
Statistically and Computationally Efficient Linear
Meta-representation Learning

Kiran Koshy Thekumparampil†, Prateek Jain‡, Praneeth Netrapalli¶, Sewoong Oh± ∗
†University of Illinois at Urbana-Champaign, ‡Google Research India,
¶Microsoft Research India, ±University of Washington, Seattle

Abstract

In typical few-shot learning, each task is not equipped with enough data to be
learned in isolation. To cope with such data scarcity, meta-representation learn-
ing methods train across many related tasks to find a shared (lower-dimensional)
representation of the data where all tasks can be solved accurately. It is hypothe-
sized that any new arriving tasks can be rapidly trained on this low-dimensional
representation using only a few samples. Despite the practical successes of this
approach, its statistical and computational properties are less understood. Recent
theoretical studies either provide a highly suboptimal statistical error, or require
many samples for every task, which is infeasible in the few-shot learning setting.
Moreover, the prescribed algorithms in these studies have little resemblance to
those used in practice or they are computationally intractable. To understand and
explain the success of popular meta-representation learning approaches such as
ANIL [43], MetaOptNet [36], R2D2 [9], and OML [33], we study a alternating
gradient-descent minimization (AltMinGD) method (and its variant alternating min-
imization (AltMin) in the Appendix) which underlies the aforementioned methods.
For a simple but canonical setting of shared linear representations, we show that
AltMinGD achieves nearly-optimal estimation error, requiring only Ω(polylog d)
samples per task. This agrees with the observed efficacy of this algorithm in the
practical few-shot learning scenarios.

1 Introduction

Common real world tasks follow a long tailed distribution where most of the tasks only have a small
number of labeled examples [51]. Collecting more clean labels is often costly (e.g., medical imaging).
As each task does not have enough examples to be learned in isolation under this few-shot learning
scenario, meta-learning attempts to jointly learn across a large number of tasks to exploit some
structural similarities among those tasks.

One popular approach is to learn a shared representation, where new arriving tasks can be solved
accurately [45]. The premise is that (i) there is a shared low-dimensional representation fU (x) ∈ Rr
represented by a task-independent meta-parameterU and (ii) a simple linear model of 〈vi, fU (x)〉 can
make accurate prediction on the i-th task with a task-specific parameter vi. Once the representation
fU has been learnt, we can rapidly adapt to new arriving tasks as the representation dimension r
is much smaller than the dimension d of the input data. This approach is becoming increasingly
popular with a growing list of recent applications [33, 36, 9, 42, 43, 27, 47, 14, 13, 18] and has
been empirically shown to achieve the state-of-the-art performances on benchmark few-shot learning
datasets [47, 14, 43].
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These successes rely on a simple but effective training algorithm which alternately updates U and
{vi} which we call AltMinGD (Alternating Minimization and Gradient Descent). Suppose we are
given t tasks, and the i-th task is associated with a dataset {(x(i)j ∈ Rd, y(i)j )}mj=1 of size m. In
this paper, we closely follow the formulation of [47], which solves for a function fU : Rd → Rr
(typically a deep neural network) and a task-specific linear model vi ∈ Rr on a choice of a loss `(·, ·):

min
U

{ ∑
i∈[t]

min
vi∈Rr

∑
j∈[m]

`(〈vi, fU (x
(i)
j )〉, y(i)j )

}
, (1)

by alternately applying a (stochastic) gradient descent step of U in the outer loop (for given vi’s) and
numerically finding the optimal solution vi in the inner loop (for a given U ). Several closely related
algorithms have been proposed, including separating training-set used for the inner loop and the
validation-set used for the outer-loop [43, 36, 9, 5], early stopping the inner-loop [33], applying to
datasets with imbalanced data sizes [42, 14], and proposing new architectures and regularizers [27].
There is an increasing list [47, 14, 43] of numerical evidences showing that these meta representation
learning improves upon competing approaches including MAML [20] and its variants [23, 32, 39].
Further, [43] provides experimental evidences that shared representation is the dominant component
in the efficacy of MAML [20], even though MAML does not explicitly seek a shared representation.

In this paper, we analyze the computational and statistical properties of AltMinGD and its variant
AltMin under the simple but canonical setting of learning a shared linear representation for linear
regression tasks [48]. The fundamental question of interest is: as the number of tasks grow, does
AltMinGD learn the underlying r-dimensional shared representation (subspace) more accurately, and
consequently make more accurate predictions on new tasks? This question is critical in explaining
the empirical success in few-shot learning where the number of tasks in the training set is large
while each of those tasks is data starved. Further, in settings like crowdsourcing or bioinformatics,
collecting more data on new tasks is easier than collecting more data on existing tasks.

Contributions. We analyze the widely adopted AltMinGD and prove a nearly optimal error rate. We
show that AltMinGD requires only m = Ω(log t+ log log(1/ε)) samples per task to achieve an error
of ε in estimating the representation U when we have a large enough number t of tasks in the training
data and assuming a constant dimensionality r = O(1) of the representation. Under this condition,
AltMinGD achieves an error decaying as Õ(σ

√
d/mt), which nearly matches the fundamental lower

bound. Together, these analyses imply that AltMinGD is able to compensate for having only a few
samples per task (small m) by having many few-shot tasks (large t), significantly improving the
state-of-the-art (see Table 1). Note that the log log(1/ε) dependence of m is hidden in the Ω̃ notation
and is not explicitly visible from our main theorems or the table. A fine grained analysis showing this
dependence is provided in Theorem 9 in Appendix C.

We follow the proof strategy of alternating minimization algorithms for matrix sensing [30, 38], but
there are important differences making the analysis challenging. First, the meta-learning dataset does
not satisfy Restricted Isometry Property (RIP) central in the existing matrix sensing analysis, and
hence none of the technical lemmas can be directly applied. We leverage on the task diversity property
in Assumption 2, to prove all necessary concentration bounds. Next, there is an inherent asymmetry
in the problem; we require accurate estimation of U for generalization to new arriving tasks (which is
the primary goal of meta-learning), but we do not necessarily require accurate estimation of vi’s. We
exploit this to ensure accurate estimation of U with a small m.

Our analysis of AltMinGD leads to a fundamental theoretical question: is the condition m = Ω(log t)
necessary? We introduce a variation AltMinGD-S, which at each iteration selects a subset of tasks
that are well-behaved (covering the r-dimensional subspace of current estimated U ) and uses (the
empirical risk of) only those tasks in the update. While log t dependence is unavoidable if we require
all t tasks to be well-behaved, ensuring a large fraction to be well-behaved requires smaller m. When
the noise is sufficiently small with variance O(1/ log t), we show that AltMinGD-S requires only
m = Ω(log log(1/ε)) (with no dependence on t) to estimate the shared representation accurately.

Inspired by a long line of successes in matrix completion and matrix sensing [30], we also analyze a
variation of AltMinGD that alternately applies minimization for U and {vi} updates, which we call
AltMin, and prove a slightly improved guarantees at an extra computational cost of a factor of dr2.

Notations: [n] = {1, 2, . . . , n}. ‖A‖ and ‖A‖F denote the spectral and Frobenius norms of a matrix
A. 〈A,B〉 denotes the inner product. A† is the Moore-Penrose pseudoinverse. x ∼ N (0, Id×d) means
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that x is a d dimensional standard isotropic Gaussian random vector. Õ, Ω̃ and Θ̃ hide logarithmic
terms in dimension d, rank r, tolerance ε and other problems parameters.

1.1 Related work

There is a large body of work in meta-learning since the seminal work in learning to learn [46],
inductive bias learning [7], and multitask learning [12]. One popular approach starting from [28, 6]
is to learn a shared low-dimensional representation for a set of related tasks. This is becoming
increasingly popular with empirical successes in the few-shot learning scenarios [33, 36, 9, 42, 43,
27, 47, 14].

Linear representation learning. In this paper, we show that the popular AltMinGD algorithm for
solving meta representation learning, achieves near-optimal error rate and sample complexity when
applied to recovering linear representations, i.e. fU (x) = UTx. This problem has been studied in
[3, 44, 40] and Nuclear-norm minimization approaches are proposed in [4, 24, 2, 41] but they do not
provide subspace/generalization error guarantees and suffer from large training time. Closest to our
work are [48, 35, 34, 19] which propose new algorithms with statistical guarantees. We also point
out a concurrent and independent work [16], which also analyzes AltMinGD but for a special case of
the noiseless setting. Authors empirically showed that AltMinGD performs better than other baseline
federated learning algorithms for neural meta-representation learning on some datasets. We compare
these results with our guarantees in Section 4.1.

Competing against meta-representation learning approaches listed above are the bi-level optimization
based methods. A pioneer in this direction is MAML [20], which is analyzed under linear regression
tasks in [15, 21, 8, 22]. [15] and [21] identify that MAML outperforms a simple Empirical Risk
Minimization (ERM) when tasks are heterogeneous in their respective level of difficulty. [8] shows
that, perhaps surprisingly, negative learning rate is optimal for MAML applied to linear regression
tasks, where zero learning rate corresponds to the standard ERM.

Matrix sensing. Starting from matrix sensing and completion problems [11, 37, 30], recovering
a low-rank matrix from linear measurements has been a popular topic of research. Linear meta-
learning is a special case of matrix sensing, but with a non-standard sensing operator of the form
A(UV T ) = [A1(UV T ), . . . , Amt(UV

T )] where Aij(UV T ) = 〈xije>i , UV >〉. This operator does
not satisfy restricted isometry property in general, and existing matrix sensing results do not apply.
Similar sensing operators have been studied in [29, 52] which gives m = Ω(d). We provide a
significantly tightened analysis to require only m = Ω(log t+ log log(1/ε)).

2 Problem Formulation: Meta-learning of Shared Representation

We focus on the meta-learning problem with a shared linear representation for linear regression tasks.
Let t denote the number of tasks. The i-th task is associated with m samples {(x(i)j ∈ Rd, y(i)j ∈
R)}mj=1. We assume there is a common low-dimensional representation (U∗)Tx of each data point
x, parameterized by U∗ ∈ Rd×r where r � d. The corresponding observation y is sampled by
regressing over the low-dimensional representation (U∗)Tx. Now, in general, learning U∗ is NP-hard
[25]. Instead, similar to [48], we study the problem in the following tractable random design setting.
Assumptions 1. Let U∗ ∈ Rd×r be an orthonormal matrix. For a task i ∈ [t], with task specific
parameter vector v∗(i) ∈ Rr and j-th example x(i)j ∼ N (0, Id×d), its observation is:

y
(i)
j = 〈x(i)j , U∗v∗(i)〉+ ε

(i)
j , (2)

where ε(i)j ∼ N (0, σ2) is the measurement noise which is independent of x(i)j . We denote by
ṽ∗(i) = U∗v∗(i) the model parameter vector for each regression task in d-dimensions. We denote the
matrix of these parameters as: Ṽ ∗ = U∗(V ∗)T where (V ∗)T = [v∗(1), . . . , v∗(t)].

The difficulty of estimating U∗ still depends on the diversity or incoherence of the tasks.
Assumptions 2. Let λ∗1 and λ∗r denote the largest and smallest eigenvalues of the task diversity
matrix (r/t)(V ∗)TV ∗ ∈ Rr×r respectively. Let κ = λ∗1/λ

∗
r . We say that V ∗ is µ-incoherent if

max
i∈[t]
‖v∗(i)‖2 ≤ µλ∗r . (3)
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To estimate the subspace U , we minimize the empirical risk of the t tasks in the training data, over the
meta-parameter U ∈ Rd×r and the task-specific model parameters V = [v(1), . . . , v(t)]T ∈ Rt×r:

L(U, V ) =

t∑
i=1

m∑
j=1

1

2

(
y
(i)
j −

〈
Uv(i), x

(i)
j

〉)2
. (4)

The problem is non-convex due to the bi-linearity of Uand V . We are interested in the few-shot
learning setting where the goal is to learn the representation accurately despite a small number of
samples per task in the training data. Now, even if the representation U∗ is known a priori, we would
require O(r) samples per task to learn the parameter v. Furthermore, information theoretically the
total number of samples m · t should scale at most linearly with the data dimension d.

3 Alternating minimization

We focus on AltMinGD from [47], which learns a shared parameterized representation fU (·) as in
(1). Several variations of this algorithm are widely used, for example [43, 36, 9]. However, we note
that these previous works neither referred to this algorithm as AltMinGD, nor explicitly related it
to the Alternating Minimization (AltMin) framework [30]. To highlight this connection we follow
the notations from the latter [30]. AltMinGD alternately updates the matrix of regression parameters
V using exact minimization with fixed U , and updates the representation parameter U using the
standard gradient descent step. Concretely,

v(i) ∈ arg min
v∈Rr

∑
j∈[m]

`(〈v, fU (x
(i)
j )〉, y(i)j ) ,∀i ∈ [t] ,

U ← U − η
∑
i∈[t]

∑
j∈[m]

∇U `(〈v(i), fU (x
(i)
j )〉, y(i)j ) .

As `(·, ·) is typically a convex function, we can estimate v(i) efficiently for a fixed U . Note that many
methods used in practice (ANIL [43] and MetaOptNet [36]) back-propagate through their respective
inner (potentially inexact) optimization step. However, since we do exact inner minimization with
respect to V , by a generalization of the Danskin’s theorem [10], back-propagating through the
inner minimization is equivalent to computing the gradient ∇UL(U, V ) with respect to U and then
setting V = V ∗(U), where V ∗(U) ∈ arg minV L(U, V ) is the minimizer for the current U . That is,
∇U minV L(U, V ) = ∇UL(U, V ∗(U)). For the linear representation learning problem specified in
Section 2, the above updates reduce to the following:

v(i) ∈ arg min
v

∑
j

(y
(i)
j − 〈x

(i)
j , Uv〉)2 , for all i ∈ [t] ,

U ← U − η∇UL(U, V ) = U + η
∑
i,j

(y
(i)
j − 〈x

(i)
j , Uv(i)〉)x(i)j (v(i))> .

Given U , we can efficiently estimate each of the low r-dimensional regression parameters v(i)’s
separately and in parallel using standard least squares regression. Our analysis requires that when
we update V for current U , U should be independent from the training points. Similarly, during the
update for U , V should be independent of the data points. We ensure the independence using two
strategies: (a) similar to standard online meta-learning settings [20], we randomly select (previously
unseen) tasks to update U and V , (b) within each task, we divide the datapoints into two sets to
update V and U separately. But in our experiments, we re-used all the samples at each iteration.
Algorithm 1 presents a pseudo-code of AltMinGD applied to Problem (4). Note that in Algorithm 1,
we apply QR-decomposition on U after every U update to ensure that magnitude of U and V does
not stray far away from that of true U∗ and V ∗, respectively. Otherwise, the sample complexity
requirements of the algorithm increase in the condition number factors.

Run-time and memory usage: Exact update for v(i) has a time complexity of O(mr2 + r3), which
can be brought down to O(m · r) by using gradient descent for solving the least squares. Our analysis
shows that under the sample complexity assumptions of Theorem 1, each of the least squares problem
has a constant condition number. So, the total number of iterations for this update scale as log 1

ε to
achieve ε error. If we set ε = 1/poly(t, σ), then using standard error analysis, we should be able to
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Algorithm 1 AltMinGD : Meta-learning linear regression parameters via alternating minimization
gradient descent

Required: Data: {(x(i)j ∈ Rd, y(i)j ∈ R)}mj=1 for all 1 ≤ i ≤ t, K: number of steps, η: stepsize.
1 Initialize U ← Uinit

2 Randomly shuffle the tasks {1,. . . ,t}
for 1 ≤ k ≤ K do

3 Tk ← [1 + t(k−1)
K , tkK ]

for i ∈ Tk do
4 v(i) ← arg min

v̂∈Rr

∑
j∈[m/2]

(
y
(i)
j −

〈
Uv̂, x

(i)
j

〉)2
end

5 U ← U + η
∑
i=Tk

m∑
j=1+m

2

(
y
(i)
j −

〈
Uv(i), x

(i)
j

〉)
x
(i)
j (v(i))>

6 U ← QR(U)

end
7 return U

Algorithm 2 AltMinGD-S : Meta-Learning regression parameters via AltMinGD over task subsets

Required: Data: {(x(i)j ∈ Rd, y(i)j ∈ R)}mj=1 for all 1 ≤ i ≤ t, K: number of steps, η: stepsize.
Use the same steps as AltMinGD (Algorithm 1), but replace Line 3 with:

3 Tk ←
{
i ∈ [1 + t(k−1)

K , tkK ]
∣∣ σmax(U>S(i)U) ≤ 2; σmin(U>S(i)U) ≥ 1

2 ;

where S(i) = 2
m

∑
j∈[m/2] x

(i)
j (x

(i)
j )>

}

obtain the optimal error rate in Theorem 9. The gradient descent update for U requires O(mt · dr)
time assuming large enough mt. Furthermore space complexity of AltMinGD is O(dr + t · r2).

We provide an estimate of the statistical efficiency of the AltMinGD in Theorem 1. We also
provide an analysis of the traditional Alternating Minimization algorithm (AltMin) which uses exact
minimization for updating U in the Appendix A. We obtain a slightly improved statistical guarantee
for AltMin in terms of the condition number but its run-time is slower than that of AltMinGD.

3.1 Subset Selection

Algorithm 1 operates over all the tasks in a batch, each of which are generated using a random process.
Now, if the number of tasks t is large, then there is a non-trivial probability that some of the tasks are
outliers, i.e., they have a large amount of error. This might lead to an arbitrary poor solution due to
the outlier tasks. This is reflected in our analysis of AltMinGD (see Theorem 1), where the number
of samples per task grows logarithmically with t which is non-intuitive as typically larger number of
tasks should not hurt the sample complexity.

In more general representation learning problems, when the number of tasks t is large, there is
more chance that some of them are outlier tasks. Ideally we want to design an estimator for shared
representation U that is robust to a few outlier tasks. For the linear representation learning problem,
we observe that to ensure small error for a task, we require the Hessian to be well-conditioned. So,
we compute the eigenvalues of the Hessian U>S(i)U for each task with the current U , and select
only the tasks whose eigenvalues lie close to the expected repeated eigenvalue 1. Algorithm 2 applies
this criteria to select tasks in each iteration, and then use the standard AltMinGD updates on those
selected tasks. This leads to an improved dependence on t as we show in Theorem 3.

Run-time: On top of the run-time complexity of AltMinGD, the subset selection scheme adds an
additiveO(mt ·dr+t ·r3) term. This arises due toO(r3) eigen-decompositions of Ũ>S(i)Ũ ∈ Rr×r
for each task.
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4 Statistical guarantees for Alternating Minimization algorithms

We reiterate that Õ and Ω̃ hide logarithmic terms in d and r and other problem parameters. We
analyze the AltMinGD and AltMinGD-S algorithms using the rescaled Frobenius norm error: ‖(I−
U∗(U∗)>)U‖F /

√
r ∈ [0, 1] between the rank-r subspaces corresponding to the true U∗ and the

output of the algorithm U . We first provide our main results analyzing these algorithms, and present
detailed comparisons to previous results in Section 4.1

AltMinGD: We first present our main result for the AltMinGD method (Algorithm 1), applied to the
linear representation learning problem described in Section 2.
Theorem 1 (Simplified version of Theorem 9 in Appendix C). Let there be t linear regression tasks,
each with m samples satisfying Assumptions 1, 2. Let κ := λ∗1/λ

∗
r and let,

m ≥ Ω̃(r2 + r log t+ κ · (σ/
√
λ∗r)

2r2 log t), t ≥ Ω̃(κ · µ2r3), and

mt ≥ Ω̃(κ · µdr2 + κ3 · µdr2(σ/
√
λ∗r)

2).

Then AltMinGD (Algorithm 1), initialized at Uinit s.t. ‖(I − U∗(U∗)>)Uinit‖F ≤
min(21/121, Õ(1/κ)) and run for K = Ω(dκ log(mt/(κ · µdr · (σ/

√
λ∗r))e) iterations with the

stepsize η = r/t
2λ∗1

, outputs U so that the following holds (w.p. ≥ 1−K/(dr)10):

‖(I− U∗(U∗)>)U‖F√
r

≤ Õ

(√
κ

(
σ√
λ∗r

)√
µd r

m t

)
. (5)

Remark 1 (Initialization): Our result holds if the initial point Uinit is reasonably accurate. One
choice of initialization is to use the Method-of-Moments (MoM) [48]. Due to sub-optimality of MoM
approach ([48, Theorem 3], also provided in Theorem 12 in Appendix), we get an additional sample
complexity requirement of mt ≥ Ω̃(κ2dr2 (µκ+ r(σ/

√
λ∗r)

4). Note that this does not degrade the
asymptotic error rate, Õ(

√
dr/mt) when ε = Õ(

√
dr/mt)→ 0. In our experiments, we observed

that random initialization works just as well. Such a requirement of a good initialization is common
in theoretical analyses of alternating update methods [30, 38], where it has been widely observed that
random initialization works well in practice.

Remark 2 (Generalization in few-shot learning): Learning a shared representation helps in gener-
alizing to new arriving tasks in few-shot learning. Suppose we run Algorithm 1, under the conditions
of Theorem 1 to get an estimated subspace U . Let a new task, whose task specific regression parame-
ter v∗+ lie in U∗, be introduced with m+ samples. Now, we can apply the step 4 of Algorithm 1, with
U and the new samples, to meta-learn an estimate v+ of v∗+. Then the mean-squared-error (MSE)
of the estimated parameter is Õ((σ/

√
λ∗r)(µdr

2/mt+ r/m+)). Therefore, as long as mt is large
enough, we only need m+ = Ω(r) additional samples to get an arbitrarily small MSE, as opposed
to m+ = Ω(d) of the trivial baseline of solving the new task by itself. We also improve upon other
baselines from [48] in terms of dependence on σ and t; see Section 4.1 and Table 1 for more details.

Remark 3 (Near-optimality of the error rate): We note that our error rate matches – up to
poly(κ, µ) factors – the information theoretic lower bound given in Corollary 2.
Corollary 2. [48, Theorem 5] Let r ≤ d/2 and mt ≥ r(d− r), then for all V ∗, w.p. ≥ 1/2

inf
Û

sup
U∈Grr,d

‖(I− U∗(U∗)>)Û‖F√
r

≥ Ω
( 1

κ

σ√
λ∗r

√
d r

m t

)
, (6)

where Gr,d is the Grassmannian manifold of r-dimensional subspaces in Rd, the infimum for Û
is taken over the set of all measurable functions that takes mt samples in total from the model in
Section 2 satisfying Assumption 1 and 2.

However, the sufficient conditions onmt in Theorem 1 has a factor r gap from the necessary condition
above, which we discuss with a concrete example in the next remark.

Remark 4 (Gaussian example): Let us interpret our result using a concrete example. Consider
independent Gaussian parameters v∗(i) ∼ N (0, (1/r)Ir×r) such that the signal-to-noise ratio (i.e.,
xTU∗v∗(i)/σ2) is independent of r. Then with high probability ‖v∗(i)‖ = Θ̃(1) and λ∗1 = λ∗r =
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Θ̃(1). It follows that as per Assumption 2 the condition number κ = Θ̃(1) and µ = Θ̃(1). To
estimate U∗ up to an ε error, AltMinGD needs a total of mt = Õ(dr2 + σ2dr/ε2) samples. The
second term is dominant for small ε and is optimal, which follows from the near-optimality in Remark
2. However, it is an open question if the first term is necessary, as the best known lower bound in the
noiseless case will require mt = Ω(dr). In this well-behaved Gaussian case, AltMinGD requires
m ≥ Ω̃(r2 + (1 + σ2)r log t) per task samples.

Remark 5 (Dependence on the minimum eigenvalue): Notice that in the limit of λ∗r → 0, V ∗ is
rank deficient, thus making it impossible to recover the entire subspace of U∗. This is reflected in our
Theorem 3 where the error-rate approaches the maximum possible value of one as λ∗r approaches zero
(the LHS of Eq. (5) is at most one). However, for prediction error, smaller rank of V ∗ implies smaller
dimensional representation to be learned, thus the prediction error bound should improve with lower
λ∗r (and also smaller rank of V ∗). Proving a tight guarantee in the prediction error is more challenging
and most of the existing results in matrix sensing literature [29] only provide guarantees in parameter
estimation error. On the contrary, the lower-bound in (6) becomes zero as λ∗r decreases, implying
that the lower-bound is significantly weaker in λ∗r . This is expected since the lower-bound is derived
through a lower-bound for the corresponding subspace regression loss. Intuitively when λ∗r = 0 the
tasks become less diverse (more homogeneous), and therefore the regression becomes easier. Such
condition number mismatch in upper and lower-bounds are common in low-rank literature [30].

Task subset selection (AltMinGD-S): One downside of Algorithm 1 is that m needs to increase with
t (i.e., m = Ω(log t)). We introduce AltMinGD-S in Algorithm 2 to study a fundamental question
of whether this log t dependence is necessary. We show that when the noise is sufficiently small,
AltMinGD-S achieves a per task sample complexity that does not increase with t.
Theorem 3 (Simplified version of Theorem 11 in Appendix D). Consider the setting of Theorem 1.
Let κ := λ∗1/λ

∗
r .

m ≥ Ω̃(r2 + κ · (σ/
√
λ∗r)

2r2 log t), t ≥ Ω̃(κ · µ2r3), and

mt ≥ Ω̃(κ · µdr2 + κ3 · µdr2(σ/
√
λ∗r)

2).

Then AltMinGD (Algorithm 2), initialized atUinit s.t. ‖(I−U∗(U∗)>)Uinit‖F ≤ min(21/121, Õ( 1
κ ))

and run forK = Ω(dκ log(mt/(κ · µdr · (σ/
√
λ∗r))e) iterations using the stepsize η = r/t

2λ∗1
, outputs

U so that the following holds (w.p. ≥ 1−K/(dr)10):

‖(I− U∗(U∗)>)U‖F√
r

≤ Õ

(√
κ

(
σ√
λ∗r

)√
µd r

m t

)
. (7)

Remark 7 (Bias of Subset Selection): One may observe that this scheme may introduce a bias in
the training data at each iteration. However, we control this bias by adding a new requirement that the
number of tasks should be at least t ≥ Ω̃(κ · µ2r3) (Theorem 6). This ensures that the only a small
O(1/µr) fraction of the tasks are discarded at each step (Lemma D.1 in the Appendix D.1), and this
leads to a low bias. This requirement may be insignificant in our regime of interest where the number
of tasks may be exponentially large, so that AltMinGD-S can provide a gain over AltMinGD.

Remark 6 (When noise is small enough): Note that when the noise variance σ is small enough or
when there are large number of tasks, i.e. σ2 � O(1/log t), AltMinGD-S only needs m ≥ Ω̃(r2)
samples per task, assuming suitable initialization (see Remark 1). Furthermore, since AltMin-S
selects a fraction of tasks to perform updates and the selection process requires onlyO(mt ·dr+t ·r3),
the time-complexity of the method remains same as that of AltMinGD, up to constant factors. Next
we see that AltMinGD-S removes the dependence of m on t completely, in the noiseless setting.
Corollary 4. Let there be t linear regression tasks, each with m samples satisfying Assumptions 1, 2,

m ≥ Ω̃(r2), t ≥ Ω̃(µ2r3K), and mt ≥ Ω̃(µdr2K).

Additionally assume that the observations are noiseless, i.e. σ = 0. Then AltMinGD-S (Algorithm 2),
initialized at Uinit s.t. ‖(I− U∗(U∗)>)Uinit‖F ≤ min(21/121, Õ(1/κ)) and run for K iterations
using the stepsize η = 1

2λ∗1
, outputs U so that the following holds (w.p. ≥ 1−K/(dr)10):

‖(I− U∗(U∗)>)U‖F√
r

≤ (1− 1

6κ
)KÕ (κ) . (8)
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The above corollary shows that in the noiseless setting, the per-task sample complexity for AltMinGD-
S does not grow with t, and is nearly optimal. Also note that that even for noiseless setting, tech-
niques like Method-of-Moments (MoM) still incur error of

√
dr/mt, ignoring κ terms. In contrast,

AltMinGD-S when initialized using MoM method (see Remark 1)), incurs just Õ(exp(−t/κ)) error.
Proofs of Theorems 1 & 3 are in Appendix C.1 & Appendix D.1.

4.1 Sample complexity comparison

To the best of our knowledge, Theorems 1 and 3 presents the first analysis of an efficient method
for achieving optimal error rate in σ, d and r. [48] is most relevant that analyzes the landscape of
the Empirical Risk Minimization (ERM) with Burer-Monteiro factorization. It shows that ERM
can achieve a rescaled Frobenius norm error of ε with t tasks (assuming t ≥ d), when m ≥
Ω̃(r4 log(t) + r2 log(t)σ2/ε2). We stress that this is highly sub-optimal as for small estimation
ε, more tasks do not help improve the per-task sample complexity. This also does not reconcile
with practice where more tasks tend to help accuracy and helps overcome small number of samples
per-task. In contrast, AltMinGD requires m ≥ Ω̃(r2(1 + σ2) log(t) + (r2σ2/ε2)(d/t)) where small
error ε can be achieved by collecting more tasks and increasing t. [19] studies the global minimizer
of the non-convex ERM optimization in Eq. (4), without providing an efficient algorithm to solve it.
The authors show that non-convex ERM achieves a small generalization error if m = Ω̃(d), which is
impractical in the few-shot learning setting.

Another approach is Method-of-Moments (MoM), which estimates U by finding the principal
directions of a particular 4th moment of the data [48, 35]. MoM can indeed trade-off smaller error
ε by increasing the number of tasks t. But the algorithm is inexact, i.e., even for σ = 0, we need
m→∞ to achieve exact recovery of U∗; see Appendix G. This is in a stark contrast with AltMinGD
and AltMinGD-S where for noiseless case, we can find U∗ exactly, as long as m = O(r log t+ r2)
and t = O(dr); see Figure 1a for an illustration. We consolidate these comparisons in Table 1.

Finally, a concurrent and independent work by [16] also analyzes AltMinGD but only for the special
case when there is no noise, i.e., σ = 0. We show tighter results that are more generally applicable:
(i) our analysis applies to general noise σ that is not necessarily zero, (ii) even in the noiseless case,
our analysis of AltMinGD is tighter and shows a smaller sample complexity, and (iii) we present
novel AltMinGD-S that further improves the sample complexity. Precisely, in the noiseless case,
[16] proves that m = Ω̃(κ2 · r3 log t) is sufficient for finding U∗ with a large enough t. Our tighter
analysis shows that m = Ω̃(r log t+ r2) (Theorem 1) is sufficient with no dependence in κ. Note
that the condition number κ > 1 and can be arbitrarily large depending on the problem instance.
Further, we present a novel algorithm, AltMinGD-S , that only requires m ≥ Ω̃(r2) (Corollary 4).

Table 1: Comparison of per-task sample complexity results m(t, ε) to reach ε error when solving
linear meta-representation learning with t tasks, d dimensions, subspace rank r = O(1) and noise
variance σ2 (Sections 4, 2); let t > d. We also report if the prescribed algorithm is computationally
tractable and extendable to practical neural-net setting. AltMinGD-S relies on the eigen values of the
data when projected onto U and cannot be directly applied to neural networks.

Analysis Per-task sample complexity m(t, ε) Tractable? Practical?

Non-convex ERM [19] Ω̃(d+ log(t) + σ2

ε2
) No –

Burer-Monteiro ERM [48] Ω̃(log(t) + σ2

ε2
) Yes Yes

Method-of-Moments [48, 35] Ω(1 + d
tε2

+ σ2d
tε2

) Yes No
AltMinGD (Theorem 1) Ω̃((1 + σ2) log t+ σ2d

tε2
) Yes Yes

AltMinGD-S (Theorem 3) Ω̃(1 + σ2 log(t) + σ2d
tε2

) Yes No
Lower-bound [48] Ω̃(1 + σ2d

tε2
) – –

5 Experimental results

In this section we empirically compare the performance of AltMinGD (Algorithm 1) and its exact
minimization variant AltMin (Algorithm 3 in Appendix), two different versions of Method-of-
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Figure 1: (a): AltMin and AltMinGD achieves vanishing error as noise σ decreases, whereas the error
of the two Method-of-Moments (MoM, MoM2) stay bounded away from zero. BM-GD, which seems
unstable and hard to tune, achieves an intermediate level of error. (b), (c): AltMin, AltMinGD and
BM-GD incurs significantly smaller error in estimation of true subspace U∗ than MoM and MoM2,
both for growing number of tasks (t) and for growing number of samples per task (m).
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Figure 2: Compared to others, BM-GD is unstable and challenging to tune in the low-noise regime.

Moments (MoM [48], MoM2 [35]), and simultaneous gradient descent on (U, V ) using the Burer-
Monteiro factorized loss (4) (BM-GD [48]). We omit AltMinGD-S here because the logarithmic
gain (1/ log(t)) of AltMinGD-S will only be observed when we have an exponentially large number
of tasks (t). This is challenging to simulate using our modest computing hardware. However, for
big-data scenarios similar subset select schemes may be useful. In all the figures, the magenta dashed
line with square marker represents AltMinGD, the blue straight line with circular marker denotes
the AltMin , the red dotted line with downwards pointing triangular marker denotes the MoM, the
yellow dotted line with upwards pointing triangular marker represents the MoM2, and the green
dashed and dotted line with diamond marker represents the BM-GD. In all the figures we plot the
subspace estimation error of the output U of the algorithms. The error is calculated using the rescaled
Frobenius norm ‖(I− U∗(U∗)>)U‖F /

√
r, which takes a value in the interval [0, 1]. All results are

averaged over multiple runs, and more experiments details and plots are provided in Appendix H.

Figure 1a plots subspace distance against the standard deviation σ of the regression noise, ε(i)j ∼
N (0, σ2); see (2). Clearly, as predicted by Theorems 1 and 5 (in Appendix), the methods we
consider—AltMinGD and AltMin —achieve smaller error than MoM methods for small noise regime.
Here the error of AltMinGD and AltMin are linearly proportional to σ. However as predicted the
error of MoM and MoM is a constant multiple of

√
dr3/mt =

√
r for all values of σ, and it does

not improve when σ decreases (see Table 1). While BM-GD does not have any known algorithmic
guarantees, it still performs better than MoM methods. However, BM-GM becomes unstable and
challenging to tune at low noise regime, even at a lower or comparable step-size than AltMinGD. To
highlight this, the individual trials for each algorithm in this plot are plotted in Figure 2. Figure 1b
plots the subspace error against the number of tasks t. In Figure 1c, we plot the the error against
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Figure 3: AltMin converges using fewer iterations than AltMinGD and BM-GD, but AltMinGD can
be faster in practice due to its computationally cheaper iteration. While the performance of all the
methods degrade as task diversity decreases, AltMin appears to be most robust to changes in diversity.

the number samples per tasks m. In both of these figures, we observe that, AltMinGD, AltMin and
BM-GD achieve much smaller subspace error than the MoM and MoM2. Furthermore, as predicted,
the squared error of all these methods decrease linearly in m and t. We again note that BM-GD
is unstable and hard to tune, especially for large t. The individual trials for each algorithm on
these two plots are plotted in the Appendix H. ERM-based BM-GD performs poorer than Alternate
Minimization-based AltMin and AltMinGD. This might be due to the presence of many bad local
minima in the optimization landscape of the ERM problem jointly over (U, V ) [48, Theorem 2].

In Figure 3, we plot the subspace estimation error against the number of iterations of AltMinGD, Alt-
Min, and BM-GD for varying levels of task diversity µ (Assumption 2). We observe that AltMin takes
significantly fewer iterations to converge than AltMinGD and BM-GD, and AltMinGD converges
earlier than BM-GD. However, each iteration of AltMin is very slow as it needs O(d3) operations,
where as AltMinGD and BM-GD need only O(d) operations per iteration. Therefore, AltMinGD
could be the fastest in practical high-dimensional setting. BM-GD seems to be slower than AltMinGD
because BM-GD seems to need a smaller stepsize than AltMinGD to stabilize its convergence. While
all the methods perform worse when the task diversity decreases ((a) → (b) → (c)), we see that
AltMin is more robust than others. This may be attributable to AltMin’s tighter dependence on the
condition number κ (Theorem 5, in Appendix) when compared to AltMinGD (Theorem 1).

6 Conclusion

When learning a shared representation for multiple tasks, a common approach is to alternate between
finding the best linear model for each task on the current representation, and taking one gradient
descent step to update the shared representation. This algorithm, AltMinGD, has been widely used
in meta-representation learning with little theoretical understanding. We provide insights into the
empirical success of AltMinGD by studying it in the canonical problem of linear meta-learning. We
showed that, AltMinGD provides a nearly optimal error rate, along with nearly optimal per-task and
overall sample complexities in their dependence in the dimensionality d of the data. To the best
of our knowledge, this is the first such optimal error rate that scales appropriately with the noise
in observations, while still ensuring per-task sample complexity to be nearly independent of the
dimensionality d. Latter is a key requirement in meta-learning as individual tasks are data-starved.
The limitations of our results are: (i) the analysis does not extend to non-linear representations, (ii)
the dependence on the rank r of the shared subspace, the incoherence µ, and the condition number κ
may not be tight; and (iii) our analysis is “local” and requires a good initialization. We also proposed
and analyzed a task subset selection-based method (AltMinGD-S) that further improves the per-task
sample complexity and ensures that it is independent of the number of tasks in small noise or large
number of tasks regime. However, the subset selection scheme heavily relies on the linearity of the
shared representation. Therefore, this scheme cannot be directly applied to more practical neural
network training. It also remains an open question if it is possible to achieve a per-task sample
complexity that does not depend on the number of tasks t, even in the large noise setting.

Our work leads to several interesting future directions and questions. For the non-linear version of
the problem, ensuring optimal error rate with optimal per-task sample complexity is an interesting
open question. Finally, analyzing alternating minimization methods with stochastic gradients and
streaming tasks is another promising direction. Our proof techniques could be combined with that of
recent results in efficient one-pass SGD [31] to design a nearly optimal stochastic algorithm.
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This appendix contains additional results, proofs for all the claims, and details of the experiments.
Section A provides the alternating (exact) minimization algorithm (AltMin) and its task subset
selection-based variant, and their statistical and computational guarantees. Sections C and D contain
the analyses of Algorithm 1 and 2, respectively. Sections B and D contain the analyses of Algorithm 3
and 4, respectively. Section E contains corollaries of some known results. Section F contains some
general technical lemmas used in this paper. Section H provides the details of the experiments.

A Alternating Exact Minimization algorithms

A.1 Alternating minimization (AltMin) algorithm

In this section we discuss the alternating (exact) minimization algorithm (Algorithm 3), which has
been widely studied in different but related problems including matrix completion, tensor completion,
phase retrieval, and matrix sensing. The algorithm follows the standard alternating minimization
procedure [30, 17] where we update the representation matrix U and regression parameters V
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Algorithm 3 AltMin : Meta-Learning linear regression parameters via Alternating Minimization

Required: Data: {(x(i)j ∈ Rd, y(i)j ∈ R)}mj=1 for all 1 ≤ i ≤ t, K: number of steps.
1 Initialize U ← Uinit

2 Randomly shuffle the tasks {1,. . . ,t}
for 1 ≤ k ≤ K do

3 Tk ← [1 + t(k−1)
K , tkK ]

for i ∈ Tk do

4 v(i) ← arg min
v̂∈Rr

∑
j∈[m/2]

(
y
(i)
j −

〈
Uv̂, x

(i)
j

〉)2
end

5 Û ← arg min
Û∈Rd×r

∑
i=Tk

m∑
j=1+m

2

(
y
(i)
j −

〈
Ûv(i), x

(i)
j

〉)2
6 U ← QR(Û)

end
return U

alternately. Note that, given U , we can estimate each of the parameters vector v(i) separately using
standard least squares regression, i.e.,

v(i) = arg min
v

∑
j

(y
(i)
j − 〈x

(i)
j , Uv〉)2 .

Similarly, given the updated regression parameter vectors v(i)’s, we can now update U as:

U = arg min
U

∑
i,j

(y
(i)
j − 〈x

(i)
j , Uv(i)〉)2 .

To ensure ease of analysis, we analyze a modification of the algorithm where the columns of the
next iterate form an orthonormal basis for the subspace containing the columns of U . Such a U
we can obtain by applying the QR-decomposition on the above U . However, this is not a necessity,
as all the analyses of AltMin still follows through even without the QR decomposition due to a
simple equivalence argument between the subspaces obtained with or without the QR decomposition.
However, this equivalence argument critically uses the fact that we exactly minimize U for the current
V . Thus the same equivalence cannot be proved for AltMinGD which uses gradient descent to update
U , because the gradient scaling may change across iterations due to changes in the magnitude of U .

Similar to AltMinGD, our analysis requires that when we update V using current U , we require U to
be independent from the training data points. Similarly, during the update for U , we require V to
be independent of the data points. Again this is ensured using the same two strategies: a) similar to
standard online meta-learning settings [20], we select random (previously unseen) tasks and update
U and V , b) within each task, we divide the data points into two sets to update V and U separately.

Run-time and memory usage: Although AltMin is a conceptually simpler algorithm than AltMinGD
(Algorithm 1), per iteration cost of AltMin is larger than AltMinGD due to the exact minimization
on U . Our update for v(i) require O(mr2 + r3) time complexity, which can be brought down to
O(m · r) by using gradient descent for solving the least squares. Our analysis shows that under
the sample complexity assumptions of Theorem 5, each of the least squares problem has a constant
condition number. So, the total number of iterations scale as log(1/ε) to achieve ε error. If we set
ε = 1/poly(t, σ), then using standard error analysis, we should be able to obtain the optimal error
rate in Theorem 8. Similarly, exact update for U requires O((dr)3 +mt · (dr)2) time, that decreases
to O(mt · d · r) when using gradient descent updates.

A.1.1 Subset Selection (AltMin-S)

Similar to AltMinGD-S (Algorithm 2), to reduce the per-task sample complexity, we also provide an
algorithm AltMin-S (Algorithm 4) based on selecting a subset of tasks. This uses the same subset
selection scheme as AltMinGD-S. Since, AltMin-S selects a fraction of tasks to perform updates, it
has the same run-time and memory complexities as AltMin.
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Algorithm 4 AltMin-S : Meta-Learning regression parameters via AltMin over task subsets

Required: Data: {(x(i)j ∈ Rd, y(i)j ∈ R)}mj=1 for all 1 ≤ i ≤ t, K: number of steps, η: stepsize.
Use the same steps as AltMinGD (Algorithm 3), but replace Line 3 with:

3 Tk ←
{
i ∈ [1 + t(k−1)

K , tkK ]
∣∣ σmax(Ũ>S(i)Ũ) ≤ 2; σmin(Ũ>S(i)Ũ) ≥ 1

2 ;

where S(i) = 2
m

∑
j∈[m/2] x

(i)
j (x

(i)
j )>

}
A.2 Statistical guarantees for Alternating Exact Minimization algorithms

Alternating minimization (AltMin): We first present our main result for a standard alternating
minimization method (Algorithm 3) when applied to the meta-learning linear regression problem in
the problem setting described in Section 2.
Theorem 5 (Simplified version of Theorem 8 in Appendix B). Let there be t linear regression tasks,
each with m samples satisfying Assumptions 1, 2. Let κ := λ∗1/λ

∗
r and let,

m ≥ Ω̃(r2 + r log t+ (σ/
√
λ∗r)

2r2 log t), t ≥ Ω̃(µ2r3), and

mt ≥ Ω̃(κ · µdr2 + κ · µdr2(σ/
√
λ∗r)

2).

Then AltMin (Algorithm 3), initialized at Uinit s.t. ‖(I − U∗(U∗)>)Uinit‖F ≤
min(21/121, Õ(1/

√
κ)) and run for K = Ω(dlog(mt/(κ · µdr · (σ/

√
λ∗r))e) iterations, outputs U

so that the following holds (w.p. ≥ 1−K/(dr)10):

‖(I− U∗(U∗)>)U‖F√
r

≤ Õ

((
σ√
λ∗r

)√
µ r d

m t

)
. (9)

Remark 7 (Initialization): Our result holds if the initial point Uinit is reasonably accurate. One
choice of initialization is to use the Method-of-Moments (MoM) [48]. Due to sub-optimality of MoM
approach ([48, Theorem 3], also provided in Theorem 12 in Appendix), we get an additional sample
complexity requirement of mt ≥ Ω̃(κdr2 (µκ+ r(σ/

√
λ∗r)

4). Note that this does not degrade the
asymptotic error rate, Õ(

√
dr/mt) when ε = Õ(

√
dr/mt)→ 0. Similar to case of AltMinGD, in

our experiments, we observed that random initialization works just as well for AltMin too. This is
analogous to alternating minimizaition for other problems where it has been widely observed that
random initialization works well in practice [30, 38].

Remark 8 (Optimality and comparison to AltMinGD): Similar to Theorem 1, this error rate is
nearly optimal in terms of d, r, m, t and σ/

√
λ∗r , as it matches best possible rate when V ∗ is specified

a priori (Corollary 2). However, we see that the error rate, the additional sample complexities and
required initial error are all tighter than Theorem 1 in terms of condition number κ factors. However,
in high-dimensions, one iteration of AltMinGD may be much faster than that of AltMin.

Task subset selection (AltMin-S): Just as we did in AltMinGD-S (Algorithm 2), we reduce the
dependence of the per-task sample complexity m = Ω(log(t)) of AltMin (Algorithm 3) on the
number of tasks t. This achieved through a subset selection-based AltMin-S (Algorithm 4) algorithm,
which has the following guarantees for noisy and noiseless (σ = 0) observations.
Theorem 6 (Simplified version of Theorem 10 in Appendix D). Let there be t linear regression tasks,
each with m samples satisfying Assumptions 1, 2. Let κ := λ∗1/λ

∗
r and let,

m ≥ Ω̃(r2 + (σ/
√
λ∗r)

2r2 log t), t ≥ Ω̃(µ2r3), and

mt ≥ Ω̃(κ · µdr2 + κ · µdr2(σ/
√
λ∗r)

2).

Then AltMin-S (Algorithm 4), initialized at Uinit s.t. ‖(I − U∗(U∗)>)Uinit‖F ≤
min(21/121, Õ(1/

√
κ)) and run for K = Ω(dlog(mt/(κ · µdr · (σ/

√
λ∗r))e) iterations, outputs U

so that, w.p. ≥ 1−K/(dr)10

‖(I− U∗(U∗)>)U‖F√
r

≤ Õ

((
σ√
λ∗r

)√
µ r d

m t

)
. (10)
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Corollary 7. Consider t linear regression tasks, each with m samples satisfying Assumptions 1 and
2 with σ = 0, and

m ≥ Ω̃(r2), t ≥ Ω̃(µ2r3), and mt ≥ Ω̃(κ · µdr2).

Then AltMin-S (Algorithm 4), initialized at Uinit s.t. ‖(I − U∗(U∗)>)Uinit‖F ≤
min(21/121, Õ(1/

√
κ)), and run for K iterations outputs U so that the following holds (w.p.

≥ 1−K/(dr)10):

‖(I− U∗(U∗)>)U‖F√
r

≤ Õ

(√
λ∗r/λ

∗
1√

r2K

)
. (11)

Remark 9 (Subset selection): Note that when noise is very small σ � O(
√
λ∗r/log t) or when

the observations are noiseless (σ = 0), AltMin-S only needs m ≥ Ω̃(r2) samples per task. Then,
the per-task sample complexity does not grow with the number of tasks t. Again, we see that the
sample complexity and iteration complexity of AltMin-S is smaller than AltMinGD-S. However,
AltMinGD-S could still be faster than AltMin-S, due to its faster iterations.

Proofs of Theorems 5 & 6 are in the Appendices B.1 & D.1.

A.3 Proof sketch for noiseless case

Here we provide proof sketches of Theorem 5. To highlight the main ideas behind our analysis,
we start with the simplest case when there is no noise (σ2 = 0) and all the task specific regression
parameters lie on a single dimensional subspace (r = 1). The analysis gets quite challenging as
we go to multi-dimensional shared subspace (r > 1), and we illustrate these challenges and how to
resolve them in Section A.3.2.

A.3.1 Proof sketch for the one-dimensional case

Let u∗ ∈ Rd be the unit vector of the one-dimensional true subspace, and v∗ ∈ Rt the vector of the
true regression parameters of the t tasks. In the noiseless setting (ε(i)j = 0), the k-th step of AltMin
can be written as follows.

For all i ∈ Tk
v(i) ← (u>S

(i)
1 u)−1u>S

(i)
1 (u∗)v∗(i) ,

û←
( ∑
i∈Tk

(v(i))2S
(i)
2

)†( ∑
i∈Tk

v∗(i)v(i)S
(i)
2 u∗

)
, u+ ← û

‖û‖ ,

where S(i)
` = 2

m

∑`m/2
j=(`−1)m/2+1 x

(i)
j (x

(i)
j )> is the data covariance matrix of a half of the dataset

[m] of task i ∈ [t]. Our incoherence condition for rank-1 case simplifies to ‖v‖2∞ ≤
µ
t ‖v‖

2.
The distance between two unit norm vectors u and u∗ is commonly measured by the angular
distance defined as sin θ(u, u∗) , ‖(I − u∗(u∗)>)u‖1/2, where I − u∗(u∗)> is the projection
operator to the sub-space orthogonal to u∗. In the following we let q , 〈u∗, u〉 and use the relation
sin θ(u, u∗) = ‖u− u∗q‖ in the analysis. We use the fact that if we have a good previous iterate u
close to u∗, i.e. sin θ(u, u∗) ≤ 3/4, then 1/2 ≤ |q| ≤ 1.

Our analysis shows that we get geometrically closer to the true subspace u∗ at every iteration in this
sin θ distance, when initialized sufficiently close to u∗.

Our strategy is to show that the v-update achieves |v(i) − q−1v∗(i)| ≤ C‖v∗(i)‖ sin θ(u, u∗) for
some constant C, and the u-update achieves sin θ(u+, u∗) ≤ (c/‖v∗‖)‖v − q−1v∗‖) where the
constant c can be made as small as we want in the assumed sample regime. Together, they imply the
desired theorem.

v-update: We can write v(i)q−1 − v∗(i) as

v(i) − q−1v∗(i) = u>S
(i)
1 (qu∗ − u)(u>S

(i)
1 u)−1q−1v∗(i) .
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In expectation, ‖E[u>S
(i)
1 (qu∗ − u)]‖ = ‖u>(qu∗ − u)‖ = 1 − q2 ≤ (sin θ(u, u∗))2 and

E[u>S
(i)
1 u] = ‖u‖2 = 1. Therefore, by Lemma B.2, if sin θ(u, u∗) ≤ 1

32 and there is enough
samples per task, i.e. m ≥ Ω(log(t/K δ)), we can bound their deviations in terms of sin θ(u, u∗).
This implies that, with a probability of at least 1− δ/2,

|v(i) − q−1v∗(i)|
|v∗(i)|

≤ sin θ(u, u∗)

4
, for all i ∈ Tk, (12)

where we used the fact that |q| ≥ 1/2. This in turn implies that (1/4)|v∗(i)| ≤ |v(i)| and v is
incoherent.

u-update: We bound the distance between û and u∗:

û− u∗q

=
(∑
i∈Tk

(v(i))2

‖v‖2
S
(i)
2

)†
︸ ︷︷ ︸

:=A

( ∑
i∈Tk

v(i)h(i)

‖v‖2
S
(i)
2︸ ︷︷ ︸

:=Ĥ

u∗q
)
, (13)

where h(i) = q−1v∗(i)− v(i). Notice that, in expectation, E[A] = I and E[Ĥu∗q] = v>h
‖v‖2u

∗q ≤ ‖h‖‖v‖ .
Therefore, by Lemma B.3, when there are enough samples, i.e. mt ≥ KΩ(µd log( 1

δ )) deviations
form these expected values can be bounded using the distance between v and v∗, ‖h‖. That is with a
probability of at least 1− δ

2 , A is invertible and well-conditioned,

A−1 = I + E1, and Hu∗q =
v>h

‖v‖2
u∗q + e2,

where ‖E1‖ ≤ 1
16 and ‖e2‖ ≤ 1

32

(
‖h‖
‖v‖ +

√
t
µ
‖h‖∞
‖v‖

)
. Note that we had to critically use incoherence

of intermediate v to bound e2. Therefore

û− u∗q =
v>h

‖v‖2
u∗q︸ ︷︷ ︸

:=û‖

+ q
v>h

‖v‖2
E1u

∗ + (I + E1)e2︸ ︷︷ ︸
:=f

.

Notice that û‖ is parallel to u∗. Rest of the terms are grouped together as f . The angle distance
sin(u+, u∗) only depends on the portion of u+ which lie in the orthogonal subspace to u∗. Therefore,
‖û‖‖ does not directly contribute to the distance, and this is formalized below. Clearly, ‖(I −
u∗(u∗)>)u+‖ = minq+ ‖u+ − u∗q+‖. This follows from the trivial solution of the scalar quadratic
problem minq+∈R ‖u− u∗q+‖2. Thus,

sin θ(u+, u∗) = min
q+
‖u+ − u∗q+‖

≤
∥∥∥ û

‖û‖
−
(

1 +
h>v

‖v‖2
)
u∗

q

‖û‖

∥∥∥
≤ ‖f‖
‖û‖
≤ ‖f‖
q‖u∗‖ − ‖f‖ − ‖h‖/‖v‖

. (14)

Putting them together: We bound f using definitions of E1 and e2, incoherence, and (12) as

‖f‖ ≤ 1

16

‖h‖
‖v‖

+
1

32

(‖h‖
‖v‖

+

√
t

µ

‖h‖∞
‖v‖

)
≤ 1

8
sin θ(u, u∗) .

Combining this with (14), we see that with a probability of at least 1 − δ, the angle distance
geometrically decreases at each step, i.e.

sin θ(u+, u∗) ≤ 1

2
sin θ(u, u∗). (15)
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Finally, if the initialization is good, i.e. sin θ(uinit, u
∗) ≤ 1

16 , we can unroll the above inequality
across iterations. Taking union bound over the iterations we get that, with a probability of at least
1−Kδ, the output u after K iterations satisfies

sin θ(u, u∗) ≤ 1

2K
sin θ(uinit, u

∗). (16)

To achieve this, we need at leastm ≥ Ω(log( t
Kδ )) samples per task and at leastmt ≥ Ω(Kµd log( 1

δ ))
total samples.

A.3.2 Proof sketch for the r-dimensional case

Here we do not use sin θ1(U, u∗) distance, as the analysis of sin θ1 gets more complicated
in the general r-dimensional case. Therefore we use `-2 norm based error, ∆(U,U∗) :=
(
∑r
r′=1 sin2 θr′(U,U

∗))1/2 := ‖(I − U∗(U∗)>)U‖F . Let Q = (U∗)>U , then ∆(U,U∗) =
‖U − U∗Q‖F , and 1/2 ≤ ‖Q‖ ≤ 1 if ∆(U,U∗) ≤ 3/4.

For all i ∈ Tk
v(i) ← (U>S

(i)
1 U)†U>S

(i)
1 U∗v∗(i) ,

Û ←
(
A†
(∑
i∈Tk

S
(i)
2 U∗v∗(i)(v(i)W−

1
2 )>

))
W−

1
2 ,

U ← QR(Û) ,

where W = V >V , A : Rd×r → Rd×r is linear operator such that A(U) =∑
i∈Tk S

(i)
2 UW−

1
2 v(i)(v(i))>W−

1
2 , and S(i)

` are defined as in the one-dimensional case.

V -update: We will prove that ‖v(i) − Q−1v∗(i)‖ = O(∆(U,U∗)). Let h(i) := v(i)Q−1 − v∗(i),
then

h(i) = (U>S
(i)
1 U)† U>S

(i)
1 (U∗Q− U)Q†v∗(i)︸ ︷︷ ︸

:=G

.

Notice that, in expectation, ‖E[U>S
(i)
1 U ]‖ = 1 and ‖E[G]‖ = ‖U>(U∗Q− U)‖ = ‖Q>Q− I‖ =

∆2(U,U∗). Therefore, by Lemma B.2, if ∆2(U,U∗) ≤ 1
32 and there is enough samples per task,

i.e. m ≥ Ω(r log( t
K δ )), we can bound their deviations in terms of sin θ(u, u∗). This implies that,

with a probability of at least 1− δ/2,

‖h(i)‖ ≤ ‖v
∗(i)‖∆2(U,U∗)

4
, for all i ∈ Tk. (17)

Furthermore, ‖v(i)‖ ≤ 4‖v∗(i)‖ and V is incoherent.

U -update: We bound the distance between Û and U∗:

(Û − U∗Q)W
1
2 = A†

( ∑
i∈Tk

S
(i)
2 U∗Qh(i)(v(i))>W−

1
2

︸ ︷︷ ︸
:=−Ĥ(U∗Q)

)
.

Notice that, in expectation, E[Ĥ(U∗Q)] = H(U∗Q) := U∗Q
∑
i∈Tk h

(i)(v(i))>W−
1
2 and

H(U∗Q) ≤ ‖H‖F and E[A] is the identity map I. Like in the 1-dimensional case, by Lemma B.3,
when there are enough samples, i.e. mt ≥ KΩ(µdr2 log( 1

δ )) deviations from these expected values
can be bounded using the distance between V and V ∗, ‖H‖. That is, with a probability of at least
1− δ/2, A is invertible and well-conditioned in Frobenius operator norm,

A−1 = I + E1, and Ĥ(U∗Q) = H(U∗Q)− E2,

where ‖E1‖F ≤ 1/16 and ‖E2‖F ≤ 1/32(‖H‖F +
√
t/µ‖H‖∞,2). Note that we had to critically

use incoherence of intermediate V to bound E2. Therefore,

(Û − U∗Q)W
1
2 = −H(U∗Q)− cE1H(U∗Q) + (I + E1)E2︸ ︷︷ ︸

:=F

.
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Now, using similar arguments as in the one-dimensional case, we get

∆(U+, U∗) ≤
∥∥∥ÛR−1 − U∗Q+H(U∗Q)

∥∥∥
F
‖W− 1

2 ‖

≤ ‖F‖F
‖R−1‖

≤ ‖F‖Fλ
− 1

2
r

‖QU∗‖ − (‖F‖F + ‖H‖F )λ
− 1

2
r

.

Putting them together: Using similar arguments as in one-dimensional case, if the initialization is
good, i.e. ∆(Uinit, U

∗) ≤ 1/16, we can show that with a probability of at least 1− δ, the next iterate
U+ satisfies: ∆(U+, U∗) ≤ 1

2∆(U,U∗) . To achieve this, we need at least Ω(r log( t
Kδ )) samples

per task (m) and at least Ω(Kµdr2 log( 1
δ )) total samples (mt). Result now follows by applying the

above result K times.

B Analysis of AltMin (Algorithm 3)

Initialized at U , the k-the step of alternating minimization-based AltMin (Algorithm 3) is:

v(i) ← (U>S
(i)
1 U)†((U>S

(i)
1 U∗)v∗(i) + U>z(i)) , for i ∈ Tk = [1 +

(k − 1)t

K
,
tk

K
] (18)

Û ← A†
( ∑
i∈[t]

S
(i)
2 U∗v∗(i)(v(i))> + z(i)(v(i))>

)
, (19)

U+ ← QR(Û) , (20)

where U+ is the next iterate, S
(i)
1 = 2

m

∑
j∈[1,m/2] x

(i)
j (x

(i)
j )>, S

(i)
2 =

2
m

∑
j∈[1+m/2,m] x

(i)
j (x

(i)
j )>, z(i) , (1/m)

∑
j∈[m] ε

(i)
j x

(i)
j and A : Rd×r → Rd×r is a

self-adjoint linear operator such that A(U) =
∑
i∈T S

(i)Uv(i)(v(i))>. The self-adjointness of A
follows from the symmetry of S(i) when using cyclic property of trace as follows

〈U2,A(U1)〉 =
∑
i∈T

〈
U2, S

(i)U1v
(i)(v(i))>)

〉
=
∑
i∈T

tr(U>2 S
(i)U1v

(i)(v(i))>)

=
∑
i∈T

tr(v(i)(v(i))>U>2 S
(i)U1) = 〈A(U2), U1〉

(21)

Incoherence. maxi ‖v∗(i)‖2 ≤ (µ r/t)λr(
∑
i∈[t] v

∗(i)(v∗(i))>), and we define ν =

(1/t)λr(
∑
i∈[t] v

∗(i)(v∗(i))>). Notice that, this non-standard definition of incoherence is related to
the standard definition: W ∗ = (V ∗)>V ∗ =

∑
i∈[t] v

∗(i)(v∗(i))>, V ∗ = Ṽ ∗R∗ (QR-decomposition),
maxi ‖ṽ∗(i)‖2 ≤ µ̃ r/t, as follows µ = µ̂(σ2

1(R∗)/σ2
r(R∗)).

Theorem 8 (Formal version of Theorem 5 in Appendix A). Let there be t lin-
ear regression tasks, each with m samples satisfying Assumptions 1 and 2, and

K = dlog2( mt

(λ∗1/λ
∗
r)(σ/
√
λ∗r)µdr

)e, ‖(I − U∗(U∗)>)Uinit‖F ≤ min
(

21
121 , O

(√
λ∗r
λ∗1

1
log(t/K)

))
,

m ≥ Ω
(

(1 + r
(

σ√
λ∗r

)2
)r log( tδ ) + r2 log(Kδ )

)
, t ≥ Ω(µ2r3K log(Kδ )), and mt ≥

Ω
(
µdr2K

λ∗1
λ∗r

(
log( tδ ) +

(
σ√
λ∗r

)2
log2( tδ ) log( rKδ )

))
. Then, for any 0 < δ < 1, after K itera-

tions, AltMin (Algorithm 3) returns an orthonormal matrix U ∈ Rd×r, such that with a probability of
at least 1− δ

1√
r
‖(I− U∗(U∗)>)U‖F ≤ O

( σ√
λ∗r

√
µdrK log( tδ ) log( rKδ )

mt

)
(22)

and the algorithm uses an additional memory of size O(d2r2).
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A proof is in Section B.1.

Initialization. If we initialize AltMin (Algorithm 3) with Method-of-Moments (Theorem 12), we
need at least

mt ≥ Ω̃
(λ∗21
λ∗2r

µdr2 +
( σ√

λ∗r

)4λ∗1
λ∗r
dr3
)

(23)

initial number of samples, where Ω̃ hides polylog factors.

B.1 Proof of Theorem 8 (formal version of Theorem 5 in Appendix A)

Proof sketch: We first prove that distance between U∗ and U decreases at each iteration up to some
additional noise terms. Then this per iterate result is unrolled to obtained the final guarantees.

First we focus on the k-th iterate. In this analysis, unless specified [t], represents the k-th K-way
partition used for the k-th iterate. In the following lemma we prove that tasks subset used for each
iteration, satisfy approximate incoherence.

Lemma B.1 (Shuffling and partition of tasks). Let Tk be the k-th subset (k ∈ [K]) of the K-way
partition of the shuffled set of all t tasks. If t ≥ Ω(µ2r3K log(1/δ)), then with a probability of at
least 1− δ/3,

λ1(
∑
i∈Tk

v∗(i)(v∗(i))>) =
1

K
Θ(λ1((V ∗)>V ∗)) and (24)

λr(
∑
i∈Tk

v∗(i)(v∗(i))>) =
1

K
Θ(λr((V

∗)>V ∗)) , for all r′ ∈ [r] (25)

where are λ1(·) and λr(·) are the largest and smallest, respectively, eigenvalue operators of real-
symmetric r × r matrix.

A proof is in Section B.5.

In the analysis of an iterate we denote the current iterate using U and the next iterate using U+. First
we prove that the distance between the true v∗(i) and the current v(i) is approximately upper-bounded
by multiple of distance between U and U∗. Next we prove that distance between U+ and U∗ is
approximately a fraction of the distance between v∗(i) and v(i). Finally, combining the above two
results gives us desired result.

Preliminaries: Let Q = (U∗)>U . Using Lemma F.4, if ‖U − U∗(U∗)>U‖F < 1, Q is invertible.
Let Q−1 be the right inverse of Q, i.e. QQ−1 = I. Let W = (V ∗)>V ∗ =

∑
i∈[t] v

∗(i)(v∗(i))>, then
using Assumption 2 we have that λ∗1 = (r/t) max‖z‖=1 z

>W ∗z and λ∗r = (r/t) min‖z‖=1 z
>W ∗z.

Update on V : Let h(i) = v(i) − Q−1v∗(i) and HT = [h(1)h(2) . . . h(t)]. Let ‖H‖F ,√∑
i∈[t] ‖h(i)‖2 and ‖H‖∞,2 , maxi∈[t] ‖h(i)‖. Let W = V >V =

∑
i∈[t] v

(i)(v(i))>, and

λ1 = (r/t) max‖z‖=1 z
>Wz and λr = (r/t) min‖z‖=1 z

>Wz.

Lemma B.2. Assume that all conditions and the large probability event in Lemma B.1 holds true.

If ‖(I − U∗(U∗)>)U‖F ≤ min
(

21
121 , O

(√
λ∗r
λ∗1

1
log(t/K)

))
and m ≥ Ω

((
σ√
λ∗r

)2
r2 log( t

Kδ ) +

r log( t
Kδ )

)
, then with a probability of at least 1− δ/3,

‖v(i)‖ ≤ O
(
µλr

)
, λ1 ≤ 2λ∗1 , and λ∗r/2 ≤ λr ≤ 2λ∗r (26)
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and √
rK

t

‖H‖F√
λr
≤ O

(√ log( t
Kδ )

log( 1
δ )

√
λ∗1
λ∗r
‖(I− U∗(U∗)>)U‖F +

σ√
λ∗r

√
r2 log( t

Kδ )

m

)
(27)

√
rK

t

‖H‖∞,2√
λr

≤ O
(√ log( t

Kδ )

log( 1
δ )
‖(I− U∗(U∗)>)U‖

√
µrK

t
+

σ√
λ∗r

√
r2K log( t

Kδ )

mt

)
(28)

A proof is in Section B.2.1.

Update on U : Let W,H, Ĥ : Rd×r → Rd×r be three linear operators, such that W(U) =

U
∑
i∈Tk v

(i)(v(i))> = UW ,H(U) = U
∑
i∈Tk h

(i)(v(i))> and Ĥ(U) =
∑
i∈Tk S

(i)
2 Uh(i)(v(i))>,

where h(i) = v(i) −Q−1v∗(i). W is invertible and self-adjoint. ThereforeW− 1
2 andW 1

2 exist. Let
I : Rd×r → Rd×r be the identity mapping, such that I(U) = U .

Û − U∗Q = A†(
∑
i∈Tk

S
(i)
2 U∗Q(Q−1v∗(i) − v(i))(v(i))> + z(i)(v(i))>) (29)

= A†(−Ĥ(U∗Q) +
∑
i∈Tk

z(i)(v(i))>) (30)

=W− 1
2 (W 1

2A†W 1
2 )W− 1

2 (−Ĥ(U∗Q) +
∑
i∈Tk

z(i)(v(i))>) (31)

=W− 1
2 (I + E1)(−(W− 1

2H+ E2)(U∗Q) +W− 1
2 (
∑
i∈Tk

z(i)(v(i))>)) (32)

where E1 = (W− 1
2AW− 1

2 )†−I and E2 =W− 1
2 Ĥ−W− 1

2H, and F = Û−U∗Q+W−1(H(U∗Q)).
Let F = Û − U∗Q+W−1(H(U∗Q))

Lemma B.3. Assume that all conditions and the large probability event in Lemma B.2 holds true.
Then,

‖W−1H(U∗Q)‖F ≤ O
(√λ∗1

λ∗r
log(

t

K
)‖(I− U∗(U∗)>)U‖F +

σ√
λ∗r

√
r2 log( t

Kδ )

m

)
(33)

and if mt ≥ Ω(µdr2K log(t/Kδ)), then with probability at least 1− δ/3

‖F‖F ≤ O
(√λ∗1

λ∗r

µdr2K log( t
Kδ )

mt
‖(I− U∗(U∗)>)U‖F +

σ√
λ∗r

√
µdr2K log( t

Kδ ) log( rδ )

mt

)
(34)

A proof is in Section B.3.1.
Lemma B.4. If 1

2 ≤ σmin(Q), ‖F‖F ≤ 1
8 and ‖W−1(H(U∗Q))‖F ≤ 1

8 , then R is invertible and
‖R−1‖ ≤ 4.

A proof is in Section B.4. Clearly, from (33) and (34), a sufficient condition for the above lemma is

O
(√λ∗1

λ∗r
log(

t

K
)‖(I− U∗(U∗)>)U‖F +

σ√
λ∗r

√
r2 log( t

Kδ )

m

)
≤ 1

8
, and (35)

O
(√λ∗1

λ∗r

µdr2K log( t
Kδ )

mt
‖(I− U∗(U∗)>)U‖F +

σ√
λ∗r

√
µdr2K log( t

Kδ ) log( rδ )

mt

)
≤ 1

8
(36)

which can be satisfied with

‖(I− U∗(U∗)>)U‖F ≤ O
(√λ∗r

λ∗1

1

log(t/K)

)
, m ≥ Ω(

( σ√
λ∗r

)2
r2 log(

t

Kδ
) + r2 log(

1

δ
)
)

, and

(37)

mt ≥ Ω
(
µdr2K

(
1 +

( σ√
λ∗r

)2
log(

t

Kδ
) log(

r

δ
)
))

(38)
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Finally, we bound the Frobenius norm distance of the next iterate U+ from the optimal U∗.

‖(I−U∗(U∗)>)U+‖F (39)

= min
Q+
‖U+ − U∗Q+‖F (40)

≤ ‖ÛR−1 − U∗QR−1 + (W−1H(U∗Q))R−1‖ (41)

≤ ‖Û − U∗Q+W−1H(U∗Q)‖F ‖R−1‖ (42)

= ‖F‖F ‖R−1‖ (43)

≤ O
(√λ∗1

λ∗r

µdr2K log( t
Kδ )

mt
‖(I− U∗(U∗)>)U‖F +

σ√
λ∗r

√
µdr2K log( t

Kδ ) log( rδ )

mt

)
(44)

If

mt ≥ Ω
(
µdr2K

λ∗1
λ∗r

(
log(

t

Kδ
) +

( σ√
λ∗r

)2
log2(

t

Kδ
) log(

r

δ
)
))

(45)

then,

‖(I− U∗(U∗)>)U+‖F ≤
1

2
‖(I− U∗(U∗)>)U‖F +

1

2
min

( 21

121
, O
(√λ∗r

λ∗1

1

log(t/K)

))
(46)

Thus if ‖(I − U∗(U∗)>)U‖F ≤ min
(

21
121 , O

(√
λ∗r
λ∗1

1
log(t/K)

))
, then ‖(I − U∗(U∗)>)U+‖F ≤

min
(

21
121 , O

(√
λ∗r
λ∗1

1
log(t/K)

))
.

Therefore, using union-bound, we can un-roll the relation, between current iterate U and the next
iterate U+, over K iterations, starting from Uinit and ending at some U iterations, to get

‖(I− U∗(U∗)>)U‖F ≤
1

2K
‖(I− U∗(U∗)>)Uinit‖F +O

( σ√
λ∗r

√
µdr2K log( t

Kδ ) log( rδ )

mt

)
(47)

with probability at least 1−Kδ. Finally setting K = dlog2( mt

(λ∗1/λ
∗
r)(σ/
√
λ∗r)µdr

)e we get that, with a

probability of at least 1−Kδ

‖(I− U∗(U∗)>)U‖F ≤ O
( σ√

λ∗r

√
µdr2K log( t

Kδ ) log( rδ )

mt

)
(48)

B.2 Analysis of update on V

B.2.1 Proof of Lemma B.2

Proof of Lemma B.2. In this proof for brevity, we will first set that Tk ← [t], |Tk| = t/K ← t,
S
(i)
1 ← S(i) = 1

m

∑
j∈[m] x

(i)
j (x

(i)
j )>. This can be done due to the approximate equivalence of

the subset Tk and the set of all tasks [t] by Lemma B.1 which requires that t ≥ Ω(µ2r3K log(Kδ )).
Finally at the end of the analysis we will reset Tk ← Tk, |Tk| = t/K ← t/K, S(i)

1 ← S
(i)
1 =

2
m

∑
j∈[1,m/2] x

(i)
j (x

(i)
j )>.

Recall the definition of v(i) from the update (18), and that Q−1 is right inverse of Q, i.e. QQ−1 = I.

v(i) −Q−1v∗(i) = (U>S(i)U)†(U>S(i)(U∗Q− U))Q−1v∗(i) + (U>S(i)U)†U>z(i) (49)
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We can use re-write the first term as,

(U>S(i)U)†U>S(i)(U∗Q− U)Q−1 (50)

= (U>S(i)U)†U>S(i)(UU> + U⊥U
>
⊥ )(U∗Q− U)Q−1 (51)

= U>(U∗Q− U)Q−1 + (U>S(i)U)†U>S(i)U⊥U
>
⊥ (U∗Q− U)Q−1 (52)

= −U>(I− U∗(U∗)>)2UQ−1 + (U>S(i)U)†U>S(i)U⊥U
>
⊥U
∗ (53)

= −(U − U∗Q)>(U − U∗Q)Q−1 + (U>S(i)U)†U>S(i)U⊥U
>
⊥U
∗ (54)

where we used the fact that Q = (U∗)>U . Therefore

‖v(i) −Q−1v∗(i)‖ ≤
‖U − U∗Q‖‖(U − U∗Q)Q−1v∗(i)‖+ ‖(U>S(i)U)†‖(‖U>S(i)U⊥U

>
⊥U
∗v∗(i)‖+ ‖U>z(i) ‖)

(55)

If m ≥ Ω(r log(t/δ)), then α = c
√

r log(27t/δ)
m ≤ 1/2 and by Lemma B.5, with a probability of at

least 1− δ,

‖(U>S(i)U)†
∥∥ ≤ (1 + 2α),∥∥U>S(i)U⊥U

>
⊥U
∗v∗(i)

∥∥ ≤ α‖U>⊥U∗v∗(i)‖, and∥∥U>z(i) ∥∥ ≤ σα ,
 for all i ∈ [t] (56)

Now if m ≥ Ω(r log(1/δ)) and ‖U∗Q− U‖ ≤ O
(√

log( tδ )

log( 1
δ )

)
, then

‖v(i) −Q−1v∗(i) ≤ O(

√
log( tδ )

log( 1
δ )

(‖(U∗Q− U)Q−1v∗(i)‖+ ‖U>⊥U∗v∗(i)
∥∥) + σ

√
r log( tδ )

m
)

(57)

Next we bound ‖H‖F , which by definition is ‖H‖F =
√∑

i∈[t] ‖h(i)‖2 =√∑
i∈[t] ‖v(i) −Q−1v∗(i)‖2. Using (57) and the fact that (a2 + b2) ≤ 2(a2 + b2) we

get

‖H‖2F ≤
log( tδ )

log( 1
δ )

[
∑
i∈T

O(‖(U∗Q− U)Q−1v∗(i)‖2 + ‖U>⊥U∗v∗(i)‖2)] + t(σ

√
r log( tδ )

m
)2) (58)

Clearly ‖Q‖ = ‖(U∗)>U‖ ≤ ‖U∗‖‖U‖ ≤ 1. If ‖(I−U∗(U∗)>)U‖ ≤ ‖(I−U∗(U∗)>)U‖F ≤ 3
4 ,

then by using Lemma F.4, ‖Q−1‖ ≤ 2.∑
i∈[t]

‖(U∗Q− U)Q−1v∗(i)‖2 =
∑
i∈[t]

tr((v∗(i))>((U∗Q− U)Q−1)>(U∗Q− U)Q−1v∗(i)) (59)

= tr((U∗Q− U)Q−1)>(U∗Q− U)Q−1)
∑
i∈[t]

v∗(i)(v∗(i))>) (60)

≤ ‖(U∗Q− U)‖2F ‖Q−1‖2O(λ∗1)(t/r) (61)

≤ 4‖(U∗Q− U)‖2FO(λ∗1)(t/r) (62)

Similarly we can use Lemma F.4, to get∑
i∈[t]

‖U>⊥U∗v∗(i)‖2 =
∑
i∈[t]

tr((v∗(i))>(U>⊥U
∗)>U>⊥U

∗v∗(i)) (63)

= tr((U>⊥U
∗)>(U>⊥U

∗)
∑
i∈[t]

v∗(i)(v∗(i))>) (64)

≤ ‖U>⊥U∗‖2FO(λ∗1)(t/r) (65)

≤ ‖(U∗Q− U)‖2FO(λ∗1)(t/r) (66)
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Therefore substituting the above two inequalities into (58) and using the fact that
√
a+ b ≤

√
a+
√
b

for all 0 ≤ a, b we get

‖H‖F ≤ O(

√
log( tδ )

log( 1
δ )
‖U∗Q− U‖F

√
λ∗1(t/r) +

√
tσ

√
r log( tδ )

m
) (67)

Then as ‖(I − U∗(U∗)>)U‖F ≤ O
(√

λ∗r
λ∗1

1
log(t)

)
and m ≥ Ω

((
σ√
λ∗r

)2
r2 log( tδ )

)
, ‖H‖F ≤

(1− 1√
2
)
√

(t/r)λ∗r . Using ‖Q−1‖ ≤ 2 in (57) we also get that

‖h(i)‖ = ‖v(i) −Q−1v∗(i)‖ ≤ O(

√
log( tδ )

log( 1
δ )
‖(U∗Q− U)‖‖v∗(i)‖+ σ

√
r log( tδ )

m
) (68)

By definition is ‖H‖∞,2 = maxi∈[t] ‖h(i)‖ = maxi∈[t] ‖v(i) − Q−1v∗(i)‖. Then as ‖(I −

U∗(U∗)>)U‖ ≤ ‖(I−U∗(U∗)>)U‖F ≤ O
(√

λ∗r
λ∗1

1
log(t)

)
≤ O(1), m ≥ Ω

((
σ√
λ∗r

)2
r2 log( tδ )

)
≥

Ω
((

σ√
λ∗r

)2
r log( tδ )

)
, ‖H‖∞,2 ≤ O(µλ∗r). Now, using ‖H‖F ≤ (1− 1√

2
)
√

(t/r)λ∗r , ‖H‖∞,2 ≤

O(µλ∗r), ‖Q‖ ≤ 1 and 10
11 ≤ σmin(Q), by Lemma B.6, we get the approximate incoherence relation

for the intermediate V

‖v(i)‖ ≤ O
(
µλr

)
, λ1 ≤ 2λ∗1 , and λ∗r ≤ 2λr (69)

Using this we bound ‖H‖∞,2. Using the above incoherence relation and (68), we get√
r

t

‖H‖∞,2√
λr

≤ 2

√
r

t

‖H‖∞,2√
λ∗r

≤ O
(√r

t

√
log( tδ )

log( 1
δ )
‖U∗Q− U‖max

i∈[t]

‖v∗(i)‖√
λ∗r

+ 2

√
r

t

2cσ√
λ∗r

√
r log( 27t

δ )

m

≤ O
(√ log( tδ )

log( 1
δ )

√
µr

t
‖U∗Q− U‖+

σ√
λ∗r

√
r2 log( tδ )

mt

)
(70)

Using (69) in (67), we get√
r

t

‖H‖F√
λr
≤ 2

√
r

t

‖H‖F√
λ∗r
≤ O

(√ log( tδ )

log( 1
δ )

√
λ∗1
λ∗r
‖(I− U∗(U∗)>)U‖F +

σ√
λ∗r

√
r2 log( tδ )

m

)
(71)

Finally, by resetting Tk ← Tk, |Tk| = t/K ← t/K, S(i)
1 ← S

(i)
1 = 2

m

∑
j∈[1,m/2] x

(i)
j (x

(i)
j )>, we

obtain the desired result.

B.2.2 Supporting lemmas for the analysis of update on V

Here we bound the linear operators in the v(i) update.

Lemma B.5. Let α = c
√

r log(27t/δ)
m . With a probability of at least 1− δ, the following are true for

all i ∈ [t]

‖(U>S(i)U)†
∥∥ ≤ (1 + 2α), (72)∥∥(U>S(i)(U∗Q− U)Q−1v∗(i)
∥∥ ≤ (‖(I− U∗(U∗)>)U‖+ α)‖(U∗Q− U)Q−1v∗(i)

∥∥ (73)

≤ (1 + α)‖(U∗Q− U)Q−1v∗(i)
∥∥ (74)∥∥U>S(i)U⊥U

>
⊥U
∗v∗(i)

∥∥ ≤ α∥∥U>⊥U∗v∗(i)∥∥, and (75)∥∥U>z(i) ∥∥ ≤ σα (76)
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Proof of Lemma B.5. Let i ∈ [t].

Let S = {v ∈ Rr | ‖v‖ = 1} be the set of all real vectors of dimension r with unit Euclidean norm.
For ε ≤ 1, there exists an ε-net, Nε ⊂ S, of size (1 + 2/ε)r with respect to the Euclidean norm [49,
Lemma 5.2]. That is for any v′ ∈ S, there exists some v ∈ Nε such that ‖v′ − v‖F ≤ ε.
Consider a v ∈ Nε, such that ‖v‖F = 1. Now we will prove with high-probability that〈
((U>S(i)U)− I)v, v

〉
is small. Consider the the following quadratic form

v>(U>S(i)U)v =
1

m

∑
j∈[m]

tr(v>(U>x
(i)
j (x

(i)
j )>U)v) =

1

m

∑
j∈[m]

tr((x
(i)
j )>Uvv>U>x

(i)
j ) (77)

x
(i)
j ∼ N (0, Id×d) are i.i.d. standard Gaussian random vectors. We will use Hanson-Wright inequality

(Lemma F.5) to prove that the above quadratic form concentrates around its mean. In Lemma F.6
(which is a straightforward Corollary of Hanson-Wright inequality), by setting a← Uv, b← Uv, we
get that with a probability of at least 1− δ∣∣∣∣v>((U>S(i)U)− I)v

∣∣∣∣ ≤ cmax

(√
log(1/δ)

m
,

log(1/δ)

m

)
:= ∆ε (78)

For brevity, let E = (U>S(i)U) − I. Notice that E is a real symmetric matrix, therefore it has
an eigen decomposition. Then, let v′ ∈ S ⊂ Rr be the largest “eigenvector” of E, such that
(v′)>Ev′ = ‖E‖ = max‖ṽ‖=1 ṽ

>Eṽ = max‖ṽ‖=‖ṽ′‖F=1 ṽ
>Eṽ′. Then there exists some v ∈ Nε

such that ‖v′ − v‖ ≤ ε.
‖E‖F = (v′)>Ev = v>Ev + (v′ − v)>Ev + (v′)>E(v′ − v) (79)

≤ v>Ev + ‖v′ − v‖‖E‖‖v‖+ ‖v′‖‖E‖‖v′ − v‖ (80)

≤ v>Ev + 2ε‖E‖ (81)

Re-arranging and setting ε = 1/4, and c← 2c, we get

‖(U>S(i)U)− I‖ = ‖E‖ ≤ ∆ 1
4

= ∆. (82)

where ∆ = cmax

(√
r log(9/δ)

m , r log(9/δ)
m

)
. If m ≥ max(1, 4c2)r log(27t/δ), then ∆ ≤ α ≤ 1/2.

Thus with a probability of at least is is also implies that

‖(U>S(i)U)†‖ = (σmin(U>S(i)U))−1 ≤ 1

1− α
≤ 2. (83)

Using similar arguments we can also prove that with a probability of at least 1− δ∥∥(U>S(i)(U∗Q− U)Q−1v∗(i)
∥∥

≤ ‖U>(U∗Q− U)Q−1v∗(i)
∥∥+ α‖(U∗Q− U)Q−1v∗(i)

∥∥ (84)

≤ ‖U>(I− U∗(U∗)>)UQ−1v∗(i)
∥∥+ α‖(U∗Q− U)Q−1v∗(i)

∥∥ (85)

≤ ‖U>(I− U∗(U∗)>)2UQ−1v∗(i)
∥∥+ α‖(U∗Q− U)Q−1v∗(i)

∥∥ (86)

≤ ‖U>(I− U∗(U∗)>)(U∗Q− U)Q−1v∗(i)
∥∥+ α‖(U∗Q− U)Q−1v∗(i)

∥∥ (87)

≤ ‖(I− U∗(U∗)>)U‖‖(U∗Q− U)Q−1v∗(i)
∥∥+ α‖(U∗Q− U)Q−1v∗(i)

∥∥ (88)

≤ (‖(I− U∗(U∗)>)U‖+ α)‖(U∗Q− U)Q−1v∗(i)
∥∥ (89)

≤ (1 + α)‖(U∗Q− U)Q−1v∗(i)
∥∥ , (90)

Using similar arguments we can also prove that with a probability of at least 1− δ∥∥U>S(i)U⊥U
>
⊥U
∗v∗(i)

∥∥ ≤ α∥∥U>⊥U∗v∗(i)∥∥ (91)

and with a probability of at least 1− δ ∥∥U>z(i) ∥∥ ≤ σα (92)

Finally setting δ ← δ/3/t and taking the union bound over three bounds over all the tasks in [t] gets
us the desired result.
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Here we prove the approximate incoherence of the intermediate V and the spectrum of intermediate
W .
Lemma B.6 (Incoherence of intermediate v(i)). If ‖H‖F ≤ (1 − 1√

2
)
√

(t/r)λr((r/t)W ∗),
‖H‖2∞,2 ≤ O(µλr((r/t)W

∗)), ‖Q‖ ≤ 1 and 10
11 ≤ σmin(Q), and (67) and (68) are true, then

‖v(i)‖ ≤ O
(
µλr((r/t)W )

)
, λ1((r/t)W ) ≤ 2λ1((r/t)W ∗) , and (93)

(1/2)λr((r/t)W
∗) ≤ λr((r/t)W ) ≤ (4/3)λr((r/t)W

∗) (94)

Proof of Lemma B.6.

‖v(i)‖ ≤ ‖Q−1v∗(i)‖+ ‖v(i) −Q−1v∗(i)‖ ≤ 2‖v∗(i)‖+ ‖h(i)‖ (95)

=⇒ ‖v(i)‖2 ≤ O(‖V ∗‖2∞,2) +O(‖H‖2∞,2) ≤ O
(
µλr((r/t)W

∗)
)

(96)

where the second inequality use the definition h(i) = v(i)−Q−1v∗(i) and ‖Q−1‖ ≤ 2 (as σmin(Q) ≥
1
2 ), the third inequality use the fact that a + b ≤ 2a2 + 2b2 an (68), and the final inequality uses
‖H‖∞,2 ≤ ‖V ‖∞,2.

Notice that W = V >V and W ∗ = (V ∗)>V ∗. Thus
√
λr((r/t)W ) =

√
(r/t)σr(V ) and√

λr((r/t)W ∗) =
√

(r/t)σr(W
∗), and both W and W ∗ are positive semi-definite (PSD). Similarly,

using σmin(Q−1) = σmin(((U∗)>U)−1) ≥ 1 and Lemma F.1 we can get that√
λr((r/t)W ∗) ≤

√
σ2
min(Q−1)λr((r/t)W ∗) ≤

√
(r/t)λr(Q−1(V ∗)>V ∗Q−>)

≤
√

(r/t)σr(V
∗Q−>) (97)

Therefore, instead of analyzing the relation between λr(W ) and λr(W ∗), we can analyze the relation
between σr(V ) and σr(V ∗). Notice that V ∗Q−> = V + V ∗Q−> − V . Then by Weyl’s inequality
(Lemma F.2, by setting A← V ∗Q−>, B ← V , and C ← V ∗Q−> − V ) we get that√

λr((r/t)W ∗) ≤
√

(r/t)σr(V
∗Q−>) ≤

√
(r/t)σr(V ) +

√
(r/t)‖V − V ∗Q−>‖ (98)

≤
√
λr((r/t)W ) +

√
(r/t)‖H‖ (99)

≤
√
λr((r/t)W ) +

√
(r/t)‖H‖F (100)

≤
√
λr((r/t)W ) + (1− 1√

2
)
√
λr((r/t)W ∗) (101)

where the last inequality uses ‖H‖F ≤ (1− 1√
2
)
√

(t/r)λr((r/t)W ∗). Finally we get the desired
result: λr((r/t)W ∗) ≤ 2λr((r/t)W

∗) by re-arranging the terms. Using similar arguments we can
show that λr((r/t)W ∗) ≤ 2λr((r/t)W ) as follows.√

λr((r/t)W ) ≤
√

(r/t)σr(V ) ≤
√

(r/t)σr(V
∗Q−>) +

√
(r/t)‖V − V ∗Q−>‖ (102)

≤ ‖Q−>‖
√

(r/t)σr(V
∗) +

√
(r/t)‖H‖ (103)

≤ (1 +
1

10
)
√
λr((r/t)W ∗) + (1− 1√

2
)
√
λr((r/t)W ∗) (104)

≤
√

2λr((r/t)W ∗) (105)

Similarly, we derive a relation between λr(W ) and λr(W ∗). Notice that V ∗Q−> = V +V ∗Q−>−V .
Then by Weyl’s inequality (Lemma F.2, by setting B ← V ∗Q−>, A← V , and C ← V ∗Q−> − V )
we get that√

λ1((r/t)W ) ≤
√

(r/t)σ1(V ) ≤
√

(r/t)σ1(V ∗Q−>) +
√

(r/t)‖V − V ∗Q−T ‖ (106)

≤ ‖Q−1‖
√
λ1((r/t)W ∗) +

√
(r/t)‖H‖ (107)

≤ (1 +
1

10
)
√
λ1((r/t)W ∗) +

√
(r/t)‖H‖F (108)

≤ (1 +
1

10
)
√
λ1((r/t)W ∗) + (1− 1√

2
)
√
λr((r/t)W ∗) (109)

≤
√

2
√
λ1((r/t)W ∗) (110)
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where the last second inequality uses ‖H‖F ≤ (1− 1√
2
)
√

(t/r)λr((r/t)W ∗), and the last inequality
uses λr(·) ≤ λ1(·). Finally we get the desired result by re-arranging the terms.

B.3 Analysis of update on U

B.3.1 Proof of Lemma B.3

Proof of Lemma B.3. In this proof for brevity, we will first set that Tk ← [t], |Tk| = t/K ← t,
S
(i)
2 ← S(i) = 1

m

∑
j∈[m] x

(i)
j (x

(i)
j )>. This can be done due to the approximate equivalence of

the subset Tk and the set of all task [t] by Lemma B.1, which requires that t ≥ Ω(µ2r3K log(Kδ )).
Finally at the end of the analysis we will reset Tk ← Tk, |Tk| = t/K ← t/K, S(i)

2 ← S
(i)
2 =

2
m

∑
j∈[m/2+1,m] x

(i)
j (x

(i)
j )>.

Recall that

Û − U∗Q =W− 1
2 (I + E1)(−(W− 1

2H+ E2)(U∗Q) +W− 1
2 (
∑
i∈[t]

z(i)(v(i))>)) (111)

where E1 = (W− 1
2AW− 1

2 )†−I and E2 =W− 1
2 Ĥ−W− 1

2H, and F = Û−U∗Q+W−1(H(U∗Q)).
Therefore

‖F‖F ≤ ‖W−
1
2 ‖F (‖E1‖F ‖W−

1
2H(U∗Q)‖F + ‖I +

E1‖F (‖E2(U∗Q)‖F + ‖W− 1
2 (
∑
i∈[t]

z(i)(v(i))>))‖F )) (112)

We can trivially bound ‖W− 1
2 ‖F as follows. For all ‖U‖F = 1, the following is true.

‖W− 1
2 (U)‖F = ‖UW− 1

2 ‖F ≤ ‖U‖F ‖W−
1
2 ‖ ≤

√
r/t

λr
(113)

Ω(µdr2 log(1/δ)) ≤ mt and approximate incoherence of intermediate V (26) implies that

Ω(dr
‖V ‖2∞,2
λr(W )/t log(1/δ)) ≤ Ω(µdr2 log(1/δ)) ≤ mt, then by Lemma B.7 we have that, with a

probability of at least 1− δ/3

‖E1‖F ≤ 3c

√
dr ‖V ‖2∞,2 log(27/δ)

mλr(W )
≤ 3c

√
µdr2 log(27/δ)

mt
≤ 1

2
(114)

This also implies that

‖I + E1‖F ≤ ‖I‖+ ‖E1‖F ≤ 1 + ∆ ≤ 3

2
(115)

By Lemma B.8,

‖(W− 1
2H)(U∗Q)‖F ≤ ‖H‖F (116)

and with a probability of at least 1− δ/3

‖E2(U∗Q)‖F ≤ c(min(‖H‖F
‖V ‖∞,2√
λr(W )

, ‖H‖∞,2)

√
dr log(15/δ)

m
+

‖H‖∞,2
‖V ‖∞,2√
λr(W )

dr log(15/δ)

m
) (117)

Using the approximate incoherence of V (26) in the above inequality, we get that

‖E2(U∗Q)‖F ≤ c(min(‖H‖F
√
µr

t
, ‖H‖∞,2)

√
dr log(15/δ)

m
+ ‖H‖∞,2

√
µr

t
· dr log(15/δ)

m
)

(118)
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By Lemma B.9 with a probability of at least 1− δ/3

‖
∑
i∈[t]

W− 1
2 (z(i)(v(i))>))‖F ≤ O

(
σ

√
dr

m
log
( t
δ

)
log
(r
δ

))
(119)

Finally taking union bound over the above results and using Lemma B.2, we can bound each of the
terms constituting F . Using (113), (116) and (27) (recall that we set t← t/K) we get

‖W−1H(U∗Q)‖F ≤ ‖W−
1
2 ‖F ‖W−

1
2H(U∗Q)‖F (120)

≤
√
r

t

‖H‖F√
λr
≤ O

(√λ∗1
λ∗r

√
log( tδ )

log( 1
δ )
‖(I− U∗(U∗)>)U‖F +

σ√
λ∗r

√
r2 log( tδ )

m

)
(121)

Using (113), (115), (116), and (27) we get

‖W− 1
2 ‖F ‖E1‖F ‖W−

1
2H(U∗Q)‖F (122)

≤ O
(√µdr2 log( 1

δ )

mt

√
r

t

‖H‖F√
λr

)
(123)

≤ O
(√λ∗1

λ∗r

µdr2 log( tδ )

mt
‖(I− U∗(U∗)>)U‖F +

√
µdr2 log( 1

δ )

mt

σ√
λ∗r

√
r2 log( tδ )

m

)
(124)

Using (113), (115), (118), (27) and (28) we get

‖W− 1
2 ‖F ‖I + E1‖F ‖E2(U∗Q)‖F (125)

≤ O
(√r

t
min

(‖H‖F√
λr

√
µr

t
,
‖H‖∞,2√

λr

)√dr log( 1
δ )

m
+

√
r

t

‖H‖∞,2√
λr

√
µr

t

dr log( 1
δ )

m

)
(126)

≤ O
(

min
(√λ∗1

λ∗r

µdr2 log( tδ )

mt
‖(I− U∗(U∗)>)U‖F +

√
µdr2 log( 1

δ )

mt

σ√
λ∗r

√
r2 log( tδ )

m
,√

µdr2 log( tδ )

mt
‖(I− U∗(U∗)>)U‖+

√
dr log( 1

δ )

m

σ√
λ∗r

√
r2 log( tδ )

mt

)
+

µdr2 log( tδ )

mt
‖(I− U∗(U∗)>)U‖+

√
µdr
√
r log( 1

δ )

m
√
t

σ√
λ∗r

√
r2 log( tδ )

mt

)
(127)

≤ O
(√µdr2 log( tδ )

mt
‖(I− U∗(U∗)>)U‖+

√
dr log( 1

δ )

m

σ√
λ∗r

√
r2 log( tδ )

mt

)
+ (128)

µdr2 log( tδ )

mt
‖(I− U∗(U∗)>)U‖+

√
µdr
√
r log( 1

δ )

m
√
t

σ√
λ∗r

√
r2 log( tδ )

mt

)
(129)

Using (113), (115), (119), and (26) we get

‖W− 1
2 ‖F ‖I + E1‖F ‖

∑
i∈[t]

W− 1
2 (z(i)(v(i))>))‖F ≤ O

( σ√
λ∗r

√
dr2 log( tδ ) log( rδ )

mt

)
(130)
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Substituting (121), (124), (129), and (130) in (112) we get

‖F‖F ≤ ‖W−
1
2 ‖F (‖E1‖F ‖W−

1
2H(U∗Q)‖F + ‖I + E1‖F (‖E2(U∗Q)‖F + ‖

∑
i∈[t]

W− 1
2 (z(i)(v(i))>)‖F ))

(131)

≤ O
(√λ∗1

λ∗r

µdr2 log( tδ )

mt
‖(I− U∗(U∗)>)U‖F +

√
µdr2 log( 1

δ )

mt

σ√
λ∗r

√
r2 log( tδ )

m

)
+

(132)

O
(µdr2 log( tδ )

mt
‖(I− U∗(U∗)>)U‖+

√
µdr
√
r log( 1

δ )

mt

σ√
λ∗r

√
r2 log( tδ )

m

)
+

O
( σ√

λ∗r

√
dr2 log( tδ ) log( rδ )

mt

)
(133)

≤ O
(√λ∗1

λ∗r

µdr2 log( tδ )

mt
‖(I− U∗(U∗)>)U‖F +

σ√
λ∗r

√
µdr2 log( tδ ) log( rδ )

mt

)
(134)

where the second-last inequality used the fact that mt ≥ Ω(µdr2 log( tδ )). Finally, by resetting
Tk ← Tk, |Tk| = t/K ← t/K, S(i)

2 ← S
(i)
2 = 2

m

∑
j∈[m/2+1,m] x

(i)
j (x

(i)
j )>, we obtain the desired

result.

B.3.2 Supporting lemmas for the analysis of update on U

Lemma B.7. If max(1, 4c2)dr
‖V ‖2∞,2
λr(W )/t log(27/δ) ≤ mt, then with a probability of at least 1− δ/3,

‖E1‖F ≤ 3c

√
dr ‖V ‖2∞,2 log(27/δ)

mλr(W )
(135)

Proof of Lemma B.7. Let SF = {U ∈ Rd×r | ‖U‖F = 1} be the set of all real matrices of dimen-
sions d× r with unit Frobenius norm. For ε ≤ 1, there exists an ε-net, Nε ⊂ SF , of size (1 + 2/ε)dr

with respect to the Frobenius norm [49, Lemma 5.2]. That is for any U ′ ∈ SF , there exists some
U ∈ Nε such that ‖U ′ − U‖F ≤ ε.
Consider a U ∈ Nε, such that ‖U‖F = 1. Now we will prove with high-probability that〈
(W− 1

2AW− 1
2 − I)(U), U

〉
is small. Consider the the following quadratic form〈

(W− 1
2AW− 1

2 )(U), U
〉

=
〈∑
i∈[t]

S(i)UW−
1
2 v(i)(v(i))>W−

1
2 , U

〉
(136)

=
∑
i∈[t]

1

m

∑
j∈[m]

(x
(i)
j )>(UW−

1
2 v(i)(v(i))>W−

1
2U>)x

(i)
j (137)

where S(i) = 1
m

∑
j∈[m] x

(i)
j (x

(i)
j )> and x(i)j ∼ N (0, Id×d) are i.i.d. standard Gaussian random

vectors and W =
∑
i∈[t] v

(i)(v(i))> is rank-r matrix. We will use Hanson-Wright inequality
(Lemma F.5) to prove that the above quadratic form concentrates around its mean. Notice that the the
expectation of

〈
(W− 1

2AW− 1
2 )(U), U

〉
is 〈I(U), U〉.∑

i∈[t]

E
[〈
S(i)UW−

1
2 v(i)(v(i))>W−

1
2 , U

〉]
=
〈
UW−

1
2

∑
i∈[t]

v(i)(v(i))>W−
1
2 , U

〉
(138)

= 〈U,U〉 = ‖U‖2F = 1 . (139)
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We will also need the following bounds to apply the Hanson-Wright inequality. Recall that ‖V ‖∞,2 =

maxi∈[t] ‖v(i)‖. Then,

max
i∈[t]
‖UW− 1

2 v(i)(v(i))>W−
1
2U>‖ = max

i∈[t]
‖UW− 1

2 v(i)‖2 ≤ max
i∈[t]
‖U‖2‖W−1‖2‖v(i)‖2 (140)

≤
‖V ‖2∞,2
λr(W )

(141)

Also note that,∑
i∈[t]

‖UW− 1
2 v(i)(v(i))>W−

1
2U>‖2F =

∑
i∈[t]

‖UW− 1
2 v(i)‖4 (142)

= max
i∈[t]
‖UW− 1

2 v(i)‖2
∑
i∈[t]

〈
UW−

1
2 v(i), UW−

1
2 v(i)

〉
(143)

≤
‖V ‖2∞,2
λr(W )

(144)

where the last inequality used (138) and (141). Then by Hanson-Wright inequality (Lemma F.5),
with probability at least 1− δ/|Nε|∣∣〈(W− 1

2AW− 1
2 − I)(U), U

〉∣∣ (145)

=
∣∣〈∑

i∈[t]

1

m

∑
j∈[m]

x
(i)
j (x

(i)
j )>UW−

1
2 v(i)(v(i))>W−

1
2 , U

〉
− 〈U,U〉

∣∣ ≤ ∆ε (146)

where ∆ε = cmax(
√
‖V ‖2∞,2 log(|Nε|/δ)

mλr(W ) ,
‖V ‖2∞,2 log(|Nε|/δ)

mλr(W ) ). Taking union bound over all U ∈ Nε
implies that with probability at least 1− δ∣∣〈(W− 1

2AW− 1
2 − I)(U), U

〉∣∣ ≤ ∆ε , for all U ∈ Nε . (147)

For brevity, let E ′1(U) = (W− 1
2AW− 1

2 − I)(U). Notice that E ′1 is self-adjoint, therefore it has
an eigen decomposition with respect to the Frobenius norm. Then, let U ′ ∈ SF ⊂ Rd×r be
the largest “eigenmatrix” of E1, such that 〈E ′1(U), U〉 = ‖E ′1‖F = max‖Ũ‖F=1

〈
E ′1(Ũ), Ũ

〉
=

max‖Ũ‖F=‖Ũ ′‖F=1

〈
E ′1(Ũ), Ũ ′

〉
. Then there exists some U ∈ Nε such that ‖U ′ − U‖F ≤ ε.

‖E ′1‖F = 〈E ′1(U ′), U ′〉 = 〈E ′1(U), U〉+ 〈E ′1(U ′ − U), U〉+ 〈E ′1(U ′), U ′ − U〉 (148)

≤ 〈E ′1(U), U〉+ ‖E ′1‖F ‖U ′ − U‖F (‖U‖F + ‖U ′‖F ) (149)

≤ 〈E ′1(U), U〉+ 2ε‖E ′1‖F (150)

Re-arranging and setting ε = 1/4, and c← 2c, we get

‖W− 1
2AW− 1

2 − I‖F = ‖E ′1‖F ≤ ∆ 1
4

= ∆. (151)

where ∆ = cmax
(√

dr ‖V ‖2∞,2 log(9/δ)

mλr(W ) ,
dr ‖V ‖2∞,2 log(9/δ)

mλr(W )

)
.

For brevity, let Â(U) = (W− 1
2AW− 1

2 )(U). Notice that Â is self-adjoint, therefore it has an
eigen decomposition with respect to the Frobenius norm. Then, let U ′ ∈ SF ⊂ Rd×r be the
smallest “eigenmatrix” of Â, such that

〈
Â(U), U

〉
= λmin(Â) = min‖Ũ‖F=1

〈
Â(Ũ), Ũ

〉
=

min‖Ũ‖F=‖Ũ ′‖F=1

〈
Â(Ũ), Ũ ′

〉
. Then there exists some U ∈ Nε such that ‖U ′ − U‖F ≤ ε.

λmin(Â) =
〈
Â(U ′), U ′

〉
= 〈I(U), U〉+

〈
(Â − I)(U), U

〉
+
〈
Â(U ′ − U), U

〉
+
〈
Â(U ′), U ′ − U

〉
(152)

≥ 1−
∣∣〈(Â − I)(U), U

〉∣∣− λmin(Â)‖U ′ − U‖F (‖U‖F + ‖U ′‖F )
(153)

≥ 1−∆ε − 2ελmin(Â) (154)
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Re-arranging and setting ε = 1/4, and c← 2c, we get that λmin(Â) ≥ 2
3 (1−∆). Therefore,

‖(W− 1
2AW− 1

2 )†‖F =
1

λmin(Â)
≤ 3

2(1−∆)
. (155)

where ∆ = cmax
(√

dr ‖V ‖2∞,2 log(9/δ)

mλr(W ) ,
dr ‖V ‖2∞,2 log(9/δ)

mλr(W )

)
. If

max(1, 4c2)dr
‖V ‖2∞,2
λr(W )/t log(27/δ) ≤ mt, we get that ∆ ≤ c

√
dr ‖V ‖2∞,2 log(9/δ)

mλr(W ) ≤ 1
2 .

By setting A+B =W− 1
2AW− 1

2 and A = I such that E1 = (A+B)−1 −B−1, in the Woodburry
matrix inverse identity (359) (Lemma F.3) we get that, with a probability of at least 1− δ

‖(A+B)−1 −A−1‖F ≤ ‖A−1‖F ‖B‖F ‖(A+B)−1‖F (156)

=⇒ ‖E1‖F ≤
∥∥∥(W− 1

2AW− 1
2 )† − I

∥∥∥
F
≤ ‖I†‖F ‖W−

1
2AW− 1

2 − I‖F ‖(W−
1
2AW− 1

2 )†‖F
(157)

≤ 1 ·∆ · 3

2(1−∆)
≤ 3∆ ≤ 3c

√
dr ‖V ‖2∞,2 log(9/δ)

mλr(W )

(158)

Finally, setting δ ← δ/3 get us the desired result.

Lemma B.8. ‖(W− 1
2H)(U∗Q)‖F ≤ ‖H‖F and with a probability of at least 1− δ/3

‖E2(U∗Q)‖F ≤ c(min(‖H‖F
‖V ‖∞,2√
λr(W )

, ‖H‖∞,2)

√
dr log(15/δ)

m
+

‖H‖∞,2
‖V ‖∞,2√
λr(W )

dr log(15/δ)

m
) (159)

Proof of Lemma B.8. First we prove that the expected value E[(W− 1
2 Ĥ)(U∗Q)] = (W− 1

2H)(U∗Q)
is bounded.

‖(W− 1
2H)(U∗Q)‖F = max

‖U‖F=1

〈
(W− 1

2H)(U∗Q), U
〉

(160)

= max
‖U‖F=1

∑
i∈[t]

〈
U∗Qh(i)(v(i))>W−

1
2 , U

〉
(161)

= max
‖U‖F=1

∑
i∈[t]

〈
U∗Qh(i), UW−

1
2 v(i)

〉
(162)

≤ max
‖U‖F=1

√∑
i∈[t]

‖U∗Qh(i)‖2
√∑
i∈[t]

〈
UW−

1
2 v(i), UW−

1
2 v(i)

〉
(163)

≤ max
‖U‖F=1

‖Q‖
√∑
i∈[t]

‖h(i)‖2
√√√√〈U∑

i∈[t]

W−
1
2 v(i)(v(i))>W−

1
2 , U

〉
(164)

≤ max
‖U‖F=1

‖H‖F ‖U‖F = ‖H‖F (165)

where used the fact that 〈AB,C〉 =
〈
A,CB>

〉
and (U∗)>U∗ = I.

Let SF = {U ∈ Rd×r | ‖U‖F = 1} be the set of all real matrices of dimensions d × r with unit
Frobenius norm. For ε ≤ 1, there exists an ε-net, Nε ⊂ SF , of size (1 + 2/ε)dr with respect to the
Frobenius norm [49, Lemma 5.2]. That is for any U ′ ∈ SF , there exists some U ∈ Nε such that
‖U ′ − U‖F ≤ ε.
Consider a U ∈ Nε, such that ‖U‖F = 1. Now we will prove with high-probability that〈
(W− 1

2H)(U∗Q)(U)−W− 1
2 (
∑
i∈[t] S

(i)U∗Qh(i)(v(i))>), U
〉

is small. Consider the the following
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quadratic form〈
W− 1

2 (
∑
i∈[t]

S(i)U∗Qh(i)(v(i))>), U
〉

=
〈∑
i∈[t]

S(i)U∗Qh(i)(v(i))>W−
1
2 , U

〉
(166)

=
∑
i∈[t]

1

m

∑
j∈[m]

(x
(i)
j )>(U∗Qh(i)(v(i))>W−

1
2U>)x

(i)
j

(167)

where S(i) = 1
m

∑
j∈[m] x

(i)
j (x

(i)
j )> and x(i)j ∼ N (0, Id×d) are i.i.d. standard Gaussian random

vectors and W =
∑
i∈[t] v

(i)(v(i))> is rank-r matrix. We will use Hanson-Wright inequality
(Lemma F.5) to prove that the above quadratic form concentrates around its mean. Notice that the the
expectation of

〈
W− 1

2 (
∑
i∈[t] S

(i)U∗Qh(i)(v(i))>), U
〉

is
〈
W−

1
2H(U), U

〉
.

E[W− 1
2 (
∑
i∈[t]

S(i)U∗Qh(i)(v(i))>)] =W− 1
2 (
∑
i∈[t]

U∗Qh(i)(v(i))>) = (W− 1
2H)(U∗Q) . (168)

We will also need the following bounds to apply the Hanson-Wright inequality. Recall that ‖H‖∞,2 =

maxi∈[t] ‖h(i)‖ and ‖V ‖∞,2 = maxi∈[t] ‖v(i)‖. Then,

max
i∈[t]
‖U∗Qh(i)(v(i))>W− 1

2U>‖ ≤ max
i∈[t]
‖U∗‖‖Q‖‖h(i)‖max

i∈[t]

‖v(i)‖√
λr(W )

‖U‖ ≤ ‖H‖∞,2
‖V ‖∞,2√
λr(W )
(169)

Also note that∑
i∈[t]

‖U∗Qh(i)(v(i))>W− 1
2U>‖2F =

∑
i∈[t]

‖U∗Qh(i)‖2‖UW− 1
2 v(i)‖2 (170)

≤ (
∑
i∈[t]

‖U∗Qh(i)‖2)(max
i∈[t]
‖UW− 1

2 v(i)‖2) (171)

≤ (‖Q‖2
∑
i∈[t]

‖h(i)‖2)(max
i∈[t]
‖U‖2‖W− 1

2 ‖2‖v(i)‖2) (172)

≤ ‖H‖2F
‖V ‖2∞,2
λr(W )

(173)

and∑
i∈[t]

‖U∗Qh(i)(v(i))>W− 1
2U>‖2F =

∑
i∈[t]

‖U∗Qh(i)‖2‖UW− 1
2 v(i)‖2 (174)

≤ (max
i∈[t]
‖U∗Qh(i)‖2)tr(UW−

1
2

∑
i∈[t]

v(i)(v(i))>W−
1
2U>)

(175)

≤ ‖Q‖max
i∈[t]
‖h(i)‖2‖U‖2F (176)

= ‖H‖2∞,2 . (177)

Therefore,
∑
i∈[t] ‖U∗Qh(i)(v(i))>W−

1
2U>‖2F ≤ min{‖H‖2F

‖V ‖2∞,2
λr(W ) , ‖H‖

2
∞,2}. For brevity, let

E2(U) =

W− 1
2 (
∑
i∈[t] S

(i)Uh(i)(v(i))>)− (W− 1
2H)(U). Then by Hanson-Wright inequality (Lemma F.5),

with probability at least 1− δ/|Nε|∣∣〈E2(U∗Q), U
〉∣∣ (178)

=
∣∣〈∑

i∈[t]

1

m

∑
j∈[m]

x
(i)
j (x

(i)
j )>U∗Qh(i)(v(i))>W−

1
2 , U

〉
−
〈

(W− 1
2H)(U∗Q), U

〉 ∣∣ ≤ ∆ε (179)
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where ∆ε = c(min(‖H‖F ‖V ‖∞,2√
λr(W )

, ‖H‖∞,2)
√

log(|Nε|/δ)
m + ‖H‖∞,2 ‖V ‖∞,2√

λr(W )

log(|Nε|/δ)
m ). Taking

union bound over all U ∈ Nε implies that with probability at least 1− δ∣∣〈E2(U), U
〉∣∣ ≤ ∆ε , for all U ∈ Nε . (180)

Let U ′ ∈ SF ⊂ Rd×r be the matrix “parallel” to E2(U∗Q), that is ‖E2(U∗Q)‖F =

max‖Ũ‖F=1

〈
E1(U∗Q), Ũ

〉
= 〈E2(U∗Q), U ′〉. Then there exists some U ∈ Nε such that

‖U ′ − U‖F ≤ ε.
‖E2(U∗Q)‖F = 〈E2(U∗Q), U ′〉 = 〈E2(U∗Q), U〉+ 〈E2(U∗Q), U ′ − U〉 (181)

≤ 〈E1(U), U〉+ ‖E2(U∗Q)‖F ‖U ′ − U‖F (182)
≤ 〈E1(U), U〉+ ε‖E2(U∗Q)‖F (183)

Re-arranging and setting ε = 1/2, and c← 2c, we get

‖E2(U∗Q)‖F ≤ ∆ 1
2

= c(min(‖H‖F
‖V ‖∞,2√
λr(W )

, ‖H‖∞,2)

√
dr log(5/δ)

m
+

‖H‖∞,2
‖V ‖∞,2√
λr(W )

dr log(5/δ)

m
) (184)

Finally setting δ ← δ/3 get us the desired result.

Lemma B.9. With a probability of at least 1− δ/3

‖
∑
i∈[t]

W− 1
2 (z(i)(v(i))>))‖F ≤ O

(
σ

√
dr

m
log
( t
δ

)
log
(r
δ

))
(185)

Proof of Lemma B.9. Notice that z(i) (defined in Appendix B) is a Gaussian random vector of the
following form

z(i) =
1

m

∑
j∈[m]

ε
(i)
j x

(i)
j =

1

m
‖ε(i)‖g(i), g(i) ∼ N (0, Id×d) (186)

Using Hanson-Wright inequality (Lemma F.5, by setting m← 1, x1 ← ε(i), and A1 ← Im×m) and
taking union bound over all tasks, we get that, with probability of at least 1− δ

2

‖ε(i)‖2 ≤ σ2m(1 + c

√
log( 2t

δ )

m
+ c

log( 2t
δ )

m
) ≤ 2c σ2m log

(2t

δ

)
, for all i ∈ [t] (187)

where used the fact that m ≥ 1 and log
(

2t
δ

)
≥ 1.

Let v̂(i) = W−
1
2 v(i), then∑

i∈[t]

‖v̂(i)‖2 =
∑
i∈[t]

tr((v(i))>W−1v(i)) =
∑
i∈[t]

tr(W−1v(i)(v(i))>) = r (188)

Notice that
∑
i∈[t]

1
m‖ε

(i)‖g(i)v̂(i)j is a Gaussian random vector of the following form∑
i∈[t]

1

m
‖ε(i)‖g(i)v̂(i)j =

1

m

√∑
i∈[t]

‖ε(i)‖2(v̂
(i)
j )2 ĝj , ĝj ∼ N (0, Id×d) (189)

Using Hanson-Wright inequality (Lemma F.5, by setting m ← 1, x1 ← ĝj , and A1 ← Id×d) and
taking union bound over all j ∈ [r], we get that, with probability of at least 1− δ

2

‖ĝj‖2 ≤ d(1 + c

√
log( 2r

δ )

d
+ c

log( 2r
δ )

d
) ≤ 2cd log

(2r

δ

)
, for all j ∈ [r] (190)
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where used the fact that d ≥ 1 and log
(

2r
δ

)
≥ 1.

Combining the above results and using union bound, we get that, with a probability of at least 1− δ,∥∥∥∑
i∈[t]

W− 1
2 (z(i)(v(i))>))

∥∥∥2
F

=
∥∥∥∑
i∈[t]

z(i)(v(i))>W−
1
2

∥∥∥2
F

(191)

=
∥∥∥∑
i∈[t]

1

m
‖ε(i)‖g(i)(v̂(i))>

∥∥∥2
F

(192)

=
∑
j∈[r]

∥∥∥∑
i∈[t]

1

m
‖ε(i)‖g(i)v̂(i)j

∥∥∥2 (193)

≤
∑
j∈[r]

∑
i∈[t]

‖ε(i)‖2

m2
(v̂

(i)
j )2‖ĝj‖2 (194)

≤
∑
j∈[r]

∑
i∈[t]

O
(mσ2

m2
log
( t
δ

))
(v̂

(i)
j )2O

(
d log

(r
δ

))
(195)

≤ O
(dσ2

m
log
( t
δ

)
log
(r
δ

))∑
i∈[t]

‖v̂(i)‖2 (196)

≤ O
(σ2dr

m
log
( t
δ

)
log
(r
δ

))
. (197)

Finally, we get the desired result by setting δ ← δ/3.

B.4 Analysis of QR decomposition

Proof of Lemma B.4.

σmin(R) ≥ min
‖z‖=1

‖Rz‖ = min
‖z‖=1

‖U+Rz‖ = min
‖z‖=1

‖Ûz‖ (198)

≥ min
‖z‖=1

‖(U∗Q−W†H(U∗Q) + F )z‖ (199)

≥ min
‖z‖=1

√
z>Q>Qz − ‖W†H(U∗Q)‖ − ‖F‖ (200)

≥ min
‖z‖=1

σmin(Q)− ‖W†H(U∗Q)‖ − ‖F‖ (201)

≥ 1

2
− 1

8
− 1

8
≥ 1

4
(202)

There fore R is invertible and ‖R−1‖ = (σmin(R))−1 ≤ 4

B.5 Analysis of shuffling and partitioning

Proof of Lemma B.1. We will assume that the set of tasks [t] is shuffled. We will prove that incoher-
ence holds for the all subset Tk = [1 + t(k−1)

K , tkK ] of size t/K. Shuffling and K-way partitioning to
get Tk is equivalent to uniformly sampling without replacement t/K elements from [t]. We prove
that incoherrence holds for the first subset T1, then this is equivalent to proving that incoherence
holds for the k-th partition Tk by symmetry. Let the tasks sampled for T1 without replacement be
{il}t/kl=1, where il is the l-th sample.

Let SF = {z ∈ Rr | ‖z‖ = 1} be the set of all real vectors of dimensions r with unit Euclidean norm.
For ε ≤ 1, there exists an ε-net, Nε ⊂ SF , of size (1 + 2/ε)r with respect to the Euclidean norm [49,
Lemma 5.2]. That is for any z′ ∈ SF , there exists some z ∈ Nε such that ‖z′ − z‖ ≤ ε.
Consider a z ∈ Nε, such that ‖z‖ = 1. Now we will prove with high-probability
that z>(

∑t/K
l=1 v

∗(il)(v∗(il))>)z is approximately equal to z>E[
∑t/K
l=1 v

∗(il)(v∗(il))>]z. Now
consider the martingale Xl, such that X0 = 0 and Xl = Xl−1 + z>(v∗(il)(v∗(il))> −
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E[v∗(il)(v∗(il))>|X0, . . . , Xl−1])z, for all l ∈ [t/K]. Clearly this is a martginagle as
E[Xl|X0, . . . , Xl−1] = 0, for all l ∈ [t/K]. The maximum difference two consecutive steps is
maxl |Xl −Xl−1| ≤ 2‖v∗(il)‖2 ≤ 2‖V ∗‖2∞,2. Therefore by Azuma-Hoeffding martingale inequal-
ity,

|
t/K∑
l=1

z>v∗(il)(v∗(il))>z − z>E[

t/K∑
l=1

v∗(il)(v∗(il))>]z| = |Xt/K | ≤
√

2t

K
‖V ‖4∞,2 log(

2|Nε|
δ

)

(203)

with a probability of at least 1− δ/|Nε|.

For brevity, let E =
∑t/K
l=1 v

∗(il)(v∗(il))> − E[
∑t/K
l=1 v

∗(il)(v∗(il))>]. Notice that E is a real
symmetric matrix, therefore it has an eigen decomposition. Then, let v′ ∈ S ⊂ Rr be the largest
“eigenvector” of E, such that (v′)>Ev′ = ‖E‖ = max‖ṽ‖=1 ṽ

>Eṽ = max‖ṽ‖=‖ṽ′‖F=1 ṽ
>Eṽ′.

Then there exists some v ∈ Nε such that ‖v′ − v‖ ≤ ε.
‖E‖F = (v′)>Ev = v>Ev + (v′ − v)>Ev + (v′)>E(v′ − v) (204)

≤ v>Ev + ‖v′ − v‖‖E‖‖v‖+ ‖v′‖‖E‖‖v′ − v‖ (205)

≤ v>Ev + 2ε‖E‖ (206)
Re-arranging and setting ε = 1/4, and c← 2c, we get

‖
t/K∑
l=1

v∗(il)(v∗(il))> − E[

t/K∑
l=1

v∗(il)(v∗(il))>]‖ = ‖E‖ ≤
√

2tr

K
‖V ‖4∞,2 log(

18

δ
) (207)

≤ 1

2
λr(E[

t/K∑
l=1

v∗(il)(v∗(il))>]). (208)

with probability at least 1− δ/k, where the last inequality used the fact that t ≥ Ω(µ2r3K log(1/δ)).
Additionally note that E[

∑t/k
l=1 v

∗(il)(v∗(il))>] = 1
K

∑t
i=1 v

∗(i)(v∗(i))> = 1
K (V ∗)>V ∗, Therefore

λr′(
∑
i∈Tk

v∗(i)(v∗(i))>) =
1

K
Θ(λr′((V

∗)>V ∗)) for all r′ ∈ [r] (209)

where λi(·) is the r′-th largest eigenvalue matrix operator.

C Analysis of AltMinGD (Algorithm 1)

Initialized at U , the k-the step of alternating minimization-based AltMin (Algorithm 1) is:

v(i) ← (U>S
(i)
1 U)†((U>S

(i)
1 U∗)v∗(i) + U>z(i)) , for i ∈ Tk = [1 +

(k − 1)t

K
,
tk

K
](210)

Ũ ← U − η
( ∑
i∈[t]

S
(i)
2 (Uv(i) − U∗v∗(i))(v(i))> + z(i)(v(i))>

)
, (211)

U+ ← QR(Ũ) , (212)

where U+ is the next iterate, and S
(i)
1 = 2

m

∑
j∈[1,m/2] x

(i)
j (x

(i)
j )>, S

(i)
2 =

2
m

∑
j∈[1+m/2,m] x

(i)
j (x

(i)
j )>, and z(i) , (1/m)

∑
j∈[m] ε

(i)
j x

(i)
j and A : Rd×r → Rd×r is

a self-adjoint linear operator such that A(U) =
∑
i∈T S

(i)Uv(i)(v(i))>. The self-adjointness of A
follows from the symmetry of S(i) when using cyclic property of trace as follows

〈U2,A(U1)〉 =
∑
i∈T

〈
U2, S

(i)U1v
(i)(v(i))>)

〉
=
∑
i∈T

tr(U>2 S
(i)U1v

(i)(v(i))>)

=
∑
i∈T

tr(v(i)(v(i))>U>2 S
(i)U1) = 〈A(U2), U1〉

(213)
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QR-decomposition after every update is required to ensure that magnitude of U and V does not stray
far away from that of true U∗ and V ∗, respectively. Otherwise, the sample complexity requirements
of our algorithm increase in the condition number factors.

Incoherence. maxi ‖v∗(i)‖2 ≤ (µ r/t)λr(
∑
i∈[t] v

∗(i)(v∗(i))>), and we define ν =

(1/t)λr(
∑
i∈[t] v

∗(i)(v∗(i))>). Notice that, this non-standard definition of incoherence is related to
the standard definition: W ∗ = (V ∗)>V ∗ =

∑
i∈[t] v

∗(i)(v∗(i))>, V ∗ = Ṽ ∗R∗ (QR-decomposition),
maxi ‖ṽ∗(i)‖2 ≤ µ̃ r/t, as follows µ = µ̂(σ2

1(R∗)/σ2
r(R∗)).

Theorem 9 (Formal version of Theorem 1 in Section 4). Let there be t linear regression
tasks, each with m samples satisfying Assumptions 1 and 2, and number of iterations K =

Ω(dλ
∗
1

λ∗r
log( mt

(λ∗1/λ
∗
r)(σ/
√
λ∗r)µdr

)e), ‖(I − U∗(U∗)>)Uinit‖F ≤ min
(

21
121 , O

(
λ∗r
λ∗1

√
1

log(t/K)

))
,

m ≥ Ω
(

(1 + r
λ∗1
λ∗r

(
σ√
λ∗r

)2
)r log( tδ ) + r2 log(Kδ )

)
, t ≥ Ω(µ2r3K log(Kδ )), and mt ≥

Ω
(
µdr2K log( tδ )

(
1 +

(
λ∗1
λ∗r

)2(
σ√
λ∗r

)2
log( tδ ) log( rKδ )

))
. Then, for any 0 < δ < 1, after K

iterations and using the stepsize η = (r/t)/2λ∗1, AltMinGD (Algorithm 1) returns an orthonormal
matrix U ∈ Rd×r, such that with a probability of at least 1− δ

1√
r
‖(I− U∗(U∗)>)U‖F ≤ O

( σ√
λ∗r

√
µdr2K log( tδ ) log( rKδ )

mt

)
(214)

A proof is in Section C.1.

Initialization. If we initialize AltMinGD (Algorithm 1) with Method-of-Moments (Theorem 12), we
need at least

mt ≥ Ω̃
((λ∗1

λ∗r

)3
µdr2 +

( σ√
λ∗r

)4(λ∗1
λ∗r

)2
dr3
)

(215)

initial number of samples, where Ω̃ hides polylog factors.

C.1 Proof of Theorem 9 (formal version of Theorem 1 in Section 4)

Proof sketch: We first prove that distance between U∗ and U decreases at each iteration up to some
additional noise terms. Then this per iterate result is unrolled to obtained the final guarantees.

First we focus on the k-th iterate. In this analysis, unless specified [t], represents the k-th K-way
partition used for the k-th iterate. Same result as Lemma B.1 for AltMin (Algorithm 3), holds for
AltMinGD too. Therefore the tasks subset used for each iteration, satisfy approximate incoherence.

In the analysis of an iterate we denote the current iterate using U and the next iterate using U+. First
we prove that the distance between the true v∗(i) and the current v(i) is approximately upper-bounded
by multiple of distance between U and U∗. Next we prove that distance between U+ and U∗ is
approximately a fraction of the distance between v∗(i) and v(i). Finally, combining the above two
results gives us desired result.

Preliminaries: Let Q = (U∗)>U . Using Lemma F.4, if ‖U − U∗(U∗)>U‖F < 1, Q is invertible.
Let Q−1 be the right inverse of Q, i.e. QQ−1 = I. Let W = (V ∗)>V ∗ =

∑
i∈[t] v

∗(i)(v∗(i))>, then
using Assumption 2 we have that λ∗1 = (r/t) max‖z‖=1 z

>W ∗z and λ∗r = (r/t) min‖z‖=1 z
>W ∗z.

Update on V : Let h(i) = v(i) − Q−1v∗(i) and HT = [h(1)h(2) . . . h(t)]. Let ‖H‖F ,√∑
i∈[t] ‖h(i)‖2 and ‖H‖∞,2 , maxi∈[t] ‖h(i)‖. Let W = V >V =

∑
i∈[t] v

(i)(v(i))>, and

λ1 = (r/t) max‖z‖=1 z
>Wz and λr = (r/t) min‖z‖=1 z

>Wz.

Same result as Lemma B.2 for AltMin (Algorithm 3), holds for AltMinGD too. Therefore V update
of AltMinGD satisfies Lemma B.2.
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Update on U : Let W,H, Ĥ : Rd×r → Rd×r be three linear operators, such that W(U) =

U
∑
i∈Tk v

(i)(v(i))> = UW ,H(U) = U
∑
i∈Tk h

(i)(v(i))> and Ĥ(U) =
∑
i∈Tk S

(i)
2 Uh(i)(v(i))>,

where h(i) = v(i) −Q−1v∗(i). W is invertible and self-adjoint. ThereforeW− 1
2 andW 1

2 exist. Let
I : Rd×r → Rd×r be the identity mapping, such that I(U) = U .

Ũ − U∗Q

= U − U∗Q− η
( ∑
i∈Tk

S
(i)
2 (Uv(i) − U∗v∗(i))(v(i))> + z(i)(v(i))>

)
= U − U∗Q− η(

∑
i∈Tk

S
(i)
2 (U − U∗Q)v(i)(v(i))> − S(i)

2 U∗Q(Q−1v∗(i) − v(i))(v(i))> + z(i)(v(i))>)

= (I − ηA)(U − U∗Q) + η(−Ĥ(U∗Q) +
∑
i∈Tk

z(i)(v(i))>)

= (I − ηW)(U − U∗Q) + ηE1(U − U∗Q) + η(−H+ E2)(U∗Q) + η
∑
i∈Tk

z(i)(v(i))> (216)

where E1 = A−W and E2 = Ĥ − H. Let F = Ũ − U∗Q+ ηH(U∗Q)

Lemma C.1. Assume that all conditions and the large probability event in Lemma B.2 holds true.
Then,

‖H(U∗Q)‖F ≤ λr(W )O
(λ∗1
λ∗r

√
log( t

Kδ )

log( 1
δ )
‖(I− U∗(U∗)>)U‖F +

σ√
λ∗r

√
λ∗1
λ∗r

r2 log( t
Kδ )

m

)
(217)

and if mt ≥ Ω(µdr2K log(t/Kδ)), m ≥ Ω(r2 log(1/δ)), and η ≤ 1
λ1(W ) , then with probability at

least 1− δ/3

‖F‖F ≤ (1− η

2
λr(W ))‖(I− U∗(U∗)>)U‖F + ηλr(W )O

( σ√
λ∗r

√
µdr2K log( t

Kδ ) log( rδ )

mt

)
(218)

A proof is in Section C.2.1.
Lemma C.2. If η ≤ 1

λ1(W ) , 1− 1
21ηλr(W ) ≤ σmin(Q), ‖F‖F ≤ 1

21ηλr(W ) and η‖H(U∗Q)‖F ≤
1
21ηλr(W ), then R is invertible and ‖R−1‖ ≤ (1 + 1

6ηλr(W )) ≤ 7
6 .

A proof is in Section C.3. Clearly, from (217) and (218), a sufficient condition for the above lemma is

1− 1

21
ηλr(W ) ≤ σmin(Q) (219)

ηλr(W )O
(λ∗1
λ∗r

√
log( t

Kδ )

log( 1
δ )
‖(I− U∗(U∗)>)U‖F +

σ√
λ∗r

√
λ∗1
λ∗r

r2 log( t
Kδ )

m

)
≤ 1

21
ηλr(W ) , and

(220)

(1− η

2
λr(W ))‖(I− U∗(U∗)>)U‖F + ηλr(W )O

( σ√
λ∗r

√
µdr2K log( t

Kδ ) log( rδ )

mt

)
≤ 1

21
ηλr(W )

(221)

which can be satisfied with

‖(I− U∗(U∗)>)U‖F ≤ min
(
O(ηλr(W )), O

(λ∗r
λ∗1

√
1

log(t/K)

))
, (222)

m ≥ Ω(
λ∗1
λ∗r

( σ√
λ∗r

)2
r2 log(

t

Kδ
)
)

, and (223)

mt ≥ Ω
(
µdr2K

( σ√
λ∗r

)2
log(

t

Kδ
) log(

r

δ
)
)

(224)
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Finally, we bound the Frobenius norm distance of the next iterate U+ from the optimal U∗.

‖(I− U∗(U∗)>)U+‖F = min
Q+
‖U+ − U∗Q+‖F

≤ ‖ŨR−1 − U∗QR−1 + η(H(U∗Q))R−1‖F
≤ ‖Ũ − U∗Q+ ηH(U∗Q)‖F ‖R−1‖
= ‖F‖F ‖R−1‖

≤ (1− η

2
λr(W ))(1 +

η

6
λr(W ))‖(I− U∗(U∗)>)U‖F +

7

6
ηλr(W )O

( σ√
λ∗r

√
µdr2K log( t

Kδ ) log( rδ )

mt

)
≤ (1− η

3
λr(W ))‖(I− U∗(U∗)>)U‖F +

ηλr(W )O
( σ√

λ∗r

√
µdr2K log( t

Kδ ) log( rδ )

mt

)
(225)

Finally setting η = 1
2λ1(W∗)

≤ 1
λ1(W ) , we get

‖(I−U∗(U∗)>)U+‖F ≤ (1− λr
6λ∗1

)‖(I− U∗(U∗)>)U‖F +

λr
6λ∗1

O
( σ√

λ∗r

√
µdr2K log( t

Kδ ) log( rδ )

mt

)
(226)

If

mt ≥ Ω
(
µdr2K

( σ√
λ∗r

)2
log(

t

Kδ
) log(

r

δ
)
(

1 +
(λ∗1
λ∗r

)2
log(

t

Kδ
)
))

(227)

then,

‖(I− U∗(U∗)>)U+‖F ≤ (1− 1

6

λr
λ∗1

)‖(I− U∗(U∗)>)U‖F +
1

6

λr
λ∗1

min
( 21

121
, O
(λ∗r
λ∗1

√
1

log(t/K)

))
(228)

Thus if ‖(I − U∗(U∗)>)U‖F ≤ min
(

21
121 , O

(
λ∗r
λ∗1

√
1

log(t/K)

))
, then ‖(I − U∗(U∗)>)U+‖F ≤

min
(

21
121 , O

(
λ∗r
λ∗1

√
1

log(t/K)

))
.

Therefore, using Lemma B.1 (which requires that t ≥ Ω(µ2r3K log(Kδ ))) and union-bound and
λ∗r/2 ≤ λr ≤ 2λ∗r (Lemma B.2), we can un-roll the relation, between current iterate U and the next
iterate U+, over K iterations, starting from Uinit and ending at some U iterations, to get

‖(I− U∗(U∗)>)U‖F ≤ (1− 1

12

λ∗r
λ∗1

)K‖(I− U∗(U∗)>)Uinit‖F +

O
( σ√

λ∗r

√
µdr2K log( t

Kδ ) log( rδ )

mt

)
(229)

with probability at least 1 − Kδ. Finally setting the number of iterations as K :=

Θ(dλ
∗
1

λ∗r
log( mt

(λ∗1/λ
∗
r)(σ/
√
λ∗r)µdr

)e) we get that, with a probability of at least 1−Kδ

‖(I− U∗(U∗)>)U‖F ≤ O
( σ√

λ∗r

√
µdr2K log( t

Kδ ) log( rδ )

mt

)
(230)
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C.2 Analysis of update on U

C.2.1 Proof of Lemma C.1

Proof of Lemma C.1. In this proof for brevity, we will first set that Tk ← [t], |Tk| = t/K ← t,
S
(i)
2 ← S(i) = 1

m

∑
j∈[m] x

(i)
j (x

(i)
j )>. This can be done due to the approximate equivalence of the

subset Tk and the set of all tasks [t] by Lemma B.1, which requires that t ≥ Ω(µ2r3K log(Kδ )).
Finally at the end of the analysis we will reset Tk ← Tk, |Tk| = t/K ← t/K, S(i)

2 ← S
(i)
2 =

2
m

∑
j∈[m/2+1,m] x

(i)
j (x

(i)
j )>.

Recall that

Ũ − U∗Q = (I − ηW)(U − U∗Q) + ηE1(U − U∗Q) +

η(−H+ E2)(U∗Q) + η
∑
i∈Tk

z(i)(v(i))> (231)

where E1 = A−W and E2 = W− 1
2 Ĥ −W− 1

2H, and F = Û − U∗Q+ ηH(U∗Q). Assume that
0 < 1− ηλ1(W ) < 1− ηλr(W ). Therefore

‖F‖F ≤ (1− ηλr(W ) + η‖E1‖F )‖U − U∗Q‖F +

η(‖E2(U∗Q)‖F + ‖
∑
i∈[t]

z(i)(v(i))>‖F ) (232)

Ω(µdr2 log(1/δ)) ≤ mt and approximate incoherence of intermediate V (26) implies that

Ω(dr
‖V ‖2∞,2
λr(W )/t log(1/δ)) ≤ Ω(µdr2 log(1/δ)) ≤ mt, then by Lemma C.3 we have that, with a

probability of at least 1− δ/3

‖E1‖F ≤ λr(W )O
(√λ∗1

λ∗r

µdr2 log(27/δ)

mt

)
(233)

By Lemma C.4,

‖H(U∗Q)‖F ≤
√
λ1(W )‖H‖F (234)

and with a probability of at least 1− δ/3

‖E2(U∗Q)‖F

≤ c(min(‖H‖F ‖V ‖∞,2, ‖H‖∞,2
√
λ1(W ))

√
dr log(5/δ)

m
+ ‖H‖∞,2‖V ‖∞,2

dr log(5/δ)

m
)

(235)

Using the approximate incoherence of V (26) in the above inequality, we get that

‖E2(U∗Q)‖F ≤
√
λr(W )O( min(‖H‖F

√
µr

t
, ‖H‖∞,2

√
λ∗1
λ∗r

)

√
dr log(15/δ)

m
+

‖H‖∞,2
√
µr

t
· dr log(15/δ)

m
) (236)

By Lemma C.5 with a probability of at least 1− δ/3

‖
∑
i∈[t]

z(i)(v(i))>‖F ≤ O
(
σ

√
dtr(W )

m
log
( t
δ

)
log
(r
δ

))
(237)

Finally taking union bound over the above results and using Lemma B.2, we can bound each of the
terms constituting F . Using the definitions of λ1 = (r/t)λ1(W ) and λr = (r/t)λr(W ), (26), and
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(27) (recall that we set t← t/K) in (234) we get

‖H(U∗Q)‖F ≤
√
λ1(W )‖H‖F (238)

≤ λr(W )

√
λ1
λr

√
r

t

‖H‖F√
λr

(239)

≤ λr(W )O
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λ∗r

√
log( tδ )

log( 1
δ )
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σ√
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λ∗1
λ∗r

r2 log( tδ )

m

)
(240)

Using the definitions of λ1 = (r/t)λ1(W ) and λr = (r/t)λr(W ), (27) and (28) in (236) we get
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≤
√
λr(W )O(min(‖H‖F

√
µr

t
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m
)
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√
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t
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)

√
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)
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µdr2 log( tδ )
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µdr2 log( tδ )

mt
‖(I− U∗(U∗)>)U‖+
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dr log( 1
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√
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)
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√
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√
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)
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dr log( 1
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)
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δ )

m

)
(241)

where the second-last inequality used the fact that mt ≥ Ω(µdr2 log( tδ )) and last inequality uses
λ∗1/λ

∗
r ≤ µr (which follows from Assumption 2). Using the definitions of λ1 = (r/t)λ1(W ) and

λr = (r/t)λr(W ), and (26) in (237) we get

‖
∑
i∈[t]

z(i)(v(i))>)‖F ≤ λr(W )O
( σ√

λ∗r

√
tr(W )

λr(W )

dr log( tδ ) log( rδ )

mt

)
(242)

≤ λr(W )O
( σ√

λ∗r

√
µdr2 log( tδ ) log( rδ )

mt

)
(243)
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where the last inequality uses tr(W )/λr(W ) ≤ µr (which follows from Assumption 2 and (26))
Substituting (233), (241), (243), and (26) in (232) and using m ≥ Ω(r2 log(1/δ))we get

‖F‖F ≤ (1− ηλr(W ) + η‖E1‖F )‖U − U∗Q‖F +

η(‖E2(U∗Q)‖F + ‖W 1
2 ‖‖W− 1

2 (
∑
i∈[t]

z(i)(v(i))>)‖F ) (244)

≤
(

1− ηλr(W )
(

1−O
(√λ∗1

λ∗r

µdr2 log(t/δ)

mt
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‖(I− U∗(U∗)>)U‖F +
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(√µdr2 log( tδ )
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√
r2 log( 1

δ )

m
+

σ√
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√
µdr2 log( tδ ) log( rδ )
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)
(245)

≤ (1− η

2
λr(W ))‖(I− U∗(U∗)>)U‖F + ηλr(W )O

( σ√
λ∗r

√
µdr2 log( tδ ) log( rδ )

mt

)
(246)

Finally, by resetting Tk ← Tk, |Tk| = t/K ← t/K, S(i)
2 ← S

(i)
2 = 2

m

∑
j∈[m/2+1,m] x

(i)
j (x

(i)
j )>,

we obtain the desired result.

C.2.2 Supporting lemmas for the analysis of update on U

Lemma C.3. If Ω(µdr2 log(27/δ)) ≤ mt, then with a probability of at least 1− δ/3,

‖E1‖F ≤ λr(W )O
(√λ∗1

λ∗r

µdr2 log(27/δ)

mt

)
(247)

Proof of Lemma C.3. Let SF = {U ∈ Rd×r | ‖U‖F = 1} be the set of all real matrices of dimen-
sions d× r with unit Frobenius norm. For ε ≤ 1, there exists an ε-net, Nε ⊂ SF , of size (1 + 2/ε)dr

with respect to the Frobenius norm [49, Lemma 5.2]. That is for any U ′ ∈ SF , there exists some
U ∈ Nε such that ‖U ′ − U‖F ≤ ε.

Consider a U ∈ Nε, such that ‖U‖F = 1. Now we will prove with high-probability that
〈
(A −

W)(U), U
〉

is small. Consider the the following quadratic form〈
(A)(U), U

〉
=
〈∑
i∈[t]

S(i)Uv(i)(v(i))>, U
〉

(248)

=
∑
i∈[t]

1

m

∑
j∈[m]

(x
(i)
j )>(Uv(i)(v(i))>U>)x

(i)
j (249)

where S(i) = 1
m

∑
j∈[m] x

(i)
j (x

(i)
j )> and x(i)j ∼ N (0, Id×d) are i.i.d. standard Gaussian random

vectors and W =
∑
i∈[t] v

(i)(v(i))> is rank-r matrix. We will use Hanson-Wright inequality
(Lemma F.5) to prove that the above quadratic form concentrates around its mean. Notice that the the
expectation of

〈
A(U), U

〉
is 〈W(U), U〉.∑

i∈[t]

E
[〈
S(i)Uv(i)(v(i))>, U

〉]
=
〈
U
∑
i∈[t]

v(i)(v(i))>, U
〉

= 〈UW,U〉 = 〈W(U), U〉 . (250)

We will also need the following bounds to apply the Hanson-Wright inequality. Recall that ‖V ‖∞,2 =

maxi∈[t] ‖v(i)‖. Then,

max
i∈[t]
‖Uv(i)(v(i))>U>‖ = max

i∈[t]
‖Uv(i)‖2 ≤ max

i∈[t]
‖U‖2‖v(i)‖2 ≤ ‖V ‖2∞,2 (251)
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Also note that,∑
i∈[t]

‖Uv(i)(v(i))>U>‖2F =
∑
i∈[t]

‖Uv(i)‖4 = max
i∈[t]
‖Uv(i)‖2

∑
i∈[t]

〈
Uv(i), Uv(i)

〉
(252)

= max
i∈[t]
‖U‖2‖v(i)‖2

∑
i∈[t]

〈
UU>,

∑
i∈[t]

v(i)(v(i))>

〉
(253)

≤ ‖V ‖2∞,2λ1(W ) (254)

where the last inequality used (250) and (251). Then by Hanson-Wright inequality (Lemma F.5),
with probability at least 1− δ/|Nε|

∣∣〈(A−W)(U), U
〉∣∣ =

∣∣〈∑
i∈[t]

1

m

∑
j∈[m]

x
(i)
j (x

(i)
j )>Uv(i)(v(i))>, U

〉
− 〈W(U), U〉

∣∣ ≤ ∆ε (255)

where ∆ε = cmax(

√
‖V ‖2∞,2λ1(W ) log(|Nε|/δ)

m ,
‖V ‖2∞,2 log(|Nε|/δ)

m ). Taking union bound over all
U ∈ Nε implies that with probability at least 1− δ∣∣〈(A−W)(U), U

〉∣∣ ≤ ∆ε , for all U ∈ Nε . (256)

For brevity, let E1(U) = (A − W)(U). Notice that E1 is self-adjoint, therefore it has an
eigen decomposition with respect to the Frobenius norm. Then, let U ′ ∈ SF ⊂ Rd×r be
the largest “eigenmatrix” of E1, such that 〈E1(U), U〉 = ‖E1‖F = max‖Ũ‖F=1

〈
E1(Ũ), Ũ

〉
=

max‖Ũ‖F=‖Ũ ′‖F=1

〈
E1(Ũ), Ũ ′

〉
. Then there exists some U ∈ Nε such that ‖U ′ − U‖F ≤ ε.

‖E1‖F = 〈E1(U ′), U ′〉 = 〈E1(U), U〉+ 〈E1(U ′ − U), U〉+ 〈E1(U ′), U ′ − U〉 (257)

≤ 〈E1(U), U〉+ ‖E1‖F ‖U ′ − U‖F (‖U‖F + ‖U ′‖F ) (258)
≤ 〈E1(U), U〉+ 2ε‖E1‖F (259)

Re-arranging and setting ε = 1/4, and c← 2c, we get

‖A −W‖F = ‖E ′1‖F ≤ ∆ 1
4
≤ O

(√λ∗1
λ∗r

µdr2 log(9/δ)

mt

)
. (260)

where we use the approximate incoherence of intermediate variable V
Lemma B.2 and the fact that Ω(µdr2 log(9/δ)) ≤ mt, which im-

plies that ∆ 1
4

= cmax
(√

dr ‖V ‖2∞,2λ1(W ) log(9/δ)

m ,
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)
≤
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2 log(9/δ)
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))
≤ λr(W )O

(√
λ∗1
λ∗r

µdr2 log(9/δ)
mt

)
. Fi-

nally, setting δ ← δ/3 get us the desired result.

Lemma C.4. ‖(W− 1
2H)(U∗Q)‖F ≤

√
λ1(W )‖H‖F and with a probability of at least 1− δ/3

‖E2(U∗Q)‖F

≤ c(min(‖H‖F ‖V ‖∞,2, ‖H‖∞,2
√
λ1(W ))

√
dr log(5/δ)

m
+ ‖H‖∞,2‖V ‖∞,2

dr log(5/δ)

m
)

(261)
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Proof of Lemma C.4. First we prove that the expected value E[(Ĥ)(U∗Q)] = (H)(U∗Q) is bounded.

‖H(U∗Q)‖F = max
‖U‖F=1

〈H(U∗Q), U〉 (262)

= max
‖U‖F=1

∑
i∈[t]

〈
U∗Qh(i)(v(i))>, U

〉
(263)

= max
‖U‖F=1

∑
i∈[t]

〈
U∗Qh(i), Uv(i)

〉
(264)

≤ max
‖U‖F=1

√∑
i∈[t]

‖U∗Qh(i)‖2
√∑
i∈[t]

〈
Uv(i), Uv(i)

〉
(265)
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‖U‖F=1

‖Q‖
√∑
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‖h(i)‖2
√√√√〈U∑

i∈[t]

v(i)(v(i))>, U

〉
(266)

≤ max
‖U‖F=1

‖H‖F ‖U‖F
√
λ1(W ) =

√
λ1(W )‖H‖F (267)

where used the fact that 〈AB,C〉 =
〈
A,CB>

〉
and (U∗)>U∗ = I.

Let SF = {U ∈ Rd×r | ‖U‖F = 1} be the set of all real matrices of dimensions d × r with unit
Frobenius norm. For ε ≤ 1, there exists an ε-net, Nε ⊂ SF , of size (1 + 2/ε)dr with respect to the
Frobenius norm [49, Lemma 5.2]. That is for any U ′ ∈ SF , there exists some U ∈ Nε such that
‖U ′ − U‖F ≤ ε.
Consider a U ∈ Nε, such that ‖U‖F = 1. Now we will prove with high-probability that〈
H(U∗Q)(U) −

∑
i∈[t] S

(i)U∗Qh(i)(v(i))>, U
〉

is small. Consider the the following quadratic
form 〈∑

i∈[t]

S(i)U∗Qh(i)(v(i))>, U
〉

=
〈∑
i∈[t]

S(i)U∗Qh(i)(v(i))>, U
〉

(268)

=
∑
i∈[t]

1

m

∑
j∈[m]

(x
(i)
j )>(U∗Qh(i)(v(i))>U>)x

(i)
j (269)

where S(i) = 1
m

∑
j∈[m] x

(i)
j (x

(i)
j )> and x(i)j ∼ N (0, Id×d) are i.i.d. standard Gaussian random

vectors. We will use Hanson-Wright inequality (Lemma F.5) to prove that the above quadratic form
concentrates around its mean. Notice that the the expectation of

〈∑
i∈[t] S

(i)U∗Qh(i)(v(i))>, U
〉

is〈
H(U), U

〉
.

E[
∑
i∈[t]

S(i)U∗Qh(i)(v(i))>] =
∑
i∈[t]

U∗Qh(i)(v(i))> = H(U∗Q) . (270)

We will also need the following bounds to apply the Hanson-Wright inequality. Recall that ‖H‖∞,2 =

maxi∈[t] ‖h(i)‖ and ‖V ‖∞,2 = maxi∈[t] ‖v(i)‖. Then,

max
i∈[t]
‖U∗Qh(i)(v(i))>U>‖ ≤ max

i∈[t]
‖U∗‖‖Q‖‖h(i)‖max

i∈[t]
‖v(i)‖‖U‖ ≤ ‖H‖∞,2‖V ‖∞,2 (271)

Also note that∑
i∈[t]

‖U∗Qh(i)(v(i))>U>‖2F =
∑
i∈[t]

‖U∗Qh(i)‖2‖Uv(i)‖2 (272)

≤ (
∑
i∈[t]

‖U∗Qh(i)‖2)(max
i∈[t]
‖Uv(i)‖2) (273)

≤ (‖Q‖2
∑
i∈[t]

‖h(i)‖2)(max
i∈[t]
‖U‖2‖v(i)‖2) (274)

≤ ‖H‖2F ‖V ‖2∞,2 (275)
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and ∑
i∈[t]

‖U∗Qh(i)(v(i))>U>‖2F =
∑
i∈[t]

‖U∗Qh(i)‖2‖Uv(i)‖2 (276)

≤ (max
i∈[t]
‖U∗Qh(i)‖2)tr(U

∑
i∈[t]

v(i)(v(i))>U>) (277)

≤ (max
i∈[t]
‖U∗Qh(i)‖2)

〈
UU>,W

〉
(278)

≤ ‖Q‖max
i∈[t]
‖h(i)‖2‖U‖2Fλ1(W ) (279)

= ‖H‖2∞,2λ1(W ) . (280)

Therefore,
∑
i∈[t] ‖U∗Qh(i)(v(i))>U>‖2F ≤ min{‖H‖2F ‖V ‖2∞,2, ‖H‖2∞,2λ1(W )}. For brevity, let

E2(U) =
∑
i∈[t] S

(i)Uh(i)(v(i))> −H(U). Then by Hanson-Wright inequality (Lemma F.5), with
probability at least 1− δ/|Nε|∣∣〈E2(U∗Q), U

〉∣∣ =
∣∣〈∑

i∈[t]

1

m

∑
j∈[m]

x
(i)
j (x

(i)
j )>U∗Qh(i)(v(i))>, U

〉
− 〈H(U∗Q), U〉

∣∣ ≤ ∆ε

(281)

where ∆ε = c(min(‖H‖F ‖V ‖∞,2, ‖H‖∞,2
√
λ1(W ))

√
log(|Nε|/δ)

m + ‖H‖∞,2‖V ‖∞,2 log(|Nε|/δ)
m ).

Taking union bound over all U ∈ Nε implies that with probability at least 1− δ∣∣〈E2(U), U
〉∣∣ ≤ ∆ε , for all U ∈ Nε . (282)

Let U ′ ∈ SF ⊂ Rd×r be the matrix “parallel” to E2(U∗Q), that is ‖E2(U∗Q)‖F =

max‖Ũ‖F=1

〈
E1(U∗Q), Ũ

〉
= 〈E2(U∗Q), U ′〉. Then there exists some U ∈ Nε such that

‖U ′ − U‖F ≤ ε.

‖E2(U∗Q)‖F = 〈E2(U∗Q), U ′〉 = 〈E2(U∗Q), U〉+ 〈E2(U∗Q), U ′ − U〉 (283)

≤ 〈E1(U), U〉+ ‖E2(U∗Q)‖F ‖U ′ − U‖F (284)
≤ 〈E1(U), U〉+ ε‖E2(U∗Q)‖F (285)

Re-arranging and setting ε = 1/2, and c← 2c, we get

‖E2(U∗Q)‖F ≤ ∆ 1
2

= c(min(‖H‖F ‖V ‖∞,2, ‖H‖∞,2
√
λ1(W ))

√
dr log(5/δ)

m
+ ‖H‖∞,2‖V ‖∞,2

dr log(5/δ)

m
)

(286)

Finally setting δ ← δ/3 get us the desired result.

Lemma C.5. With a probability of at least 1− δ/3

‖
∑
i∈[t]

z(i)(v(i))>)‖F ≤ O
(
σ

√
dtr(W )

m
log
( t
δ

)
log
(r
δ

))
(287)

Proof of Lemma C.5. Notice that z(i) (defined in Appendix C) is a Gaussian random vector of the
following form

z(i) =
1

m

∑
j∈[m]

ε
(i)
j x

(i)
j =

1

m
‖ε(i)‖g(i), g(i) ∼ N (0, Id×d) (288)
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Using Hanson-Wright inequality (Lemma F.5, by setting m← 1, x1 ← ε(i), and A1 ← Im×m) and
taking union bound over all tasks, we get that, with probability of at least 1− δ

2

‖ε(i)‖2 ≤ σ2m(1 + c

√
log( 2t

δ )

m
+ c

log( 2t
δ )

m
) ≤ 2c σ2m log

(2t

δ

)
, for all i ∈ [t] (289)

where used the fact that m ≥ 1 and log
(

2t
δ

)
≥ 1.

Now it is easy check that

∑
i∈[t]

‖v(i)‖2 =
∑
i∈[t]

tr((v(i))>v(i)) =
∑
i∈[t]

tr(v(i)(v(i))>) = tr(W ) ≤ µrλr(W ) (290)

Notice that
∑
i∈[t]

1
m‖ε

(i)‖g(i)v(i)j is a Gaussian random vector of the following form

∑
i∈[t]

1

m
‖ε(i)‖g(i)v(i)j =

1

m

√∑
i∈[t]

‖ε(i)‖2(v
(i)
j )2 ĝj , ĝj ∼ N (0, Id×d) (291)

Using Hanson-Wright inequality (Lemma F.5, by setting m ← 1, x1 ← ĝj , and A1 ← Id×d) and
taking union bound over all j ∈ [r], we get that, with probability of at least 1− δ

2

‖ĝj‖2 ≤ d(1 + c

√
log( 2r

δ )

d
+ c

log( 2r
δ )

d
) ≤ 2cd log

(2r

δ

)
, for all j ∈ [r] (292)

where used the fact that d ≥ 1 and log
(

2r
δ

)
≥ 1.

Combining the above results and using union bound, we get that, with a probability of at least 1− δ,

∥∥∥∑
i∈[t]

z(i)(v(i))>)
∥∥∥2
F

=
∥∥∥∑
i∈[t]

z(i)(v(i))>
∥∥∥2
F

(293)

=
∥∥∥∑
i∈[t]

1

m
‖ε(i)‖g(i)(v(i))>

∥∥∥2
F

(294)

=
∑
j∈[r]

∥∥∥∑
i∈[t]

1

m
‖ε(i)‖g(i)v(i)j

∥∥∥2 (295)

≤
∑
j∈[r]

∑
i∈[t]

‖ε(i)‖2

m2
(v

(i)
j )2‖ĝj‖2 (296)

≤
∑
j∈[r]

∑
i∈[t]

O
(mσ2

m2
log
( t
δ

))
(v

(i)
j )2O

(
d log

(r
δ

))
(297)

≤ O
(dσ2

m
log
( t
δ

)
log
(r
δ

))∑
i∈[t]

‖v(i)‖2 (298)

≤ O
(σ2dtr(W )

m
log
( t
δ

)
log
(r
δ

))
. (299)

Finally, we get the desired result by setting δ ← δ/3.
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C.3 Analysis of QR decomposition

Proof of Lemma C.2.

σmin(R) ≥ min
‖z‖=1

‖Rz‖ = min
‖z‖=1

‖U+Rz‖ = min
‖z‖=1

‖Ûz‖ (300)

≥ min
‖z‖=1

‖(U∗Q− ηH(U∗Q) + F )z‖ (301)

≥ min
‖z‖=1

√
z>Q>Qz − η‖H(U∗Q)‖ − ‖F‖ (302)

≥ min
‖z‖=1

σmin(Q)− η‖H(U∗Q)‖ − ‖F‖ (303)

≥ 1− 1

21

λ∗r
λ∗1
− 1

21

λ∗r
λ∗1
− 1

21

λ∗r
λ∗1
≥ 1− 1

7

λ∗r
λ∗1

(304)

There fore R is invertible and ‖R−1‖ = (σmin(R))−1 ≤ 1

1− 1
7

λ∗r
λ∗1

≤ 1 + 1
6
λ∗r
λ∗1

D Analysis of AltMinGD-S (Algorithm 2) and AltMin-S (Algorithm 4) with
subset selection

In this section analyze the task subset selection-based algorithms: AltMinGD-S (Algorithm 2) and
AltMin-S (Algorithm 4).

AltMin-S: Initialized at U , the k-the step of alternating minimization-based AltMin-S (Algorithm 4)
is:

Tk =
{
i ∈ [1 +

(k − 1)t

K
,
tk

K
] | σmin(U>S(i)U) ≥ 1/2 and σmax(U>S(i)U) ≤ 2

}
(305)

v(i) ← (U>S(i)U)†((U>S(i)U∗)v∗(i) + U>z(i)) , for i ∈ Tk (306)

Û ← A†
( ∑
i∈T

S(i)U∗v∗(i)(v(i))> + z(i)(v(i))>
)
, (307)

U+ ← QR(Û) , (308)

where U+ is the next iterate, S
(i)
1 = 2

m

∑
j∈[1,m/2] x

(i)
j (x

(i)
j )>, S

(i)
2 =

2
m

∑
j∈[1+m/2,m] x

(i)
j (x

(i)
j )>, z(i) , (1/m)

∑
j∈[m] ε

(i)
j x

(i)
j and A : Rd×r → Rd×r is a

self-adjoint linear operator such that A(U) =
∑
i∈T S

(i)Uv(i)(v(i))>.

Theorem 10 (Formal version of Theorem 6 in Appendix A). Let there be t linear regression
tasks, each with m samples satisfying Assumptions 1 and 2, and K = dlog2(

(λ∗r/λ
∗
1)mt

µdr2 )e, ‖(I −

U∗(U∗)>)Uinit‖F ≤ min
(

21
121 , O

(√
λ∗r
λ∗1

1
log(t/K)

))
, m ≥ Ω

((
σ√
λ∗r

)2
r2 log( tδ ) + r2 log(Kδ ) +

log(µr)
)

, t ≥ Ω(µ2r3K log(Kδ )) and mt ≥ Ω
(
µdr2K

λ∗1
λ∗r

(
log( tδ ) +

(
σ√
λ∗r

)2
log2( tδ ) log( rKδ )

))
.

Then, for any 0 < δ < 1, after K iterations, AltMin-S (Algorithm 4) returns an orthonormal matrix
U ∈ Rd×r, such that with a probability of at least 1− δ

1√
r
‖(I− U∗(U∗)>)U‖F ≤ O

( σ√
λ∗r

√
µdrK log( tδ ) log( rKδ )

mt

)
(309)

and the algorithm uses an additional memory of size O(d2r2).

A proof is in Section D.1.
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AltMin-S: Initialized at U , the k-the step of alternating minimization-based AltMinGD-S (Algo-
rithm 2) is:

Tk =
{
i ∈ [1 +

(k − 1)t

K
,
tk

K
] | σmin(U>S(i)U) ≥ 1/2 and σmax(U>S(i)U) ≤ 2

}
(310)

v(i) ← (U>S(i)U)†((U>S(i)U∗)v∗(i) + U>z(i)) , for i ∈ Tk (311)

Ũ ← U − η
( ∑
i∈[t]

S
(i)
2 (Uv(i) − U∗v∗(i))(v(i))> + z(i)(v(i))>

)
, (312)

U+ ← QR(Ũ) , (313)

where U+ is the next iterate, S(i)
1 , S(i)

2 , and A are defined in the same way as above for AltMin-S.
Theorem 11 (Formal version of Theorem 3 in Section 4)). Let there be t linear regression tasks,
each with m samples satisfying Assumptions 1 and 2, and K = Ω(dλ

∗
1

λ∗r
log( mt

(λ∗1/λ
∗
r)(σ/
√
λ∗r)µdr

)e),

‖(I − U∗(U∗)>)Uinit‖F ≤ min
(

21
121 , O

(
λ∗r
λ∗1

√
1

log(t/K)

))
, m ≥ Ω

(
r2
λ∗1
λ∗r

(
σ√
λ∗r

)2
log( tδ ) +

r2 log(Kδ ) + log(µr)
)

, t ≥ Ω(µ2r3K log(Kδ )) and mt ≥ Ω
(
µdr2K log( tδ )

(
1 +(

λ∗1
λ∗r

)2(
σ√
λ∗r

)2
log( tδ ) log( rKδ )

))
. Then, for any 0 < δ < 1, after K iterations and using the

stepsize η = (r/t)/2λ∗1, AltMinGD-S (Algorithm 2) returns an orthonormal matrix U ∈ Rd×r, such
that with a probability of at least 1− δ

1√
r
‖(I− U∗(U∗)>)U‖F ≤ O

( σ√
λ∗r

√
µdr2K log( tδ ) log( rKδ )

mt

)
(314)

A proof is in Section D.1.

D.1 Proofs of Theorem 10 (formal version of Theorem 6 in Appendix A) and Theorem 11
(formal version of Theorem 3 in Section 4)

Here we provide only the proof of Theorem 10 as the proof of Theorem 11 is very similar and
straightforward, given the former.

First, in the following lemma, we prove that the task subset Tk has similar properties as the full task
partition [1 + t(k − 1)/K, tk/K].
Lemma D.1 (Subset selection). If m ≥ Ω(r + log(µr)) and t ≥ Ω(µ2 r2K log( 1

δ )), then with a
probability of at least 1− δ/3,

|Tk| = Θ
( t
K

)
, , and ‖V ∗‖2∞,2 ≤ O

( µ r
|Tk|

λr(
∑
i∈T

v∗(i)(v∗(i))>)
)

(315)

λr(
∑
i∈T

v∗(i)(v∗(i))>) = Θ(λr(
∑
i∈Pk

v∗(i)(v∗(i))>)) , and (316)

λ1(
∑
i∈T

v∗(i)(v∗(i))>) = Θ(λ1(
∑
i∈Pk

v∗(i)(v∗(i))>)) , (317)

where Pk = [1 + t(k − 1)/K, tk/K] is the k-th K-way partition of [t] after shuffling.

A proof is in Section D.2. Therefore, assuming that the above high-probability event holds, in the rest
of the proof we can consider that Tk is equivalent to Pk.

In the rest of the proof, when compared to the proof of Theorem 8, only the following Lemma
(corresponding to Lemma B.2) analyzing the V update changes in its necessary condition.

Lemma D.2. If ‖(I − U∗(U∗)>)U‖F ≤ min
(

21
121 , O

(√
λ∗r
λ∗1

1
log(t/K)

))
and m ≥

Ω
((

σ√
λ∗r

)2
r2 log( t

Kδ ) + r log( 1
δ )
)

, then with a probability of at least 1− δ/3,

‖v(i)‖ ≤ O
(
µλr

)
, λ1 ≤ 2λ∗1 , and λ∗r/2 ≤ λr ≤ 2λ∗r (318)
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and

√
rK

t

‖H‖F√
λr
≤ O

(√ log( t
Kδ )

log( 1
δ )

√
λ∗1
λ∗r
‖(I− U∗(U∗)>)U‖F +

σ√
λ∗r

√
r2 log( t

Kδ )

m

)
(319)

√
rK

t

‖H‖∞,2√
λr

≤ O
(√ log( t

Kδ )

log( 1
δ )
‖(I− U∗(U∗)>)U‖

√
µrK

t
+

σ√
λ∗r

√
r2K log( t

Kδ )

mt

)
(320)

A proof is in Section D.3.1. We omit the rest of the proof, as it is same as that of Theorem 8.

D.2 Analysis of task subset selection

Proof of Lemma D.1 (Subset selection). Let Pk = [1 + (k − 1)t/K, tk/K] and

Tk =
{
i ∈ [1 + (k − 1)t/K, tk/K] | σmin(U>S(i)U) ≥ 1/2 and σmax(U>S(i)U) ≤ 2

}
. (321)

For all i ∈ Pk, Xi = I(σmin(U>S(i)U) ≥ 1/2 and σmax(U>S(i)U) ≤ 2) be the indicator variable
denoting whether index i was select into the subset T̂ .

By Lemma F.7 (by setting aj ← 1, xj ← U>x
(i)
j for all j ∈ [m], and

δ ← 1/4µr) Xi are i.i.d. Bernoulli random variables with mean p ≥ 1 − 1
4µr , if

cmax

(√
r log(9)+log(4µr)

m , r log(9)+log(4µr)
m

)
≤ 1/2, which is satisfied by m ≥ Ω(r+log(µr)), for

all i ∈ Pk.

By Hoeffding inequality for Bernoulli random variables, with a probability of at least 1− δ/3

||Tk| − pt/K| =
∣∣ ∑
i∈Pk

Xi − (1− 1

4µ r
)
t

K

∣∣ ≤ t

K

√
K log( 3

δ )

2t
≤ t

K
O
( 1

4µ r

)
(322)

where we used the fact that t ≥ Ω(8Kµ2 r2 log( 3
δ )). Therefore

t

K
− |Tk| ≤

t

K
O
( 1

2µ r

)
, and |Tk| ≤ Θ

( t
K

)
(323)

where we used the fact that µ ≥ 1 and r ≥ 1.

r

t

∣∣z>(
∑
i∈Tk

v∗(i)(v∗(i))>)z − z>(
∑
i∈Pk

v∗(i)(v∗(i))>)z
∣∣ ≤ r

t
(t− t̂)‖V ∗‖2∞,2 (324)

≤ r

t
O
( t

2µ r

)
· ‖V ∗‖2∞,2 ≤

λr
2
, (325)

for all z ∈ Rr, where λr = λr(
∑
i∈Pk v

∗(i)(v∗(i))>). Therefore

λr(
∑
i∈T

v∗(i)(v∗(i))>) = Θ(λr(
∑
i∈Pk

v∗(i)(v∗(i))>)) , and (326)

λ1(
∑
i∈T

v∗(i)(v∗(i))>) = Θ(λ1(
∑
i∈Pk

v∗(i)(v∗(i))>)) (327)
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Using approximate incoherence of the partition Pk (Lemma B.1) we get

‖V ∗‖2∞,2 ≤ O
(µrK

t

)
λr(

∑
i∈Pk

v∗(i)(v∗(i))>) (328)

= O
(µrK

t

)
min
‖z‖=1

z>(
∑
i∈Pk

v∗(i)(v∗(i))>)z (329)

≤ O
(µrK

t

)
min
‖z‖=1

z>(
∑
i∈Tk

v∗(i)(v∗(i))>)z +O
(µrK

t

)
(
t

K
− |Tk|)‖V ∗‖2∞,2 (330)

≤ O
(µrK

t

)
λr(
∑
i∈Tk

v∗(i)(v∗(i))>) +
1

2
‖V ∗‖2∞,2 (331)

(332)

This implies that approximate incoherence holds for Tk, ‖V ∗‖2∞,2 ≤
O
(
µrK
t

)
λr(
∑
i∈Tk v

∗(i)(v∗(i))>) ≤ O
(
µr
|Tk|λr(

∑
i∈Tk v

(i)(v(i))>)
)
.

D.3 Analysis of update on V

D.3.1 Proof of Lemma D.2

Proof of Lemma D.2. The proof is similar to that of Lemma B.2, but instead of using Lemma B.5 to
bound some linear operators, we use the definition of selected task subset Tk and Lemma D.3 to get
that ‖(U>S(i)U)†‖ ≤ 2 for all i ∈ Tk and with a probability of at least 1− δ,

‖U>S(i)U⊥U
>
⊥U
∗v∗(i)‖ ≤ α‖U>⊥U∗v∗(i)

∥∥, and∥∥U>z(i) ∥∥ ≤ σα ,
}

for all i ∈ Tk (333)

where α = c
√

r log(10t/δ)
m . We omit the rest of the proof, as it is same as that of Lemma B.2.

Here we bound the linear operators in the v(i) update.

Lemma D.3. With a probability of at least 1− δ, the following are true for all i ∈ [t]

‖U>S(i)U⊥(U⊥)>U∗v∗(i)‖ ≤
√

2cr log(10t/δ)

m
‖U⊥U∗v∗(i)‖, and (334)

∥∥U>z(i) ∥∥ ≤ σ√2cr log(10t/δ)

m
(335)

Proof. Let i ∈ [t]. Let b = (U⊥)>U∗v∗(i) ∈ Rr

Let S = {v ∈ Rr | ‖v‖ = 1} be the set of all real vectors of dimension r with unit Euclidean norm.
For ε ≤ 1, there exists an ε-net, Nε ⊂ S, of size (1 + 2/ε)r with respect to the Euclidean norm [49,
Lemma 5.2]. That is for any v′ ∈ S, there exists some v ∈ Nε such that ‖v′ − v‖F ≤ ε.
Consider a v ∈ Nε, such that ‖v‖F = 1. Now we will prove with high-probability that〈
(U>S(i)U⊥)v, b

〉
is small. Consider the the following quadratic form

v>(U>S(i)U⊥)b =
1

m

∑
j∈[m]

v>(U>x
(i)
j (x

(i)
j )>U⊥)b

d
= ‖b‖ 1

m

∑
j∈[m]

x̃jgj (336)

where gj ∼ N (0, 1)) are i.i.d. standard Gaussian random variables and x̃j = v>U>x
(i)
j ∈ Rd. This

follows from the fact that sets of columns of U and U⊥ forms an orthonormal basis.
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Note that gj and x̃j are independent, as U and U⊥ are orthogonal and U>S(i)U , does not depend on
U⊥x

(i)
j . We will use the properties of Gaussian random variables to prove that ‖ 1

m

∑
j∈[m] x̃jgj‖

concentrates around zero. Note that

1

m

∑
j∈[m]

x̃jgj
d
=

1

m
‖x̃‖g , where g ∼ N (0, 1) (337)

Then with probability at least 1− δ/2t/|Nε|, |g|2 ≤ c log(2t|Nε|/δ). Additionally, by definition of
Tk we have

1

m
‖x̃‖2 =

1

m

∑
j∈[m]

x̃2j = v>U>(
1

m

∑
j∈[m]

x
(i)
j (x

(i)
j )>)Uv ≤ σmax(U>S(i)U) ≤ 2 (338)

Therefore

v>(U>S(i)U⊥)b ≤ 1√
m
‖b‖
√

2c
√

log(2t|Nε|/δ) (339)

For brevity, let e = (U>S(i)U⊥)b. Let v′ ∈ S ⊂ Rr be the unit vector parallel to e, such that
(v′)>e = ‖e‖ = max‖ṽ‖=1 ṽ

>e. Then there exists some v ∈ Nε such that ‖v′ − v‖ ≤ ε.

‖e‖ = (v′)>e = v>e+ (v′ − v)>e ≤ v>e+ ‖v′ − v‖‖e‖ ≤ v>e+ ε‖e‖ (340)

Re-arranging and setting ε = 1/2, and c← 2c, we get

‖(U>S(i)U⊥)b‖ ≤ ‖b‖
√

2cr log(10t/δ)

m
, with a probability of at least 1− δ/2t (341)

Using similar arguments we can also prove that with a probability of at least 1− δ

‖U>z(i)‖ = ‖ 1

m
U>x

(i)
j ε

(i)
j ‖ ≤ σ

√
2cr log(10t/δ)

m
, with a probability of at least 1− δ/2t

(342)

Finally taking the union bound over the two bounds over all the tasks in T gets us the desired
result.

E Corollaries of known results

Theorem 12 (Theorem 3, Tripuraneni et al. 2020). Let there be t linear regression tasks, each with
m samples satisfying Assumptions 1 and 2, and

mt ≥ Ω̃
(λ∗1
λ∗r
µdr +

( σ√
λ∗r

)4
dr2
)

(343)

then with a high probability of at least 1 − O((mt)−100), Method-of-Moments [48, Algorithm 1]
outputs an orthonormal matrix U ∈ Rd×r such that

‖(I− U∗(U∗)>)U‖2 ≤ Õ
(√λ∗1

λ∗r

µdr

mt
+
( σ√

λ∗r

)2√dr2

mt

)
(344)

and

‖(I− U∗(U∗)>)U‖F ≤ Õ
(√λ∗1

λ∗r

µdr2

mt
+
( σ√

λ∗r

)2√dr3

mt

)
. (345)
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Proof. From the details of the proof of Theorem 3 in [48] we can derive that, with a high probability
of at least 1−O((mt)−100),

‖(I− U∗(U∗)>)U‖2 (346)

≤ Õ
(√dr2tr(W ∗)‖V ∗‖2∞,2

λ∗2r mt2
+
dr‖V ∗‖2∞,2
λ∗rmt

+ σ
(√dr2tr(W ∗)

λ∗2r mt2
+
dr‖V ∗‖∞,2
λ∗rmt

)
+

σ2
(√ dr2

λ∗2r mt
+

dr

λ∗rmt

))
(347)

≤ Õ
(√λ∗1

λ∗r

µdr

mt
+
µdr

mt
+

σ√
λ∗r

(√
λ∗1
λ∗r

dr

mt
+

√
µdr

mt

)
+
( σ√

λ∗r

)2(√dr2

mt
+
dr

mt

)
(348)

≤ Õ
(√λ∗1

λ∗r

µdr

mt
+

σ√
λ∗r

√
λ∗1
λ∗r

dr

mt
+
( σ√

λ∗r

)2√dr2

mt

)
(349)

≤ Õ
(√λ∗1

λ∗r

µdr

mt
+
( σ√

λ∗r

)2√dr2

mt

)
(350)

where ‖V ‖∞,2 = maxi∈[t] ‖v(i)‖, and the second-last inequality uses the fact that mt ≥ Ω̃(µdr) and
last inequality uses the fact that λ

∗
1

λ∗r
≤ µr. Additionally we require that

mt ≥ Ω̃
(λ∗1
λ∗r
µdr +

( σ√
λ∗r

)4
dr2
)

(351)

Theorem 13. [48, Theorem 5] Let r ≤ d/2 and mt ≥ r(d− r), then for all V ∗, w.p. ≥ 1/2

inf
Û

sup
U∈Grr,d

‖(I− U∗(U∗)>)Û‖F√
r

≥ Ω
((λ∗r

λ∗1

σ√
λ∗r

)√ d r

m t

)
,

where Gr,d is the Grassmannian manifold of r-dimensional subspaces in Rd, the infimum for Û
is taken over the set of all measurable functions that takes mt samples in total from the model in
Section 2 satisfying Assumption 1 and 2.

Proof. The proof is very similar to that of Theorem 5 of [48]. The main difference is that instead of
lower bounding error in spectral norm we have to bound the distance in the Frobenius norm. However,
the rest of the details are almost the same, hence we omit a full proof.

F Technical Lemmas

This section contains some technical lemmas used in this paper.

Lemma F.1. For a real matrix A ∈ Rm×n and a real symmetric positive semi-definite (PSD) matrix
B ∈ Rn×n, the following holds true: σ2

min(A)λmin(B) ≤ λmin(ABA>), where σmin(·) and λmin(·)
represents the minimum singular value and minimum eigenvalue operators respectively.

Proof. The proof directly follows from the definitons of σmin and λmin. Since B is a PSD matrix,
therefore ABA> is also PSD, i.e. λmin(ABA>) ≥ 0. This is because since B is PSD, it has a PSD
matrix square root B1/2 such that B = (B1/2)>B1/2 and B1/2 is PSD. Then

z>ABA>z = z>A(B1/2)>B1/2A>z = ‖B1/2A>z‖2 ≥ 0 (352)
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First assume that σmin(A) > 0, then
λmin(ABA>) = min

‖z‖=1
z>ABA>z (353)

= σ2
min(A) min

‖z‖=1
(
A>z

σmin(A)
)>B(

A>z

σmin(A)
) (354)

≥ σ2
min(A) min

1≤‖z‖≤σmax(A)
σmin(A)

z>Bz (355)

≥ σ2
min(A) min

‖z‖=1
z>Bz (356)

= σ2
min(A)λmin(B) (357)

The second last inequality above follows from the fact that B is a PSD matrix,i.e. min‖z‖=1 z
>Bz =

λmin(B) ≥ 0. Secondly if σmin(A) = 0, then A is rank deficient and hence ABA> is also rank
deficient, i.e. λmin(ABA>) = 0. Therefore λmin(ABA>) = 0 = σ2

min(A)λmin(B).

Lemma F.2 (Weyl’s inequality [1]). For three real r-rank matrices, satisfying A−B = C, Weyl’s
inequality [1, Theorem 3.6], tells that

σk(A)− σk(B) ≤ ‖C‖ , for all k ∈ [r] (358)
where σk(·) is the k-th largest singular value operator.
Lemma F.3 (a variant of Woodburry matrix identity [26]). For linear operators A and B such that
A and A+B are invertible, then

(A+B)−1 −A−1 = −A−1B(A+B)−1 (359)

Lemma F.4. Let U ∈ Rd×r and U∗ ∈ Rd×r be two orthonormal matrices. Let {sin θj(U,U∗)}rj=1

be the singular values of (U∗)>U . Then following are true.
‖U − U∗(U∗)>U‖F ≥ ‖I− (U∗)>U‖F , (360)

‖U − U∗(U∗)>U‖F ≥ r − ‖(U∗)>U‖2F ≥
∑
k∈[r]

sin2 θk(U,U∗), (361)

‖(I− U∗(U∗)>)U‖ = ‖(U∗⊥)>U‖ = ‖U>⊥U∗‖ = ‖(I− U(U)>)U∗‖, (362)

‖(I− U∗(U∗)>)U‖F = ‖(U∗⊥)>U‖F = ‖U>⊥U∗‖F = ‖(I− U(U)>)U∗‖F , and (363)

σr((U
∗)>U) ≥

√
1− ‖(I− U∗(U∗)>)U‖ (364)

Proof.
‖U − U∗(U∗)>U‖2F =

〈
U − U∗(U∗)>U,U − U∗(U∗)>U

〉
(365)

= 〈U,U〉 − 2
〈
U∗(U∗)>U,U

〉
+
〈
U∗(U∗)>U,U∗(U∗)>U

〉
(366)

= r − 2tr(((U∗)>U)>((U∗)>U)) + tr(((U∗)>U)>((U∗)>U)) (367)

= r − tr(((U∗)>U)>((U∗)>U)) (368)

= r −
∑
k∈[r]

cos2 θk(U,U∗) =
∑
k∈[r]

sin2 θk(U,U∗) ≥ sin2 θ1(U,U∗) (369)

≥
∑
k∈[r]

(1− cos2 θk(U,U∗)) (370)

≥
∑
k∈[r]

(1− cos θk(U,U∗))2 (371)

= ‖I− (U∗)>U‖2F (372)

‖U>⊥U∗‖ = σmax(U>⊥U
∗) =

√
λmax((U∗)>U⊥U>⊥U

∗) (373)

=
√
λmax((U∗)>U⊥U>⊥U⊥U

>
⊥U
∗) = ‖U⊥U>⊥U∗‖ = ‖(I− UU>)U∗‖

(374)
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Note that for ‖z‖ = 1

1 = z>U>Uz = z>U>U∗(U∗)>Uz + z>U>U∗⊥(U∗⊥)>Uz (375)

=⇒ 1− z>U>U∗(U∗)>Uz = z>U>U∗⊥(U∗⊥)>Uz (376)

=⇒ 1− min
‖z‖=1

z>U>U∗(U∗)>Uz = max
‖z‖=1

z>U>U∗⊥(U∗⊥)>Uz (377)

=⇒ 1− σ2
min((U∗)>U) = ‖(U∗⊥)>U‖2 (378)

Therefore

σ2
min(U>U∗) + ‖U>⊥U∗‖2 = 1 = σ2

min((U∗)>U) + ‖(U∗⊥)>U‖2 =⇒ ‖U>⊥U∗‖ = ‖(U∗⊥)>U‖
(379)

Rest of the equality can be obtained in a similar fashion using the above two relations.

‖U>⊥U∗‖2F = tr((U∗)>U⊥U
>
⊥U
∗) = tr((U∗)>(I− UU>)U∗) (380)

= tr((U∗)>(I− UU>)2U∗) (381)

= ‖(I− UU>)U∗‖2F (382)

= ‖(I− U∗(U∗)>)U‖2F = ‖(U∗⊥)>U‖2F (383)

Let E = (I− U∗(U∗)>)U and Q = (U∗)>U . Then U>E = I−Q>Q. Then by Weyl’s inequality
(Lemma F.2, by setting A← I, B ← Q>Q, and C ← U>E) we get that

1− σr(Q)2 = σr(I)− σr(Q>Q) ≤ ‖U>E‖ ≤ ‖U‖‖E‖ ≤ ‖(I− U∗(U∗)>)U‖ (384)

This implies that σr((U∗)>U) ≥
√

1− ‖(I− U∗(U∗)>)U‖

Lemma F.5 (Hanson-Wright inequality, Theorem 6.2.1 [50]). Let x1, . . . , xm ∼ N (0, Id×d) be m
i.i.d. standard isotropic Gaussian random vectors of dimension d. Then, for some universal constant
c ≥ 0, the following holds true with a probability of at least 1− δ.∣∣∣∣ 1

m

m∑
j=1

x>j Ajxj −
1

m

m∑
j=1

trAj

∣∣∣∣ ≤ cmax

(√√√√ m∑
j=1

‖Aj‖2F
log(1/δ)

m2
, max
j=1,...,n

‖Aj‖2
log(1/δ)

m

)
(385)

Lemma F.6. Let x1, . . . , xm ∼ N (0, Id×d) be m i.i.d. standard isotropic Gaussian random vectors
of dimension d. Then, for some universal constant c ≥ 0, the following holds true with a probability
of at least 1− δ.∣∣∣∣ 1

m

m∑
j=1

a>(xjx
>
j )b− a>b

∣∣∣∣ ≤ c‖a‖‖b‖max

(√
log(1/δ)

m
,

log(1/δ)

m

)
(386)

Proof. First notice that a>(xjx
>
j )b = tr(a>(xjx

>
j )b) = tr(x>j ba

>xj) = x>j ba
>xj and a>b =

tr(ba>). Then desired result follows from Lemma F.5, by setting Aj = ba>. .

Lemma F.7. Let x1, . . . , xm ∼ N (0, Id×d) be m i.i.d. standard isotropic Gaussian random vectors
of dimension d. Then, for some universal constant c ≥ 0, the following holds true with a probability
of at least 1− δ.∥∥∥∥ 1

m

m∑
j=1

ajxjx
>
j −

1

m

m∑
j=1

ajI

∥∥∥∥ ≤ cmax

(
‖a‖2√
m

√
d log(9) + log(1/δ)

m
, ‖a‖∞

d log(9) + log(1/δ)

m

)
(387)
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Proof. For ε ≤ 1, consider a unit vector u ∈ Nε from the ε-net of size |Nε| = (1 + 2/ε)d, of the
sphere Sd−1 [49, Lemma 5.2]. That is for any u′ ∈ Sd−1, there exists some u ∈ Nε such that
‖u′ − u‖ ≤ ε.

Now we will prove a concentration for 1
m

∑m
j=1 aju

>xjx
>
j u − 1

m

∑m
j=1 aj . Notice that,

aju
>(xjx

>
j )u = atr(u>(xjx

>
j )u) = ajtr(x

>
j uu

>xj) = x>j (ajuu
>)xj and tr(ajuu

>) = aj .
Then, by Hanson-Wright inequality (Lemma F.5), for some universal constant c ≥ 0, the following
holds true with a probability of at least 1− δ′.∣∣∣∣ 1

m

m∑
j=1

aju
>xjx

>
j u−

1

m

m∑
j=1

aj

∣∣∣∣ ≤ cmax

(
‖a‖2√
m

√
log(1/δ′)

m
, ‖a‖∞

log(1/δ′)

m

)
(388)

This implies that, through union bound, for the matrix A′ = 1
m

∑m
j=1 ajxjx

>
j − 1

m

∑m
j=1 ajI the

following holds true with probability at least 1− δ

u>A′u ≤ cmax

(
‖a‖2√
m

√
log(|Nε|/δ)

m
, ‖a‖∞

log(|Nε|/δ)
m

)
, any u ∈ Nε (389)

Let u′ ∈ Sd−1 be the top singular-value of A′, then there exists some u ∈ Nε such that ‖u′ − u‖ ≤ ε.

σmax(A′) = (u′)>A′u′ = (u′ − u)>A′u′ + u>A′u+ u>A′u (390)

≤ ‖u′ − u‖σmax(A′)‖u′‖+ ‖u‖σmax(A′)‖u′ − u‖+ u>A′u (391)
(392)

Re-arranging and setting ε = 1/4 and setting c← 2c, we get

σmax(A′) ≤ u>A′u

1− 2ε
≤ 2cmax

(
‖a‖2√
m

√
d log(9) + log(1/δ)

m
, ‖a‖∞

d log(9) + log(1/δ)

m

)
(393)

G Sample complexity gain of AltMin over MoM

For the purpose of illustration, suppose that σ = 0 and t = 1, that is we are solving a noiseless
single-task regression problem. Here AltMin solves the simple problem

min
u

1

m

∑
j

(yj − u>xj)2 ≡ min
u

(u− u∗)>S(u− u∗) (394)

where S = 1
m

∑
j xjx

>
j is the empirical data covariance matrix. It can exactly recover u∗ using just

d samples, as S will then be full-rank (with high probability).

However, a 2nd order MoM [35], solving

min
u

1/m
∑
j

yjx
>
j u ≡ min

u
u∗>Su (395)

achieves ε error only if S = 1
m

∑
j xjx

>
j is close enough to the true identity covariance matrix Id×d.

This needs at least Õ(1/ε2) samples by simple covariance matrix concentration arguments.

This is the intuition behind the fact that, even when σ = 0 and t > 1, our AltMinGD-S achieves ε
error using just Õ(d) samples (Corollary 4), but MoM needs at least Õ(d/ε2) samples [48, Theorem
7]. Empirically this is observed in Figure 1a, where the error of AltMin and AltMinGD decreases
as σ decreases, while the error of MoM and MoM2 remains almost constant. Similar phenomenon
is also observed in Figures 1b, and 1c, where there is a constant gap between curves of AltMin and
AltMinGD and MoM and MoM2 in these loglog plots, even though the asymptotic convergence rates
of AltMin or AltMinGD and MoM or MoM2 in terms of m and t are similar.
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Figure 4: Individual trials of each algorithm when varying number of tasks t

H Experimental details

We empirically compare the performance of our methods AltMinGD (Algorithm 1) and exact
minimization variant AltMin (Algorithm 3 in Appendix), two different versions of Method-of-
Moments (MoM [48], MoM2 [35]), and simultaneous gradient descent on (U, V ) using the Burer-
Monteiro factorized loss (4) (BM-GD [48]). We generate data samples with dimension d = 100 and
generate random subspace U∗ of rank r = 5. We sample the task specific true regression parameter
from the standard isotropic Gaussian distribution, i.e. v∗(i) ∼ N (0, I). In all the figures, the magenta
dashed line with square marker represents AltMinGD, the blue straight line with circular marker
denotes the AltMin , the red dotted line with downwards pointing triangular marker denotes the MoM,
the yellow dotted line with upwards pointing triangular marker represents the MoM2, and the green
dashed and dotted line with diamond marker represents the BM-GD. In all the figures we plot the
subspace estimation error of the output U of the algorithms. The error is calculated using the rescaled
Frobenius norm ‖(I− U∗(U∗)>)U‖F /

√
r, which takes a value in the interval [0, 1].

Figure 1a plots subspace distance against the standard deviation σ of the regression noise, ε(i)j ∼
N (0, σ2); see (2). We vary σ from 10−3 to 102, while fixing the number of tasks at t = 200 and the
number of samples per task at m = 25. We initialize AltMinGD, AltMin, and BM-GD uniformly at
random and run them for K = 100, K = 20 and K = 500 iterations, respectively. AltMinGD and
BM-GD use stepsizes η = 1.0 and η = 0.1 respectively.

Figure 1b plots the subspace error against the number of tasks t. We vary t from 10 to 3163, while
the number of samples per task is fixed at m = 25 and σ = 1. We initialize AltMinGD, AltMin,
and BM-GD uniformly at random and run them for K = 200, K = 20 and K = 500 iterations,
respectively. AltMinGD and BM-GD use stepsizes η = 1.0 and η = 0.1 respectively. In Figure 4a,
we plot the average over 5 trials for each algorithm. The individual trials for each algorithm are
plotted in Figure 4. In Figure 1c, we plot the the error against the number samples per tasks m. We
vary m from 5 to 78125, while fixing the number of tasks at t = 20 and the standard deviation of
the regression noise at σ = 1. We initialize AltMinGD, AltMin, and BM-GD uniformly at random
from the set of all orthonormal rank-r matrices and run them for K = 1000, K = 20 and K = 500
iterations, respectively. AltMinGD and BM-GD use stepsizes η = 0.2 and η = 0.1 respectively. In
Figure 5a, we plot the average over 5 trials for each algorithm. The individual trials for each algorithm
are also plotted in Figure 5. We see that BM-GD is very ustable even at a lower or comparable
stepsize than AltMinGD.

In Figure 3 we plot the subspace estimation error against the number of iterations of the iterative
method AltMinGD, AltMin, and BM-GD for varying levels of task diversity/incoherence (Assump-
tion 2). We vary task diversity while fixing the random noise magnitude at σ = 1, the number of
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Figure 5: Individual trials of each algorithm when varying number of samples per task m
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Figure 6: Individual trials of each iterative algorithm when plotting against the number of iterations
for different task diversities.

tasks at t = 200, and the number of samples per task at m = 25. We vary the diversity by generating
a fraction of the true task regression parameters from the standard isotropic Gaussian distribution,
i.e. v(i) ∼ N (0, I), and setting the rest of them as v(i) =

√
re1 = [

√
r, 0, . . . , 0]>. For high task

diversity all task parameters are generated randomly, for moderate task diversity 0.4 fraction of the
task parameters are set as

√
re1, and for low task diversity 0.8 fraction of the task parameters are set

as
√
re1. In Figure 3, we plot the average over 6 trials for each algorithm. The individual trials for

each algorithm for each task diversity are plotted in Figure 6.
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