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CalibRBEV: Multi-Camera Calibration via Reversed
Bird’s-eye-view Representations for Autonomous Driving

Anonymous Authors

ABSTRACT
Camera calibration consists of determining the intrinsic and extrin-
sic parameters of an imaging system, which forms the fundamental
basis for various computer vision tasks and applications, e.g., ro-
botics and autonomous driving (AD). However, prevailing camera
calibration models pose a time-consuming and labor-intensive off-
board process particularly in mass production settings, while simul-
taneously lacking exploration of real-world autonomous driving
scenarios. To this end, in this paper, inspired by recent advance-
ments in bird’s-eye-view (BEV) perception models, we proposes a
novel automatic multi-camera Calibration method via Reversed
BEV representations for autonomous driving, termed CalibRBEV.
Specifically, the proposed CalibRBEV model primarily comprises
two stages. Initially, we innovatively reverse the BEV perception
pipeline, reconstructing bounding boxes through an attention auto-
encoder module to fully extract the latent reversed BEV represen-
tations. Subsequently, the obtained representations from encoder
are interacted with the surrounding multi-view image features for
further refinement and calibration parameters prediction. Extensive
experimental results on nuScenes and Waymo datasets validate the
effectiveness of our proposed model.

CCS CONCEPTS
• Computing methodologies → Multimedia Interpretation; •
Multimedia Interpretation→ Camera calibration.

KEYWORDS
Multi-camera calibration, bird’s-eye-view (BEV), autonomous driv-
ing (AD).

1 INTRODUCTION
Camera calibration is a fundamental procedure in computer vi-
sion tasks [43, 52], mainly involving the determination of intrinsic
and extrinsic parameters of an imaging system. Specifically, these
parameters are applied to the original images to obtain spatial co-
ordinates in the real world before downstream tasks such as object
detection or segmentation.

In modern autonomous driving (AD) systems, vehicles are typi-
cally outfitted with multiple sensors (e.g., multi-cameras, LiDAR).
Thus, employing classic and popular calibration methods [41, 61]
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(b) Reversed BEV Multi-Camera Calibration.

Figure 1: The difference between forward BEV perception
pipeline and our proposed reversed BEV calibration pipeline.
For simplicity, the process of extracting multi-view image
features using backbone network is omitted here. (a) Forward
BEV Perception. Multi-view images and calibration param-
eters are utilized by the encoder to generate BEV features,
which are then forwarded through the decoder head to yield
predictive bounding boxes. (b) Reversed BEV Calibration.
The model firstly encodes bounding boxes into BEV features,
which are subsequently combined with multi-camera images
to predict the calibration parameters.

such as hand-eye calibration is a time-consuming and laborious off-
board procedure during mass production, let alone re-calibration
after product delivery. For example, for the extrinsic parameter
matrix, it usually requires to be executed within a specific calibra-
tion room. On the other hand, some recent deep learning-based
calibration models achieve performance potential by directly re-
gressing calibration parameter targets [31, 54]. However, there is a
notable dearth of comprehensive exploration within the realm of
multi-view cameras complex scenes in autonomous driving.

Recent bird’s-eye-view (BEV) models [34, 35] achieve notable
progress in 3D perception using multi-camera imagery and calibra-
tion parameters within the context of AD scenarios. As shown in
Fig. 1(a), the encoder utilizes multi-view images and calibration pa-
rameters to produce BEV representations, which are subsequently
fed into the decoder to generate predictive bounding boxes, en-
abling perception in the real world. On one hand, such a perceptual
paradigm necessitates accurate calibration parameters to achieve
precise detection, highlighting the crucial role of camera calibra-
tion in AD. On the other hand, the close relationship between BEV
models and calibration parameters inevitably raises a question: can
the outstanding BEV model concept be leveraged to accomplish the
task of camera calibration in AD?

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Motivated by this observation, we rethink the camera calibration
from a new perspective, i.e., a reversed BEV perception pipeline. In
other words, reversely, our objective is centered on the optimization
of calibration parameters utilizing bounding boxes data, rather than
the prediction of bounding boxes, as shown in Fig. 1(b).

During model training, the multi-view images and bounding
boxes can be readily acquired using alternate sensors from calibra-
tion datasets, such as cameras and high-precision LiDAR. Thus, the
key challenges are (i) The training of the whole model still demands
a substantial pre-collect calibration dataset, which goes against our
initial intention of cost reduction. In the meanwhile, (ii) it is still
unexplored in the community that how high-quality and comprehen-
sive BEV features can be extracted from bounding boxes, which is a
reversal of existing literatures [34, 35].

Regarding the above two issues, we employ an auto-encoder
reconstruction strategy to pre-acquire the reversed BEV representa-
tions. Consequently, the representations derived from the encoding
of 3D object bounding boxes should be able to capture comprehen-
sive environmental information, facilitating accurate prediction of
camera calibration parameters. Additionally, pre-training of the
auto-encoder module for reconstruction enhances the robust gen-
eralization of the encoder, further diminish the requirement for
extensive calibration datasets, as shown in Table 4.

To this end, this paper proposes the CalibRBEV model, which
achieves automatic multi-camera calibration via reversed BEV rep-
resentations for autonomous driving. Specifically, our model begins
by reverse BEV perception pipeline and utilizes attention auto-
encoder modules to reconstruct bounding boxes for obtaining the
reversed BEV representations. Subsequently, these features interact
with multi-view image features for further refinement to predict
the final calibration parameters. Experimental results on nuScenes
and Waymo datasets validate the effectiveness of our method. Par-
ticularly, on nuScenes dataset, we achieve 0.0102, 0.1637, and 0.0287
errors on translation vector, rotation matrix, and intrinsic parame-
ters, respectively.

The main contributions of our work are summarized as:

• This work introduces the concept of BEV perception models
into calibration tasks, achieving the camera calibration in
autonomous driving scenarios through the reversed BEV
pipeline.

• This paper proposes an auto-encoder-based strategy for re-
constructing bounding box data to achieve high-quality re-
versed BEV feature extraction, thereby further enhancing
the prediction of calibration parameters.

• Experimental results on nuScenes and Waymo datasets val-
idate the effectiveness of our model. The ablation results
further substantiate the performance of module design and
its efficacy across varying data size.

2 RELATEDWORK
In this section, we offer an extensive overview of related work con-
cerning our proposed model, primarily focusing on three aspects:
camera calibration, bird’s-eye-view (BEV) perception models, and
autonomous driving scenarios.

2.1 Camera Calibration
Camera calibration can be broadly categorized into two main direc-
tions [36, 44]: traditional hand-crafted methods and deep learning-
based models. This subsection will delve into each direction sepa-
rately.

2.1.1 Traditional Models. In traditional camera calibration mod-
els, calibration generally involves using established mathemati-
cal models and algorithms [1, 7, 12, 16, 19, 20, 41, 45, 61] to esti-
mate camera parameters, which can be further categorized into
three main categories [36], namely, calibration-plane-based mod-
els [2, 19, 45, 61], geometric-prior-based models [1, 7], and self-
calibration models [15, 16, 20, 59].

(i) The calibration-plane-based models typically necessitate the
use of standard references (e.g., calibration target: checkerboard)
in the world coordinate system to estimate parameters. A simple
calibration pattern comprising equally spaced dots is proposed [45]
for fish-eye lens camera. Zhang et al. [61] further introduced a
simple and effective camera calibration model, wherein parameters
are estimated through the utilization of key points from different
viewpoints on the calibration plane. (ii) The geometric-prior-based
models usually depend on geometric priors and properties for the
prediction of calibration parameters. For example, the projective
invariant properties [1] is employed in central catadioptric systems,
while user-specified salient scene regions [7] are preserved accord-
ing to human vision tendencies. (iii) The self-calibration models
mainly directly take multiple images captured from different cam-
era orientations to estimate the parameters. The epipolar structure
of image pairs is leveraged in [16] and image correspondences is
utilized in [20]. LiDAR edges information [59] is further used for
automatic extrinsic calibration.

In general, these traditional calibration methods heavily rely on
known scenes and mathematical models, which greatly limit their
ability to generalize in complex scenarios. Furthermore, they neces-
sitate the design of specific calibration plane and extensive manual
intervention, inevitably adding to costs and proving unsuitable for
mass production scenarios.

2.1.2 Learning-based Models. Recently, with the advancement of
deep learning [14, 21, 32], a novel learning-based calibrationmethod
has emerged, demonstrating promising potential as it directly uti-
lizes deep neural networks (DNNs) to fit the calibration targets.
Following the [36] and considering the cameramodel, deep learning-
based calibration methods are categorized into four groups: stan-
dard model [9, 31, 50, 54], distortion model [3, 8, 17, 60], cross-view
model [13, 37, 57], and cross-sensor model [18, 46, 62, 64].

(i) The standardmodel aims to estimate the intrinsic and extrinsic
parameters of the camera. Initially, DeepFocal [54] presented pio-
neering learning-based work to predict the focal length of cameras.
The extrinsic parameters are similarly obtained through regres-
sion and are commonly regarded as camera pose estimation [9, 31].
Further techniques [4, 22, 50] have been suggested for the simulta-
neous estimation of both intrinsic and extrinsic parameters. (ii) The
distortion model primarily focuses on calibrating radial distortion
and roll shutter distortion. DeepCalib [3] firstly employed DNNs to
regressively predict the camera distortion parameters. Later, more
robust networks and training strategies are utilized to improve
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calibration performance [8, 17]. (iii) The cross-view model extends
the single-camera settings to the more intricate multi-camera cali-
bration scenarios, such as homography matrix prediction [13] and
multi-calibration parameters prediction [37, 57]. (iv) The cross-
sensor model aims to achieve multi-sensor calibration, primarily
aligning camera/LiDAR coordinates [18, 42, 62, 64].

However, despite the potential exhibited by the aforementioned
learning-based camera calibration methods across diverse scenar-
ios, further exploration is required in the challenging scenarios of
autonomous driving. In this paper, we innovatively introduce the
concept of BEV perception and incorporate reversed BEV features
to directly predict the multi-view camera parameters in real-world
autonomous driving scenarios.

2.2 BEV Perception
The BEV perception models [33] have garnered widespread at-
tention in the research community for its benefits derived from a
unified perspective and integration of multi-view ormulti-sensor in-
formation, particularly in the context of AD scenarios. It is advisable
to refer to the comprehensive review [33] to gain a comprehensive
understanding of BEV perception models. Among these methods,
perception strategies based on transformers have demonstrated
outstanding performance [14, 49].

Initially, DETR [6] pioneered the utilization of the transformer
architecture for the 2D object detection task. Given that cross-
attention entails prolonged training periods, Deformable DETR [63]
further enhances model efficiency by integrating deformable at-
tention mechanisms. Inspired by the aforementioned 2D detec-
tion models, DETR3D [52] is a classic model that generalizes BEV
method from 2D to 3D detection based on DETR and Deformable
DETR.

Following the DETR3D, BEV models [25, 35, 38, 39] have ex-
perienced rapid development. PETR [38] and BEVDet [25] further
improve the performance based onDETR3D. Then, BEVFormer [35],
PETRv2 [39], BEVDet4D [24], and BEVDepth [34] exploit temporal
features in multi-camera 3D object detection, and achieve signifi-
cant improvements over single-frame methods. Moreover, BEVFu-
sion [40] and FUTR3D [11] further fuse multi-modal features of
various sensors such as camera and LiDAR into BEV features to
boost the performance.

Our primary focus lies within methods pertaining to multi-view
images BEV perception models, such as BEVFormer [35]. To ensure
accurate detection, the utilization of multiple camera calibration pa-
rameters is imperative for multi-image inputs. In this paper, unlike
above mentioned forward BEV perception models, we innovatively
reverse the BEV pipeline to accomplish the camera calibration task.

2.3 Autonomous Driving
Modern autonomous driving (AD) systems are usually divided into
several modules including perception [10, 33], prediction [27–29],
planning [48], and etc. Though they have the advantages of decou-
pled developments and explainability, module-based systems suffer
from cumulative errors and inconsistent optimization objectives.
Recently, end-to-end AD [23, 26, 30, 56] becomes a hot topic, which
aims to build a fully differentiable systems for AD so as to enjoy the
benefits of data-driven scalable paradigm [55]. Besides, the recent

success of large language models (LLM) has inspired the commu-
nity to explore the possibility of utilizing the strong common sense
within LLM for AD [58].

In this paper, camera calibration emerges as a fundamental task
in AD scenarios aimed at ensuring accurate interpretation and
understanding of multi-view multimedia images captured by cam-
eras, thereby achieving precise environmental perception, which
is critical for ensuring the safety and optimal performance of AD
systems.

3 METHOD
3.1 Preliminaries
3.1.1 Calibration Parameters. The calibration parameters of cam-
eras mainly include the intrinsic I and the extrinsic E parameters.
The intrinsic parameter I mainly relates to the inherent character-
istics of cameras,

I =

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

 , (1)

where 𝑓𝑥 , 𝑓𝑦 denote the focal lengths, and 𝑐𝑥 , 𝑐𝑦 denote the coordi-
nates of the principal point. The extrinsic parameter E is used to
transform images from the world coordinate system to the camera
coordinate system,

E =

[
R t
0 1

]
, (2)

where R denotes the rotation matrix and t denotes the translation
vector.

3.1.2 BEV Representations with Calibration Parameters. Here, we
firstly present an overview of the BEV representations [35, 53]
and then discuss their close relationship with camera calibration
parameters.

The BEV features are defined as a pre-defined grid anchor, por-
traying the environment as a bird’s-eye view, and are represented
by a parameter matrix Q ∈ R𝐻×𝑊 ×𝐶 . The height 𝐻 and width𝑊
denote the region centered around the ego vehicle, and 𝐶 denote
the number of channels in the coordinate region.

To obtain the BEV features of each position, it is necessary to
map the multi-view image features to the corresponding anchor
positions through the intrinsic and extrinsic calibration parame-
ters [35]. Specifically, suppose that the real-world position (𝑥 ′, 𝑦′)
corresponding to the query Q𝑝 ∈ R1×𝐶 is located at 𝑝 = (𝑥,𝑦) of
Q,

𝑥 ′ =
(
𝑥 − 𝑊

2

)
× 𝑠, 𝑦′ =

(
𝑦 − 𝐻

2

)
× 𝑠, (3)

where 𝑠 denotes the grid size in the real-world corresponding to
the BEV features. In addition, it is essential to pre-define a set of
anchors {𝑧′

𝑗
}𝑁ref
𝑗=1 to describe the heights along the 𝑧-axis in the real

environment. Finally, we obtain a series of 3D reference points
(𝑥 ′, 𝑦′, 𝑧′

𝑗
) corresponding to the BEV features Q𝑝 .

According to the calibration parameters in Eqs. 1 and 2, we have
the following projection mapping relationships,

z𝑖 𝑗 ·
[
𝑥𝑖 𝑗 𝑦𝑖 𝑗 1

]⊤
= I𝑖 · E𝑖 ·

[
𝑥 ′ 𝑦′ 𝑧′𝑗 1

]⊤
, (4)

where (𝑥𝑖 𝑗 , 𝑦𝑖 𝑗 ) denotes the pixel coordinates of the 3D reference
points projected on the 𝑖-th camera. I𝑖 and E𝑖 are the calibration
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Figure 2: Overview of our proposed CalibRBEV Model. (a): Multiple images are captured from different perspectives using
cameras and then fed into the backbone network to obtain multi-view image features. (b): The calibration module utilizes the
bounding boxes andmulti-view features as input, which are processed through an attention-based encoder-decoder architecture
to refine the reversed BEV representations and predict the calibration parameters. (c): Reconstruction of the auto-encoder
module allows for comprehensive exploration of the bounding box information, enabling the pre-acquisition of robust BEV
representations. (d): The training pipeline consists of two stages. Note that once the AE-Encoder training is completed, its
parameters are frozen and inherited by the Calib-Encoder. Additionally, the Calib-Decoder and AE-Decoder serve distinct
purposes: the former predicts calibration parameters, while the latter focuses on reconstruction. (e) During testing stage, given
a single-frame multi-view images and bounding box data, we can predict the intrinsic and extrinsic parameters.

parameters of the 𝑖-th camera. Note that an additional group of zero-
column vectors needs to be included in I𝑖 to ensure compliance
with matrix dimensions. For simplicity, this mapping process is
reformulated as follows:

P(𝑝, 𝑖, 𝑗) = (𝑥𝑖 𝑗 , 𝑦𝑖 𝑗 ) . (5)

3.2 CalibRBEV Model
3.2.1 Overview Architecture. The overall architecture of our pro-
posed CalibRBEV model is shown in Fig. 2, comprises three main
components: the backbone network, the predictive calibration pa-
rameter module, and auto-encoder reconstruction module. Specifi-
cally, initially, the multi-view images captured from multiple cam-
eras are processed through a backbone network to obtain latent
feature representations of the surrounding environment. Then,
the auto-encoder module is employed to reconstruct 3D bounding
boxes, yielding a robust reversed BEV representations,and subse-
quently preparing for the calibrationmodule. Ultimately, we reverse
the entire pipeline of the BEV perception model, which accepts 3D
bounding boxes and above multi-view image features as input for
attention interaction to predict the camera calibration parameters.

3.2.2 Backbone Module. Initially, we need to extract features from
the surround view images. As show in 2(a), given a set of multi-view
images 𝑥img = {𝑥𝑖img}

𝑁view
𝑖=1 captured by a multi-camera system on a

vehicle, a backbone network (e.g. ResNet [21]) is employed to extract
a set of multi-view lower-resolution image features 𝐹 = {𝐹 𝑖 }𝑁view

𝑖=1 ,
where 𝑁view denotes the total number of cameras.

3.2.3 Calibration Encoder Module. The calibration encoder module
is utilized simultaneously for predicting calibration parameters and
auto-encoder reconstruction. Structurally equivalent, the sole dis-
tinction lies in the initialization frozen learnable parameters of the
former, derived from pre-training via autoencoder reconstruction.

In order to extract the information from 3D bounding boxes
comprehensively, we introduce a bounding box coder initially to
enable feature mapping. Formally, we initialize a code map 𝑪 akin
to BEV features as discussed in Sec. 3.1.2 to assimilate information
pertaining to the 3D bounding boxes. Suppose that the ground-
truth bounding box labels are denoted by 𝑏bbox = {𝑏𝑖 }𝑀

𝑖=1 ∈ R9 and
the categorical labels are represented by 𝑐bbox = {𝑐𝑖 }𝑀

𝑖=1 ∈ Z, where
𝑀 denotes the number of objects. Then, we directly concatenate
them and pass them through a linear layer to obtain the feature
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representation, which is then mapped onto the corresponding code
map.

𝑪𝑝𝑖 = Linear( [𝑏𝑖 ; 𝑐𝑖 ]), (6)

where [; ] denotes the concatenate operation, and 𝑝𝑖 refers to the
location of the 𝑖-th object on the code map.

Then, a set of 𝑁 self-attention blocks is employed to obtain
preliminary reversed BEV features 𝑩. Obviously, as discussed in
Sec. 3.1.2, both the BEV features and the multi-view image fea-
tures entail a considerable number of parameters, leading to sub-
stantial computational overhead when directly computing cross-
modal attention. In this paper, we build upon the deformable cross-
attention [63] instead, which is defined as follows:

DeformAttn (𝒒,𝒑, 𝒙) =
𝑁head∑︁
𝑖=1

𝑾𝑖

𝑁key∑︁
𝑗=1

𝐴𝑖 𝑗 ·𝑾 ′
𝑖𝒙 (𝒑 + Δ𝒑𝑖 𝑗 ), (7)

where 𝒒, 𝒑, and 𝒙 denote the query element, 2D reference points,
and the input feature map, respectively. 𝑁head and 𝑁key are the
total number of attention heads and the sample points. Δ𝒑𝑖 𝑗 is the
sample offset of the 𝑗-th sample point in the 𝑖-th attention head.
𝐴𝑖 𝑗 is the attention weight of the 𝑗-th sample point in the 𝑖-th head.
𝑾𝑖 and𝑾 ′

𝑖
are learnable weights.

The self-attentionmechanism is constructed upon the deformable
attention mechanism outlined in Eq. 7, thereby facilitating the gen-
eration of BEV features through enhanced interaction with adjacent
local information. Moreover, the mechanism entails querying code
map features and the reversed BEV query itself.

SelfAttn(𝑸, 𝑝, 𝑪) = DeformAttn(𝑸𝑝 , 𝑝,𝑸)+DeformAttn(𝑸𝑝 , 𝑝, 𝑪),
(8)

where 𝑸 denotes the learnable query, 𝑪 denotes the code map from
bounding box as discussed in Eq. 6. The full self-attention block
also encompasses both a feed-forward network (FFN) and normal-
ization procedures, ultimately yielding reversed BEV features 𝑩
after stacking 𝑁 times.

Particularly, as discussed at the beginning of this subsection,
such calibration encoder module undergoes pre-training within the
auto-encoder, followed by the seamless transfer of its parameters to
the calibration prediction module, where the inherited parameters
are entirely frozen to preserve the capability for reversed BEV
feature extraction. We finally summarize the above reversed BEV
feature extraction process as follows:

𝑩 = CalibEncoder(𝑸, 𝑏bbox, 𝑐bbox). (9)

3.2.4 Calibration Decoder Module. Once the reversed BEV features
are obtained, the calibration decoder module takes in a novel learn-
able BEV queries 𝑸 ′ and the reversed BEV features 𝑩, then merges
with multi-view image features {𝐹 𝑖 }𝑁view

𝑖=1 from backbone network,
as discussed in Sec. 3.2.2, ultimately yielding the enhanced reversed
BEV feature 𝑩′ to predict the calibration parameters.

In detail, the space surrounding the vehicle is divided into𝐻 ×𝑊
cells, with each cell corresponding to a BEV feature. Each BEV fea-
ture only utilizes the approximate position of the corresponding 3D
space projected onto a 2D image as a reference point. Concurrently,
we also require interaction with multi-view image features through

multi-view cameras. Finally, the cross-attention mechanism is for-
mulated as follows:

CrAttn(Q′
𝑝 , 𝐹

𝑖 ) = 1
|Vhit |

∑︁
𝑖∈Vhit

𝑁ref∑︁
𝑗=1

DeformAttn(Q′
𝑝 ,P(𝑝, 𝑖, 𝑗), 𝐹 𝑖 ),

(10)
whereVhit denotes the set of image features mapped correspond-
ingly to the BEV features P(𝑝, 𝑖, 𝑗) according to Eqs. 4 and 5. 𝐹 𝑖 de-
notes the 𝑖-th camera image feature as discussed in Sec. 3.2.2. Here,
the mapping relationship in attention mechanism is established di-
rectly using uniform average calibration parameters. Overall, in the
calibration decoder module, there are concurrent implementations
of self-attention in Eq. 8 and cross-attention in Eq. 10, alongside
a FFN. This whole attention module undergoes 𝑀 iterations of
stacking, eventually yielding refined reversed BEV feature 𝑩′.

Following this, the refined BEV feature 𝑩′ is further subjected
to a conventional transfromer decoder process within which the
target feature 𝑻 is generated. The target feature 𝑻 is utilized across
three distinct fully connection branches, each serving to predict
the calibration parameters.

R′ = LinearR (𝑻 ),
t′ = Lineart (𝑻 ),
I′ = LinearI (𝑻 ) .

(11)

We summarize above calibration decoder and final prediction header
as follows.

𝑩′ = CalibDecoder(𝑸 ′,𝑩), (12)

E′, I′ = CalibHeader(𝑩′) . (13)

3.2.5 Auto-encoder Module. In order to proactively obtain robust
reversed BEV representations, we propose employing an attention-
based auto-encoder’s reconstruction strategy for pre-training, as
shown in Fig. 2(c). For the encoder component within the autoen-
coder architecture, it adopts the same architecture as calibration
encoder in Eq. 9.

𝑩 = AEEncoder(𝑸, 𝑏bbox, 𝑐bbox) = CalibEncoder(𝑸, 𝑏bbox, 𝑐bbox) .
(14)

For the decoder component, the reversed BEV features 𝑩 are
supposed to output to a regular attention object detection decoder
to generate 3D object bounding boxes again. We apply a similar
self-attention mechanism in Eq. 8 and stack 𝐾 layers to obtain the
final output of the 3D bounding boxes.

𝑏′bbox, 𝑐
′
bbox = AEDecoder(𝑩). (15)

3.2.6 Loss Functions. Our training procedure consists of two stages
as shown in Fig. 2(d). (1) reconstruction pre-training of the auto-
encoder module and (2) train the calibration module while freezing
the encoder module. For the former, focal loss and L1 loss are used
for classification and bounding box regression, respectively.

Lfocal = −𝛼 (1 − 𝑝𝑐′bbox )
𝛾 log(𝑝𝑐′bbox ), (16)

Lreg = ∥𝑏′bbox − 𝑏bbox∥1, (17)

where 𝑝𝑐′bbox denotes the estimated probability of category 𝑐′bbox. 𝛼
and 𝛾 are the hyper-parameters. For the latter, all the calibration



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Comparison results of parameters prediction errors on nuScenes dataset. CalibRBEV-𝑁 refers to our model trained
with 𝑁 cameras dataset. Here, t, R, and I denote the distance error of translation vector, angle error of rotation matrix, and
error percentage of intrinsic parameters, respectively. 𝑓 and 𝑐 are the average error percentage of the focal length and the
principal point. The symbol ↓ indicates that lower values represent better performance.

Method t (𝑚) ↓ R (◦) ↓ I (%) ↓ 𝑓 (%) ↓ 𝑐 (%) ↓
DeepPTZ [60] - - - 0.0468 0.0850
DeepCalib [3] - - - 0.1517 0.1790
DeepHome-DS - - - 0.1426 0.1740
LCCNet [42] 0.0242 0.4234 - - -

CalibRBEV-(300 cameras) 0.0102 0.1637 0.0287 0.0245 0.0329
CalibRBEV-(4200 cameras) 0.0193 0.0614 0.0188 0.0190 0.0185

Table 2: Comparison results of parameters prediction errors on Waymo dataset. CailbRBEV-org denotes a model trained on the
original Waymo dataset. The symbol ↓ indicates that lower values represent better performance.

Method t (𝑚) ↓ R (◦) ↓ I (%) ↓ t𝑥 (𝑚) ↓ t𝑦 (𝑚) ↓ t𝑧 (𝑚) ↓
Edge-Extraction [59] - - - 0.0890 0.0920 0.0730
SSI [64] - - - 0.0930 0.0750 0.0870
Coarse [46] - - - 0.1210 0.1890 0.2020
IS [46] - - - 0.0480 0.0290 0.0410

CailbRBEV 0.0048 1.2762 1.2630 0.0031 0.0026 0.0010
CailbRBEV-org 0.0016 1.5783 0.9992 0.0010 0.0009 0.0003

errors of the intrinsic and extrinsic parameters are used for training,
where the errors are calculated by L1 loss.

Lcalib-error = ∥E′ − E∥1 + ∥I′ − I∥1, (18)

where ∥ · ∥1 here denotes the matrix element-wise norm, and the
rotation matrix is represented using quaternions.

3.2.7 Summary. Once the model training is complete, given a
single-frame multi-view images and on-board bounding box from
LiDAR sensor input, we can predict the intrinsic and extrinsic
parameters using the calibration prediction module as shown in
Fig. 2(e). This process eliminates the need for additional complex
manual procedures or multi-frame inputs, significantly alleviat-
ing the cost burden of calibration tasks. Furthermore, a potential
avenue for extension lies in the real-time implementation of our
approach directly within on-board vehicles, thereby significantly
enhancing its applicability and utility in AD scenarios.

4 EXPERIMENTAL RESULTS
4.1 Dataset
We conduct experiments on nuScenes [5] and Waymo [47] datasets
in this paper for calibration parameters evaluation.

4.1.1 The nuScenes Dataset. The nuScenes dataset consists of 1, 000
sequences, each spanning approximately 20 seconds and captured
at a sampling rate of 20 frames per second, where the key samples
are annotated at 2Hz. In total, there exist 28𝑘 , 6𝑘 , and 6𝑘 anno-
tated instances for training, validation, and testing, respectively.
In addition, each sample contains RGB images from 6 cameras:
front_left, front, front_right, back_left, back, back_right.

Hence, the nuScenes dataset encompasses a total of 6000 calibrated
cameras. Among these, the subset of 900 cameras is withheld from
public access, designated as the challenge test dataset, while an
additional 900 cameras are specifically used for validation. And the
remaining 4200 cameras are used for training.

4.1.2 TheWaymoOpen Dataset. As for theWaymo dataset, in total,
there are 1150 sequences in the dataset, encompassing 798 training
sequences, 202 validation sequences, and 150 test sequences. Each
sample is captured by 5 cameras, consisting of three frontal views
and two side views, denoted as side_left, front_left, front,
front_right, and side_right. In practice, data from 90 vehicles
are designated as the training set, while data from 25 vehicles are
allocated for validation. Each sequence spans 20 seconds, and at
intervals of every 5 frames, up to 200 frames are randomly sampled
for training.

4.1.3 Evaluation Metrics. The error in calibration parameters is
utilized as the primary evaluation metric. Moreover, the 3D object
detection metric [35], such as mAP, mATE, mASE, mAOE, etc, are
also used for comprehensive evaluation.

4.2 Implementation Details
The ResNet101-DCN [21] pre-trained with FCOS3D [51] is imple-
mented as the backbone module. For the reversed BEV represen-
tations, we encapsulate the real environment within a 100 meter
radius around the vehicle to generate features with dimensions
(height𝐻 , width𝑊 , number of channels𝐶) of (150, 150, 256). For the
training of auto-encoder module, the AdamW optimizer is adopted
with a weight decay of 0.01, the learning rate is initially set to 0.0002
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Table 3: Ablation results of our module architecture design on nuScenes dataset with 4200 cameras data.

# Reversed Pipe AE-Finetune AE-Frozen t (𝑚) ↓ R (◦) ↓ I (%) ↓ 𝑓𝑥 (%) ↓ 𝑓𝑦 (%) ↓ 𝑐𝑥 (%) ↓ 𝑐𝑦 (%) ↓
1 ✓ 0.0281 0.0790 0.0207 0.0198 0.0203 0.0208 0.0220
2 ✓ ✓ 0.0315 0.1087 0.0233 0.0209 0.0221 0.0221 0.0282
3 ✓ ✓ 0.0193 0.0614 0.0188 0.0188 0.0192 0.0191 0.0180

Table 4: Ablation results of our module architecture design on nuScenes dataset with 300 cameras data.

# Reversed Pipe AE-Finetune AE-Frozen t (𝑚) ↓ R (◦) ↓ I (%) ↓ 𝑓𝑥 (%) ↓ 𝑓𝑦 (%) ↓ 𝑐𝑥 (%) ↓ 𝑐𝑦 (%) ↓
1 ✓ 0.0254 0.1355 0.0455 0.0390 0.0374 0.0442 0.0615
2 ✓ ✓ 0.0323 0.1300 0.0439 0.0350 0.0323 0.0404 0.0678
3 ✓ ✓ 0.0102 0.1637 0.0287 0.0260 0.0230 0.0256 0.0403

Table 5: Performance comparisons of the detection on BEVFormer-S and PETRv2-vov using the calibration parameters derived
from our CalibRBEV model. CalibRBEV-𝑁 refers to our model trained with 𝑁 cameras dataset.

Model Method mAP ↑ NDS ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓

BEVFormer-S
Trad. Calib. [61] 0.366 0.480 0.729 0.278 0.371 0.446 0.201
CalibRBEV-(4200 cameras) 0.363 0.478 0.739 0.278 0.367 0.450 0.201
CalibRBEV-(300 cameras) 0.363 0.477 0.742 0.278 0.370 0.450 0.201

PETRv2-vov
Trad. Calib. [61] 0.410 0.502 0.723 0.269 0.454 0.390 0.193
CalibRBEV-(4200 cameras) 0.409 0.497 0.725 0.270 0.488 0.398 0.191
CalibRBEV-(300 cameras) 0.400 0.495 0.752 0.270 0.446 0.393 0.186

and decayed with a cosine annealing. To train the calibration mod-
ule, the same optimizer schedule as that of the auto-encoder module
is employed, though with an adjustment in the learning rate specif-
ically for the image backbone, which is lowered to 0.00002. It is
noteworthy that the two modules are trained independently, as
depicted in Figure 2(d). The parameters of the calibration encoder
module are inherited from the auto-encoder encoder, and they re-
main frozen during the overall calibration module training process.

4.3 Main Results
Table 1 presents the comparative experimental results on nuScenes
dataset, including errors in translation vector t, rotation matrix R,
intrinsic parameters I, focal length 𝑓 , and principal point 𝑐 . The
findings reveal that our model consistently exhibits outstanding
prediction performance. As shown in Table 1, whenmodel is trained
with total 4200 cameras data, our model achieves 0.0614 and 0.0188
error on rotation matrix and intrinsic parameters, respectively. Fur-
thermore, as the calibration training data is reduced, it still achieves
a translation vector error of 0.0102, demonstrating generalization
capabilities of our model.

As for the comparison results on the Waymo dataset in Table 2,
we attained errors of 0.0016, 1.276, and 1.2630 in translation vector,
rotation matrix, and intrinsic parameters, respectively, serve as
evidence validating the effectiveness of the model. Subsequently,
further comparison is conducted regarding the errors in transla-
tion vectors along the XYZ axes. The performance of our model
in predicting translation vectors is significantly improved, with

errors reduced to 0.0031, 0.0026, and 0.0010, outperforming previ-
ous results of 0.0480, 0.0290, and 0.0410, respectively. Performance
is further enhanced upon employing the original Waymo dataset,
resulting in errors reduced to 0.001, 0.0009, and 0.0003.

4.4 Ablation Study
Table 3 and 4 present the results of our ablation results on the
nuScenes dataset. The former is based on a 4200 cameras dataset,
while the latter experimented solely with 300 cameras dataset. The
"Reversed Pipe" is an abbreviation for our overall reversed BEV
pipeline, indicating the direct training of the calibration module to
achieve the prediction of calibration parameters. "AE-Finetune" and
"AE-Frozen" signify the incorporation of auto-encoder pretraining,
representing parameter fine-tuning and parameter freezing, respec-
tively. Clearly, when utilizing the reversed BEV pipeline along with
a frozen AE, we observe a notable overall performance improve-
ment on both different dataset size, validating the effectiveness
of our architectural design. Additionally, an increase in data vol-
ume contributes to more accurate predictive outcomes. Finally,
particularly concerning intrinsic parameters, the performance of
the frozen AE improved from 0.0207 to 0.0188 (Δ = 0.0019) in
the case of the 4200 dataset. And in the scenario of only 300 cam-
eras dataset, the performance improved significantly from 0.0455
to 0.0287 (Δ = 0.0168), providing further validation of the AE’s
performance on small calibration dataset.
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Table 6: Performance comparisons of the detection using auto-encoder module of our CalibRBEV model.

Method mAP ↑ NDS ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
FCOS3D [51] 0.358 0.428 0.690 0.249 0.452 1.434 0.124
DETR3D [52] 0.412 0.479 0.641 0.255 0.394 0.845 0.133
BEVDet4D [24] 0.451 0.569 0.511 0.241 0.386 0.301 0.121
BEVFormer [35] 0.481 0.569 0.582 0.256 0.375 0.378 0.126
PETRv2 [39] 0.490 0.582 0.561 0.243 0.361 0.343 0.120
BEVDepth [34] 0.503 0.600 0.445 0.245 0.378 0.320 0.126

CalibRBEV (Auto-Encoder) 0.824 0.842 0.247 0.077 0.105 0.092 0.182

4.5 Further Exploration
We additionally assesses the calibration parameters obtained by our
CalibRBEV model in other object detection models, replacing the
traditional calibration’s intrinsic and extrinsic parameters [5, 61]
with the parameters we predicted.

We adopt BEVFormer-S [35] and PETRv2-vov [39] as our base-
line methods. Specifically, the BEVFormer-S model directly utilizes
weights trained on the original dataset, while PETRv2-vov is trained
using our predicted calibrated intrinsic and extrinsic parameters.
As shown in Table 5, compared to traditional methods that are
complex and time-consuming, utilizing the predicted calibration
parameters for detection yields very close results, indicating that
the model can be integrated into other BEV methods without per-
formance degradation. Particularly, using only 300 cameras dataset,
applying our model’s prediction parameters to the object detection
models, still yielding approximate results, confirming the efficacy
of predicting calibration parameters with limited data.

Moreover, we also assesses the detection performance results of
the auto-encoder module within our CalibRBEV model in Table 6.
Obviously, the auto-encoder module demonstrates outstanding de-
tection capabilities, suggesting that the generated BEV features
encompass sufficient 3D object bounding box information and sat-
isfy the requirements of the calibration module.

5 DISCUSSION
In this section, we discuss the limitations of our work and prospec-
tive directions for future research. We hope that our work to serve
as a catalyst inspiring further future endeavors.

(1) Firstly, in this paper, we extract multi-view features from
multi-camera images and directly obtain 3D bounding boxes from
LiDAR to achieve a reversed BEV pipeline for calibration parame-
ters prediction. However, the information relationships between
multiple sensors and fusion strategies merit further exploration to
enhance the performance of parameter prediction.

(2) Then, our current model still relies on predicting calibration
parameters corresponding to single-frame data. However, in the
context of autonomous driving scenarios, spatiotemporal informa-
tion is accessible. Learning the correlation of the overall spatiotem-
poral structure can endow networks with structural knowledge
derived from motion, thereby potentially enhancing the perfor-
mance of calibration tasks.

(3) Furthermore, the mapping relationship between the attention
interaction mechanism of image features and BEV (Bird’s Eye View)

features, which is pre-determined using average parameters, may
possess potential inaccuracies. Thus, there could be a necessity to
devise a new attention interaction architecture in the future.

(4) Finally, our model falls within the realm of learning-based
calibration methods, substantially reducing traditional calibration
costs. However, akin to other deep learning models, it necessitates
pre-existing datasets for training to enable parameter prediction.
Although this work introduces an auto-encoder module to alleviate
the demand for extensive datasets, a potential future direction is to
explore methods for calibrating parameter prediction using fewer
training data.

6 CONCLUSION
In this paper, we introduce a novel multi-camera calibration method
for calibrating intrinsic and extrinsic parameters, termed CalibR-
BEV, which innovatively proposes the use of a reverse pipeline
based on the BEV model. Our model mainly consists of two compo-
nents: the calibration module and the auto-encoder module. The
auto-encoder module fully explores latent environmental informa-
tion to achieve the extraction of reversed BEV features, and the
calibration module then predicts calibration parameters leverag-
ing multi-view and reversed BEV features. Experimental results
demonstrate superior performance compared to previous calibra-
tion methods. Furthermore, the model can be extended to scenarios
with small data volumes, simplifying the requirements of extensive
calibration datasets and thereby optimizing calibration efforts.
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