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A APPENDIX

A.1 PROOFS

Proof of Proposition 2.3. The proof of Proposition 2.3 is provided in Delon et al. (2010) for the
optimal coupling for any pair of probability measures on S1. For the particular and enlightening
case of discrete probability measures on S1, we refer the reader to Rabin et al. (2011).

For completeness, notice that the relation between x0 and α hols by changing variables, using 1-
periodicity of µ and ν and Definition 2.2 (see also Bonet et al. (2023, Proposition 1)):∫ 1

0

h(|F−1
µ,x0

(x)− F−1
ν,x0

(x)|R) dx

=

∫ 1

0

h(|(Fµ(·+ x0)− Fµ(x0))
−1(x)− (Fν(·+ x0)− Fν(x0))

−1(x)|R) dx

=

∫ 1

0

h(|(Fµ − Fµ(x0))
−1(x)− (Fν − Fν(x0))

−1(x)|R) dx

=

∫ 1

0

h(|F−1
µ (x+ Fµ(x0))− F−1

ν (x+ Fν(x0))|R) dx

=

∫ 1

0

h(|F−1
µ (x+ Fµ(x0)− Fν(x0)︸ ︷︷ ︸

α

)− F−1
ν (x)|R) dx

In particular, if h(x) = |x|2, and µ = Unif(S1), then

COT2(µ, ν) = inf
α∈R

∫ 1

0

|F−1
µ (x+ α)− F−1

ν (x)|2R dx

= inf
α∈R

∫ 1

0

|x+ α− F−1
ν (x)|2 dx

= inf
α∈R

(∫ 1

0

|F−1
ν (x)− x|2 dx− 2α

∫ 1

0

(F−1
ν (x)− x) dx+ α2

)
= inf

α∈R

(∫ 1

0

|F−1
ν (x)− x|2 dx− 2α

(∫ 1

0

x dν(x)− 1

2

)
+ α2

)
= inf

α∈R

(∫ 1

0

|F−1
ν (x)− x|2 dx− 2α

(
E(ν)− 1

2

)
+ α2

)
=

∫ 1

0

|F−1
ν (x)− x|2 dx− 2

(
E(ν)− 1

2

)
︸ ︷︷ ︸

αµ,ν

2

.

Therefore, in this case, the minimizer αµ,ν of equation 8 is unique and has the closed-form αµ,ν =
E(ν)− 1/2.

Proof of Remark 2.4. We will show that, in general, the minimizer αµ,ν of equation 8 is unique. Our
arguments are based on the paper Delon et al. (2010). Specifically, the role played by the function
(F θ)−1, where F θ(x) = F (x) + θ in Delon et al. (2010) is substituted by F−1(x− α) in our case
(i.e., our parameter α correspond to −θ in the mentioned paper).

Our hypotheses are the following:

1. Let c(x, y) := h(|x − y|) for h : R → R+ strictly convex (for example h(x) = |x|p with
p > 1), or, more generally, let c : R×R → R satisfying the Monge condition or the (strict)
cyclical monotonicity condition:

c(u1, v1) + c(u2, v2) < c(u1, v2) + c(u2, v1) ∀u1 < u2, v1 < v2. (23)
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2. Let µ, ν be two probability measures absolutely continuous with respect to the Lebesgue
measure on S1.

The idea of the proof will rely on showing that the cost function

Cost(α) :=
∫ 1

0

c(F−1
µ (x), F−1

ν (x− α)) dx (24)

is strictly convex and continuous (as a function on α), and so it has a unique global minimum (that
we will denote by αµ,ν).

Let
cµ,ν(x, y) := c(F−1

µ (x), F−1
ν (y)) (25)

Under the above conditions, it holds that cµ,ν(·, ·) satisfies the Monge condition equation 23. Then,
to prove strictly convexity of Cost(α) it is sufficient to show that

Cost
(
α′ + α′′

2

)
<

Cost(α′) + Cost(α′′)

2
(26)

Assume α′ ≤ α′′ and let α := α′+α′′

2 . On the one hand, since

Cost (α) =
∫ 1

0

cµ,ν(x, x− α) dx

=

∫ 1+α′′−α

α′′−α

cµ,ν(x, x− α) dx

=

∫ 1

0

cµ,ν(y + α′′ − α, y − α′) dy,

where in the last line we used the change of variables y = x+α′′−α and the fact that 2α−α′′ = α′.
Therefore,

2Cost (α) =
∫ 1

0

cµ,ν(z, z − α) dz +

∫ 1

0

cµ,ν(z + α′′ − α, z − α′) dz. (27)

On the other hand, by repeating the same idea we have,

Cost(α′′) =

∫ 1

0

cµ,ν(x, x− α′′) dx =

∫ 1+α′′−α

α′′−α

cµ,ν(x, x− α′′) dx

=

∫ 1

0

cµ,ν(y + α′′ − α, y − α) dy,

and so,

Cost(α′) + Cost(α′′) =

∫ 1

0

cµ,ν(z, z − α′) dz +

∫ 1

0

cµ,ν(z + α′′ − α, z − α) dz. (28)

Since u1(z) := z < z + α′′ − α =: u2(x) and v1(z) := z − α < z − α′ =: v2(z), we have that

c(u1(z), v1(z)) + c(u2(z), v2(z)) < c(u1(z), v2(z)) + c(u2(z), v1(z))

because cµ,ν(·, ·) satisfies Monge condition equation 23. Thus, from equation 27 and equation 28
we obtain

2Cost(α) =

∫ 1

0

cµ,ν(u1(z), v1(z)) dz +

∫ 1

0

cµ,ν(u2(z), v2(z)) dz

<

∫ 1

0

cµ,ν(u1(z), v2(z)) dz +

∫ 1

0

cµ,ν(u2(z), v1(z)) dz = Cost(α′) + Cost(α′′),

and so equation 26 holds. The continuity of α 7→ Cost(α) holds as the integral in equation 24 is
finite for all α.
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Remark A.1. We mention that in the case that c(x, y) = h(x − y) for h(x) = |x| (studied for
example in Cabrelli & Molter (1998); Hundrieser et al. (2022)) we have convexity but not strictly
convexity. However, the authors in Hundrieser et al. (2022) prove that a closed-formula for a mini-
mizer αµ,ν of equation 8:

αµ,ν = min

{
argmin

u∈R

∫ 1

0

|(Fµ − Fν)(t)− u|dt
}

called the Level Median of the function Fµ − Fν . To show that, it is used the fact that in this case
equation 8 takes the form

COTh(µ, ν) = inf
α∈R

∫ 1

0

|Fµ(t)− Fν(t)− α| dt.

Proof of Theorem 2.5.

1. First, we will show that the map Mν
µ given by equation 14 satisfies (Mν

µ )#µ = ν. Here µ

and ν are the extended measures form S1 to R having CDFs equal to Fµ and Fν , respec-
tively, defined by equation 3 and 4. By choosing the system of coordinates x̃ ∈ [0, 1) that
starts at xcut (see Figure 7) then,

Mν
µ (x̃) = F−1

ν,xcut
◦ Fµ,xcut(x̃)

(see equation 12). Let µxcut
and νxcut

be the (1-periodic) measures on R having CDFs
Fµ,xcut

and Fν,xcut
, respectively, i.e., Fν,xcut

(x̃) = µxcut
([0, x̃)) (analogously for νxcut

).
That is, we have unrolled µ and ν from S1 to R, where the origin 0 ∈ R corresponds to
xcut ∈ S1 (see Figure 1). Thus, a classic computation yields

(F−1
ν,xcut

◦ Fµ,xcut
)#µxcut

= (F−1
ν,xcut

)# ((Fµ,xcut
)#µxcut

) = (F−1
ν,xcut

)#LS1 = νxcut

where LS1 = Unif(S1) denotes the Lebesgue measure on the circle. We used that
(Fµ)#µ = LS1 as µ does not give mass to atoms, and so, if we change the system of
coordinates we also have (Fµ,xcut

)#µxcut
= LS1 .

Finally, we have to switch coordinates. Let

z(x̃) := x̃+ xcut

(that is, z(x̃) = x). To visualize this, see Figure 7. It holds that

z#νcut = ν (29)

(where we recall that ν is the extended measure form S1 to R having CDF equal to Fµ as
in equation 3 and 4). Let us check this fact for intervals:

z#νxcut([a, b]) = νxcut(z
−1([a, b])) = ν([z−1(a), z−1(b)])

= νxcut
([a− xcut, b− xcut])

= Fν,xcut
(b− xcut)− Fν,xcut

(a− xcut)

= Fν(b)− Fν(xcut)− (Fν(a)− Fν(xcut))

= Fν(b)− Fν(a)

= ν([a, b]).

Besides, it holds that
Fµ,xcut(· − xcut)#µ = Unif(S1), (30)

in the sense that it is the Lebesgue measure on S1 extended periodically (with period 1) to
the real line, which we denote by LS1 . Let us sketch the proof for intervals. First, notice
that Fµ,xcut

(x − xcut) = Fµ(x) − Fµ(xcut) and so its inverse is y 7→ F−1
µ (y + xcut).

Therefore,

(Fµ,xcut
(· − xcut))#µ ([a, b]) = µ

(
[F−1

µ (a+ xcut), F
−1
µ (b+ xcut)]

)
= Fµ(F

−1
µ (a+ xcut))− Fµ(F

−1
µ (b+ xcut)) = b− a.
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Figure 7: The unit circle (black) can be parametrized as [0, 1) in many different ways. In the figure,
we marked in black the North Pole as 0. The canonical parametrization of S1 identifies the North
Pole with 0. Then, also in black, we pick a point xcut. The distance in blue x that starts at 0 equals
the distance in red x̃ that starts at xcut plus the corresponding starting point xcut. This allows us to
visualize the change of coordinates given by equation 13.

Finally,

(Mν
µ )#µ =

(
F−1
ν,xcut

(Fµ,xcut
(· − xcut) + xcut)

)
#
µ

=
(
z(F−1

ν,xcut
(Fµ,xcut(· − xcut)))

)
#
µ

= z#(F
−1
ν,xcut

)#(Fµ,xcut(· − xcut))#µ

= z#(F
−1
ν,xcut

)#LS1 (by equation 30)

= z#νxcut

= ν (by equation 29).

Now, let us prove that Mν
µ is optimal.

First, assume that µ is absolutely continuous with respect to the Lebesgue measure on S1
and let fµ denote its density function. We will use the change of variables{

u = Fµ,xcut(x− xcut) = Fµ(x)− Fµ(xcut)

du = fµ(x) dx.

So,∫ 1

0

h(|Mν
µ (x)− x|R) dµ(x) =

∫ 1

0

h(|F−1
ν,xcut

(Fµ,xcut
(x− xcut))− (x− xcut)|R) fµ(x)dx︸ ︷︷ ︸

dµ(x)

=

∫ 1−xcut

−xcut

h(|F−1
ν,xcut

(u)− F−1
µ,xcut

(u)|R) du

=

∫ 1

0

h(|F−1
ν,xcut

(u)− F−1
µ,xcut

(u)|R) du

= COTh(µ, ν).

Now, let us do the proof in general:∫ 1

0

h(|Mν
µ (x)− x|R) dµ(x) =

∫ 1

0

h(|F−1
ν,xcut

(Fµ,xcut
(x− xcut))− (x− xcut)|R) dµ(x)

=

∫ 1

0

h(|F−1
ν,xcut

(y)− F−1
µ,xcut

(y)|R) d(Fµ,xcut
(· − xcut))#µ(y)

=

∫ 1

0

h(|F−1
ν,xcut

(u)− F−1
µ,xcut

(u)|R) du

= COTh(µ, ν).

In the last equality we have used that Fµ,xcut(· − xcut)#µ is the Lebesgue measure (see
equation 30).
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2. Using the definition of the generalized inverse (quantile function), we have

Mν
µ (t) = F−1

ν,xcut
(Fµ,xcut

(x− xcut)) + xcut

= inf{x′ : Fν,xcut(x
′) > Fµ,xcut(x− xcut)}+ xcut

= inf{x′ : Fν(x
′ + xcut)− Fν(xcut) > Fµ(x)− Fµ(xcut)}+ xcut

= inf{x′ : Fν(x
′ + xcut) > Fµ(x)− Fµ(xcut) + F (xcut)}+ xcut

= inf{x′ : Fν(x
′ + xcut) > Fµ(x)− αµ,ν}+ xcut

= inf{y − xcut : Fν(y) > Fµ(x)− αµ,ν}+ xcut

= inf{y : Fν(y) > Fµ(x)− αµ,ν}+ xcut − xcut

= F−1
ν (Fµ(x)− αµ,ν).

3. This part follows from the previous item as the right-hand side of equation 16 does not
depend on any minimizer of equation 7.

4. From (McCann, 2001, Theorem 13), there exists a unique optimal Monge map for the
optimal transport problem on the unit circle. Therefore, by using Remark 2.4, Mν

µ is the
unique optimal transport map from µ to ν. For the quadratic case h(x) = |x|2, we refer
for example to Santambrogio (2015, Th. 1.25, Sec. 1.3.2)). Moreover, in this particular
case, there exists a function φ such that Mν

µ (x) = x − ∇φ(x), where φ is a Kantorovich
potential (that is, a solution to the dual optimal transport problem on S1) and the sum is
modulo Z.

5. The identity (Mν
µ )

−1 = (Mµ
ν ) holds from the symmetry of the cost equation 5 that one

should optimize. Also, it can be verified using equation 16 and the fact that from equation 9
αµ,ν = −αν,µ:

Mµ
ν ◦Mν

µ (x) = F−1
µ

(
Fν(F

−1
ν (Fµ(x)− αµ,ν))− αν,µ

)
= F−1

µ (Fµ(x)− αµ,ν + αµ,ν) = x.

Proposition A.2 (Properties of the LCOT-Embedding). Let µ ∈ P(S1) be absolutely continuous
with respect to the Lebesgue measure on S1, and let ν ∈ P(S1).

1. µ̂µ,h ≡ 0.

2. ν̂µ,h(x) ∈ [−0.5, 0.5] for every x ∈ [0, 1).

3. Let ν1, ν2 ∈ P(S1) with ν1 that does not give mass to atoms, then the map

M := (ν̂2
µ,h − ν̂1

µ,h) ◦ ((ν̂1µ,h + id)−1) + id, (31)

satisfies M#ν1 = ν2 (however, it is not necessarily an optimal circular transport map).

Proof of Proposition A.2.

1. It trivially holds that the optimal Monge map from the distribution µ to itself is the identity
id, or equivalently, that the optimal displacement is zero for all the particles.

2. It holds from the fact of being the optimal displacement, that is,

COTh(µ, ν) = inf
M :M#µ=ν

∫
S1
h(|M(x)− x|S1) dµ(x) =

∫
S1
h(|ν̂µ,h(x)|S1) dµ(x),

and from the fact that |z|S1 is at most 0.5.

3. We will use that ν̂µ,h = Mν
µ − id, and that (Mν

µ )
−1 = Mµ

ν :
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M(x) = (ν̂2
µ,h − ν̂1

µ,h) ◦Mµ
ν1
(x) + x

= (Mν2
µ −Mν1

µ ) ◦Mµ
ν1
(x) + x

= Mν2
µ ◦Mµ

ν1
(x)− x+ x

= Mν2
µ ◦Mµ

ν1
(x).

Finally, notice that

(Mν2
µ ◦Mµ

ν1
)#ν1 = (Mν2

µ )#
(
(Mµ

ν1
)#ν1

)
= (Mν2

µ )#µ = ν2.

Now, we will proceed to prove Theorem 3.6. By having this result, it is worth noticing that
LCOTµ,p(·, ·)1/p endows P(S1) with a metric-space structure. The proof is based on the fact that
we have introduced an explicit embedding and then we have considered an Lp-distance. It will
follow that we have defined a kernel distance (that is in fact positive semidefinite).

Proof of Theorem 3.6. From equation 20, it is straightforward to prove the symmetric property and
non-negativity.

If ν1 = ν2, by the uniqueness of the optimal COT map (see Theorem 2.5, Part 3), we have ν̂1
µ,h =

ν̂2
µ,h. Thus, LCOTµ,h(ν1, ν2) = 0.

For the reverse direction, if LCOTµ,h(ν
1, ν2) = 0, then

h(min
k∈Z

{|ν̂1µ,h(x)− ν̂2
µ,h(x) + k|}) = 0 µ− a.s.

Thus,
ν̂1

µ,h(x) ≡1 ν̂2
µ,h(x) µ− a.s.

(where ≡1 stands for the equality modulo Z). That is,

Mν1
µ (x) = ν̂1

µ,h(x) + x ≡1 ν̂2
µ,h(x) + x = Mν2

µ (x) µ a.s.

Let S ⊆ [0, 1) denote the set of x such that the equation above holds, we have µ(S) = 1, µ(S1\S) =
0. Equivalently, for any (measurable) B ⊆ S1, µ(B ∩ S) = µ(B). Pick any Borel set A ⊆ S1, we
have:

ν1(A) = µ
(
(Mν1

µ )−1(A)
)

= µ
(
(Mν1

µ )−1(A) ∩ S
)

= µ
(
(Mν2

µ )−1(A) ∩ S
)

= µ((Mν2
µ )−1(A))

= ν2(A) (32)

where the first and last equation follows from the fact Mν1
µ ,Mν2

µ are push forward mapping from µ
to ν1, ν2 respectively.

Finally, we verify the triangular inequality. Here we will use that h(x) = |x|p, for 1 ≤ p < ∞. Let
ν1, ν2, ν3 ∈ P(S1),

LCOTµ,p(ν1, ν2)
1/p =

(∫ 1

0

(|ν̂1(t)− ν̂2(t)|S1)p dµ(t)
)1/p

≤
(∫ 1

0

(|ν̂1(t)− ν̂3(t)|S1 + |ν̂3(t)− ν̂2(t)|S1)p dµ(t)

)1/p

≤
(∫ 1

0

|ν̂1(t)− ν̂3(t)|pS1 dµ(t)
)1/p

+

(∫ 1

0

|ν̂3(t)− ν̂2(t)|pS1 dµ(t)
)1/p

= LCOTµ,p(ν1, ν3)
1/p + LCOTµ,p(ν2, ν3)

1/p

where the last inequality holds from Minkowski inequality.
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A.2 UNDERSTANDING THE RELATION BETWEEN THE MINIMIZERS OF EQUATION 7 AND
EQUATION 8

We briefly revisit the discussion in Section equation 2.3.1, specifically in Remark equation 2.4,
concerning the optimizers xcut and αµ,ν of equation 7 and equation 8, respectively.

Assuming minimizers exist for equation 7 and equation 8, we first explain why we adopt the ter-
minology ”cutting point” (xcut) for a minimizer of equation 7 and not for the minimizer αµ,ν of
equation 8. On the one hand, the cost function presented in 7 is given by

Cost(x0) :=

∫ 1

0

h(|F−1
µ,x0

(x)− F−1
ν,x0

(x)|R) dx. (33)

We seek to minimize over x0 ∈ [0, 1) ∼ S1, aiming to find an optimal x0 that affects both CDFs Fµ

and Fν . By looking at the cost 33, for each fixed x0, we change the system of reference by adopting
x0 as the origin. Then, once an optimal x0 is found (called xcut), it leads to the optimal transportation
displacement, providing a change of coordinates to unroll the CDFs of µ and ν into R and allowing
the use the classical Optimal Transport Theory on the real line (see Section equation 2.3.2 and the
proofs in Appendix equation A.1). On the other hand, the cost function in 8 is

Cost(α) :=
∫ 1

0

h(|F−1
µ (x+ α)− F−1

ν (x)|R) dx,

and the minimization runs over every real number α. Here, the shift by α affects only one of the
CDFs, not both. Therefore, it will not allow for a consistent change in the system of reference. This
is why we do not refer to α as a cutting point in this paper, but we do refer to the minimizer of
equation 7 as xcut.

Finally, Figure 8 below is meant to provide a visualization of Remark 2.4, that is, to show through
an example that, when minimizers for 7 and equation 8 do exist, while one could have multiple
minimizers of 7, the minimizer of 8 is unique.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8
Densities on the circle

Target den ity, ν
Uniform den ity, μ

0.0 0.2 0.4 0.6 0.8 1.0
x0

Co t a  a funtion of x0

Co t = ∫
1
0 |F

−1
μ, x0(x) − F−1

ν, x0(x)|2μx

−0.4 −0.2 0.0 0.2 0.4
α

Co t a  a function of α

Co t = ∫
1
0 |F

−1
μ (x+α) − F−1

ν (x)|2μx
optimal α

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.2

0.0

Clo e formula for the optimal α
Fμ(x) − Fν(x)
optimal α

Figure 8: Top left: Uniform density, µ, and a random target density ν on S1. Top right: The circular
transportation cost

∫ 1

0
|F−1

µ,x0
(x)−F−1

ν,x0
(x)|2 dx is depicted as a function of the cut, x0, showing that

the optimization in equation 7 can have multiple minimizers. Bottom right: Following equation 9,
we depict the difference between the two CDFs, Fµ(x)−Fν(x), for each x ∈ [0, 1) ∼ S1. As can be
seen, for the optimal cuts (dotted red lines), the difference is constant, indicating that the optimal α
for equation 8 is unique. Bottom left: The optimizer for the circular transportation cost in equation 8
is unique, and given that µ is the uniform measure, it has a closed-form solution E(ν)− 1

2 .
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A.3 TIME COMPLEXITY OF LINEAR COT

In this section, we assume that we are given discrete or empirical measures.2

First, we mention that according to (Delon et al., 2010, Section 6), given two non-decreasing step
functions F and G represented by

[ [x1, . . . , xN1
], [F (x1), . . . , F (xN1

)] ] and [ [y1, . . . , yN2
], [G(y1), . . . , G(yN2

)] ],

the computation of an integral of the form∫
c(F−1(x), G−1(x)) dx

requires O(N1 +N2) evaluations of a given cost function c(·, ·).
Now, by considering the reference measure µ = Unif(S1) we will detail our algorithm for comput-
ing LCOT (ν1, ν2). Let us assume that ν1, ν2 are two discrete probability measures on S1 having
N1 and N2 masses, respectively. We represent these measures νi =

∑Ni

j=1 m
i
jδxi

j
(that is, ν1 has

mass m1
j at location x1

j for j = 1, . . . , N1, and analogously for ν2) as arrays of the form

νi = [ [xi
1, . . . , x

i
Ni

], [mi
1, . . . ,m

i
Ni

] ], i = 1, 2.

Algorithm to compute LCOT:

1. For i = 1, 2, compute αµ,νi = E(νi)− 1/2.
2. For i = 1, 2, represent Fνi(·) + αµ,νi as the arrays

[ [xi
1, . . . , x

i
Ni

], [ci1, . . . , c
i
Ni

] ]

where
ci1 := mi

1 + αµ,νi
, cij := cij−1 +mi

j , for j = 2, . . . , Ni.

3. Use that

F−1
ν (x− αµ,ν) = (Fν(·) + αµ,ν)

−1(x),

and the algorithm provided in (Delon et al., 2010, Section 6) mentioned above with F =
Fν1(·) + αµ,ν1 and G = Fν2(·) + αµ,ν2 to compute

LCOT (ν1, ν2) = ∥ν̂1 − ν̂2∥2L2(S1)

=

∫ 1

0

|
(
F−1
ν1

(x− αµ,ν1)− x
)
−
(
F−1
ν2

(x− αµ,ν2)− x
)
|2S1 dx

=

∫ 1

0

|(Fν1(·) + αµ,ν1︸ ︷︷ ︸
F

)−1(x)− (Fν2
(·) + αµ,ν2︸ ︷︷ ︸

G

)−1(x)|2S1 dx

Each step requires O(N1+N2) operations. Therefore, the full algorithm to compute LCOT (ν1, ν2)
is of order O(N1 +N2).

A.4 LCOT BARYCENTER

Although the following definition holds for any non-atomic reference measure µ ∈ P(S1), for
simplicity, we consider the reference measure as µ = Unif(S1).

Given N target measures ν1, . . . , νN ∈ P(S1), as LCOT2(·, ·) is a distance, their LCOT barycenter
is defined by the measure νb such that

νb = argminν∈P(S1)
1

N

N∑
j=1

LCOT2(ν, νj) = argminν∈P(S1)
1

N

N∑
j=1

∥ν̂ − ν̂j∥2L2(S1).

2It is worth mentioning that for some applications, the LCOT framework can be also used for continuous
densities, as in the case of the CDT Park et al. (2018).
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In the embedding space, it can be shown that the minimizer of

argminν̂
1

N

N∑
j=1

∥ν̂ − ν̂j∥2L2(S1)

is given by the circular mean

ν(x) := circle mean({ν̂1(x), . . . ν̂N (x)}) := 1

2π
arg tan

(∑N
i=1 sin(2πν̂i(x))∑N
i=1 cos(2πν̂i(x))

)
.

For each x ∈ [0, 1), the last value is the average of the angles {2πν̂1(x), . . . , 2πν̂N (x)}, which is
then normalized to fall within the range [−0.5, 0.5]. By using the closed formula for the inverse of
the LCOT Embedding provided by Proposition 3.5, we can go back to the measure space obtaining
the LCOT barycenter between ν1, . . . , νN as

νb = (ν + id)#µ. (34)

In our experiments, we use the expression equation 34.

A.5 EXTRA FIGURES AND EXPERIMENTS

The following Figure 9 is from an experiment analogous to Experiment 1 but for a different family
of measures (Figure 9 Left). We include it to have an intuition of how the LCOT behaves under
translations and dilations of an initial von Mises density.

Figure 9: MDS for embedding classes of probability densities into an Euclidean space of dimension
2 where the original pair-wise distances (COT-distance, LOT-distance, Euclidean or L2-distance)
are preserved as well as possible.

A.5.1 LCOT–INTERPOLATION: REAL DATA APPLICATION

Hue transfer experiment: In Figures 10, 11, and 12 we interpolate the hue channel between pairs
of images using LCOT interpolation (given by equation 22), and COT interpolation (given by equa-
tion 21). Given a pair of images, one is considered as the source and the other as the target. Each
image of M ×N pixels is represented using Hue, Saturation, and Value channels (HSV). We com-
pute a density-normalized histogram of the Hue values across all pixels and consider this histogram
as a circular density. Each bin represents at the same time a color variety (Hue value) and a point
(angle) in the circle. Thus, displacements in the circle correspond to color conversions. Each inter-
polation (LCOT / COT) provides a curve of color conversions parametrized between t = 0 (source)
and t = 1 (target). For three different pairs of images, Figures 10, 11, and 12 depict color-converted
images using steps t = 0.25, 0.5, 0.75 for each interpolation type.
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Figure 10: LCOT and COT color interpolations.

Figure 11: LCOT and COT color interpolations.

Figure 12: LCOT and COT color interpolations.
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A.5.2 LCOT FOR HUE-BASED IMAGE RETRIEVAL

Given a data set of N = 100 flower images represented using hue, saturation, and value channels
(HSV), we use the hue channel for image retrieval. For this, the hue information of an image is used
as a primary feature for searching. We extract the hue component from the images of the data set
and compute density-normalized histograms of the hue values across all pixels. We consider these
histograms as circular densities {νi}Ni=1 (similarly to A.5.1).

For LCOT comparison and retrieval, we compute the LCOT transforms {ν̂i}Ni=1. Given a new
query image, we compute its hue histogram denoted σ. Then, we perform LCOT-matching, that
is, we embed the input image in LCOT space by computing σ̂ so that we can calculate N squared
Euclidean distances ∥σ̂ − ν̂i∥22 (i.e., we are computing LCOT2(σ, νi) for i = 1, . . . , N ). We sort
the obtained LCOT-distance values in ascending order. In Figure 13 we show the four closest and
furthest images recovered using this technique.

In Figure 14, we repeat the same experiment but using classic COT-matching for the same data set.
As before, given a query image, we first compute its hue histogram denoted by σ. Then, we perform
N COT-distances COT2(σ, νi), for i = 1, . . . , N , and We sort the obtained COT-distance values.

Figure 13: LCOT-approach for Hue-based image retrieval. The leftmost image is the original query
image. In the upper row, we retrieve the 4 closest images in Hue space according to LCOT, while
the bottom row shows the 4 furthest images with respect to LCOT-distance.

Figure 14: COT-distance for Hue-based image retrieval. The leftmost image is the original query
image. In the upper row, we retrieve the 4 closest images in Hue space according to COT-distance,
while the bottom row shows the 4 furthest images with respect to COT-distance.

In both figures, the retrieval of images with similar color content is evident. The advantage of using
LCOT over COT is that when using COT each new image requires to solve N new circular optimal
transport problems whereas LCOT only requires to solve one followed by N Euclidean distance
calculations for comparison and sorting. For M queries we have to compute MN COT distances
when using the COT approach (N for each query) but only solve N+M COT problems when using
LCOT (N for pre-processing the data set + one per query).
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A.6 UNDERSTANDING THE EMBEDDING IN DIFFERENTIAL GEOMETRY

Our embedding ν 7→ ν̂ as given by equation equation 17 aligns with the definition of the Logarithm
function presented in (Sarrazin & Schmitzer, 2023, Definition 2.7). To be specific, for µ, ν ∈ S1
and the Monge mapping Mν

µ , the Logarithm function as introduced in Sarrazin & Schmitzer (2023)
is expressed as:

P2(S1) ∋ ν 7→ logCOT
µ (ν) ∈ L2(S1, TS1;µ).

Here, the tangent bundle of S1 is represented as

TS1 := {(x, Tx(S1))|x ∈ S1},

where Tx(S1) denotes the tangent space at the point x ∈ S1. The space L2(S1, TS1;µ) is the set
of vector fields on S1 with squared norms (based on the metric on TS1), that are µ-integrable. The
function (vector field) logCOT

µ (ν) is defined as:

logCOT
µ (ν) := (S1 ∋ x 7→ (x, vx)) ∈ TS1,

where vx 7→ Tx(S1) is the initial velocity of the unique constant speed geodesic curve x 7→ T ν
µ (x).

The relation between logCOT
µ (ν) and ν̂ in equation 19 can be established as follows: For any x in

S1, the spaces Tx(S1) and S1 can be parameterized by R and [0, 1), respectively. Then, the unique
constant speed curve x 7→ Mν

µ (x) is given by:

x(t) := x+ t(Mν
µ (x)− x), ∀t ∈ [0, 1].

Then, the initial velocity is Mν
µ (x) − x. Drawing from equation 15, Theorem 2.5, and Proposition

A.2, we find ν̂(x) = Mν
µ (x)− x for all x in S1, making ν̂ and logCOT

µ (ν) equivalent.

However, it is important to note that while logCOT
µ is defined for a generic (connected, compact,

and complete3) manifold, it does not provide a concrete computational method for the embedding
logCOT

µ . Our focus in this paper is on computational efficiency, delivering a closed-form formula.

Regarding the embedding space, in Sarrazin & Schmitzer (2023), the space L2(S1, TS1;µ) is
equipped with the L2, induced by TS1. Explicitly, for any f belonging to L2(S1, TS1;µ),

∥f∥2 =

∫ 1

0

∥f(x)∥2xdx =

∫ 1

0

|f(x)|2 dx,

where ∥f(x)∥2x represents the norm square in the tangent space Tx(S1) of the vector f(x). By
parameterizing S1 and Tx(S1) as [0, 1) and R, respectively, this squared norm becomes |f(x)|2.
Consequently, L2(S1, TS1;µ) becomes an inner product space, whereby the expression (polariza-
tion identity) ∥f + g∥2 − ∥f∥2 − ∥g∥2 establishes an inner product between f and g.

However, in this paper, the introduced embedding space L2(S1, dµ) presented in equation 18. This
space uses the L2-norm on the circle, defined for each f in L2(S1, dµ) as:

∥f∥2L2(S1;dµ) =

∫
S1
|f(x)|2S1 dµ.

Unlike the previous space, this does not induce an inner product (in fact, |·|S1 is not a norm). As such,
throughout this paper, we term our embedding as a “linear embedding” rather than a “Euclidean
embedding”.

3In Sarrazin & Schmitzer (2023), the Riemannian manifold is not necessarily compact. However, the mea-
sures µ, ν must have compact support sets. For brevity, we have slightly overlooked this difference.
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