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A CASE STUDY WITH PATCHTST AND VARYING INPUT LENGTH.

In this section, we focus on iTransformer (Liu et al., 2024) and PatchTST (Nie et al., 2023), highlight-
ing the effectiveness of FreDF in enhancing their performance given varying input sequence lengths,
to complement the fixed length of 96 used in the main text. According to Table 1, FreDF consistently
improves the performance of both iTransformer and PatchTST across different input lengths. Notably,
under our experimental conditions, PatchTST with H = 336 achieves results comparable to the
original “PatchTST/42” results reported by Nie et al. (2023), while FreDF further reduced the MSE
and MAE by 0.002, demonstrating its robustness across different input lengths.

Table 1: Varying input sequence length results on the Weather dataset.

Models FreDF iTransformer FreDF PatchTST

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

In
pu

ts
eq

ue
nc

e
le

ng
th

96

96 0.164 0.202 0.201 0.247 0.174 0.217 0.200 0.244
192 0.220 0.253 0.250 0.283 0.230 0.266 0.234 0.268
336 0.275 0.294 0.302 0.317 0.279 0.301 0.311 0.321
720 0.356 0.347 0.370 0.362 0.355 0.351 0.365 0.353

Avg 0.254 0.274 0.281 0.302 0.259 0.284 0.278 0.297

192

96 0.164 0.207 0.184 0.235 0.158 0.205 0.167 0.213
192 0.211 0.250 0.236 0.277 0.200 0.241 0.204 0.244
336 0.262 0.290 0.268 0.296 0.259 0.287 0.266 0.291
720 0.341 0.343 0.342 0.345 0.330 0.334 0.333 0.337

Avg 0.244 0.272 0.258 0.288 0.237 0.267 0.242 0.271

336

96 0.159 0.204 0.164 0.215 0.150 0.200 0.153 0.203
192 0.204 0.248 0.211 0.256 0.193 0.240 0.194 0.240
336 0.253 0.288 0.260 0.292 0.245 0.280 0.247 0.282
720 0.325 0.336 0.327 0.339 0.320 0.332 0.321 0.336

Avg 0.235 0.269 0.241 0.276 0.227 0.263 0.229 0.265

720

96 0.164 0.215 0.172 0.228 0.144 0.194 0.191 0.246
192 0.209 0.257 0.218 0.265 0.190 0.242 0.192 0.241
336 0.251 0.291 0.273 0.306 0.243 0.283 0.241 0.285
720 0.318 0.342 0.340 0.353 0.310 0.330 0.311 0.331

Avg 0.236 0.276 0.251 0.288 0.222 0.262 0.234 0.276

B RUNNING COST ANALYSIS

In this section, we analyze the running cost of FreDF. The core computation of FreDF involves
calculating the FFT of both predicted and label sequences, followed by calculating their point-wise
MAE loss. The overall complexity is dominated by the FFT operation, which operates at O(T logT),
where T is the label sequence length.
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Figure 1: Running time in the forward pass (left panel) and backward pass (right panel), shown with
dashed lines for the average and shaded areas for 99.9% confidence intervals.

Fig. 1 shows the empirical running costs of FreDF for varying sequence lengths in the training duration,
involving the forward pass stage (FFT calculation) and the backward pass stage (frequency loss and
gradient computation). Overall, for a label sequence with T < 720, FreDF adds approximately 1
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Table 2: Experimental results (mean±std) with varying seeds (2020-2024).

Dataset ETTh1 Weather

Models FreDF iTransformer FreDF iTransformer

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

96 0.377±0.001 0.396±0.001 0.391±0.001 0.409±0.001 0.168±0.003 0.205±0.003 0.203±0.002 0.246±0.002

192 0.428±0.001 0.424±0.001 0.446±0.002 0.441±0.002 0.220±0.001 0.254±0.001 0.249±0.001 0.281±0.001

336 0.466±0.001 0.442±0.001 0.484±0.005 0.460±0.003 0.281±0.002 0.298±0.002 0.299±0.002 0.315±0.002

720 0.468±0.005 0.465±0.003 0.499±0.015 0.489±0.010 0.364±0.008 0.354±0.006 0.371±0.001 0.361±0.001

Avg 0.435±0.002 0.432±0.002 0.455±0.006 0.450±0.004 0.258±0.004 0.278±0.003 0.280±0.001 0.301±0.002

Table 3: Impact of aligning the amplitude and phase characteristics.

Amp. Pha. ECL ETTm1 ETTh1

MSE MAE MSE MAE MSE MAE

! % 0.3356 0.4060 0.5936 0.5169 0.7303 0.5968
% ! 0.1836 0.2752 0.4204 0.4173 0.4751 0.4487
! ! 0.1698 0.2594 0.3920 0.3989 0.4374 0.4351

ms to the overall training duration. Moreover, frequency loss computation is not required during
inference. Therefore, FreDF does not hinder model efficiency in either training or inference stages.

C RANDOM SEED SENSITIVITY

In this section, we investigate the sensitivity of the results to the specification of random seeds. To
this end, we report the mean and standard deviation of the results obtained from experiments using
five random seeds (2020, 2021, 2022, 2023, 2024) in Table 2. We examine (1) iTransformer and (2)
FreDF, which is applied to refine iTransformer. The results show minimal sensitivity to random seeds,
with standard deviations below 0.005 in seven out of eight averaged cases.

D AMPLITUDE V.S. PHASE ALIGNMENT

In this section, we investigate the implementation of the frequency loss (3), with the results averaged
over forecast lengths in Table 3. Specifically, minimizing the frequency loss (3) ensures that both
amplitude and phase characteristics of the forecast match those of the actual label sequences in the
frequency domain. In signal processing, both characteristics are fundamental for accurately repre-
senting signal dynamics, and we analyze their respective contributions. Overall, both characteristics
are essential for FreDF’s performance. Notably, phase alignment is particularly crucial; aligning am-
plitude characteristics without also aligning phase characteristics leads to subpar performance. This
phenomenon is reasonable, as even minor deviations in phase characteristics can produce significant
discrepancies in the time domain.

Table 4: Comparable results with baselines utilizing multiresolution trends.

Dataset ETTm1 ETTh1

Models FreDF TimeMixer FreDF Scaleformer FreDF TimeMixer FreDF Scaleformer

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.316 0.354 0.322 0.361 0.365 0.391 0.393 0.417 0.364 0.393 0.375 0.445 0.375 0.415 0.407 0.445
192 0.360 0.377 0.362 0.382 0.417 0.436 0.435 0.439 0.422 0.424 0.441 0.431 0.414 0.440 0.430 0.455
336 0.383 0.399 0.392 0.405 0.478 0.461 0.541 0.500 0.454 0.432 0.490 0.458 0.463 0.468 0.462 0.475
720 0.447 0.440 0.453 0.441 0.575 0.533 0.608 0.530 0.467 0.460 0.481 0.469 0.484 0.499 0.545 0.551

Avg 0.377 0.393 0.382 0.397 0.459 0.455 0.494 0.471 0.427 0.427 0.446 0.441 0.434 0.455 0.461 0.482
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E COMPARISON WITH ADDITIONAL FORECAST ARCHITECTURES

In this section, we apply FreDF to two additional forecast architectures, namely TimeMixer (Wang
et al., 2024d) and ScaleFormer (Shabani et al., 2022) to showcase the generality of FreDF. To ensure
a fair comparison, we utilized their official repositories, downloading and configuring them according
to their specified requirements. We modified their temporal MSE loss with the proposed loss in the
FreDF. The loss strength parameters were fine-tuned on the validation set. As shown in Table 4,
FreDF significantly enhances the performance of these architectures, demonstrating FreDF’s ability
to support and improve existing models. These improvements underscore the independent and
complementary nature of FreDF’s contributions.
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