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Abstract1

Networks have become indispensable and ubiquitous structures in many fields2

to model the interactions among different entities, such as friendship in social3

networks or protein interactions in biological graphs. A major challenge is to4

understand the structure and dynamics of these systems. Although networks evolve5

through time, most existing graph representation learning methods target only6

static networks. Whereas approaches have been developed for the modeling of7

dynamic networks, there is a lack of efficient continuous time dynamic graph repre-8

sentation learning methods that can provide accurate network characterization and9

visualization in low dimensions while explicitly accounting for prominent network10

characteristics such as homophily and transitivity. In this paper, we propose the11

PIecewise-VElocity Model (PIVEM) for the representation of continuous-time12

dynamic networks. It learns dynamic embeddings in which the temporal evolution13

of nodes is approximated by piecewise linear interpolations based on a latent dis-14

tance model with piecewise constant node-specific velocities. The model allows15

for analytically tractable expressions of the associated Poisson process likelihood16

with scalable inference invariant to the number of events. We further impose a scal-17

able Kronecker structured Gaussian Process prior to the dynamics accounting for18

community structure, temporal smoothness, and disentangled (uncorrelated) latent19

embedding dimensions optimally learned to characterize the network dynamics.20

We show that PIVEM can successfully represent network structure and dynamics21

in ultra-low two and three-dimensional embedding spaces. We further extensively22

evaluate the performance of the approach on various networks of different types23

and sizes and find that it outperforms existing relevant state-of-art methods in24

downstream tasks such as link prediction. In summary, PIVEM enables easily25

interpretable dynamic network visualizations and characterizations that can further26

improve our understanding of the intrinsic dynamics of time-evolving networks.27

1 Introduction28

With technological advancements in data storage and production systems, we have witnessed the29

massive growth of graph (or network) data in recent years, with many prominent examples, including30

social, technological, and biological networks from diverse disciplines [1]. They propose an exquisite31

way to store and represent the interactions among data points and machine learning techniques on32

graphs have thus gained considerable attention to extract meaningful information from these complex33

systems and perform various predictive tasks. In this regard, Graph Representation Learning (GRL)34

techniques have become a cornerstone in the field through their exceptional performance in many35

downstream tasks such as node classification and edge prediction. Unlike the classical techniques36

relying on the extraction and design of handcrafted feature vectors peculiar to given networks, GRL37

approaches aim to design algorithms that can automatically learn features optimally preserving38

various characteristics of networks in their induced latent space.39

Many networks evolve through time and are liable to modifications in structure with newly arriving40

nodes or emerging connections, the GRL methods have primarily addressed static networks, in other41

words, a snapshot of the networks at a specific time. However, recent years have seen increasing42
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efforts toward modeling dynamic complex networks, see also [2] for a review. Whereas most43

approaches have concentrated their attention on discrete-time temporal networks, which have built44

upon a collection of time-stamped networks (c.f. [2–10]) modeling of networks in continuous time45

has also been studied (c.f. [11–14]). These approaches have been based on latent class [3, 4, 11–13]46

and latent feature modeling approaches [2, 5–10, 14], including advanced dynamic graph neural47

network representations [15, 16].48

Although these procedures have enabled the characterization of evolving networks for downstream49

tasks such as link prediction and node classification, existing dynamic latent feature models are either50

in discrete time or do not explicitly account for network homophily and transitivity in terms of their51

latent representations. Whereas latent class models typically provide interpretable representations at52

the level of groups, latent feature models in general rely on high-dimensional latent representations53

that are not easily amenable to visualization and interpretation. A further complication of most54

existing dynamic modeling approaches is their scaling typically growing in complexity by the number55

of observed events and number of network dyads.56

This work addresses the embedding problem of nodes in a continuous-time latent space and seeks to57

accurately model network interaction patterns using low dimensional representations. We model the58

node interactions with Nonhomogeneous Poisson Point Processes whose densities are defined based59

on the relative distances among the node trajectories in the latent space. The node movements are60

characterized by node-specific piecewise velocity vectors, such that each node acquires a dynamic61

representation pursuing a continuous path in the latent space throughout the timeline. The main62

contributions of the paper can be summarized as follows:63

• We propose a novel scalable GRL method, the PIecewise-VElocity Model (PIVEM), to flexibly64

learn continuous-time dynamic node representations. The temporal evolutions of networks are65

represented by piecewise linear motions of the nodes’ embeddings in the latent space.66

• We present a framework balancing the trade-off between the smoothness of node trajectories in67

the latent space and model capacity accounting for the temporal evolution.68

• We show that the PIVEM can embed nodes accurately in very low dimensional spaces, i.e.,69

D = 2, such that it serves as a dynamic network visualization tool facilitating human insights70

into networks’ complex, evolving structures.71

• The performance of the introduced approach is extensively evaluated in various downstream72

tasks, such as network reconstruction and link prediction. We show that it outperforms well-73

known baseline methods on a wide range of datasets. Besides, we propose an efficient model74

optimization strategy enabling the PIVEM to scale to large networks.75

Source code and other materials. The datasets, implementation of the method in Python, and all76

the generated animations can be found at the address: https://tinyurl.com/pivem.77

2 Related Work78

The work on dynamic modeling of complex networks has spurred substantial attention in recent years79

and covers approaches for the modeling of dynamic structures at the level of groups (i.e., latent class80

models) and dynamic representation learning approaches based on latent feature models, including81

graph neural networks (GNNs). Whereas most attention has been given to discrete-time dynamic82

networks, a substantial body of work has also covered continuous-time modeling, as outlined below.83

Dynamic Latent Class Models. Initial efforts for modeling continuously evolving networks has84

combined latent class models defined by the stochastic block models [17, 18] with Hawkes processes85

[19, 20]. In the work of [11], co-dependent (through time) Hawkes processes were combined with86

the Infinite Relational Model [21] (Hawkes IRM), yielding a non-parametric Bayesian approach87

capable of expressing reciprocity between inferred groups of actors. A drawback of such a model88

is the computational cost of the imposed Markov-chain Monte-Carlo optimization, as well as, its89

limitation on modeling only reciprocation effects. Scalability issues were addressed in [12] via the90

Block Hawkes Model (BHM), which utilizes variational inference and simplifies the Hawkes IRM91

model by associating only the inferred block structure pairs with a univariate point process. Recently,92

the BHM model was extended to decoupling interactions between different pairs of nodes belonging93

to the same block pair, through the use of independent univariate Hawkes processes, defining the94

Community Hawkes Independent Pairs model [13]. Whereas the above works have been based95
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on continuous time modeling of dynamic networks, the dynamic-IRM (dIRM) of [3] focused on96

the modeling of discrete-time networks by inducing an infinite Hidden Markov Model (IHMM) to97

account for transitions over time of nodes between communities. In [4], a dynamic hierarchical block98

model was proposed based on the modeling of change points admitting dynamic node relocation99

within a Gibbs fragmentation tree. Despite the various advantages of such models, networks are100

constrained to be regarded and analyzed at a block level which in many cases is restrictive.101

Dynamic Latent Feature Models. Prominent works around node-level representations of continuous-102

time networks [22, 23] have originally considered feature propagation within the discrete time103

network topology [5] or extended the random-walk frameworks [6, 7] to the temporal case yielding104

the CTDNE [24] model. CTDNE provides a single temporal-aware node embedding, meaning that105

network and node evolution are unable to be visualized and explored. A more flexible approach was106

designed in [15] (DYREP), where temporal node embeddings are learned under a so-called latent107

mediation process, combining an association process describing the dynamics of the network with a108

communication process describing the dynamics on the network. It uses deep recurrent architectures109

to parameterize the intensity function of the point process, and thus the embedding space suffers from110

a lack of explainability. HTNE [25] introduces a model utilizing a Hawkes process relying on node111

embeddings. Unlike many approaches concentrating only on the structural modifications occurring112

between nodes, MMDNE [26] explicitly considers such pairwise micro, and network scale macro113

dynamics and uses a temporal node representation learning algorithm relying on a temporal attention114

point process. Graph neural networks (GNNs) can be extended to the analysis of continuous networks115

via the Temporal Graph Network (TGN) [16] where the classical encoder-decoder architecture is116

coupled with a memory cell.117

In the context of latent feature dynamic network models, Gaussian Processes (GP) have been used118

to characterize the smoothness of the temporal dynamics. This includes the discrete-time dynamic119

models considered in [8] in which latent factors were endowed a GP prior based on radial basis120

kernels imposing temporal smoothness within the latent representation. The approach was extended121

in [9] to impose stochastic differential equations for the evolution of latent factors. In [14], GPs were122

used for the modeling of continuous-time dynamic networks based on Poisson and Hawkes processes,123

including exogenous as well as endogenous features specified by a radial basis function prior.124

Latent Distance Models (LDM) [27] have recently been shown to outperform prominent GRL methods125

utilizing very-low dimensions in the static case [28, 29]. LDMs for temporal networks have been126

mostly studied in the discrete case [2], considering mainly diffusion dynamics to make predictions, as127

firstly studied in [30] and extended with popularity and activity effects [10]. While all these models128

express homophily and transitivity in the dynamic case, they fail to account for continuous dynamics.129

Our work is inspired by these previous approaches for the modeling of dynamic complex networks.130

Specifically, we make use of the latent distance model formulation to account for homophily and131

transitivity, the Poisson Process for the characterization of continuous-time dynamics, and a Gaussian132

Process prior based on the radial-basis-function kernel to account for temporal smoothness within133

the latent representation. Inspired by latent class models, we further impose a structured low-rank134

representation of nodes based on soft-assigning nodes to communities exhibiting similar temporal135

dynamics. Notably, we exploit how LDMs as opposed to GNN approaches in general, can provide136

easily interpretable yet accurate network representations in ultra-low dimensional spaces (D = 2),137

facilitating accurate dynamic network visualization and interpretation.138

3 Proposed Approach139

Our main objective is to represent every node of a given network, G = (V, E), into a low-dimensional140

metric space, (X, dX), in which the pairwise node proximities will be characterized by their distances141

in a continuous-time latent space (Objective 3.1). Since we address the continuous-time dynamic net-142

works, the interactions among nodes through time can vary, with new links appearing or disappearing143

at any time. More precisely, we will presently consider undirected continuous-time networks:144

Definition 3.1. A continuous-time dynamic undirected graph on a time interval IT := [0, T ] is an145

ordered pair G = (V, E) where V = {1, . . . , N} is a set of nodes and E ⊆ {{i, j, t} ∈ V2 × IT |1 ≤146

i < j ≤ N} is a set of events or edges.147

We will use the symbol, N , to denote the number of nodes in the vertex set and Eij [tl, tu] ⊆ E to148

indicate the set of edges between nodes i and j occurring on the interval [tl, tu] ⊆ IT .149
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3.1 Nonhomogeneous Poisson Point Processes150

The Poisson Point Processes (PPP)s are one of the natural choices widely used to model the number151

of random events occurring in time or the locations in a spatial space. PPPs are parameterized152

by a quantity known as the rate or the intensity indicating the average density of the points in the153

underlying space of the Poisson process. If the intensity depends on the time or location, the point154

process is called Nonhomogeneous PPP (Defn. 3.2), and it is typically adapted for applications in155

which the event points are not uniformly distributed [31].156

Definition 3.2. [Nonhomogeneous PPP] A counting process {M(t), t ≥ 0} is called a nonhomoge-157

neous Poisson process with intensity function λ(t), t ≥ 0 if (i) M(0) = 0, (ii) M(t) has independent158

increments: i.e.,
(
M(t1)−M(t0)

)
, . . . ,

(
M(tB)−M(tB−1)

)
are independent random variables159

for each 0 ≤ t0 < · · · < tB , and (iii) M(tu)−M(tl) is Poisson distributed with mean
∫ tu
tl

λ(t)dt.160

In this paper, we consider continuous-time dynamic networks such that the events (or links/edges)161

among nodes can occur at any point in time. As we will examine in the following sections, these162

interactions do not necessarily exhibit any recurring characteristics; instead, they vary over time in163

many real networks. In this regard, we assume that the number of links, M [tl, tu], between a pair of164

nodes (i, j) ∈ V2 follows a nonhomogeneous Poisson point process (NHPP) with intensity function165

λij(t) on the time interval [tl, tu), and for a given network G = (V, E), the log-likelihood function166

can be written by167

L(Ω) := log p(G|Ω) = 1

2

∑
(i,j)∈V2

 ∑
eij∈Eij

log λij(eij)−
∫ T

0

λij(t)dt

 (1)

where Ei,j ⊆ E [0, T ] is the set of links of node pair (i, j) ∈ V2 on the timeline IT := [0, T ], and168

Ω = {λij}1≤i<j≤N indicates the set of intensity functions.169

3.2 Problem Formulation170

Without loss of generality, it can be assumed that the timeline starts from 0 and is bounded by171

T ∈ R+. Since the interactions among nodes can occur at any time point on IT = [0, T ], we would172

like to identify an accurate continuous-time node representation {r(i, t)}(i,t)∈V×IT
defined using173

a low-dimensional latent space RD (D ≪ N) where r : V × IT → RD is a map indicating the174

embedding or representation of node i ∈ V at time point t ∈ IT . We define our objective more175

formally as follows:176

Objective 3.1. Let G = (V, E) be a continuous-time dynamic network and λ∗ : V2 × IT −→ R be177

an unknown intensity function of a nonhomogeneous Poisson point process. For a given metric space178

(X, dX), our purpose is to learn a function or representation r : V × IT → X satisfying179

1

(tu − tl)

∫ tu

tl

dX
(
r(i, t), r(j, t)

)
dt ≈ 1

(tu − tl)

∫ tu

tl

λ∗(i, j, t)dt (2)

for all (i, j) ∈ V2 pairs, and for every interval [tl, tu] ⊆ IT .180

In this work, we consider the Euclidean metric on a D-dimensional real vector space, X := RD and181

the embedding of node i ∈ V at time t ∈ IT will be denoted by ri(t) ∈ RD.182

3.3 PIVEM: Piecewise-Velocity Model For Learning Continuous-time Embeddings183

We learn continuous-time node representations by employing the canonical exponential link-function184

defining the intensity function as185

λij(t) := exp
(
βi + βj − ||ri(t)− rj(t)||2

)
(3)

where ri(t) ∈ RD and βi ∈ R denote the embedding vector at time t and the bias term of node i ∈ V ,186

respectively. For given bias terms, it can be seen by Lemma 3.1, that the definition of the intensity187

function provides a guarantee for our goal given in Equation (2), and a pair of nodes having a high188

number of interactions can be positioned close in the latent space. Although we utilize the squared189

Euclidean distance in Equation (3), which is not a metric, but we impose it as a distance [29, 32].190
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Lemma 3.1. For given fixed bias terms {βi}i∈V , the node embeddings, {ri(t)}i∈V , learned by191

optimizing the objective function given in Equation (1) satisfy192 ∣∣∣∣∣ 1

(tu − tl)

∫ tu

tl

||ri(t)− rj(t)||dt

∣∣∣∣∣ ≤
√
(βi + βj)− log

(
pij

mij

(tu − tl)

)
for all (i, j) ∈ V2

where pij is the probability of having more than mij links between i and j on the interval [tl, tu).193

Proof. Please see the appendix for the proof.194

Notably, constraining the approximation of the unknown intensity function by a metric space imposes195

the homophily property (i.e., similar nodes in the graph are placed close to each other in embedding196

space). When we have a pair of nodes exhibiting high interactions, they must have average intensity,197

so the term, pij(mij/(tu − tl), in Lemma 3.1 converges to 1, and the average distance between the198

nodes is bounded by the sum of their bias terms. It can also be seen that the transitivity property199

holds up to some extend (i.e., if node i is similar to j and j similar to k, then i should also be similar200

to k) since we can bound the squared Euclidean distance [29, 33].201

Importantly, for a dynamic embedding, we would like to have embeddings of a pair of nodes close202

enough to each other when they have high interactions during a particular time interval and far away203

from each other if they have less or no links. Note that the bias terms {βi}i∈V are responsible for the204

node-specific effects such as degree heterogeneity [28, 33], and they provide additional flexibility to205

the model by acting as scaling factor for the corresponding nodes so that, for instance, a hub node206

might have a high number of interactions simultaneously without getting close to the others in the207

latent space.208

Since our primary purpose is to learn continuous node representations in a latent space, we define the209

representation of node i ∈ V at time t based on a linear model by ri(t) := x
(0)
i + vit. Here, x(0)

i210

can be considered as the initial position and vi the velocity of the corresponding node. However, the211

linear model provides a minimal capacity for tracking the nodes and modeling their representations.212

Therefore, we reinterpret the given timeline IT := [0, T ] by dividing it into B equally-sized bins,213

[tb−1, tb), (1 ≤ b ≤ B) such that [0, T ] = [0, t1) ∪ · · · ∪ [tB−1, tB ] where t0 := 0 and tB := T . By214

applying the linear model for each subinterval, we obtain a piecewise linear approximation of general215

intensity functions strengthening the models’ capacity. As a result, we can write the position of node216

i at time t ∈ IT as follows:217

ri(t) := x
(0)
i +∆Bv

(1)
i +∆Bv

(2)
i + · · ·+ (t mod(∆B))v

(⌊t/∆B⌋+1)
i (4)

where ∆B indicates the bin widths, T/B, and mod(·) is the modulo operation used to compute the218

remaining time. Note that the piece-wise interpretation of the timeline allows us to track better the219

path of the nodes in the embedding space, and it can be seen by Theorem 3.2 that we can obtain more220

accurate trails by augmenting the number of bins.221

Theorem 3.2. Let f(t) : [0, T ] → RD be a continuous embedding of a node. For any given ϵ > 0,222

there exists a continuous, piecewise-linear node embedding, r(t), satisfying ||f(t)− r(t)||2 < ϵ for223

all t ∈ [0, T ] where r(t) := r(b)(t) for all (b − 1)∆B ≤ t < b∆B , r(t) := r(B)(t) for t = T and224

∆B = T/B for some B ∈ N+.225

Proof. Please see the appendix for the proof.226

Prior probability. In order to control the smoothness of the motion in the latent space, we employ227

a Gaussian Process (GP) [34] prior over the initial position x(0) ∈ RN×D and velocity vectors228

v ∈ RB×N×D. Hence, we suppose that vect(x(0))⊕ vect(v) ∼ N (0,Σ) where Σ := λ2(σ2
ΣI+K)229

is the covariance matrix with a scaling factor λ ∈ R. We utilize, σΣ∈R, to denote the noise230

of the covariance, and vect(z) is the vectorization operator stacking the columns to form a sin-231

gle vector. To reduce the number of parameters of the prior and enable scalable inference, we232

define K as a Kronecker product of three matrices K := B ⊗ C ⊗ D respectively account-233

ing for temporal-, node-, and dimension specific covariance structures. Specifically, we define234

B :=
[
cx0

]
⊕
[
exp(−(cb − c̃b̃)

2/2σ2
B)
]
1≤b,b̃≤B

is a (B + 1)× (B + 1) matrix intending to capture235

the smoothness of velocities across time-bins where cb =
tb−1+tb

2 is the center of the corresponding236

5



Piecewise-Velocity Model for Learning Continuous-time Dynamic Node Representations

bin, and the matrix is constructed by combining the radial basis function kernel (RBF) with a scalar237

term cx0 corresponding to the initial position being decoupled from the structure of the velocities.238

The node specific matrix, C ∈ RN×N , is constructed as a product of a low-rank matrix C := QQ⊤239

where the row sums of Q ∈ RN×k equals to 1 (k ≪ N), and it aims to extract covariation pat-240

terns of the motion of the nodes. Finally, we simply set the dimensionality matrix to the identity:241

D := I ∈ RD×D in order to have uncorrelated dimensions.242

To sum up, we can express our objective relying on the piecewise velocities with the prior as follows:243

Ω̂ = argmax
Ω

∑
i<j

i,j∈V

 ∑
eij∈Eij

log λij(eij)−
∫ T

0

λij(t)dt

+ logN

([
x(0)

v

]
;0,Σ

)
(5)

where Ω = {β,x(0),v, σΣ, σB, cx0 ,Q} is the set of hyper-parameters, and λij(t) is the intensity244

function as defined in Equation (3) based on the node embeddings, ri(t) ∈ RD.245

3.4 Optimization246

Our objective given in Equation (5) is not a convex function, so the learning strategy that we follow is247

of great significance in order to escape from the local minima and for the quality of the representations.248

We start by randomly initializing the model’s hyper-parameters from [−1, 1] except for the velocity249

tensor, which is set to 0 at the beginning. We adapt the sequential learning strategy in learning these250

parameters. In other words, we first optimize the initial position and bias terms together, {x(0),β},251

for a given number of epochs; then, we include the velocity tensor, {v}, in the optimization process252

and repeat the training for the same number of epochs. Finally, we add the prior parameters and learn253

all model hyper-parameters together. We have employed Adam optimizer [35] with learning rate 0.1.254

Computational issues and complexity. Note that we need to evaluate the log-intensity term in255

Equation (5) for each (i, j) ∈ V2 and event time eij ∈ Eij . Therefore, the computational cost required256

for the whole network is bounded by O
(
|V|2|E|

)
. However, we can alleviate the computational257

cost by pre-computing certain coefficients at the beginning of the optimization process so that the258

complexity can be reduced to O
(
|V|2B

)
. We also have an explicit formula for the computation of259

the integral term since we utilize the squared Euclidean distance so that it can be computed in at260

most O(|V|2) operations. Instead of optimizing the whole network at once, we apply a batching261

strategy over the set of nodes in order to reduce the memory requirements. As a result, we sample S262

nodes for each epoch. Hence, the overall complexity for the log-likelihood function is O
(
S2BI

)
263

where I is the number of epochs and S ≪ |V|. Similarly, the prior can be computed in at most264

O(B3D3K2S) operations by using various algebraic properties such as Woodbury matrix identity265

and Matrix Determinant lemma [36]. To sum up, the complexity of the proposed approach is266

O(BS2I +B3D3K2SI) (Please see the appendix for the derivations and other details).267

4 Experiments268

In this section, we extensively evaluate the performance of the proposed PIecewise-VElocity Model269

with respect to the well-known baselines in challenging tasks over various datasets of sizes and types.270

We consider all networks as undirected, and the event times of links are scaled to the interval [0, 1]271

for the consistency of experiments. We use the finest granularity level of the given input timestamps,272

such as seconds and milliseconds. We provide a brief summary of the networks below, but more273

details and various statistics are reported in Table 4 in the appendix. For all the methods, we learn274

node embeddings in two-dimensional space (D = 2) since one of the objectives of this work is to275

produce dynamic node embeddings facilitating human insights into a complex network.276

Experimental Setup. We first split the networks into two sets, such that the events occurring in the277

last 10% of the timeline are taken out for the prediction. Then, we randomly choose 10% of the node278

pairs among all possible dyads in the network for the graph completion task, and we ensure that each279

node in the residual network contains at least one event keeping the number of nodes fixed. If a pair280

of nodes only contains events in the prediction set and if these nodes do not have any other links281

during the training time, they are removed from the networks.282

For conducting the experiments, we generate the labeled dataset of links as follows: For the positive283

samples, we construct small intervals of length 2× 10−3 for each event time (i.e., [e− 10−3, e+103]284
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Table 1: The performance evaluation for the network reconstruction experiment over various datasets.

Synthetic(π) Synthetic(µ) College Contacts Email Forum Hypertext

ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR

LDM .563 .539 .669 .642 .951 .944 .860 .835 .954 .948 .909 .897 .818 .797
NODE2VEC .519 .507 .503 .509 .711 .655 .812 .756 .853 .828 .677 .619 .696 .648

CTDNE .613 .580 .539 .544 .661 .622 .787 .760 .854 .840 .657 .622 .725 .725
HTNE .614 .591 .599 .571 .721 .683 .846 .823 .871 .867 .723 .691 .775 .787

MMDNE .582 .565 .600 .576 .725 .692 .844 .825 .867 .863 .737 .712 .778 .787
PIVEM .762 .713 .905 .869 .948 .948 .938 .938 .978 .977 .907 .902 .830 .823

where e is an event time). We randomly sample an equal number of time points and corresponding285

node pairs to form negative instances. If a sampled event time is not located inside the interval of a286

positive sample, we follow the same strategy to build an interval for it, and it is considered a negative287

instance. Otherwise, we sample another time point and a dyad. Note that some networks might288

contain a very high number of links, which leads to computational problems for these networks.289

Therefore, we subsample 104 positive and negative instances if they contain more than this.290

Synthetic networks. We generate two artificial networks in order to evaluate the behavior of the291

models in controlled experimental settings. (i) Synthetic(π) is sampled from the prior distribution292

stated in Subsection 3.2. The hyper-parameters, β, K and B are set to 0, 20 and 100, respectively.293

(ii) Synthetic(µ) is constructed based on the temporal block structures. The timeline is divided into294

10 sub-intervals, and the nodes are randomly split into 20 groups for each interval. The links within295

each group are sampled from the Poisson distribution with the constant intensity of 5.296

Real networks. The (iii) Hypertext network [37] was built on the radio badge records showing the297

interactions of the conference attendees for 2.5 days, and each event time indicates 20 seconds of298

active contact. Similarly, (iv) the Contacts network [38] was generated concerning the interactions of299

the individuals in an office environment. (v) Forum [39] is comprised of the activity data of university300

students on an online social forum system. (vi) College [40] indicates the private messages among301

the students on an online social platform. Finally, (vii) Email [41] was constructed based on the302

exchanged e-mail information among the members of European research institutions.303

Baselines. We compare the performance of our method with five baselines. We include LDM304

with Poisson rate, and node-specific biases [33, 42] since it is a static method having the closest305

formulation to ours. NODE2VEC [7] learns node embeddings by relying on the node proximities306

within explicitly generated random walks. CTDNE [24] is a dynamic node embedding approach307

performing temporal random walks over the network. HTNE [25] learns embeddings based on the308

Hawkes process modeling the neighborhood formation sequence induced from the network structure.309

MMDNE [26] introduces a temporal attention point process to model the newly established links and310

proposes a general dynamics equation relying on latent node representations to capture the network311

scale evolutions. We provide the baselines’ parameter settings and other details in the appendix.312

For our method, we set the parameter K = 25, and bins count B = 100 to have enough capacity to313

track node interactions. For the regularization term (λ) of the prior, we first mask 20% of the dyads in314

the optimization of Equation (5). Furthermore, we train the model by starting with λ = 106, and then315

we reduce it to one-tenth after each 100 epoch. The same procedure is repeated until λ = 10−6, and316

we choose the λ value minimizing the log-likelihood of the masked pairs. The final embeddings are317

then obtained by performing this annealing strategy without any mask until this λ value. We repeat318

this procedure 5 times, and we consider the best-performing method in learning the embeddings.319

The relative standard deviation of the experiments is always less than 0.5, and Figure 1a shows an320

illustrative example for tuning λ over the Synthetic(π) dataset with 5 random runs.321

For the performance comparison of the methods, we provide the Area Under Curve (AUC) scores for322

the Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves [43]. We compute the323

intensity of a given instance for LDM and PIVEM for the similarity measure of the node pair. Since324

NODE2VEC and CTDNE rely on the SkipGram architecture [44], we use cosine similarity for them.325

Network Reconstruction. Our goal is to see how accurately a model can capture the interaction326

patterns among nodes and generate embeddings exhibiting their temporal relationships in a latent327

space. In this regard, we train the models on the residual network and generate sample sets as described328

previously. The performance of the models is reported in Table 1. Comparing the performance of329
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Table 2: The performance evaluation for the network completion experiment over various datasets.
Synthetic(π) Synthetic(µ) College Contacts Email Forum Hypertext

ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR

LDM .535 .529 .646 .631 .931 .926 .836 .799 .948 .942 .863 .858 .761 .738
NODE2VEC .519 .511 .747 .677 .685 .637 .787 .744 .818 .777 .635 .592 .596 .588

CTDNE .608 .573 .531 .539 .601 .556 .752 .703 .831 .812 .568 .539 .554 .537
HTNE .605 .583 .573 .557 .673 .651 .792 .759 .853 .834 .596 .581 .602 .633

MMDNE .587 .570 .592 .571 .677 .662 .819 .811 .844 .829 .596 .570 .587 .614
PIVEM .750 .696 .874 .851 .935 .934 .873 .864 .951 .953 .879 .875 .770 .712

Table 3: The performance evaluation for the link prediction experiment over various datasets.
Synthetic(π) Synthetic(µ) College Contacts Email Forum Hypertext

ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR

LDM .562 .539 .498 .642 .951 .944 .860 .835 .954 .948 .909 .897 .819 .797
NODE2VEC .518 .506 .498 .502 .705 .676 .783 .716 .825 .807 .635 .605 .748 .739

CTDNE .680 .629 .481 .487 .691 .711 .842 .815 .824 .815 .664 .642 .699 .734
HTNE .573 .569 .491 .493 .715 .684 .864 .824 .838 .837 .764 .747 .785 .820

MMDNE .591 .575 .506 .515 .717 .703 .874 .847 .827 .832 .762 .746 .795 .813
PIVEM .716 .689 .474 .485 .891 .887 .876 .884 .964 .964 .894 .895 .756 .767

PIVEM against the baselines, we observe favorable results across all networks, highlighting the330

importance and ability of PIVEM to account for and detect structure in a continuous time manner.331

Network Completion. The network completion experiment is a relatively more challenging task332

than the reconstruction. Since we hide 10% of the network, the dyads containing events are also333

viewed as non-link pairs, and the temporal models should place these nodes in distant locations of the334

embedding space. However, it might be possible to predict these events accurately if the network links335

have temporal triangle patterns through certain time intervals. In Table 2, we report the AUC-ROC336

and PR-AUC scores for the network completion experiment. Once more, PIVEM outperforms the337

baselines (in most cases significantly). We again discovered evidence supporting the necessity for338

modeling and tracking temporal networks with time-evolving embedding representations.339

Future Prediction. Finally, we examine the performance of the models in the future prediction task.340

Here, the models are asked to forecast the 10% future of the timeline. For PIVEM, the similarity341

between nodes is obtained by calculating the intensity function for the timeline of the training set (i.e.,342

from 0 to 0.9), and we keep our previously described strategies for the baselines since they generate343

the embeddings only for the last training time. Table 3 presents the performances of the models. It is344

noteworthy that while PIVEM outperforms the baselines significantly on the Synthetic(π) network,345

it does not show promising results on Synthetic(µ). Since the first network is compatible with our346

model, it successfully learns the dominant link pattern of the network. However, the second network347

conflicts with our model: it forms a completely different structure for every 0.1 second. For the real348

datasets, we observe mostly on-par results, especially with LDM. Some real networks contain link349

patterns that become "static" with respect to the future prediction task.350

We have previously described how we set the prior coefficient, λ, and now we will examine the351

influence of the other hyperparameters over the Synthetic(π) dataset for network reconstruction.352

Influence of dimension size (D). We report the AUC-ROC and AUC-PR scores in Figure 1b. When353

we increase the dimension size, we observe a constant increase in performance. It is not a surprising354

result because we also increase the model’s capacity depending on the dimension. However, the355

two-dimensional space still provides comparable performances in the experiments, facilitating human356

insights into networks’ complex, evolving structures.357

Influence of bin count (B). Figure 1c demonstrates the effect of the number of bins for the network358

reconstruction task. We generated the Synthetic(π) network from for 100 bins, so it can be seen that359

the performance stabilizes around 26, which points out that PIVEM reaches enough capability to360

model the interactions among nodes.361

Latent Embedding Animation. Although many GRL methods show high performance in the362

downstream tasks, in general, they require high dimensional spaces, so a postprocessing step later has363

to be applied in order to visualize the node representations in a small dimensional space. However,364
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(a) Annealing strategy (b) Influence of dimension (c) Influence of bin count

Figure 1: Influence of the model hyperparameters over the Synthetic(π) dataset.
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Figure 2: Comparisons of the ground truth and learned representations in two-dimensional space.

such processes cause distortions in the embeddings, which can lead a practitioner to end up with365

inaccurate arguments about the data.366

As we have seen in the experimental evaluations, our proposed approach successfully learns embed-367

dings in the two-dimensional space, and it also produces continuous-time representations. Therefore,368

it offers the ability to animate how the network evolves through time and can play a crucial role in369

grasping the underlying characteristics of the networks. As an illustrative example, Figure 2 compares370

the ground truth representations of Synthetic(π) with the learned ones. The synthetic network consists371

of small communities of 5 nodes, and each color indicates these groups. Although the problem does372

not have unique solutions, it can be seen that our model successfully seizes the clustering patterns in373

the network. We refer the reader to supplementary materials for the full animation.374

5 Conclusion and Limitations375

In this paper, we have proposed a novel continuous-time dynamic network embedding approach,376

namely, Piecewise Velocity Model (PIVEM). Its performance has been examined in various experi-377

ments, such as network reconstruction and completion tasks over various networks with respect to378

the very well-known baselines. We demonstrated that it could accurately embed the nodes into a379

two-dimensional space. Therefore, it can be directly utilized to animate the learned node embeddings,380

and it can be beneficial in extracting the networks’ underlying characteristics, foreseeing how they381

will evolve through time. We showed that the model could scale up to large networks.382

Although our model successfully learns continuous-time representations, it is unable to capture383

temporal patterns in the network in terms of the GP structure. Therefore, we are planning to employ384

different kernels instead of RBF, such as periodic kernels in the prior. The optimization strategies of385

the proposed method might be improved to escape from local minima. As a possible future direction,386

the algorithm can also be adapted for other graph types, such as directed and multi-layer networks.387
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A Appendix486

In the main paper, we could not clarify every aspect of the model because of the restrictions on the487

number of pages. Hence, we will provide more detailed explanations here about the experiments,488

addressed computational problems, the proofs of the theoretical arguments, and possible extensions489

of the model toward the bipartite, weighted, and directed networks.490

A.1 Experiments491

We consider all networks used in the experiments as undirected, and the event times of links are492

scaled to the interval [0, 1] for the consistency of experiments. We use the finest resolution level493

of the given input timestamps, such as seconds and milliseconds. We provide a brief summary of494

the networks below, and various statistics are reported in Table 4. The visualization of the event495

distributions of the networks through time is depicted in Figure 3.496

(a) Synthetic(π) (b) Synthetic(µ)

(c) College (d) Contacts

(e) Email (f) Forum

(g) Hypertext

Figure 3: Distribution of the links through time.

Synthetic datasets. We generate two artificial networks in order to evaluate the behavior of the497

models in controlled experimental settings. (i) Synthetic(π) is sampled from the prior distribution498
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Table 4: Statistics of networks. |V|: Number of nodes, M : Number of pairs having at least one link,
|E|: Total number of links,

∣∣Eij∣∣max
: Max. number of links a pair of nodes has.

|V| M |E|
∣∣Eij∣∣max

Synthetic(µ) 100 4,889 180,658 124
Synthetic(π) 100 3,009 22,477 32

College 1,899 13,838 59,835 184
Contacts 217 4,274 78,249 1,302

Hypertext 113 2,196 20,818 1,281
Email 986 16,064 332,334 4,992
Forum 899 7,036 33,686 171

stated in Subsection 3.2. The hyper-parameters, β, K and B are set to 0, 20 and 100, respectively.499

(ii) Synthetic(µ) is constructed based on the temporal block structures. The timeline is divided into500

10 intervals, and the node set is split into 20 groups. The links within each group are sampled from501

the Poisson distribution with the constant intensity of 5.502

Real Networks. The (iii) Hypertext network [37] was built on the radio badge records showing the503

interactions of the conference attendees for 2.5 days, and each event time indicates 20 seconds of504

active contact. Similarly, (iv) the Contacts network [38] was generated concerning the interactions505

of the individuals in an office environment. (v) Forum [39] is comprised of the activity data of506

university students on an online social forum system. The (vi) CollegeMsg network [40] indicates the507

private messages among the students on an online social platform. Finally, (vii) Eu-Email [41] was508

constructed based on the exchanged e-mail information among the members of European research509

institutions.510

Baselines. We compare the performance of our method with five baselines. We include LDM511

with Poisson rate with node-specific biases [33, 42] since it is a static method having the closest512

formulation to ours. We randomly initialize the embeddings and bias terms and train the model513

with the Adam optimizer [35] for 500 epochs and a learning rate of 0.1. A very well-known GRL514

method, NODE2VEC (or N2V) [7] relies on the explicit generation of the random walks by starting515

from each node in the network, then it learns node embeddings by inspiring from the SkipGram516

[44] algorithm. It optimizes the softmax function for the nodes lying within a fixed window region517

with respect to a chosen center node over the produced node sequences. It is an extension of the518

DEEPWALK method [6], and NODE2VEC differs from it by introducing two additional parameters to519

perform unbiased random walks. In our experiments, we tune the model’s parameters (p, q) from520

{0.25, 0.5, 1, 2, 4}. Since it has the ability to run over the weighted networks, we also constructed a521

weighted graph based on the number of links through time and reported the best score of both versions522

of the networks. CTDNE [24] is a dynamic node embedding approach performing temporal random523

walks over the network. HTNE [25] learns embeddings based on the Hawkes process modeling the524

neighborhood formation sequence induced from the network structure. MMDNE [26] introduces525

a temporal attention point process to model the newly established links and proposes a general526

dynamics equation relying on latent node representations to capture the network scale evolutions.527

The continuous-time baseline methods are unable to produce instantaneous node representations528

and they produce embeddings only for a given time. Therefore, we have utilized the last time of the529

training set to obtain the representations. We have chosen the recommended values for the common530

hyper-parameters of NODE2VEC and CTDNE, so the number of walks, walk length, and window531

size parameters have been set to 10, 80, and 10, respectively. We used the implementation provided532

by the StellarGraph Python package to produce the embeddings for CTDNE. Similarly, we have533

adapted the suggested hyperparameter settings for MMDNE and CTDNE with 100 epochs.534

A.2 Computational Problems, Model Complexity and Optimization Strategy535

Log-likelihood function. Note that we need to evaluate the log-intensity term in Equation 5 for536

each (i, j) ∈ V2 (i < j) and event time eij ∈ Eij . Therefore, the computational cost required for537

the whole network is bounded by O
(
|V|2|E|

)
. However, we can alleviate it by computing certain538

coefficients at the beginning of the optimization process. If we define αij := (eij −∆B(b
∗ − 1)),539

then it can be seen that the sum over the set of all events, Eb∗

ij , lying inside b∗’th bin (i.e., the events540
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(a) Synthetic(π) (b) Synthetic(µ)

(c) College (d) Contacts

(e) Email (f) Forum

(g) Hypertext

Figure 4: Negative log-likelihood of the masked pairs for the annealing strategy applied for tuning λ
parameter with 5 random runs.
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in [∆B(b
∗ − 1), ∆Bb

∗) can be rewritten by:541 ∑
eij∈Eb∗

ij

log λij(eij)=
∑

eij∈Eij

(
βi+βj − ||ri(eij)− rj(eij)||2

)

=
∑

eij∈Eb∗
ij

(
βi+βj

)
+
∑

eij∈Eij

∣∣∣∣∣∣∆x
(0)
ij +∆B

b∗−1∑
b=1

∆v
(b)
ij +∆v

(b∗)
ij (eij−∆B(b

∗−1))
∣∣∣∣∣∣2

=
∑

eij∈Eb∗
ij

(
βi+βj

)
+
∑

eij∈Eij

(
α2
ij

∣∣∣∣∣∣∆v
(b∗)
ij

∣∣∣∣∣∣2 + (∆x
(0)
ij +∆B

b∗−1∑
b=1

∆v
(b)
ij

)2

+ 2αij

〈
∆x

(0)
ij +∆B

b∗−1∑
b=1

∆v
(b)
ij ,∆v

(b∗)
ij

〉)

=
∣∣∣Eb∗

ij

∣∣∣ (βi+βj)+ α2

∣∣∣∣∣∣∆v
(b∗)
ij

∣∣∣∣∣∣2 + ∑
eij∈Eij

(
∆x

(0)
ij +∆B

b∗−1∑
b=1

∆v
(b)
ij

)2

+ 2α1

〈
∆x

(0)
ij +∆B

b∗−1∑
b=1

∆v
(b)
ij ,∆v

(b∗)
ij

〉
where α

(b∗)
1 :=

∑
eij∈Eij

αij and α
(b∗)
2 :=

∑
eij∈Eij

α2
ij . We can follow the same strategy for each542

bin, then the computational complexity can be reduced to O
(
|V|2B

)
543

Since we use the squared Euclidean distance in the integral term of our objective, we can derive the544

exact formula for the computation (please see Lemma A.3 for the details). We need to evaluate it for545

all node pairs, so it requires at most O
(
|V|2

)
operations. Hence, the complexity of the log-likelihood546

function is O
(
|V|2B

)
. Instead of optimizing the whole network at once, we are applying the batching547

strategy over the set of nodes in order to reduce the memory requirements, so we sample S nodes for548

each epoch. Hence, the overall complexity of the log-likelihood is O
(
S2BI

)
where I is the number549

of epochs.550

Computation of the prior function. The covariance matrix, Σ ∈ RBND×BND, of the prior is551

defined by Σ := λ2
(
σ2
ΣI+K

)−1
with a scaling factor λ ∈ R and a noise variance σ2

Σ ∈ R+.552

The multivariate normal distribution is parametrized with a noise term σ2
ΣI and a matrix K ∈553

RBND×BND having a low-rank form. In other words, K is written by B⊗C⊗D where B is block554

diagonal matrix combined with parameter cx0 and the RBF kernel exp
(
−(cb − cb′ )

2/σ2
B

)
∈ RB×B555

for cb := (tb−1−tb)/2. The matrix aiming for capturing the node interactions, C := QQ⊤ ∈ RN×N556

is defined with a low-rank matrix Q ∈ RN×k whose rows equal to 1 (k ≪ N), and we set557

D := I I⊤ ∈ RD×D. By considering the Cholesky decomposition [36] of B := LL⊤ since B is558

symmetric positive semi-definite, we can factorize K := KfK
⊤
f where Kf := L⊗Q⊗ I.559

Note that the precision matrix, Σ−1, can be written by using the Woodbury matrix identity [36] as560

follows:561

Σ−1 = λ−2
(
σ2
ΣI+KfK

⊤
f

)−1

= λ−2
(
σ2
Σ

−1
I− σ2

Σ
−1

KfR
−1K⊤

f σ
2
Σ

−1
)

where the capacitance matrix R := IBKD + σ2
Σ

−1
K⊤

f Kf .562

The log-determinant of λ2Σ can be also simplified by applying Matrix Determinant lemma [36]:563

log(det(Σ)) = (BND) log
(
λ2
)
+ log

(
det
(
σ2
ΣIBND +KfK

⊤
f

))
= (BND) log

(
λ2
)
+ log

(
det
(
IBKD + σ2

Σ
−1

K⊤
f Kf

))
+ (BND) log

(
σ2
Σ

)
= (BND)

(
log(λ2) + log

(
σ2
Σ

))
+ log(det(R))

Note that the most cumbersome points in the computation of the prior are the calculations of the564

inverse and determinant of the terms and some matrix multiplication operations. Since R is a matrix of565
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size BKD×BKD, its inverse and determinant can be found in at most O(B3K3D3) operations. We566

also need the term, KfR
−1R, which can also be computed in O(B3D3K2|V|) steps, so the number567

of operations required for the prior can be bounded by O(B3D3K2|V|). It is worth noticing that568

we cannot directly apply the batching strategy for the computation of the inverse of the capacitance569

matrix, R. However, we can compute it once and then we can utilize it for the calculation of the570

log-prior for different sets of node samples, then we can recompute it when we decide to update the571

parameters again.572

To sum up, the complexity of our proposed approach is O(BIS2 + B3D3K2SI) where S is the573

batch size and I is the number of epochs.574

Optimization of the proposed approach. Our objective given in Equation (5) is not a convex575

function, thus the learning strategy that we follow is of great importance in order to escape from576

local minima of poor quality representations. We start by randomly initializing the model’s hyper-577

parameters from [−1, 1] except for the velocity tensor, which is set to 0 at the beginning. We adapt a578

sequential learning strategy for the learning of these parameters. In other words, we first optimize the579

initial position and bias terms together, {x(0),β}, for 33 epochs; then, we include the velocity tensor,580

{v}, into the optimization process and repeat the training for the same number of epochs. Finally, we581

add the prior parameters and learn all model hyper-parameters together. We have employed Adam582

optimizer [35] with a learning rate of 0.1.583

In our experiments, we set the parameter K = 25, and bins count B = 100 to have enough capacity584

to track node interactions. In order to find an optimal regularization term λ value and to determine585

the influence of the prior in the objective, we apply an annealing strategy for the model. We first586

mask 20% of the dyads during the optimization of Equation (5). Furthermore, we train the model by587

starting with λ = 106 and learn all parameters using the sequential optimization strategy. We then588

gradually reduce λ to one-tenth upon optimizing all model parameters for 100 epochs. The same589

procedure is repeated until λ = 10−6. We choose the λ value minimizing the log-likelihood of the590

masked pairs (i.e., based on the predictive log-likelihood evaluated on these pairs).591

The final node embeddings are then obtained by performing this annealing strategy without any mask592

until the found ideal λ value. We repeat this procedure 5 times with different initializations, and593

we consider the best-performing method/seed value in learning the final embeddings. The relative594

standard deviation of the experiments is always less than 0.5 for all the networks, and we display the595

negative log-likelihood of the masked pairs for the annealing strategy with 5 random runs in Figure 4.596

The blue curves demonstrate the same annealing strategy but in the opposite order. In other words,597

we start from a very restrictive model with low λ value and increase λ to have a more flexible model.598

The considered annealing strategy thereby quantifies the impact for different strengths of imposing599

the GP prior. It corresponds to a highly constrained model akin to static representations for small600

values of λ in which the GP prior has close to zero variance of the parameters to highly flexible601

dynamic representations almost entirely driven by the likelihood function for high values of λ. The602

annealing strategy thus highlights the impact of the GP prior and the optimal regime imposing such603

prior.604

A.3 Theoretical Results605

Lemma A.1. For given fixed bias terms {βi}i∈V , the node embeddings, {ri(t)}i∈V , learned by606

optimizing the objective function given in Equation 1 satisfy607 ∣∣∣∣∣ 1

(tu − tl)

∫ tu

tl

||ri(t)− rj(t)||dt

∣∣∣∣∣ ≤
√
(βi + βj)− log

(
pij

mij

(tu − tl)

)
for all (i, j) ∈ V2

where pij is the probability of having more than mij links between i and j on the interval [tl, tu).608

Proof. Let Xij :=
∣∣Eij [tl, tu)∣∣ be the number of links between nodes i, j ∈ V following a nonho-609

mogeneous Poisson process with intensity function, λij(t) on the interval [tl, tu). By Markov’s610
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inequality, it can be written that611

pij := P
{
Xij ≥ mij

}
≤

E
[
Xij

]
mij

=
1

mij

∫ tu

tl

exp
(
βi + βj − ||ri(t)− rj(t)||2

)
dt

=
1

mij
exp(βi + βj)

∫ tu

tl

exp
(
−||ri(t)− rj(t)||2

)
dt

≤ 1

mij
(tu−tl) exp(βi+βj) exp

(
− 1

(tu − tl)

∫ tu

tl

||ri(t)− rj(t)||2dt

)

≤ 1

mij
(tu−tl) exp(βi+βj) exp

− 1

(tu − tl)2

(∫ tu

tl

||ri(t)− rj(t)||dt

)2


where the last two lines follow from Jensen’s inequality. Finally, it can be concluded that612 ∣∣∣∣∣ 1

(tu − tl)

∫ tu

tl

||ri(t)− rj(t)||dt

∣∣∣∣∣ ≤
√√√√log

(
exp(βi + βj)

(tu − tl)

mijpij

)

=

√
(βi + βj)− log

(
pij

mij

(tu − tl)

)
613

Theorem A.2. Let f(t) : [0, T ] → RD be a continuous embedding of a node. For any given ϵ > 0,614

there exists a continuous, piecewise-linear node embedding, r(t), satisfying ||f(t)− r(t)||2 < ϵ for615

all t ∈ [0, T ] where r(t) := r(b)(t) for all (b − 1)∆B ≤ t < b∆B , r(t) := r(B)(t) for t = T and616

∆B = T/B for some B ∈ N+.617

Proof. Let f(t) : [0, T ] → RD be a continuous embedding so it is also uniformly continuous by the618

Heine–Cantor theorem since [0, T ] is a compact set. Then, we can find some B ∈ N+ such that for619

every t, t̃ ∈ [0, T ] with |t− t̃| ≤ ∆B := T/B implies ||f(t)− f(t̃)||2 < ϵ/2 for any given ϵ > 0.620

Let us define r(b)(t) = r(b−1)
(
(b− 1)∆B

)
+vb(t−(b−1)∆B) recursively for each b ∈ {1, . . . , B}621

where r(0)(0) := x0 = f(0), and vb :=
f(b∆B)−f((b−1)∆B)

∆B
. Then it can be seen that we have622

r(b) (b∆B) = f(b∆B) for all b ∈ {1, . . . , B} because623

r(b)(b∆B) = r(b−1)
(
(b− 1)∆B

)
+ vb

(
b∆B −∆B(b− 1)

)
= r(b−1)

(
(b− 1)∆B

)
+ vb∆B

= r(b−1)
(
(b− 1)∆B

)
+

(
f (b∆B)− f

(
(b− 1)∆B

)
∆B

)
∆B

= r(b−1)
(
(b− 1)∆B

)
+
(
f (b∆B)− f

(
(b− 1)∆B

))
= r(b−2)

(
(b− 2)∆B

)
+
(
f
(
(b− 1)∆B

)
− f((b− 2)∆B)

)
+
(
f (b∆B)− f

(
(b− 1)∆B

))
= r(b−2)

(
(b− 2)∆B

)
+
(
f (b∆B)− f((b− 2)∆B)

)
= · · ·
= r(0)(0) +

(
f (b∆B)− f(0)

)
= f (b∆B)
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where the last line follows from the fact that r(0)(0) = x0 = f(0) by the definition. Therefore, for624

any given point t ∈ [0, T ) for b = ⌊t/∆b⌋+ 1, it can be seen that625

||f(t)− r(t)||2 = ||f(t)− r(b)(t)||2

=
∣∣∣∣∣∣f(t)− (r(b−1)((b− 1)∆B) + vb(t− (b− 1)∆B)

)∣∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣f(t)−

(
r(b−1)

(
(b− 1)∆B

)
+

(
f(b∆B)− f

(
(b− 1)∆B

)
∆B

)
(t− (b− 1)∆B)

)∣∣∣∣∣
∣∣∣∣∣
2

=
∣∣∣∣∣∣ (f(t)− r(b−1)

(
(b− 1)∆B

))
+
(
f(b∆B)− f

(
(b− 1)∆B

))( t− (b− 1)∆B

∆B

) ∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣f(t)− r(b−1)

(
(b− 1)∆B

) ∣∣∣∣∣∣+ ∣∣∣∣∣∣f(b∆B)− f
(
(b− 1)∆B

) ∣∣∣∣∣∣
<

ϵ

2
+

ϵ

2
= ϵ

where the inequality in the fifth line holds since we have
∣∣∣ t−(b−1)∆B

∆B

∣∣∣ ≤ 1626

Lemma A.3 (Integral Computation). The integral of the intensity function, λij(t), from tl to tu is627

equal to628 ∫ tu

tl

exp
(
βij −

∥∥∆xij +∆vijt
∥∥2) =

√
π exp

(
βij + r2ij −

∥∥∆xij

∥∥2)
2
∥∥∆vij

∥∥ erf
(∥∥∆vij

∥∥ t+ rij

)∣∣∣∣∣
t=tu

t=tl

where βij := βi + βj , ∆xij := x
(0)
i − x

(0)
j , ∆vij := v

(1)
i − v

(1)
j and r :=

⟨∆vij ,∆xij⟩
∥∆vij∥ .629

Proof.∫ tu

tl

exp
(
−
∥∥∆xij +∆vijt

∥∥2) =

∫ tu

tl

exp
(
−
∥∥∆vij

∥∥2 t2 − 2
〈
∆xij ,∆vij

〉
t−
∥∥∆xij

∥∥2)dt
=

∫ tu

tl

exp

(
−
(∥∥∆vij

∥∥ t+ rij

)2
+ r2ij −

∥∥∆xij

∥∥2)dt (6)

where rij :=
⟨∆vij ,∆xij⟩
∥∆vij∥ . The substitution u =

∥∥∆vij

∥∥ t+rij yields du =
∥∥∆vij

∥∥ dt. Furthermore,630

we have631 ∫ tu

tl

exp

(
−
(∥∥∆vij

∥∥ t+rij

)2)
dt =

1∥∥∆vij

∥∥ ∫ ∥∆vij∥tu+rij

∥∆vij∥tl+rij

exp
(
−u2

)
du

=
1∥∥∆vij

∥∥
√
π

2

 2√
π

∫ ∥∆vij∥tu+rij

∥∆vij∥tl+rij

exp
(
−u2

)
du


=

√
π

2
∥∥∆vij

∥∥erf(∥∥∆vij

∥∥ t+ rij

)∣∣∣∣∣
t=tu

t=tl

(7)

By using Equations 6 and 7, it can be obtained that632 ∫ tu

tl

exp
(
−
∥∥∆xij +∆vijt

∥∥2) = exp
(
r2ij −

∥∥∆xij

∥∥2)∫ tu

tl

exp

(
−
(∥∥∆vij

∥∥ t+ rij

)2)
dt

=

√
π exp

(
r2ij −

∥∥∆xij

∥∥2)
2
∥∥∆vij

∥∥
[
erf
(∥∥∆vij

∥∥ t+ rij

)∣∣∣∣∣
t=tu

t=tl
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Therefore, we can conclude that633 ∫ tu

tl

exp
(
βij −

∥∥∆xij +∆vijt
∥∥2) =

√
π exp

(
βij + r2ij −

∥∥∆xij

∥∥2)
2
∥∥∆vij

∥∥ erf
(∥∥∆vij

∥∥ t+ rij

)∣∣∣∣∣
t=tu

t=tl

634

A.4 Extension to Weighted, Directed, and Bipartite Networks635

In this section, we will discuss how the proposed approach, PIVEM, can be extended for weighted,636

directed, and bipartite networks.637

Weighted networks. Our approach can be simply adapted for positive integer-weighted networks by638

replacing each weighted link in the network with multiple unit events corresponding to the integer639

weight at the specific time point of the integer-weighted link. Then, PIVEM can be run as is for640

the reinterpreted version of the network without making any modifications to the structure of the641

approach.642

Directed and Bipartite networks. Let G = ((V,U), E) be a bipartite network with the parts643

V = {v1, . . . , vN1} and U = {u1, . . . , uN2}. We can rewrite the objective given in Equation 5 by644

considering only the pairs (i, j) ∈ V × U belonging to different parts:645

Ω̂ = argmax
Ω

∑
i∈V

∑
j∈U

 ∑
eij∈Eij

log λij(eij)−
∫ T

0

λij(t)dt

+ logN

([
x(0)

v

]
;0,Σ

)
(8)

where the intensity function, λij(eij) is defined as follows:646

λij(t) := exp
(
βi + ηj − ||r∗i (t)− r∗∗j (t)||2

)
, (9)

where βi and ηj indicate the bias/random effect terms for the nodes belonging respectively to V647

an U . Similarly, we can introduce distinct initial position x∗
i , x∗∗

j and velocity tensors v∗
i , v∗∗

j to648

define the node representations, r∗i (t) ∈ RD and r∗∗j (t) ∈ RD at time t. Note that we can write649

x
(0)
i = x∗

i ⊕ x∗∗
i , and vi = v∗

i ⊕ v∗∗
i where ⊕ indicates the tensor concatenation operation.650

For the directed case, we specify the model similar to the bipartite case but define the likelihood651

function as652

Ω̂ = argmax
Ω

∑
i ̸=j

 ∑
eij∈Eij

log λij(eij)−
∫ T

0

λij(t)dt

+ logN

([
x(0)

v

]
;0,Σ

)
. (10)
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A.5 Table of Symbols653

The detailed list of the symbols used throughout the manuscript and their corresponding definitions654

can be found in Table 5.655

Table 5: Table of symbols

Symbol Description
G Graph
V Vertex set
E Edge set

Eij Edge set of node pair (i, j)
N Number of nodes
D Dimension size
IT Time interval
T Time length
B Number of bins
βi Bias term of node i
x Initial position matrix

v(b) Velocity matrix for bin b
ri(t) Position of node i at time t
λij(t) Intensity of node pair (i, j) at time t

eij An event time of node pair (i, j)
Σ Covariance matrix
λ Scaling factor of the covariance

σΣ Noise variance
σB Lengthscale variable of RBF kernel
⊗ Kronecker product
I Identity matrix
B Bin interaction matrix
C Node interaction matrix
D Dimension interaction matrix
R Capacitance matrix
K Latent dimension of C
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A.6 Overview of the proposed approach656

We provide the general overview of the PIVEM method in Figure 5. The first row shows how the657

ground truth node embeddings evolve through time, and the dashed curves in the latent space show658

the paths they have followed. The middle row represents the adjacency matrices of the network659

constructed by aggregating the links occurring within the corresponding time intervals [tinit, tlast] for660

illustrative purposes (notably, the model operates in continuous time and accounts for the temporal661

position of each edge). Each entry of the adjacency matrices is shaded with respect to the number662

of links in the intervals, so darker regions represent a higher number of links. Finally, the last row663

illustrates the learned representations and their motion histories in the latent space.
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Figure 5: Illustrative comparison of the ground-truth embeddings, the adjacency matrices here for
illustrative purposes constructed based on aggregating the links appearing within the corresponding
time intervals, and learned node representations.
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