ/3)p) = 0.

Therefore, yw = yw − (3γ)pLσ(
∑n

j=1 G(|x(j) − x
(j)
w |) − (λpD/2 − γ/3)p) ≤ maxi∈[N ]{yi −

(3γ)pLσ(
∑n

j=1 G(|x(j) − x
(j)
i |) − (λpD/2 − γ/3)p)} = maxi∈[N ],yi=yw

{yi − (3γ)pLσ(
∑n

j=1 G(|x(j) −
x
(j)
i |) − (λpD/2 − γ/3)p)} ≤ maxi∈[N ],yi=yw

{yi} = yw, which means maxi∈[N ]{yi −
(3γ)pLσ(

∑n
j=1 G(|x(j) − x

(j)
i |)− (λpD/2− γ/3)p)} = yw, and the theorem is proved.

Remark B.8. When p = 2 and γ = λD/4, our bound for the number of parameters in Theorem B.6 becomes
O(Nn log(n/λD)). The result in (Li et al., 2022) is O(Nn log(n/λD) +Npoly log(N/λD)). Our result is
better.

C PROOFS FOR SECTION 5

C.1 A LEMMA

The following lemma was given in Li et al. (2022), but without explicit information on width and depth, so
we give an explicit construction.

Lemma C.1. There exists a network F ∈ Hn,2 logn,O(n),O(n) such that F(x) = ||x||∞; that is, there
exists a network F : Rn → R with depth 2 log n, width O(n), and O(n) non-zero parameters such that
F(x) = ||x||∞.

Proof. Let e = ⌈log2 n⌉. Without loss of generality, we assume that n = 2e. Then F has depth 2e and for
i ∈ [e+ 1], the (2i− 1)-th layer has width 2e−i+2, and the 2i-th layer has width 2e−i+1.

Denote Wi and bi as the weight matrix and the bias of the i-th layer of F . The first and second layers will
change x to |x|. The first layer has width 2e+1 and the second layer has width 2e, which are defined below.

W 2i,i
1 = 1 and W 2i+1,i

1 = −1; other entries of W1 are 0. b1 = 0.

W i,2i
2 = 1 and W i,2i+1

2 = 1; other entries of W2 are 0. b2 = 0.

Since σ(x) + σ(−x) = |x| for any x ∈ R, it is easy to check that F2(x) = σ(W2σ(W1x)) = |x|.
For i ∈ [e], the (2i+ 1)-th and the (2i+ 2)-th layers are defined below.
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F2m
2i+1(x) = σ(F2m

2i (x)), where m = 0, 1, . . . , 2e−i − 1.

F2m+1
2i+1 (x) = σ(F2m+1

2i (x)−F2m
2i (x)), where m = 0, 1, . . . , 2e−i − 1.

Fm
2i+2(x) = σ(F2m

2i+1(x) + F2m+1
2i+1 (x)), where m = 0, 1, . . . , 2e−i − 1.

For i ∈ [e+ 1], using σ(x− y) + y = max{x, y} for any x, y ∈ R, we have that

Fm
2i+2(x)

= σ(F2m
2i+1(x) + F2m+1

2i+1 (x))

= F2m
2i+1(x) + F2m+1

2i+1 (x)

= σ(F2m
2i (x)) + σ(F2m+1

2i (x)−F2m
2i (x))

= F2m
2i (x) + σ(F2m+1

2i (x)−F2m
2i (x))

= max{F2m
2i (x),F2m+1

2i (x)}.

The (2e+ 2)-th layer has width 1 and is the output

F(x) = F1
2e+2(x)

= max{F2
2e(x),F1

2e(x)}
= max{F4

2e−2(x),F3
2e−2(x),F2

2e−2(x), ,F1
2e−2(x)}

= . . .

= max{F2e

2 (x),F2e−1
2 (x), . . . ,F2

2 (x), ,F1
2 (x)}

= ||x||∞.

We now estimate the number of parameters. The first two layers need 4d non-zero parameters. For i ∈ [e],
the (2i+ 1)-th layer and the (2i+ 2)-th layer need 5 · 2e−i parameters. Therefore, we need

∑e
i=1 5 · 2e−i =

O(2e) = O(n) parameters. Then the lemma is proved.

C.2 PROOF OF THEOREM 5.2

Proof. Let D be defined in equation 3 and C ∈ R+ satisfy C + x
(k)
i − 0.5λD > 0 for all i ∈ [N ], k ∈ [n].

The network has N(2⌈log(n)⌉+ 5) + 1 hidden layers which will be defined below.

Step 1. The first layer has width n+ 1: F0
1 (x) = 2 and F j

1 (x) = σ(x(j) + C) = x(j) + C, where j ∈ [n].

Step 2. For k ∈ [N ], let sk = (2⌈log(n)⌉ + 5)(k − 1) + 2 and we will use the sk-th layer to the
(sk + 2⌈log(n)⌉+ 4)-th layer to check if ||x− xk||∞ < 0.5λD. Step 2 consists of three sub-steps.

Step 2a. We use the sk-th layer and the (sk + 1)-th layer to calculate |x− xk|. The sk-th layer has width
3n+ 1 and is defined below.

F0
sk
(x) = σ(F0

sk−1(x));

F j
sk
(x) = σ(F j

sk−1(x)− x
(j)
k − C), where j ∈ [n];

Fn+j
sk

(x) = σ(−F j
sk−1(x) + x

(j)
k + C), where j ∈ [n];

F2n+j
sk

(x) = σ(F j
sk−1(x)), where j ∈ [n].

The (sk + 1)-th layer has width 2n+ 1 and is defined below.
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F0
sk+1(x) = σ(F0

sk
(x));

F j
sk+1(x) = σ(F j

sk
(x) + Fn+j

sk
(x)), where j ∈ [n];

Fn+j
sk+1(x) = σ(F2n+j

sk
(x)), where j ∈ [n].

The sk-th layer needs 5n+ 1 non-zeros parameters and (sk + 1)-th layer needs 3n+ 1 non-zeros parameters.

Step 2b. Lemma C.1 is used to calculate ||x − xk||∞. According to Lemma C.1, there exists a network
H : Rn → R with 2⌈log(n)⌉ hidden layers, width O(n), and O(n) non-zero parameters to compute H(x) =
||x||∞ for x ∈ Rn. Since H has 2⌈log(n)⌉ hidden layers, we set the output of the (sk + 2⌈log(n)⌉+ 1)-th
layer to be

F0
sk+2⌈log(n)⌉+1(x) = σ(F0

sk+1(x));

F1
sk+2⌈log(n)⌉+1(x) = H(F1

sk+1(x), . . . ,Fn
sk+1(x)) = ||Fsk+1(x)||∞;

F j+1
sk+2⌈log(n)⌉+1(x) = σ(Fn+j

sk+1(x)), where j ∈ [n].

Step 2c. Use the (sk+2⌈log(n)⌉+2)-th to the (sk+2⌈log(n)⌉+4)-th layers to check if ||x−xk||∞ < 0.5λD.
The (sk + 2⌈log(n)⌉+ 2)-th layer has width n+ 4 and is defined below.

F0
sk+2⌈log(n)⌉+2(x) = σ(F0

sk+2⌈log(n)⌉+1(x));

F1
sk+2⌈log(n)⌉+2(x) = σ(− 2

λD
F1

sk+2⌈log(n)⌉+1(x) + 1);

F2
sk+2⌈log(n)⌉+2(x) = σ(F0

sk+2⌈log(n)⌉+1(x)− 2);

F3
sk+2⌈log(n)⌉+2(x) = σ(−F0

sk+2⌈log(n)⌉+1(x) + 2);

F j+3
sk+2⌈log(n)⌉+2(x) = σ(F j+1

sk+2⌈log(n)⌉+1(x)), where j ∈ [n].

The (sk + 2⌈log(n)⌉+ 3)-th layer has width n+ 3 and is defined below.

F0
sk+2⌈log(n)⌉+3(x) = σ(F0

sk+2⌈log(n)⌉+2(x) + ykF1
sk+2⌈log(n)⌉+2(x));

F1
sk+2⌈log(n)⌉+3(x) = σ(F1

sk+2⌈log(n)⌉+2);

F2
sk+2⌈log(n)⌉+3(x) = σ(F1

sk+2⌈log(n)⌉+2 − (F2
sk+2⌈log(n)⌉+2(x) + F3

sk+2⌈log(n)⌉+2(x)));

F j+2
sk+2⌈log(n)⌉+3(x) = σ(F j+3

sk+2⌈log(n)⌉+2(x)), where j ∈ [n].

The (sk + 2⌈log(n)⌉+ 4)-th layer has width n+ 1 and is defined as

F0
sk+2⌈log(n)⌉+4(x) = σ(F0

sk+2⌈log(n)⌉+3(x)− yk(F1
sk+2⌈log(n)⌉+3(x)−F2

sk+2⌈log(n)⌉+3(x)));

F j
sk+2⌈log(n)⌉+4(x) = σ(F j+2

sk+2⌈log(n)⌉+3(x)), where j ∈ [n].

It is easy to check that if F j
sk+1(x) = |x(j) − x

(j)
k |. Then

F1
sk+2⌈log(n)⌉+2(x) = σ(− 2

λD
F1

sk+2⌈log(n)⌉+1(x) + 1) > 0

if and only if ||x− xk||∞ < 0.5λD. These three layers need 3n+ 16 non-zeros parameters.

Step 3. The output is F(x) = F0
sN+2⌈log(n)⌉+4(x)− 2. The network F has width O(n), depth O(N log(n)),

and O(Nn log(n)) non-zeros parameters.
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We now show that F satisfies the condition of the theorem; that is, F memorizes D and satisfies Lip∞(F) =
2
λD

. The proof will be given by proving four properties.

Property 1. F j
sk−1(x) = x(j) + C for j ∈ [n] and k ∈ [N ]. When k = 1, sk − 1 = 1. By Step 1, we have

F j
s1−1(x) = F j

1 (x) = x(j) + C. When k > 1, we have

F j
sk+1−1(x) = σ(F j

sk+2⌈log(n)⌉+4(x)) = σ(F j+2
sk+2⌈log(n)⌉+3(x))

= σ(F j+3
sk+2⌈log(n)⌉+2(x)) = σ(F j+1

sk+2⌈log(n)⌉+1(x))

= σ(Fn+j
sk+1(x)) = σ(F2n+j

sk
(x)) = σ(F j

sk−1(x)) = F j
sk−1(x).

Then, F j
sk+1−1(x) = F j

sk−1(x) = · · · = F j
s1−1(x) = F j

1 (x) = x(j) + C.

Property 2. F j
sk+1(x) = |x(j) − x

(j)
k | and F1

sk+2⌈log(n)⌉+1(x) = ||x− xk||∞ for j ∈ [n].

Since σ(x) + σ(−x) = |x| for any x ∈ R, from Step 2a, F j
sk+1(x) = |F j

sk−1(x) − x
(j)
k − C| for j ∈ [n].

By Property 1, F j
sk−1(x) = x(j) + C for j ∈ [n]. Then, F j

sk+1(x) = |x(j) − x
(j)
k | for j ∈ [n]. From Step

2b, we have that F1
sk+2⌈log(n)⌉+1(x) = ||x− xk||∞ for j ∈ [n].

Property 3. F0
sk+2⌈log(n)⌉+4(x) = 2 + ywk

σ(1− 2
λD

||x− xwk
||∞), where wk = argmini∈[k]||x− xi||∞.

We prove the property by induction on k. We first show that the statement is valid for k = 1. We have that
wk = 1 and F0

s1+2⌈log(n)⌉+2(x) = F0
s1+2⌈log(n)⌉+1(x) = F0

s1+1(x) = F0
s1(x) = F0

s1−1(x) = 2. From Step
2c and Property 2,

F0
s1+2⌈log(n)⌉+3(x)

= σ(F0
s1+2⌈log(n)⌉+2(x) + y1F1

s1+2⌈log(n)⌉+2(x))

= σ(2 + y1σ(1− 2
λD

F1
s1+2⌈log(n)⌉+1(x)))

= 2 + y1σ(− 2
λD

F1
s1+2⌈log(n)⌉+1(x) + 1)

= 2 + y1σ(1− 2
λD

||x− x0||∞).

Since F2
s1+2⌈log(n)⌉+2(x) = σ(F0

s1+2⌈log(n)⌉+1(x) − 2) = σ(2 − 2) = 0 and F3
s1+2⌈log(n)⌉+2(x) =

σ(−F0
s1+2⌈log(n)⌉+1(x) + 2) = σ(2 − 2) = 0, we have F2

s1+2⌈log(n)⌉+3(x) = σ(F1
s1+2⌈log(n)⌉+2 −

(F2
s1+2⌈log(n)⌉+2(x) + F3

s1+2⌈log(n)⌉+2(x))) = σ(F1
s1+2⌈log(n)⌉+2) = F1

s1+2⌈log(n)⌉+3. Then

F0
s1+2⌈log(n)⌉+4(x)

= σ(F0
s1+2⌈log(n)⌉+3(x)− y1(F1

s1+2⌈log(n)⌉+3(x)−F2
s1+2⌈log(n)⌉+3(x)))

= F0
s1+2⌈log(n)⌉+3(x)

= 2 + y1σ(1− 2
λD

||x− x0||∞).

We have proved the statement for k = 1.

Assume that the statement is valid for k − 1; that is, F0
sk−1+2⌈log(n)⌉+4(x) = 2 + ywk−1

σ(1 − 2
λD

||x −
xwk−1

||∞). We have F0
sk+2⌈log(n)⌉+2(x) = F0

sk+2⌈log(n)⌉+1(x) = F0
sk+1(x) = F0

sk
(x) = F0

sk−1(x) = 2 +

ywk−1
σ(1− 2

λD
||x−xwk−1

||∞) ≥ 1, and we also have F1
sk+2⌈log(n)⌉+2(x) = σ(− 2

λD
F1

sk+2⌈log(n)⌉+1(x)+
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1) ≤ 1. Then

F0
sk+2⌈log(n)⌉+3(x)

= σ(F0
sk+2⌈log(n)⌉+2(x) + ykF1

sk+2⌈log(n)⌉+2(x))

= σ(F0
sk+2⌈log(n)⌉+2(x) + ykσ(1− 2

λD
F1

sk+2⌈log(n)⌉+1(x)))

= F0
sk+2⌈log(n)⌉+2(x) + ykσ(1− 2

λD
F1

sk+2⌈log(n)⌉+1(x))

= F0
sk−1(x) + ykσ(1− 2

λD
F1

sk+2⌈log(n)⌉+1(x))

= F0
sk−1(x) + ykF1

sk+2⌈log(n)⌉+2(x).

(17)

Since F2
sk+2⌈log(n)⌉+2(x) = σ(F0

sk+2⌈log(n)⌉+1(x) − 2) and F3
sk+2⌈log(n)⌉+2(x) =

σ(−F0
sk+2⌈log(n)⌉+1(x) + 2), we have

F2
sk+2⌈log(n)⌉+3(x)

= σ(F1
sk+2⌈log(n)⌉+2 − (F2

sk+2⌈log(n)⌉+2(x) + F3
sk+2⌈log(n)⌉+2(x)))

= σ(F1
sk+2⌈log(n)⌉+2 − |F0

sk+2⌈log(n)⌉+1(x)− 2|).

Then

F0
sk+2⌈log(n)⌉+4(x)

= σ(F0
sk+2⌈log(n)⌉+3(x)− yk(F1

sk+2⌈log(n)⌉+3(x)−F2
sk+2⌈log(n)⌉+3(x)))

= σ(F0
sk−1(x) + ykF1

sk+2⌈log(n)⌉+2(x)

−yk(F1
sk+2⌈log(n)⌉+2(x)− σ(F1

sk+2⌈log(n)⌉+2(x)− |F0
sk−1(x)− 2|))).

We divide the proof into two cases.

Case 1. If x /∈ B∞(xk, 0.5λD), then wk = wk−1 and F1
sk+2⌈log(n)⌉+2(x) = σ(− 2

λD
F1

sk+2⌈log(n)⌉+1(x) +

1) = σ(1− 2
λD

||x− xk||∞) = 0 and

F0
sk+2⌈log(n)⌉+4(x)

= σ(F0
sk−1(x) + ykF1

sk+2⌈log(n)⌉+2(x)

−yk(F1
sk+2⌈log(n)⌉+2(x)− σ(F1

sk+2⌈log(n)⌉+2(x)− |F0
sk−1(x)− 2|)))

= F0
sk−1(x)

= F0
sk−1+2⌈log(n)⌉+4(x)

= 2 + ywk−1
σ(1− 2

λD
||x− xwk−1

||∞)

= 2 + ywk
σ(1− 2

λD
||x− xwk

||∞).

Case 2. If x ∈ B∞(xk, 0.5λD), then F1
sk+2⌈log(n)⌉+2(x) = σ(− 2

λD
F1

sk+2⌈log(n)⌉+1(x) + 1) = σ(1 −
2
λD

||x− xk||∞) ≥ 0 and using equation 17:
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F0
sk+2⌈log(n)⌉+4(x)

= σ(F0
sk−1(x) + ykF1

sk+2⌈log(n)⌉+2(x)

−yk(F1
sk+2⌈log(n)⌉+2(x)− σ(F1

sk+2⌈log(n)⌉+2(x)− |F0
sk−1(x)− 2|)))

= σ(F0
sk−1(x) + ykF1

sk+2⌈log(n)⌉+2(x)

−yk(min{F1
sk+2⌈log(n)⌉+2(x), |2−F0

sk−1(x)|}))
= σ(2 + ywk−1

σ(1− 2
λD

||x− xwk−1
||∞) + yk(1− 2

λD
||x− xk||∞)

−yk(min{1− 2
λD

||x− xk||∞, σ(1− 2
λD

||x− xwk−1
||∞)})).

Consider two sub-cases:

Case 2.1. If ||x− xwk−1
||∞ > 0.5λD, then wk = k and hence

F0
sk+2⌈log(n)⌉+4(x)

= σ(2 + ywk−1
σ(1− 2

λD
||x− xwk−1

||∞) + yk(1− 2
λD

||x− xk||∞)

−yk(min{1− 2
λD

||x− xk||∞, σ(1− 2
λD

||x− xwk−1
||∞)}))

= σ(2 + yk(1− 2
λD

||x− xk||∞))

= 2 + yk(1− 2
λD

||x− xk||∞)

= 2 + ywk
(1− 2

λD
||x− xwk

||∞).

Case 2.2. If ||x− xwk−1
||∞ ≤ 0.5λD, then ywk−1

= yk and hence

F0
sk+2⌈log(n)⌉+4(x)

= σ(2 + ywk−1
σ(1− 2

λD
||x− xwk−1

||∞) + yk(1− 2
λD

||x− xk||∞)

−yk(min{1− 2
λD

||x− xk||∞, σ(1− 2
λD

||x− xwk−1
||∞)}))

= σ(2 + ywk−1
(1− 2

λD
||x− xwk−1

||∞) + yk(1− 2/λ||x− xk||∞)

−yk(min{1− 2
λD

||x− xk||∞, 1− 2
λD

||x− xwk−1
||∞}))

= 2 + yk max{1− 2
λD

||x− xk||∞, 1− 2
λD

||x− xwk−1
||∞}

= 2 + ywk
σ(1− 2

λD
||x− xwk

||∞).

The property is proved.

Property 4. F is a memorization D and has Lip∞(F) = 2
λD

.

By Property 3, the output is

F(x) = F1
sN+2⌈log(n)⌉+4(x)− 2 = ywN

σ(1− 2

λD
||x− xwN

||∞)

where wN = argmini∈[N ]||x− xi||∞.

If x = xs, then wN = s and F(x) = ys; that is, F memorizes D. If x ∈ B(xs, 0.5λD) for some
s ∈ [N ], then wN ∈ [N ] and F(x) = ywN

(1− 2
λD

||x− xwN
||∞) such that the local Lip∞(F) = 2

λD
over

B(xwN
, 0.5λD). If x is not in ∪N

i=1B(xs, 0.5λD), then ||x − xwN
||∞ > 0.5λD. Therefore, F(x) = 0 and

the local Lip∞(F) = 0. It is clear that the global Liptchitz constant is 2
λD

, and the theorem is proved.
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C.3 PROOF OF PROPOSITION 5.4

We first define T ∈ Bn,N , which is a binary classification data.

T = {(xi, yi)}ni=0 ⊂ Rn × {−1, 1} (18)

where x0 = 0, y0 = 1, xi = 1i and yi = −1 for i ∈ [n]. It is easy to see that λT = 1.

We first prove a lemma.

Lemma C.2. If F is a network memorizing T and Lip∞(F) = 2, then F(x) = 1− 2||x||∞ for x ∈ D =

{x ∈ Rn : 0 ≤ x(i) < 0.5,∀i ∈ [n]}.

Proof. For x ∈ D, let k = argmaxi∈[n]{x(i)}; that is, ||x||∞ = x(k). Let z = xk − x, where xk = 1k is
defined in equation 18. Since xk = 1k, we have z(i) = x(i) < 0.5 when i ̸= k and z(k) = 1− x(k) > 0.5;
that is, ||z||∞ = 1− x(k). Since Lip∞(F) = 2, we have

F(x0)−F(xk)

= (F(x0)−F(x)) + (F(x)−F(xk))

≤ 2||x0 − x||∞ + 2||xk − x||∞
= 2x(k) + 2||xk − x||∞
= 2x(k) + 2(1− x(k))

= 2.

(19)

Since F memorizes T , we have F(x0)−F(xk) = 2, which means that the inequality in equation 19 becomes
an equation. Then F(x0)−F(x) = 2x(k); that is F(x) = F(x0)− 2x(k) = 1− 2||x||∞.

We now prove Proposition 5.4. Note that λT = 1, which is omitted in the proof.

Proof. It suffices to show that if F ∈ H is a memorization of T defined in equation 18, then Lip∞(F) > 2;
that is, H is not an optimal robust memorization for T via Lipschitz.

Since F memorizes T , we have Lip∞(F) ≥ 2. Let F(x) =
∑k

i=1aiσ(Uix+ bi) +Qx+ b have the normal
form equation 4.

Assume the contrary: Lip∞(F) = 2. By Lemma C.2, we know that F(x) = 1 − 2||x||∞ over D = {x ∈
Rn : 0 < x(i) < 0.5,∀i ∈ [n]}.

A point t ∈ Rn is called a T-point, if there exist a j ∈ [n] and an ϵ ∈ R+ such that ϵ < t(k) < 0.5− ϵ for any
k ∈ [n] and |t(j)| − |t(i)| > ϵ > 0 when i ̸= j.

For s ∈ [k], let Hs be the hyperplane defined by Usx+ bs = 0.

Then one of the following properties must be valid:

(p1) Hs does not intersect D.

(p2) Hs intersects D and there exists a T-point t ∈ D such that Ust+ bs = 0.

(p3) Hs intersects D and there does not exist a T-point t ∈ D such that Ust+ bs = 0.

We first prove the following properties.

39



Published as a conference paper at ICLR 2024

(c1) Property (p1) is not valid for some s ∈ [k].

If (p1) is valid for all s ∈ [k], then D is inside a linear region of F . This is impossible because, according to
Lemma C.2, F(x) = 1− 2||x||∞ over D, and || · ||∞ is not linear over D.

(c2) Property (p2) is not valid for any s ∈ [k].

Suppose (p2) is valid for s. Let t ∈ D be a T-point satisfying Ust+ bs = 0 and ϵ < t(k) < 0.5− ϵ for all
k ∈ [n]. Let j = argmaxi∈[n]{t(i)}, |t(j)| − |t(j′)| > ϵ > 0 when j′ ̸= j. By Lemma A.3, there exist two
linear regions R1 and R2 whose boundary is (Us, bs) and points P ∈ R1, Q ∈ R2 such that ||P − t||∞ < ϵ/3
and ||Q− t||∞ < ϵ/3. Then we have

(c2.1) 0.5− 2ϵ/3 > P (k) > 2ϵ/3 and 0.5− 2ϵ/3 > Q(k) > 2ϵ/3 for any k ∈ [n], which implies P,Q ∈ D.

(c2.2) j = argmaxi∈[n]{|P (i)|} = argmaxi∈[n]{|Q(i)|}, |P (j)| − |P (j′)| > ϵ/3 > 0, |Q(j)| − |Q(j′)| >
ϵ/3 > 0 when j′ ̸= j.

By Lemma C.2 and (c2.1), we have F(x) = 1− 2||x||∞ = 1− 2x(j) over B∞(P, ϵ/7) ∩ R1, because for
any x ∈ B∞(P, ϵ/7), by (c2.2), we have x(j) − x(j

′) > (P (j) − ϵ/7)− (P (j′) + ϵ/7) > ϵ(1/3− 2/7) > 0
when j′ ̸= j.

Since F(x) is a linear function on R1, we have F(x) = 1− 2x(j) on R1, and the same is true for R2. Thus,
the normal vectors of F are the same for R1 and R2. On the other hand, since R1 and R2 have boundary
(Us, bs) and Us ̸= 0, the normal vectors of F over R1 and R2 are not the same, a contradiction.

(c3) Property (p3) is not valid for any s ∈ [k].

If (p3) is valid, then find a point t ∈ D ∩ Hs and let ϵ = 0.5 − ||t||∞. Since t is not a T-point, there
exist a, b ∈ [n] such that t(a) = t(b) = ||t||∞ = 0.5 − ϵ. (If a, b do not exist, we just need to take ϵ′ =
mini∈[n] i ̸=argmax

j∈[n]
{|t(j)|}{0.5−||t||∞, |t(i)|, ||t||∞−|t(i)|}. Then t is a T-point for j = argmaxj∈[n]{|tj |}

and ϵ′.)

We will find a T-point t1 near t such that t1 ∈ D and Ust1 + bs = 0, which means that (p3) is not correct.
Three cases are considered.

(c3.1) U (k)
s = 0 for k ∈ [n]. In this case, let t1 = t + (0.5 − ϵ/2)1k − t(k)1k. We have Ust1 + bs =

Us(t+(0.5− ϵ/2)1k − t(k)1k)+ bs = Ust+ bs = 0 and it is easy to see that t(k)1 = 0.5− ϵ/2 > t(c) = t
(c)
1

when c ̸= k, so t1 is a T-point.

(c3.2) U (k)
s ̸= 0 for all k ∈ [n] and Sgn(U (b)

s ) = Sgn(U (a)
s ), let |U (b)

s | > |U (a)
s |. In this case, let t1 =

t+ ϵ/21a − U(a)
s

U
(b)
s

ϵ/21b. Then Ust1 + bs = Us(t+ ϵ/21a − U(a)
s

U
(b)
s

ϵ/21b) + bs = Us(ϵ/21a − U(a)
s

U
(b)
s

ϵ/21b) =

U
(a)
s ϵ/2−U

(b)
s ϵ/2

U(a)
s

U
(b)
s

= 0. We also have 0.5 > t
(a)
1 = t(a) + ϵ/2 = t(b) + ϵ/2 > t(b) > t(b) − U(a)

s

U
(b)
s

ϵ/2 =

t
(b)
1 , because Sgn(U (b)

s ) = Sgn(U (a)
s ), and t(a)1 = t(a) + ϵ/2 > t(a) ≥ t(k) = t1(k) when k ̸= a, b. Thus, t1

is a T-point.

(c3.3) U (k)
s ̸= 0 for all k ∈ [n] and Sgn(U (b)

s ) ̸= Sgn(U (a)
s ). Let U (a)

s > 0 > U
(b)
s and c ̸= a, b, such that

U
(c)
s > 0. Let t1 = t+(ϵ/21a−ϵ/2U(a)

s

U
(c)
s

1c)η, where η ∈ (0, 1) and make ηϵ/2U(a)
s

U
(c)
s

< tc. Then Ust1+bs =

Us(t + ηϵ/21a − η
U(a)

s

U
(c)
s

ϵ/21c) + bs = Us(ηϵ/21a − ηϵ/2
U(a)

s

U
(c)
s

1c) = ηU
(a)
i ϵ/2 − ηU

(c)
s ϵ/2

U(a)
s

U
(c)
s

= 0. We

also have 0.5 > t
(a)
1 = t(a) + ηϵ/2 ≥ t(c) + ηϵ/2 > t(c) − η

U(a)
s

U
(c)
s

ϵ/2 = t
(c)
1 , because U (c)

s , U
(a)
s > 0, and
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t
(a)
1 = t(a) + ηϵ/2 > t(a) ≥ t(k) = t

(k)
1 when k ̸= a, c. Thus, t1 is a T-point. If U (b)

s < 0, we only need to

let t1 = t+ η(ϵ/21b − U(b)
s

U
(c)
s

ϵ/21c) and the proof is the same.

By (c1), (p1) is not valid for some i. By (c2) and (c3), (p2) and (p3) are not valid for all i. Thus, we reach
a contradiction, because for any s ∈ [k], one of (p1) , (p2) , (p3) must be valid. Therefore, the assumption
Lip∞(F) = 2 is wrong. The lemma is proved.

C.4 PROOF OF PROPOSITION 5.5

Let T be the dataset defined in equation 18. We first give a technical lemma, whose proof is given in Appendix
C.4.2.
Lemma C.3. Let C ∈ N+ and ϵ ∈ R+ satisfy ϵ1/3 < min{ 1

120 ,
1

100n2 ,
1
2C } and k ≤ C; and let F(x) =∑k

i=1aiσ(Uix+bi)+Qx+b be a network with normal form equation 4, which memorizes T and Lip∞(F) ≤
2 + ϵ. Then, for any i, j ∈ [n] and i ̸= j, there exists an s ∈ [k] such that

0.5 + 4ϵ1/3

0.5− 5ϵ1/3
≥ |U (i)

s |
|U (j)

s |
≥ 0.5− 5ϵ1/3

0.5 + 4ϵ1/3
and

|U (q)
s |

max(|U (i)
s |, |U (j)

s |)
<

12ϵ1/3

1− 2ϵ3
for q ̸= i, j; (20)

and the linear equation Usx+ bs = 0 has a solution in the B∞(0, 2).

C.4.1 PROOF OF PROPOSITION 5.5

Proof. Let V = (1, 2, . . . , n)T ∈ Rn, M = [ N
n+1 ], and T be defined in equation 18. We define D as:

D = T0 ∪ T1 ∪ T2 ∪ T3 · · · ∪ TM ,
where T0 = {(−V, 1), (−2V, 1), . . . , (−(N − (n + 1)M)V, 1)} and Tk = T + 16knV = {(x, y) :x =
x̃+ 16nkV, y = ŷ, (x̃, ŷ) ∈ T } for k ∈ [M ]. We see that λD = 1 and is omitted from the rest of the proof.

We prove Proposition 5.5 (1); that is,

(1) For any µ < 0.5, there exists a network F with depth 2 and width 4nM , which is a robust
memorization of D.

For ϵ < 0.5, define a network Gϵ : R → R:

Gϵ(x) = σ(x− 0.5 + ϵ)− σ(x− 0.5− ϵ)− (σ(x− 1.5 + ϵ)− σ(x− 1.5− ϵ)).

It is easy to see that Gϵ has depth 2, width 4, and satisfies

(c1) Gϵ(x) = 0 if x ≤ 0.5− ϵ and x ≥ 1.5 + ϵ.

(c2) Gϵ(x) = 2ϵ if 0.5 + ϵ ≤ x ≤ 1.5− ϵ.

For i ∈ [n], define Gi
ϵ(x) : Rn → R as Gi

ϵ(x) = Gϵ(x
(i)) and define G : Rn → R as

G(x) = − 2

1− 2µ

n∑
i=1

Gi
0.5−µ(x) + 1

where µ ∈ (0, 0.5). Then G is the network with depth 2 and width 4n. Using (c1) and (c2), we know that G is
a robust memorization of T with budget µ. Let network F : Rn → R be defined as:

F(x) = − 2

1− 2µ
(

n∑
i=1

M∑
j=1

Gi
0.5−µ(x− 16njV )) + 1.
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Obviously, F has depth 2 and width 4nM . For any k ∈ [M ] and x ∈ B∞(Tk, µ), since Tk = T + 16knV ,
there exists an x̃ ∈ B∞(T , µ) that satisfies x = x̃+ 16knV . Therefore,

F(x)

= − 2
1−2µ (

∑n
i=1

∑M
j=1 Gi

0.5−µ(x− 16njV )) + 1

= − 2
1−2µ (

∑n
i=1

∑M
j=1 Gi

0.5−µ(x̃− 16n(k − j)V )) + 1

= − 2
1−2µ

∑n
i=1 Gi

0.5−µ(x̃) + 1( by (c1))

= G(x̃).

Since G is a robust memorization of T with budget µ, F is a robust memorization of Tk(k ∈ [M ]) with
budget µ. Now we show that F is a robust memorization of T0 with budget µ. It is easy to see that F(x̃) = 1
for any x̃ ∈ B∞(T0, µ), because all the entries of x̃ are negative, so Gi

0.5−µ(x− 16njV ) are always 0 for any
i ∈ [n] and j ∈ [M ]. Thus, F is a robust memorization of D with budget µ and Proposition 5.5(1) is proved.

We now prove Proposition 5.5(2); that is

(2) There exists a µ < 0.5, such that, for any F with depth 2 and width 4nM , if F is a memorization of
D, then Lip∞(F) > 1

µ .

Let µ and ϵ satisfy 1/µ = 2 + ϵ1/3 and ϵ1/3 < min{ 1
120 ,

1
100n2 ,

1
8nM }.

Assume F =Wσ(Ux+ b) + b1 is a network with depth 2 and width 4nM , which is a memorization of D
and Lip∞(F) ≤ 1/µ. For any k ∈ [M ], Tk = T + 16knV is contained in B∞(0, 2) + 16knV . So using
Lemma C.3 to Tk, for the any (i, j), i, j ∈ [n], there exists an s ∈ N+ satisfying

0.5+4ϵ1/3

0.5−5ϵ1/3
≥ |U(i)

s |
|U(j)

s |
≥ 0.5−5ϵ1/3

0.5+4ϵ1/3
and |U(q)

s |
max(|U(i)

s |,|U(j)
s |)

< 12ϵ1/3

1−2ϵ3 for q ̸= i, j

and Usx+ bs = 0 has zeros in B∞(0, 2) + 16nkv.
(21)

We claim that different combinations (k, i, j), where k ∈ [M ], i < j, and i, j ∈ [n], correspond to different
s, which implies that the width of F is at least n−1

2 nM > 4nM since we assumed n > 9, which leads to a
contradiction and a proof for Proposition 5.5(2).

We prove the claim below. Let (k, i, j) and (k1, i1, j1) correspond to the same s. Firstly, we show that i = i1

and j = j1. From ϵ1/3 < 1
120 , we can deduce 0.5−5ϵ1/3

0.5+4ϵ1/3
> 2/3 and 12ϵ1/3

1−2ϵ3 < 1/3. Without loss of generality,

assume |U (i)
s | ≤ |U (j)

s |. Then, from equation 21, we have |U(i)
s |

|U(j)
s |

≥ 2/3 and |U(q)
k |

|U(j)
s |

< 1/3 for q ̸= i, j. As a

consequence, for different pairs (i, j), i, j ∈ [n], the corresponding s must be different, so i = i1 and j = j1.

We now show k = k1. If k ̸= k1, let k < k1. By equation 21, we have 0 = Us(x + 16nkV ) + bs =
Us(x̃+16nk1V )+ bs for some x, x̃ ∈ B∞(0, 2), which implies |Us(x− x̃)| = |16n(k− k1)(UsV )|. Firstly,
we have

|Us(x− x̃)|
≤ ||Us||1||(x− x̃)||∞
≤ 4||Us||1
≤ 4(|U (i)

s |+ |U (j)
s |+ 12ϵ1/3

1−2ϵ1/3
(d− 2)max{|U (j)

s |, |U (i)
s |})( by equation 21)

≤ 4|U (j)
s |((1 + 0.5+4ϵ1/3

0.5−5ϵ1/3
+ 0.5+4ϵ1/3

0.5−5ϵ1/3
12ϵ1/3

1−2ϵ1/3
(d− 2))

≤ 4|U (j)
s |(1 + 1.17 + 0.119(n− 2)) (use ϵ1/3 < 1/120)

≤ 4n|U (j)
s |.
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Consider that we have assumed i < j, then

|16n(k − k1)(UsV )|
≥ 16n|Usv|
≥ 16n(j|U (j)

s | − i|U (i)
s | −

∑
p ̸=i,j p|U

(p)
s |)

≥ 16n(j|U (j)
s | − i 0.5+4ϵ1/3

0.5−5ϵ1/3
|U (j)

s | −
∑

p ̸=i,j p
12ϵ1/3

1−2ϵ1/3
max{|U (j)

s |, |U (i)
s |})

≥ 16n(j|U (j)
s | − i 0.5+4ϵ1/3

0.5−5ϵ1/3
|U (j)

s | − n2 12ϵ1/3

1−2ϵ1/3
max{|U (j)

s |, |U (i)
s |})

≥ 16n(j|U (j)
s | − i 0.5+4ϵ1/3

0.5−5ϵ1/3
|U (j)

s | − n2 12ϵ1/3

1−2ϵ1/3
0.5+4ϵ1/3

0.5−5ϵ1/3
|U (j)

s |)
≥ 16n|U (j)

s |(j − (j − 1) 0.5+4ϵ1/3

0.5−5ϵ1/3
− n2 12ϵ1/3

1−2ϵ1/3
0.5+4ϵ1/3

0.5−5ϵ1/3
|)

≥ 16n|U (j)
s |(n− (n− 1) 0.5+4ϵ1/3

0.5−5ϵ1/3
− n2 12ϵ1/3

1−2ϵ1/3
0.5+4ϵ1/3

0.5−5ϵ1/3
|)

≥ 16n|U (j)
s |(n− (n− 1)(1 + 20ϵ1/3)− 24n2ϵ1/3(1 + 20ϵ1/3)) (use ϵ1/3 < 1/120)

≥ 16n|U (j)
s |(1− 20ϵ1/3(n− 1)− 29n2ϵ1/3)( use ϵ1/3 < 1/120)

≥ 16n|U (j)
s |(1− 49/100) (use ϵ1/3 < 1/100n2)

≥ 8n|U (j)
s |.

So, it always holds |Us(x− x̃)| ≤ 4d|U (j)
s | < 8n|U (j)

s | ≤ |16n(k− k1)(UsV )|, which means |Us(x− x̃)| =
|16n(k − k1)(UsV )| is not valid, and (k, i, j) and (k1, i1, j1) cannot correspond to the same s. Thus k = k1.
The claim and hence the proposition are proved.

Remark C.4. From the proof, we see that replacing H in the Proposition 5.5 by H(Cw) = {F : Rn →
R : depth(F) = 2,width(F) = Cw}, where Cw ∈ N satisfies 4n[ N

n+1 ] ≤ Cwid <
(n−1)n

2 [ N
n+1 ], Proposition

5.5 is still valid.

C.4.2 PROOF OF LEMMA C.3

Proof. In the proof, the fact λT = 1 is used. First, we introduce several notations.

(1) For a linear region R of F , let F(x) =
∑n

i=1lix
(i) + c over R with NF,R = (l1, . . . , ln) as the normal

vector.

(2) For t ∈ R+, let Ri(t) be the set of linear regions R of F such that the normal vector NF,R = (l1, . . . , ln)
satisfies |li| ≥ t and denote

Pi(t) = {x ∈ Rn :∃R ∈ Ri(t) such that x ∈ R}.

(3) For a, b ∈ Rn, use a→ b to denote the directed segment from a to b. For i ∈ [n], the Hi-length of a→ b
is defined as |a(i) − b(i)|.
(4) Assume ai ∈ Rn, i = 1, . . . , k for k ≥ 3. Use a1 → a2 → · · · → ak to denote the polyline segment
a1 → a2 → · · · → ak−1 → ak.

Without loss of generality, assume i = 1, j = 2. For convenience, let

θ =
1

ϵ+ 2
, ϵ0 = 2 + ϵ− ϵ1/3, T = 1− ϵ1/3.

We will prove a series of properties which will lead to a proof of the lemma.

(p1). For a linear region R of F , NF,R = (l1, . . . , ln) satisfies
∑n

i=1|li| ≤
1
θ = 2 + ϵ.
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There exist x ∈ Rn and y = x − δSgn(NF,R) ∈ Rn, δ ∈ R>0, such that 1
θ ≥ Lip∞(F) ≥ |F(x)−F(y)|

||x−y||∞ =

|
∑n

i=1li(x
(i)−y(i))|

||x−y||∞ = |
∑n

i=1li
(x(i)−y(i))
||x−y||∞ | = |

∑n
i=1li

δSgn(li)
δ | = |

∑n
i=1liSgn(li)| =

∑n
i=1|li|, from which

we have
∑n

i=1|li| ≤
1
θ . (p1) is proved.

Let V = (1, v1, . . . , vn−1)
T ∈ Rn, where |vi| < T for i ∈ [n− 1]. By Lemma A.2, the interior of a linear

region is an open set of dimension n, but an edge of linear region is of dimension ≤ n− 1, so for almost all
vi, the polyline segment B : x0 → x0 + θV → x1 is in the interior of linear regions of F , except a finite
number of points. We assume V is chosen to satisfy the above condition.

(p2). By definition, P1(ϵ0) = ∪h
i=1Ri is a set of linear regions of F . By Lemma A.2, a linear region is a

convex polyhedron. Denote the directed line segment x0 → x0 + θV = 0 → θV by D. Then Di = D ∩Ri

is also a directed line segment, and hence D ∩ P1(ϵ0) = ∪h
i=1Di. Then it holds

Hϵ0 ≜ H1-length(D ∩ P1(ϵ0)) =

h∑
i=1

H1-length(Di) ≥ θ − ϵ1/3 =
1

ϵ+ 2
− ϵ1/3. (22)

For a linear region R, if tV ∈ R, let U(t) = F(x0 + tV ) = F(tV ) = (
∑n

i=2 li(tV )vi + l1(tV ))t+ b(tV ),
where NF,R = (l1(tV ), . . . , ln(tV )) for t ∈ R. Then U(t) is a piecewise linear function in t and li(tV ) is
piecewise constant for each i. When the segment D is in the interior of linear regions except a finite number
of points, we can calculate the derivatives of U(t); that is, U ′(t) = ∇F(tV )

∇t =
∑n

i=2(li(tV )vi) + l1(tV ).

We thus have
F(x0)−F(x0 + θV ) = F(0)−F(θV ) = U(0)− U(θ)

=
∫ θ

0
U ′(t)dt

=
∫ θ

0
l1(tV ) +

∑n
i=2 li(tV )vidt

≤
∫ θ

0
l1(tV ) +

∑n
i=2 |li(tV )|Tdt (by |vi| ≤ T )

≤
∫ θ

0
l1(tV ) + (2 + ϵ− l1(tV ))Tdt by (p1).

(23)

Since Lip∞(F) ≤ 2+ϵ and θ < 0.5, we have F(x0+θV )−F(x1) ≤ (2+ϵ)||x1−θV ||∞ = (2+ϵ)(1−θ).
Thus by equation 23, we have∫ θ

0
(l1(tV ) + (2 + ϵ− l1(tV ))T )dt+ (2 + ϵ)(1− θ)

≥ (F(x0)−F(x0 + θV )) + (F(x0 + θV )−F(x1))
= 2.

Since T < 1, we have that

(k1) if l1(tV ) ≥ ϵ0, then l1(tV ) + (2 + ϵ− l1(tV ))T ≤ 2 + ϵ;

(k2) if l1(tV ) < ϵ0, then l1(tV ) + (2 + ϵ− l1(tV ))T ≤ ϵ0 + (2 + ϵ− ϵ0)T .

Note that theH1-length ofD is θ. Since theH1-length ofD∩P1(ϵ0) isHϵ0 , theH1-length ofD\D∩P1(ϵ0)
is θ −Hϵ0 . Then we have∫ θ

t=0
(l1(tV ) + (2 + ϵ− l1(tV ))T )dt

≤
∫ θ

t=0
(2 + ϵ)I(l1(tV ) ≥ ϵ0) + (ϵ0 + (2 + ϵ− ϵ0)T )I(l1(tV ) < ϵ0)dt

= (2 + ϵ)Hϵ0 + (ϵ0 + (2 + ϵ− ϵ0)T )(θ −Hϵ0),

so
(2 + ϵ)Hϵ0 + (ϵ0 + (2 + ϵ− ϵ0)T )(θ −Hϵ0) + (2 + ϵ)(1− θ) ≥ 2,

from which we can deduce Hϵ0 ≥ θ − ϵ
(2+ϵ−ϵ0)(1−T ) .
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Since ϵ0 = 2 + ϵ − ϵ1/3 and T < 1 − ϵ1/3, we have that Hϵ0 ≥ θ − ϵ
(2+ϵ−ϵ0)(1−T ) = θ − ϵ

ϵ1/3(1−T )
=

θ − ϵ2/3

1−T ≥ θ − ϵ2/3

ϵ1/3
= θ − ϵ1/3. Property (p2) is proved.

Consider the directed segments D1 : x0 → x0 + θE1 = 0 → θE1 and D2 : x0 → x0 + θE2 = 0 → θE2,
whereE1 = (1, T ′, ϵ1, . . . , ϵn−2)

T ,E2 = (T ′, 1, ϵ1, . . . , ϵn−2)
T , T ′ ∈ (1−2ϵ1/3, 1−ϵ1/3), and |ϵi| < ϵ1/3θ

for i ∈ [n − 2]. Similar to (p2), E1 and E2 are chosen such that D1 and D2 are in the interior of linear
regions of F , except a finite number of points.

Let I = ((1/2 − 3ϵ1/3)θ, (1/2 + 3ϵ1/3)θ) and denote the length of I as |I|. From ϵ1/3 < 1
120 , we have

θ > 1/3, so |I| > 2ϵ1/3. Let Ii be the set of η ∈ I such that ηEi is in Pi(ϵ0) for i = 1, 2. By property (p2),
the H1-length of the segment D1 \P1(ϵ0) is at most ϵ1/3 and the total H2-length of the segments D2 \P2(ϵ0)
is at most ϵ1/3; that is, |I/Ii| ≤ ϵ1/3. Then |I1 ∩ I2| = |I \ ((I/I1) ∪ (I/I2))| ≥ |I| − |I/I1| − |I/I2| > 0;
that is, I1 ∩ I2 ̸= ∅. We thus have

(p3). There exists an η ∈ I1 ∩ I2, such that qi = ηEi ∈ Pi(ϵ) for i = 1, 2.

Suppose qi is in the linear region Ri and NF,i is the normal vector of F over Ri for i = 1, 2. It is easy to see
that |N (1)

F,1| ≥ ϵ0, |N (2)
F,1| ≤ ϵ1/3, |N (2)

F,2| ≥ ϵ0, and |N (1)
F,2| ≤ ϵ1/3. So ||NF,1−NF,2||∞ ≥ |N (1)

F,1−N
(1)
F,2| ≥

ϵ0 − ϵ1/3 > 1.

By Lemma A.2 and the fact that F is of width ≤ C, there exists a Us such that

||Us||∞ ≥ ||NF,1 −NF,2||∞
C

>
1

C
and Ss(R1) ̸= Ss(R2),

where Ss is defined in Definition A.1. We will show that Us satisfies the condition of the lemma.

There exists a λ0 ∈ (0, 1) such that Us(λ0q1 + (1− λ0)q2) + bs = 0. Let q3 = λ0q1 + (1− λ0)q2. It is easy
to check that:

(v1) ||q3||∞ ≤ maxi=1,2 ||qi||∞ ≤ η.

(v2) |q(j)3 | ≥ mini=1,2 |q(j)i | ≥ T ′η for j = 1, 2.

Since Usq3 + bs = 0, Usx+ bs = 0 has solution in B∞(0, 2).

Therefore, it suffices to prove equation 20, We first prove

(p4). 0.5+4ϵ1/3

0.5−5ϵ1/3
|U (2)

s | < |U (1)
s | is not valid.

If it is valid, let qt ∈ Rn be defined as q(1)t = q
(1)
3 +

U
(2)
i (−θ+q

(2)
3 )

U
(1)
s

, q(2)t = θ, and q(k)t = q
(k)
3 when k > 2. It

is easy to see that, Usqt + bi = 0.

By Lemma A.4, there exist qy and v such that ||qy−qt||∞ < 0.25ϵ1/3θ and ||v||∞ < 0.25ϵ1/3θ. Furthermore,
set pλ = λq3+(1−λ)(qy + v) and qλ = λq3+(1−λ)(qy − v) for λ ∈ [0, 1]. Let I3 be the set of λ ∈ [0, 1],
such that pλ is in the interior of a linear region R1,λ, qλ is in the interior of a linear region R2,λ, and R1,λ

and R2,λ are neighboring linear regions with boundary (Us, bs). Then |I3| ≥ 0.5.

We prove the properties (p41) and (p42) before proving (p4).

(p41). The total H2-length of the segments in {q3 → qy + v}/P2(ϵ0) is ≤ ϵ1/3. The total H2-length of the
segments {q3 → qy − v}/P2(ϵ0) is ≤ ϵ1/3.
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We just prove the result for q3 → qy + v, and the proof for q3 → qy − v is the same. Since

|q(1)t − q
(1)
3 |

= |U
(2)
s (−θ+q

(2)
3 )

U
(1)
s

|

≤ 0.5−5ϵ1/3

0.5+4ϵ1/3
|θ − q

(2)
3 |

≤ 0.5−5ϵ1/3

0.5+4ϵ1/3
|θ − T ′η| (by (v2))

< 0.5−5ϵ1/3

0.5+4ϵ1/3
(1− (0.5− 3ϵ1/3)(1− 2ϵ1/3))θ

< (0.5− 5ϵ1/3)θ

and
|q(2)3 | ≤ |η| (by (v1)) ≤ (0.5 + 3ϵ1/3)θ,

we have that
|q(1)y + v(1) − q

(1)
3 |

≤ |q(1)t − q
(1)
3 |+ ||v||∞ + |q(1)t − q

(1)
y |

≤ 0.5ϵ1/3θ + (0.5− 5ϵ1/3)θ

= (0.5− 4.5ϵ1/3)θ

and
|q(2)y + v(2) − q

(2)
3 |

≥ |q2t − q
(2)
3 | − ||v||∞ − |q(1)t − q

(1)
y |

≥ (θ − (0.5 + 3ϵ1/3)θ)− 0.5ϵ1/3θ

= −0.5ϵ1/3θ + (0.5− 3ϵ1/3)θ

= (0.5− 3.5ϵ1/3)θ,

(24)

which implies |q(1)y + v(1) − q
(1)
3 | ≤ 0.5−4.5ϵ1/3

0.5−3.5ϵ1/3
|q(2)y + v(2) − q

(2)
3 | ≤ (1− 2ϵ1/3)|q(2)y + v(2) − q

(2)
3 |.

For j > 2, we have |q(j)y +v(j)−q(j)3 | ≤ ||v||∞+ ||qy−qt||∞+ |q(j)t −q(j)3 | ≤ 0.5ϵ1/3θ ≤ (1−2ϵ1/3)(0.5−
3.5ϵ1/3)θ ≤ (1− 2ϵ1/3)|q(2)y + v(2) − q

(2)
3 |; that is, for any j ̸= 2, we have

|q(j)y + v(j) − q
(j)
3 |

|q(2)y + v(2) − q
(2)
3 |

≤ 1− 2ϵ1/3.

Consider the polyline segment x0 → q3 → qy + v → x1. The segment q3 → qy + v can be written as

q3 → q3 + (qy + v− q3), and because
|q(j)y +v(j)−q

(j)
3 |

|q(2)y +v(2)−q
(2)
3 |

≤ 1− 2ϵ1/3 for any j ̸= 2, qy + v− q3 can be written

as (q(2)y + v(2) − q
(2)
3 )(v1, 1, v2, . . . , vn−1)

T ∈ Rn, where vi =
q(i)y +v(i)−q

(i)
3

q
(2)
y +v(2)−q

(2)
3

and |vi| = | q
(i)
y +v(i)−q

(i)
3

q
(2)
y +v(2)−q

(2)
3

| <

T = 1− ϵ1/3 for i ∈ [n− 1]. So similar to Property (p2), we have

2 = (F(x0)−F(q3)) + (F(q3)−F(qy + v)) + (F(qy + v)−F(q2))

≤ (2 + ϵ)||q3||∞ +
∫ ||qy+v−q3||∞
0

l2(q3 + t(qy + v − q3))
+(1− ϵ1/3)(2 + ϵ− l2(q3 + t(qy + v − q3)))dt
+(1− ||qy + v||∞)(2 + ϵ).

Since
|q(j)y +v(j)−q

(j)
3 |

|q(2)y +v(2)−q
(2)
3 |

≤ 1 − 2ϵ1/3 < 1 − ϵ1/3 for any j ̸= 2. Similar to (p2), we find that {q3 →

qy + v}/P2(2 + ϵ− ϵ3) has H2-length at most ϵ1/3. For qy − v, we have the same result. This proves (p41).
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(p42). There exists a λ ∈ [0, 1] such that Ri,λ ∈ R2(ϵ0) are neighboring linear regions with boundary
(Us, bs), where i = 1, 2.

Let I4 ⊂ [0, 1] be the set of λ such that R1,λ and R2,λ are in R2(ϵ0) and are neighboring regions with
boundary (Us, bs). First, we prove (w1) and (w2).

(w1). There exists a set I5 ⊂ [0, 1] with length at least 1− ϵ1/3

|q(2)3 −(q
(2)
y +v(2))|

such that, when λ ∈ I5, R1,λ is

in R2(ϵ0).

As defined in (p4),R1,λ is the linear region containing pλ = λq3+(1−λ)(qy+v) = qy+v+(−qy−v+q3)λ,
so x ∈ [0, 1] \ I5 if and only if px ∈ {q3 → qy + v} \ P2(ϵ0). Then we just need to show that: the
length of [0, 1] \ I5 is at most ϵ1/3

|q(2)3 −(q
(2)
y +v(2))|

, which follows from the fact that the H2-length of set

{q3 → qy + v}/P2(ϵ0) is at most ϵ1/3, as shown in (p41).

(w2). There exists a set of intervals I6 ⊂ [0, 1] with length at least 1 − ϵ1/3

|q(2)3 −(q
(2)
y −v(2))|

such that, when

λ ∈ I6, R2,λ is in R2(ϵ0), which can be proved similar to (w1).

From the definitions of I3, I4, I5, I6, we have I4 = I3 ∩ I5 ∩ I6 = I3 \ (([0, 1] \ I5) ∪ ([0, 1] \ I6)).
By properties (w1), (w2), Lemma A.4, and equation 24, |I4| = |I3 \ (([0, 1] \ I5) ∪ ([0, 1] \ I6))| ≥
0.5− ϵ1/3

|q(2)3 −q
(2)
y −v(2)|

− ϵ1/3

|q(2)3 −q
(2)
y +v(2)|

≥ 0.5− 2ϵ1/3

(0.5−3.5ϵ1/3)θ
> 0. Thus there exists a λ ∈ I4 and (p42) is

proved.

We now prove (p4). Let vRi be the normal vector of F over Ri,λ. Then by property (p42), we know that Ri,λ

are neighboring linear regions with boundary (Us, bs), where i = 1, 2, so ||vR1
− vR2

||∞ = ||Us||∞ > 1
C .

On the other hand, still by (p42), Ri,λ are in R2(ϵ0), so we have |v(k)R1
− v

(k)
R2

| < 2ϵ1/3 < 1
C when k ̸= 2 and

|v(2)R1
− v

(2)
R2

| < (2 + ϵ)− (ϵ0) = ϵ1/3 < 1
C , which means ||vR1

− vR2
||∞ < 1

C . A contradiction is obtained
and (p4) is proved.

(p5). 0.5+4ϵ1/3

0.5−5ϵ1/3
|U (1)

s | ≤ |U (2)
s | is not valid. This can be proved similar to property (p4).

(p6). If 0.5+4ϵ1/3

0.5−5ϵ1/3
≥ |U(1)

s |
|U(2)

s |
≥ 0.5−5ϵ1/3

0.5+4ϵ1/3
, then there exists no j > 2 such that |U(j)

s |
max(|U

(2)
s |,|U(1)

s |)
≥ 12ϵ1/3

1−2ϵ3 .

Assume |U2
s | ≥ |U1

s | and define a point qt: q
(1)
t = θ, q(2)t = q

(2)
3 + (1 − 12ϵ1/3)

U(1)
s (q

(1)
3 −θ)

U
(2)
s

, q(j)t =

q
(j)
3 + 12ϵ1/3

U(1)
s (q

(1)
3 −θ)

U
(j)
s

for a j > 2. Then (p6) can be proved similar to (p4).

We now prove equation 20. Since properties (p4), (p5), (p6) are always false, it must hold that 0.5+4ϵ1/3

0.5−5ϵ1/3
≥

|U(1)
s |

|U(2)
s |

≥ 0.5−5ϵ1/3

0.5+4ϵ1/3
and |U(j)

s |
max(|U(2)

s |,|U(1)
s |)

< 12ϵ1/3

1−2ϵ3 for any j > 2. Then equation 20 and the lemma are

proved.
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