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ABSTRACT

Hypergraphs are crucial for modelling higher-order interactions in real-world data.
Hypergraph neural networks (HNNs) effectively utilise these structures by mes-
sage passing to generate informative node features for various downstream tasks
like node classification. However, the message passing module in existing HNNs
typically requires a computationally intensive training process, which limits their
practical use. To tackle this challenge, we propose an alternative approach by decou-
pling the usage of hypergraph structural information from the model training stage.
This leads to a novel training-free message passing module, named TF-MP-Module,
which can be precomputed in the data preprocessing stage, thereby reducing the
computational burden. We refer to the hypergraph neural network equipped with
our TF-MP-Module as TF-HNN. We theoretically support the efficiency and ef-
fectiveness of TF-HNN by showing that: 1) It is more training-efficient compared
to existing HNNs; 2) It utilises as much information as existing HNNs for node
feature generation; and 3) It is robust against the oversmoothing issue while us-
ing long-range interactions. Experiments based on seven real-world hypergraph
benchmarks in node classification and hyperlink prediction show that, compared
to state-of-the-art HNNs, TF-HNN exhibits both competitive performance and
superior training efficiency. Specifically, on the large-scale benchmark, Trivago,
TF-HNN outperforms the node classification accuracy of the best baseline by 10%
with just 1% of the training time of that baseline.

1 INTRODUCTION

Higher-order interactions involving more than two entities exist in various domains, such as co-
authorships in social science (Han et al., 2009). Hypergraphs extend graphs by allowing hyperedges
to connect more than two nodes, making them suited to capture these complex relationships (Bick
et al., 2023; Jhun, 2021; Tang et al., 2023b;a). To utilise such structures for downstream tasks,
learning algorithms on hypergraphs have garnered increasing attention.

Inspired by the success of graph neural networks (GNNs) (Wu et al., 2020), current research focuses
on developing hypergraph neural networks (HNNs) with a message passing module (MP-Module) that
can be compatible with various task-specific modules. The MP-Module enables information exchange
between connected nodes to generate informative node features for specific tasks (Feng et al., 2019;
Wang et al., 2023b; Telyatnikov et al., 2023). However, similar to other message passing neural
networks (Frasca et al., 2020; Wu et al., 2022), training the MP-Module makes loss computation
interdependent for connected nodes, resulting in a computationally intensive training process for
HNNs. This limits their practical applications, especially in the process of large-scale hypergraphs.

To address this challenge, our key solution is to develop a training-free MP-Module that shifts the
processing of hypergraph structural information from the training stage to the data pre-processing
phase. This approach is inspired by recent advancements in efficient GNNs (Wu et al., 2019a;
Gasteiger et al., 2019; Frasca et al., 2020), where training-free MP-Modules are typically implemented
as graph filters (Ortega et al., 2018). However, directly using existing hypergraph filters (Zhang et al.,

∗Equal contribution.
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Figure 1: Training pipeline of HNN vs. TF-HNN for node classification. Top row: HNN uses a
hypergraph structure to generate node features by a learnable MP-Module, which are then used by
a classifier, with the MP-Module and the classifier being trained together. For brevity, we omit the
MLP in HNN for the input node features. Bottom row: TF-HNN comprises only the classifier trained
for node classification and the TF-MP-Module that can be recomputed before the classifier training.

2019; Qu et al., 2022) presents two major obstacles. Firstly, these filters are usually designed for
k-uniform hypergraphs, where all hyperedges must have the same size k, limiting their applicability
to more general hypergraph structures with varying hyperedge sizes. Secondly, the reliance on an
incidence tensor to represent the hypergraph presents significant challenges in practical usage. As the
tensor dimension grows exponentially with nk, existing computational resources struggle to perform
multiplications involving such high-dimensional tensors. Therefore, instead of adopting existing
hypergraph filters, we introduce a novel training-free MP-Module for hypergraphs.

In this work, we develop a novel, training-free message passing module, TF-MP-Module, for
hypergraphs to decouple the usage of hypergraph structure information from the model training stage.
To achieve this, we first construct a theoretical framework that provides a unified view of existing
HNNs (Huang & Yang, 2021; Chen et al., 2022; Chien et al., 2022; Wang et al., 2023a). Specifically,
this framework identifies the feature aggregation function as the core operator of MP-Modules in
existing HNNs. Based on these insights, we design the TF-MP-Module in two stages: 1) We make
the feature aggregation functions within the MP-Modules of four state-of-the-art HNNs (Huang &
Yang, 2021; Chen et al., 2022; Chien et al., 2022; Wang et al., 2023a) training-free by removing
their learnable parameters; and 2) To further enhance efficiency, we remove the non-linear activation
functions and consolidate the feature aggregation across L layers into a single propagation step.
Remarkably, this two-stage process unifies the chosen MP-Modules into a single formulation, despite
their different design philosophies. We refer to this unified formulation as the TF-MP-Module and
denote the hypergraph neural network equipped with it as TF-HNN. To demonstrate the efficiency
and effectiveness of TF-HNN, we provide a theoretical analysis showing three key advantages: 1)
TF-HNN is more training-efficient compared to existing HNNs; 2) TF-HNN can utilise as much
information as existing HNNs for generating node features; and 3) TF-HNN is robust against the
oversmoothness issue while taking into account the long-range information.

The main contributions of this work are summarised as follows:

●We present an original theoretical framework that identifies the feature aggregation function as
the core component of MP-Modules in existing HNNs, which processes the hypergraph structural
information. This insight provides a deeper understanding of existing HNNs.

● We develop TF-HNN, an efficient and effective model for hypergraph-structured data. To our
knowledge, TF-HNN is the first model that decouples the processing of hypergraph structural
information from model training, significantly enhancing training efficiency.

●We theoretically support the efficiency and effectiveness of TF-HNN by showing that: 1) It leads to
remarkably low training complexity when solving hypergraph-related downstream tasks; 2) It utilises
the same amount of information as existing HNNs for generating node features; and 3) It is robust
against the oversmoothing issue when utilising long-range information.

●We conduct extensive experiments in both node classification and hyperedge prediciton tasks to
compare TF-HNN with nine state-of-the-art HNNs. The empirical results show that the proposed
TF-HNN exhibits both competitive learning performance and superior training efficiency.
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2 NOTATION

Hypergraph. Let H = {V,E ,H} be a hypergraph, where V = {v1, v2,⋯, vn} is the node set,
E = {e1, e2,⋯, em} is the hyperedge set, and H ∈ {0,1}n×m is an incidence matrix in which Hik = 1
means that ek contains node vi and Hik = 0 otherwise. Define DHV ∈ Rn×n

≥0 as a diagonal matrix
of node degrees and DHE ∈ Rm×m

≥0 as a diagonal matrix of hyperedge degrees, where DHVii and
DHE

kk
are the number of hyperedges with vi and the number of nodes in ek, respectively. We assume

hypergraphs do not have isolated nodes or empty hyperedges; details of this assumption are in
Appendix Q. Moreover, we define: 1) The distance between two nodes on a hypergraph is the number
of hyperedges in the shortest path between them, e.g., the distance is one if they are directly connected
by a hyperedge; and 2) The k-hop neighbours of a node vi are all nodes with a distance of k or less.

Graph and clique expansion. Let G = {V,W} be a graph, where V = {v1, v2,⋯, vn} is the node set,
and W ∈ Rn×n

≥0 is the adjacency matrix of G in which Wij > 0 means that vi and vj are connected
and Wij = 0 otherwise. We set D ∈ Rn×n

≥0 as a diagonal node degree matrix for G, where Dii is the
sum of the i-th row of W. Moreover, we denote the graph Laplacian of G as L =D −W. Given a
hypergraphH = {V,E ,H}, its clique expansion is defined as a graph G = {V,W}, where V remains
unchanged, and Wij > 0 if and only if vi and vj are connected onH and Wij = 0 otherwise.

Other notations. We set node features as XV = [x⊺v1 ,x
⊺
v2 ,⋯,x

⊺
vn]
⊺ ∈ Rn×d, which is a matrix that

contains d-dimensional features. We denote functions or variables at the l-th layer of a model using
the superscript (l) and use ⊕ for concatenation. We use Θ to represent the learnable weight matrix in
a model, MLP(⋅) for a multilayer perceptron (MLP), and σ(⋅) for non-linear functions (e.g., ReLU).

3 METHODOLOGY

In this section, we first show an overview of the proposed TF-HNN approach (Subsec. 3.1). Moreover,
we present a theoretical framework that offers a unified view on existing HNNs (Subsec. 3.2). Finally,
we use the insights gained from the theoretical framework to design our TF-MP-Module (Subsec. 3.3).

3.1 OVERVIEW

To enhance the GNN efficiency, Gasteiger et al. (2019) design APPNP by using the connection
between GCN (Kipf & Welling, 2017) and PageRank (Page et al., 1998), shifting learnable parameters
to an MLP prior to the message passing. Wu et al. (2019a) and Frasca et al. (2020) further improve
training efficiency by removing the MLP before the message passing, completing message passing in
preprocessing and making it training-free. Inspired by them, we design the TF-HNN that removes the
reliance on message passing at training. Generally, TF-HNN is described as the following framework:

Ŷ = φΘ(X̂V), X̂V = S(XV ,H), (1)
where φΘ(⋅) is a task-specific module, Ŷ denotes the task-specific output whose dimension is
task-dependent1, S(⋅) denotes an MP-Module that contains only pre-defined parameters allowing
it to be precomputed in the pre-processing phase, and X̂V ∈ Rn×d denote the features generated by
S(⋅). In the GNN literature, S(⋅) is implemented as the graph filter (Ortega et al., 2018). However,
we cannot directly use existing hypergraph filters (Zhang et al., 2019; Qu et al., 2022) for two main
reasons. Firstly, existing hypergraph filters are usually designed for k-uniform hypergraphs, where all
hyperedges have size k. Secondly, these filters require the use of an incidence tensor, which presents
challenges in handling high-dimensional matrix multiplication. Hence, rather than relying on existing
methods, we design a novel function S(⋅) for hypergraphs, the TF-MP-Module. Since our design is
based on existing MP-Modules for hypergraphs, the next section introduces an original framework
that offers a unified perspective on current HNNs.

3.2 REVISITING HYPERGRAPH NEURAL NETWORKS

A traditional HNN for a certain downstream task is formulated as the following equation:
Ŷ = φΘ(X̂V), X̂V = ΦΘ(XV ,H), (2)

1For instance, in the node classification task, Ŷ ∈ Rn×c contains the logits for c categories; and in the
hyperlink prediction task, Ŷ ∈ Rmp contains the probability of mp potential hyperedges.
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Table 1: Overview for four state-of-the-art HNNs and our TF-HNN. In this table, γU , γE , γD, γ′l ∈
(0,1) are hyperparameters and I ∈ Rd×d denotes an identity matrix. Moreover, M is the training
computational complexity of the task-specific module, n is the node count, m is the hyperedge count,
m′ is the number of edges in the clique expansion, ∥H∥0 is the number of non-zero values in H, T is
the number of training epochs, L is the number of layers, and d is the feature dimension.

Name Type Hypergraph-Wise Feature Aggregation Function Training Computational Complexity

UniGCNII (Huang & Yang, 2021) Direct X
(l)
V =σ

⎛
⎝
((1−γU)D−1/2HV HD̃

−1/2
HE D−1HEH

⊺X
(l−1)
V +γUX(0)V )Θ

(l)⎞
⎠

O(M + TL(n +m + ∥H∥0)d + TLnd2)

Deep-HGNN (Chen et al., 2022) Direct X
(l)
V =σ

⎛
⎝
((1−γD)D−1/2HV HD−1HEH

⊺D
−1/2
HV X

(l−1)
V +γDX

(0)
V )((1 − γ

′
D)I + γ′DΘ(l−1))

⎞
⎠

O(M + TLm′d + TLnd2)

AllDeepSets (Chien et al., 2022) Indirect X
(l)
V =MLP

⎛
⎝
D−1HVHMLP (D−1HEH

⊺MLP(X(l−1)V ))
⎞
⎠

O(M + TL∥H∥0d + TL(n +m)d2)

ED-HNN (Wang et al., 2023a) Indirect X
(l)
V =MLP

⎡⎢⎢⎢⎢⎣
(1 − γE)MLP

⎛
⎝
D−1HVHMLP (D−1HEH

⊺MLP(X(l−1)V ))
⎞
⎠
+ γEX(0)V

⎤⎥⎥⎥⎥⎦
O(M + TL∥H∥0d + TL(n +m)d2)

TF-HNN (Ours) Direct X̂V = SXV O(M)

where φΘ(⋅) is a task-specific module, Ŷ denotes the task-specific output whose dimension is
task-dependent, ΦΘ(⋅) is a learnable message passing module, and X̂V ∈ Rn×d denote the features
generated by ΦΘ(⋅). The modules φΘ(⋅) and ΦΘ(⋅) are trained together with the supervision given
by the downstream tasks. See Figure 1 for the comparison between the training pipelines of traditional
HNNs and TF-HNN in the context of node classification. Existing HNNs use the hypergraph structural
information by the message passing module ΦΘ(⋅) (MP-Module). The MP-Module in existing HNNs
is typically based on one of four mechanisms2: clique-expansion, star-expansion, line-expansion, or
incidence-tensor (Huang & Yang, 2021; Wang et al., 2023b; Chen et al., 2022; Chien et al., 2022;
Wang et al., 2023a; Yang et al., 2022; Antelmi et al., 2023; Kim et al., 2024). We summarize the
MP-Module using these mechanisms in Proposition 3.1, with the proof provided in Appendix C.

Proposition 3.1. Let x(l)vi be features of node i in the l-th message passing layer of a HNN based on
clique-expansion/star-expansion/line-expansion/incidence-tensor, ϕΘ(⋅) denotes a learnable node-
wise feature aggregation function, and NHvi

is the set of neighbours of vi on the hypergraph. For

i = 0, we have x
(0)
vi =MLP(xvi). For i ∈ Z+, we have x

(l)
vi = ϕΘ(x

(0)
vi ,x

(l−1)
vi ,⊕vj∈NHvi

x
(l−1)
vj ).

Specifically, ϕΘ(⋅) defined in Proposition 3.1 can be categorized into two types: direct and indirect
feature aggregation functions. The direct approaches aggregate features of neighbouring nodes to that
of the target node directly (Huang & Yang, 2021; Wang et al., 2023b), while the indirect methods
aggregate features of neighbouring nodes to that of the target node via some virtual nodes (Chien
et al., 2022; Wang et al., 2023a; Yang et al., 2022). These approaches can be formulated as:

x(l)vi = f3(f0(x
(0)
vi ) + f1(x

(l−1)
vi ) + ∑

vj∈NHvi

f2(x
(l−1)
vj )), (3a)

x(l)vi = g2(g0(x
(0)
vi ) + p

⊺g1(x
(l−1)
vi ,⊕vj∈NHvi

x(l−1)vj )), (3b)

where f0(⋅), f1(⋅), f2(⋅), f3(⋅), g0(⋅), g1(⋅), g2(⋅) represent seven learnable functions, and p ∈
Rnv is a vector used to aggregate the features of virtual nodes generated by g1(⋅). Here, nv is a
hyperparameter corresponding to the number of the virtual nodes, and Eq. (3a) and Eq. (3b) represent
the direct and indirect approaches, respectively. Based on Propostion 3.1, the hypergraph structure is
only used to construct the neighbourhood set Nvi within the MP-Module of HNNs. Consequently,
the feature aggregation function ϕΘ(⋅) is the core component of the MP-Module in processing
hypergraph structural information. Moreover, based on Eq. (3a) and Eq. (3b), the usage of the
hypergraph structural information is not directly related to the learnable parameters and the non-linear
function. Therefore, in the next subsection, we design our TF-MP-Module by first removing the
learnable parameters for the feature aggregation function from existing HNNs to make it training-free.
To further improve its efficiency, we eliminate the non-linear function from the feature aggregation
process. Specifically, we design our model based on HNNs shown in Table 1.

3.3 TRAINING-FREE MESSAGE PASSING

We introduce the TF-MP-Module by removing the learnable parameters and the non-linear function
from four state-of-the-art HNNs shown in Table 1, which includes two methods with the direct feature
aggregation function and two methods with the indirect feature aggregation function.

2Details on these mechanisms can be found in Appendix B

4



Published as a conference paper at ICLR 2025

Learnable parameters removal. Based on the insights from Subsec. 3.2, to develop a training-free
MP-Module, we first remove learnable parameters from the feature aggregation functions of the
selected HNNs. Specifically, we replace the learnable matrices in these functions with identity
matrices. This removal allows us to reformulate the feature aggregation functions as follows:

X
(l)
V = σ((1 − γU)D

−1/2
HV HD̃

−1/2
HE D−1HEH

⊺X
(l−1)
V + γUX(0)V ), (4a)

X
(l)
V = σ((1 −γD)D

−1/2
HV HD−1HEH

⊺D
−1/2
HV X

(l−1)
V +γDX

(0)
V ), (4b)

X
(l)
V = σ

⎛
⎝
D−1HVHσ(D−1HEH

⊺σ(X(l−1)V ))
⎞
⎠
, (4c)

X
(l)
V = σ

⎡⎢⎢⎢⎢⎣
(1 − γE)σ

⎛
⎝
D−1HVHσ(D−1HEH

⊺σ(X(l−1)V ))
⎞
⎠
+ γEX(0)V

⎤⎥⎥⎥⎥⎦
, (4d)

where Eq. (4a), Eq. (4b), Eq. (4c) and Eq. (4d) represent the simplified formulation of UniGCNII,
Deep-HGNN, AllDeepSets and ED-HNN, respectively. Notably, σ(⋅) only denotes a general non-
linear function without parameters, not implying that these formulas use the same function.

Linearisation. Inspired by the insights from Subsec. 3.2, we further remove the non-linearity from
the functions represented by Eqs. (4a∼4d), thereby transforming an MP-Module with L feature
aggregation functions into a more efficient single propagation step. For the sake of brevity, we present
the simplification results as Proposition 3.2 and provide its mathematical proof in Appendix D.

Proposition 3.2. Let XV be input node features, X̂V be the output of the MP-Module of an
UniGCNII/AllDeepSets/ED-HNN/Deep-HGNN with L MP layers, and α∈[0,1). Assume that learn-
able parameters and the non-linearity are removed from the module. For each model, given a
hypergraph H ={V,E ,H}, there exists a clique expansion G = {V,W} to unify its output as the

following formula X̂V =((1−α)
LWL+α∑

L−1
l=0 (1−α)

lWl)XV .

This proposition shows that, via our simplification, the selected models can be unified into a single
formula. Based on this observation, our TF-MP-Module is designed as the following equation:

X̂ = SXV ,

where S = (1−α)LWL+α∑
L−1
l=0 (1−α)

lWl. Intuitively, in this formula, a larger α value emphasizes
the retention of the node’s inherent information, while a smaller α value increases the influence of
information from neighbouring nodes. We define that the L used to compute S is the number of
layers of an TF-MP-Module. To understand the behaviour of an L-layer TF-MP-Module, we present
the Proposition 3.3. For conciseness, we prove it in Appendix E.
Proposition 3.3. LetH = (V,E ,H) be a hypergraph and G = (V,W) be its clique expansion with
self-loops. Assume that α ∈ [0,1), and S=(1 − α)LWL + α∑

L−1
l=0 (1 − α)

lWl. Then, for i ≠ j, we
have Sij > 0 if and only if vi is an L-hop neighbour of vj onH, and Sij = 0 otherwise.

By Proposition 3.3, an L-layer TF-MP-Module enables the information exchange between any node
vi and its L-hop neighbours on the hypergraph. In the next paragraph, we detail the generation of S.

Operator design. To use the TF-MP-Module in our TF-HNN, the key is designing W to generate S.
We achieve this using a hyperedge-size-based edge weight that is defined as:

WHij =
m

∑
k=1

δ(vi, vj , ek)

DHE
kk

, (5)

where δ(⋅) is a function that returns 1 if ek connects vi and vj and returns 0 otherwise. We discuss
the connection between the clique expansion mentioned in Proposition 3.2 and the one defined in
Eq (5) in Appendix T. The main intuition behind the design of this edge weight is that, under certain
conditions, the value of WHij is positively correlated with the probability of nodes vi and vj having
the same label. Consequently, this edge weight design can make the weighted clique expansion fit the
homophily assumption, which is that connected nodes tend to be similar to each other (McPherson
et al., 2001). Appendix F elaborates on this intuition. Furthermore, inspired by previous works in the
graph domain (Wu et al., 2020), we generate S based on a symmetrically normalised WH with the
self-loop. Specifically, we generate the S by:

S = (1 − α)L(D̃
−1/2
H W̃HD̃

−1/2
H )

L
+ α

L−1
∑
l=0
(1 − α)l(D̃

−1/2
H W̃HD̃

−1/2
H )

l, (6)

5



Published as a conference paper at ICLR 2025

where W̃H =WH + In and D̃H ∈ Rn×n is the diagonal node degree matrix of W̃H . In the next
section, we present the theoretical analysis to support the efficiency and effectiveness of our TF-HNN.

4 THEORETICAL ANALYSIS

In this section, we begin by showing the efficiency of the proposed TF-HNN by comparing its
training complexity with the traditional HNNs. Additionally, we demonstrate the effectiveness of our
TF-HNN by analyzing its information utilisation and its robustness against the oversmoothing issue.

Training complexity. As illustrated by Eq. (1), the TF-HNN in downstream tasks requires training
only the task-specific module. Additionally, since the TF-HNN relies on a pre-defined propagation
operator, its computations can be handled during data pre-processing. Consequently, the training
complexity of the TF-HNN is determined solely by the task-specific module. In contrast, on the
basis of Eq. (2), the HNNs involve training both the MP-Module and the task-specific module. The
MP-Module in HNNs includes complex learnable operations that facilitate message passing between
connected nodes on a hypergraph, inherently making the training of the HNNs more complex than
the TF-HNN. See Figure 1 for an example that qualitatively compares the training pipelines of the
TF-HNN and HNN in node classification. To provide a quantitative comparison, we summarize the
training computational complexity of the TF-HNN and the four state-of-the-art HNNs in Table 1.
This table shows that the training complexity of the TF-HNN is consistently lower than that of the
HNN, theoretically confirming the training efficiency of the proposed TF-HNN.

Information utilisation. The core strength of existing HNNs lies in their ability to utilise the informa-
tion embedded within hypergraph structures to generate powerful node features for downstream tasks.
Consequently, we analyse the effectiveness of our proposed TF-HNN by comparing its information
utilisation capabilities with those of existing HNNs and conclude that our methods utilise the same
amount of information as exising HNNs without any loss, which is summarised in Proposition 4.1.
For conciseness, we show the detailed proof for Proposition 4.1 in Appendix G.

Proposition 4.1. Let HvL
i

0 be the entropy of information3 used by an HNN with L feature aggregation

functions in generating the features of a node vi, H
vL
i

1 be the entropy of information used by an

TF-HNN with an L-layer TF-MP-Module for the same purpose, and H
vL
i

2 denote the entropy of

information within node vi and its L-hop neighbours on the hypergraph. Then, HvL
i

0 =H
vL
i

1 =H
vL
i

2 .

The proposition above theoretically demonstrates that TF-HNN is as effective as existing HNNs
in utilising information from pre-defined hypergraphs to generate node features. Specifically, both
TF-HNN and existing HNNs achieve this by aggregating neighbourhood information.

Robustness against the oversmoothing issue. According to Proposition 3.3, TF-HNN can use global
interactions within the given hypergraph to generate node features by deepening the TF-MP-Module.
However, as shown in a recent study (Chen et al., 2022), the message-passing-based models on
hypergraphs may suffer from the oversmoothing issue. This issue refers to the tendency of a model to
produce indistinguishable features for nodes in different classes as the model depth increases, which
might degrade the performance of the framework in downstream tasks. Consequently, to further
support the effectiveness of TF-HNN, we analyse its robustness against the oversmoothing issue.
Inspired by works in the graph domain (Yang et al., 2021; Zhang et al., 2020; Singh et al., 2025), we
show Proposition 4.2, with the proof provided in Appendix H.

Proposition 4.2. Let H = {V,E ,H} denote a hypergraph, G = {V,WH} be its clique expansion
with edge weights computed by Eq. (5), L be the graph Laplacian matrix of G computed by a
symmetrically normalised and self-loops added WH , XV represent the input node features, and
α ∈ [0,1) be a hyperparameter. We define that F (X) = tr(X⊺LX)+ α

1−α tr[(X−XV)
⊺(X−XV)],

and Fmin as the global minimal value of F (X) for X ∈ Rn×d. Assume that: 1) X̂V = SXV ; 2) S is
computed by Eq. (6); 3) α > 0; and 4) L→ +∞. Then, F (X̂V) = Fmin.

Notably, minimising the first term of F (X) enhances feature similarity among connected nodes on
H, and minimising the second term of F (X) encourages the generated features of each node to retain

3We use “entropy of information” in a conceptual way - A detailed discussion is in Appendix U.
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Table 2: Dataset statistics. More details of these datasets are in Appendix I.
Name # Nodes # Hyperedges # Features # Classes Node Definition Hyperedge Definition

Cora-CA 2708 1072 1433 7 Paper Co-authorship
DBLP-CA 41302 22363 1425 6 Paper Co-authorship
Citeseer 3312 1079 3703 6 Paper Co-citation
Congress 1718 83105 100 2 Congressperson Legislative-Bills-Sponsorship
House 1290 340 100 2 Representative Committee
Senate 282 315 100 2 Congressperson Legislative-Bills-Sponsorship
Trivago 172738 233202 300 160 Accommodation Browsing Session

the distinct information from its input features. Therefore, node features that can minimise F (X)
capture two key properties: 1) neighbouring nodes on H have similar features; and 2) each node
contains unique information reflecting its individual input characteristics.

Based on Proposition 4.2, a deep TF-MP-Module tends to assign similar features to connected nodes
on a hypergraph while maintaining the unique input information of each node. Hence, even with an
extremely large number of layers, the TF-MP-Module can preserve the unique input information
of each node, making it robust against the oversmoothing issue. This property further ensures the
effectiveness of our TF-HNN. Sec. 6 empirically supports the analysis presented in this section.

5 RELATED WORK

Recent efforts have leveraged hypergraphs to improve node feature learning for downstream
tasks (Bick et al., 2023; Liu et al., 2024; Xu et al., 2024). The predominant models in this area
are hypergraph neural networks (HNNs) with a message passing module that enables information
exchange between connected nodes (Antelmi et al., 2023). However, as noted for their graph coun-
terparts (Wu et al., 2019a; Frasca et al., 2020), HNNs suffer from low learning efficiency. Two
recent works attempt to mitigate this limitation (Feng et al., 2024; Tang et al., 2024). In (Feng
et al., 2024), an HNN named HGNN (Feng et al., 2019) is distilled into an MLP during training;
while in (Tang et al., 2024), hypergraph structural information is integrated into an MLP via a loss
function computed by the sum of the maximum node feature distance in each hyperedge. These
approaches primarily focus on reducing model inference complexity via a dedicated training process.
However, these designs still lead to hypergraph machine learning models with computationally
intensive training procedures. For instance, the distillation process in (Feng et al., 2024) necessitates
training a HNN with a computational complexity of O(M +TLm′d+TLnd2), where with M is the
training computational complexity of the task-specific module, n is the node count, m′ is the number
of edges in the clique expansion, L is the number of layers, and d is the feature dimension. Given that
many existing models are applied to semi-supervised hypergraph node classification settings, which
involve the simultaneous use of training and test data (Huang & Yang, 2021; Chien et al., 2022; Wang
et al., 2023a;b; Joachims et al., 1999; Chapelle et al., 2009), reducing the training complexity of
hypergraph-based models remains a critical yet underexplored challenge. We address this challenge
with a novel model named TF-HNN, which is the first to decouple the processing of hypergraph
structural information from model training.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Task description. We conduct experiments in two tasks: hypergraph node classification and hyperlink
prediction. In hypergraph node classification (Wang et al., 2023a;b; Duta et al., 2023), we are given
the hypergraph structure H, node features XV , and a set of labelled nodes with ground truth labels
Ylab = {yv}v∈Vlab

, where yvi ∈ {0,1}
c be a one-hot label. Our objective is to classify the unlabeled

nodes within the hypergraph. In hyperlink prediction (Chen & Liu, 2023), we are given node features
XV , a set of observed real and fake hyperedges Eob, and a set of potential hyperedges Ep. The task
requires the model to distinguish between real and fake hyperedges in Ep using XV and Eob.

Dataset and baseline. We conduct experiments on seven real-world hypergraphs: Cora-CA, DBLP-
CA, Citeseer, Congress, House, Senate, which are from (Chien et al., 2022), and Trivago from (Kim
et al., 2023). We use nine HNNs as baselines. Five of these baselines utilize direct feature aggregation,
including HGNN (Feng et al., 2019), HCHA (Bai et al., 2021), UniGCNII (Huang & Yang, 2021),
PhenomNN (Wang et al., 2023b), and Deep-HGNN (Chen et al., 2022). The remaining four baselines
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Table 3: Node classification accuracy (%) for HNNs and TF-HNN. The best result on each dataset is
highlighted in bold font. The second and third highest accuracies are marked with an underline.

Cora-CA DBLP-CA Citeseer Congress House Senate Avg. Mean
HGNN 82.64 ± 1.65 91.03 ± 0.20 72.45 ± 1.16 91.26 ± 1.15 61.39 ± 2.96 48.59 ± 4.52 74.56
HCHA 82.55 ± 0.97 90.92 ± 0.22 72.42 ± 1.42 90.43 ± 1.20 61.36 ± 2.53 48.62 ± 4.41 74.38
HNHN 77.19 ± 1.49 86.78 ± 0.29 72.64 ± 1.57 53.35 ± 1.45 67.80 ± 2.59 50.93 ± 6.33 68.12
UniGCNII 83.60 ± 1.14 91.69 ± 0.19 73.05 ± 2.21 94.81 ± 0.81 67.25 ± 2.57 49.30 ± 4.25 76.62
AllDeepSets 81.97 ± 1.50 91.27 ± 0.27 70.83 ± 1.63 91.80 ± 1.53 67.82 ± 2.40 48.17 ± 5.67 75.31
AllSetTransformer 83.63 ± 1.47 91.53 ± 0.23 73.08 ± 1.20 92.16 ± 1.05 51.83 ± 5.22 69.33 ± 2.20 76.93
PhenomNN 85.81 ± 0.90 91.91 ± 0.21 75.10 ± 1.59 88.24 ± 1.47 70.71 ± 2.35 67.70 ± 5.24 79.91
ED-HNN 83.97 ± 1.55 91.90 ± 0.19 73.70 ± 1.38 95.00 ± 0.99 72.45 ± 2.28 64.79 ± 5.14 80.30
Deep-HGNN 84.89 ± 0.88 91.76 ± 0.28 74.07 ± 1.64 93.91 ± 1.18 75.26 ± 1.76 68.39 ± 4.79 81.38
TF-HNN (ours) 86.54 ± 1.32 91.80 ± 0.30 74.82 ± 1.67 95.09 ± 0.89 76.29 ± 1.99 70.42 ± 2.74 82.50
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Figure 2: The relative training time required for HNNs and TF-HNN to achieve optimal performance.

employ indirect feature aggregation, consisting of HNHN (Dong et al., 2020), AllDeepSets (Chien
et al., 2022), AllSetTransformer (Chien et al., 2022), and ED-HNN (Wang et al., 2023a). The dataset
statistics are summarized in Table 2, with detailed descriptions of datasets available in Appendix I.

Metric. Following previous works (Wang et al., 2023a; Chen & Liu, 2023), we evaluate models for
node classification and hyperlink prediction with classification accuracy and the Area Under the ROC
Curve (AUC), respectively. Similar to Wu et al., we employ the relative training time rf , defined as
rf = tf /ts to evaluate the efficiency of the models, where tf is the training time to achieve optimal
performance for the evaluated model, and ts is the training time for optimal performance of TF-HNN.

Implementation. For node classification, we follow previous works (Wang et al., 2023a; Duta et al.,
2023) to use a 50%/25%/25% train/validation/test data split and adapt the baseline classification
accuracy from them4. Additionally, similar to these works, we implement the classifier based on MLP
for our TF-HNN and report the results from ten runs. For hyperlink prediction, existing works (Chen
& Liu, 2023) primarily focus on the design of the prediction head, with no reported results for applying
our baseline HNNs to this task, so we report all results from five runs conducted by ourselves. We
employ the deep set function implemented by (Chien et al., 2022) as the prediction head for our
method and baseline methods due to its simplicity. We use a 50%/25%/25% train/validation/test data
split and ensure each split contains five times as many fake hyperedges as real hyperedges. TF-HNN
and HNNs only use real hyperedges in training and validation sets for message passing. Experiments
were on RTX 3090 GPUs by PyTorch. See our code here. More details are in Appendix L and S.

6.2 COMPARISON WITH BASELINES

Node classification. We summarize the classification accuracy and relative training time of the
TF-HNN and HNNs in Table 3 and Figure 2, respectively. Table 3 demonstrates that TF-HNN
not only leads to the best results across four datasets (Cora-CA, Congress, House, and Senate) but
also results in the highest average mean accuracy overall. These findings confirm the effectiveness
of TF-HNN in generating powerful node features for node classification. As discussed in Sec. 4,
we attribute this effectiveness to the ability of TF-HNN to match the power of existing HNNs in
utilising neighbourhood information to generate node features, while requiring the optimization of
fewer parameters. This makes the TF-HNN more efficient in utilising training data and reduces the
risk of overfitting, thereby outperforming more complex HNN counterparts. On the other hand, as
shown in Figure 2, the TF-HNN consistently needs less training time to achieve superior performance
compared to the HNNs. This highlights the high training efficiency of TF-HNN in downstream tasks.

Hyperlink prediction. Figure 3 shows the results for hyperlink prediction, which exhibit a pattern
similar to that observed in the hypergraph node classification task: the TF-HNN outperforms the

4Since there are no reported results for Deep-HGNN under the chosen data split, we use our own results.
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Figure 3: Hyperlink prediction AUC (%) and relative training time for HNNs and TF-HNN.

Table 4: Node classification accuracy (%) and
training time for models on Trivago.
Metric / Methods Deep-HGNN ED-HNN TF-HNN (Ours)

Accuracy (%) 84.06 ± 1.70 48.38 ± 1.35 94.03 ± 0.51
Training Time (s) 3352.35 ± 1039.83 143.92 ± 34.64 38.09 ± 6.65

Table 5: Hyperlink prediction AUC (%) and
training time for models on Trivago.
Metric / Methods Deep-HGNN ED-HNN TF-HNN (Ours)

AUC (%) 84.26 ± 1.62 69.44 ± 7.09 95.71 ± 1.00
Training Time (s) 1873.67 ± 559.55 1311.01 ± 627.99 484.00 ± 110.99
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Figure 4: The impact from the hyperparameters of TF-MP-Module in node classification.

HNNs while requiring less training time. An interesting observation is that the training efficiency
improvement from TF-HNN is smaller in the hyperlink prediction task compared to the node
classification task. The intuition is that the task-specific module used for hyperlink prediction is more
computationally expensive than the one used for hypergraph node classification. Specifically, the
hyperlink predictor needs to generate a prediction for each hyperedge by aggregating the features of
the nodes connected by the hyperedge, whereas the node classifier only needs to perform forward
propagation for each individual node. Appendix M discusses that the efficiency improvement provided
by TF-HNN is inversely correlated with the complexity of the task-specific module.

Scalability of state-of-the-art models. We compare the scalability of our TF-HNN against the top
two baseline methods from previous experiments, Deep-HGNN and ED-HNN. Deep-HGNN uses a
direct feature aggregation function, while ED-HNN uses an indirect feature aggregation function.
We evaluate the performance of all methods on node classification and hyperlink prediction using
the large-scale hypergraph benchmark, Trivago, with the results detailed in Table 4 and Table 5,
respectively. The results show that TF-HNN not only surpasses its competitors in performance but
also dramatically reduces training time. Remarkably, in node classification, TF-HNN improves the
accuracy by around 10% over the best baseline, Deep-HGNN, while using only about 1% of its
training time. These findings underscore the value of TF-HNN for large-scale hypergraphs.5Due to
the space limit, additional discussions and experiments are in Appendix N, O, P, R, and V.

6.3 ANALYSIS

We conduct a series of analyses on the components within the proposed TF-HNN model in node
classification on the Cora-CA, Citeseer, House, and Senate datasets.

Impacts from the TF-MP-Module. In this study, we evaluate the effectiveness of our proposed
TF-MP-Module within the TF-HNN framework by comparing it to two training-free message passing
methods developed for graphs: SGC (Wu et al., 2019a) and SIGN (Frasca et al., 2020). To adapt

5On Trivago, Deep-HGNN’s training time is much higher for node classification than hyperlink prediction.
This is because a 64-layer model largely improves node classification accuracy, while a 2-layer model suffices
for hyperlink prediction, as deeper models offer no benefit. The extra layers account for the longer training time.
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Table 6: The impact from the TF-MP-Module in node classification. The best results are in bold font.
Cora-CA Citeseer Senate House Avg. Mean

SGC with CE 81.60 ± 1.68 71.42 ± 2.15 47.18 ± 6.48 56.16 ± 3.21 64.09
SIGN with CE 86.04 ± 1.53 73.62 ± 1.79 64.93 ± 3.15 73.75 ± 1.91 74.59

TF-MP-Module (ours) 86.54 ± 1.32 74.82 ± 1.67 70.42 ± 2.74 76.29 ± 1.99 77.02

Table 7: The impact from the weighted S in node classification. The best results are in bold font.
Cora-CA Citeseer Senate House Avg. Mean

TF-HNN without Weighted S 84.90 ± 1.55 74.75 ± 1.62 68.87 ± 4.57 75.57 ± 1.81 76.02
TF-HNN with Weighted S 86.54 ± 1.32 74.82 ± 1.67 70.42 ± 2.74 76.29 ± 1.99 77.02

these methods to hypergraphs, we first project the given hypergraph into its clique expansion (CE),
as introduced in Sec. 2, and then apply SGC and SIGN to this projected structure. Notably, we
only replace the TF-MP-Module with SGC using CE and SIGN with CE, while keeping all other
components of the TF-HNN unchanged. Table 6 show that our TF-MP-Module consistently out-
performs the alternatives across all datasets. The superior performance of our method over SGC
with CE is due to SGC with CE being a special case of our TF-MP-Module with α = 0, which, as
discussed in Proposition 4.2, can cause node features to become overly similar to their neighbours,
potentially reducing distinctiveness. For SIGN with CE, the method concatenates features from
different neighbor hops with the initial node features and processes them through a classifier, forcing
it to handle both feature merging and classification, which increases complexity and can hinder
convergence. In contrast, our TF-MP-Module directly merges neighbouring node information using
the operator in Eq. (6), allowing the classifier to focus solely on classification, thereby simplifying
the learning process and improving performance. These findings highlight the greater capacity of our
TF-MP-Module compared to existing graph-based training-free modules in processing hypergraph
structures, further underscoring its unique value for hypergraph machine learning.

Impacts from hyperparameters of TF-MP-Module. We focus on two key hyperparameters of
the TF-MP-Module: the number of layers and the α. As illustrated in Figure 4, models with α > 0
exhibit more consistent accuracy as the number of layers increases compared to models with α = 0.
We attribute this consistency to the robustness discussed in Proposition 4.2, where a positive α helps
retain the distinct information of each node, thereby mitigating the oversmoothing issue. Additionally,
we observe that a positive α significantly enhances performance in the House and Senate datasets,
which are more heterophilic, compared to the Cora-CA and Citeseer datasets. This suggests that
retaining the distinct information of each node is more beneficial for heterophilic datasets.

Impacts from the weighted S. We define S based on Eq. (5) as weighted S. In contrast, in this
experiment, for the framework without weighted S, S is generated using an adjacency matrix W of a
clique expansion with all positive values set to one. As shown in Table 7, adding weighted S further
enhances performance, highlighting its informativeness.

7 CONCLUSION

In this paper, we propose a novel model called TF-HNN. The key innovation of TF-HNN is an
original training-free message passing module (TF-MP-Module) tailored for data on hypergraphs.
We present both theoretical and empirical evidence demonstrating that TF-HNN can efficiently and
effectively address hypergraph-related downstream tasks. To our knowledge, TF-HNN is the first
model to shift the integration of hypergraph structural information from the model training stage to
the data pre-processing stage, significantly enhancing training efficiency. The proposed TF-HNN can
advance the field of hypergraph machine learning research by not only improving the efficiency of
using observed hypergraph structures to solve downstream tasks, but also serving as a simple starting
point for the development of future hypergraph machine learning models.

Limitation and future work. Learning tasks on hypergraphs can be defined at the node, hyperedge,
and hypergraph levels. In this paper, we test our TF-HNN on node-level and hyperedge-level tasks,
with the main limitation being the lack of results on hypergraph-level tasks. Designing task-specific
modules to generate hypergraph-level features based on existing node features remains a challenging
topic in the literature. Therefore, we consider the application of our TF-HNN to hypergraph-level
tasks as future work. Finally, developing an automated and efficient hyperparameter search method
for hypergraph neural networks presents a promising avenue for further enhancing model efficiency.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

Keyue Jiang was supported by the UKRI Engineering and Physical Sciences Research Council
(EPSRC) [grant number EP/R513143/1]. Siheng Chen gratefully acknowledges support from the
National Natural Science Foundation of China under Grant 62171276. Xiaowen Dong acknowledges
support from the Oxford-Man Institute of Quantitative Finance, the EPSRC (EP/T023333/1), and the
Royal Society (IEC \NSFC \211188).

REFERENCES

Sameer Agarwal, Kristin Branson, and Serge Belongie. Higher order learning with graphs. In
Proceedings of the 23rd international conference on Machine learning, pp. 17–24, 2006.

Alessia Antelmi, Gennaro Cordasco, Mirko Polato, Vittorio Scarano, Carmine Spagnuolo, and Dingqi
Yang. A survey on hypergraph representation learning. ACM Computing Surveys, 56(1):1–38,
2023.

Song Bai, Feihu Zhang, and Philip HS Torr. Hypergraph convolution and hypergraph attention.
Pattern Recognition, 110:107637, 2021.

Christian Bick, Elizabeth Gross, Heather A Harrington, and Michael T Schaub. What are higher-order
networks? SIAM Review, 65(3):686–731, 2023.

O. Chapelle, B. Scholkopf, and A. Zien, Eds. Semi-supervised learning (chapelle, o. et al., eds.;
2006) [book reviews]. IEEE Transactions on Neural Networks, 20(3):542–542, 2009. doi:
10.1109/TNN.2009.2015974.

Can Chen and Yang-Yu Liu. A survey on hyperlink prediction. IEEE Transactions on Neural
Networks and Learning Systems, 2023.

Guanzi Chen, Jiying Zhang, Xi Xiao, and Yang Li. Preventing over-smoothing for hypergraph neural
networks. arXiv preprint arXiv:2203.17159, 2022.

Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset function frame-
work for hypergraph neural networks. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=hpBTIv2uy_E.

Yihe Dong, Will Sawin, and Yoshua Bengio. Hnhn: Hypergraph networks with hyperedge neurons.
ICML Graph Representation Learning and Beyond Workshop, 2020. URL https://arxiv.
org/abs/2006.12278.

Iulia Duta, Giulia Cassarà, Fabrizio Silvestri, and Pietro Liò. Sheaf hypergraph networks. Advances
in Neural Information Processing Systems, 36, 2023.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 3558–3565, 2019.

Yifan Feng, Yihe Luo, Shihui Ying, and Yue Gao. LightHGNN: Distilling hypergraph neural
networks into MLPs for 100x faster inference. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=lHasEfGsXL.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico
Monti. Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198, 2020.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations (ICLR), 2019.

Dmitriy Genzel and Eugene Charniak. Entropy rate constancy in text. In Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, pp. 199–206, 2002.

Yi Han, Bin Zhou, Jian Pei, and Yan Jia. Understanding importance of collaborations in co-authorship
networks: A supportiveness analysis approach. In Proceedings of the 2009 SIAM International
Conference on Data Mining, pp. 1112–1123. SIAM, 2009.

11

https://openreview.net/forum?id=hpBTIv2uy_E
https://arxiv.org/abs/2006.12278
https://arxiv.org/abs/2006.12278
https://openreview.net/forum?id=lHasEfGsXL


Published as a conference paper at ICLR 2025

Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural networks.
In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21,
2021.

Bukyoung Jhun. Effective epidemic containment strategy in hypergraphs. Physical Review Research,
3(3):033282, 2021.

Thorsten Joachims et al. Transductive inference for text classification using support vector machines.
In Icml, volume 99, pp. 200–209. Citeseer, 1999.

Jinwoo Kim, Saeyoon Oh, Sungjun Cho, and Seunghoon Hong. Equivariant hypergraph neural
networks. In European Conference on Computer Vision, pp. 86–103. Springer, 2022.

Sunwoo Kim, Dongjin Lee, Yul Kim, Jungho Park, Taeho Hwang, and Kijung Shin. Datasets, tasks,
and training methods for large-scale hypergraph learning. Data Mining and Knowledge Discovery,
37(6):2216–2254, 2023.

Sunwoo Kim, Soo Yong Lee, Yue Gao, Alessia Antelmi, Mirko Polato, and Kijung Shin. A survey
on hypergraph neural networks: an in-depth and step-by-step guide. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 6534–6544, 2024.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl.

Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.

Zexi Liu, Bohan Tang, Ziyuan Ye, Xiaowen Dong, Siheng Chen, and Yanfeng Wang. Hyper-
graph transformer for semi-supervised classification. In ICASSP 2024-2024 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7515–7519. IEEE, 2024.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415–444, 2001.

Carl D Meyer and Ian Stewart. Matrix analysis and applied linear algebra. SIAM, 2023.

Vu Nguyen. Bayesian optimization for accelerating hyper-parameter tuning. In 2019 IEEE second
international conference on artificial intelligence and knowledge engineering (AIKE), pp. 302–305.
IEEE, 2019.

Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF Moura, and Pierre Vandergheynst.
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A IMPACT STATEMENTS

This paper presents work that aims to advance the field of Machine Learning. There are many
potential societal consequences of our work, none of which we feel must be specifically highlighted.

B BACKGROUND OF HYPERGRAPH MESSAGE PASSING

Clique expansion. Given a hypergraph H = {V,E ,H}, its clique expansion is defined as a graph
G = {V,W}, where V remains unchanged, and Wij > 0 if and only if vi and vj are connected by a
hyperedge onH and Wij = 0 otherwise. Hence, each hyperedge inH is a clique in G.

Star expansion. Given a hypergraphH={V,E ,H}, its star expansion is defined as a bipartite graph
G = {V ⋃V

′,W}, where vi ∈ V is a node inH, hypernode vej ∈ V
′ corresponds to the hyperedge ej

inH, and there is an edge between vi and vej if and only if ej contains vi inH.

Line expansion. Given a hypergraph H = {V,E ,H}, its line expansion is defined as a graph
G = (Vl,W). The node set Vl of G is defined by vertex-hyperedge pair {(v, e) ∣ v ∈ e, v ∈ V, e ∈ E}
from the original hypergraph. The adjacency matrix W ∈ {0,1}∣Vl∣×∣Vl∣ is defined by pairwise relation
with W(ul, vl) = 1 if either v = v′ or e = e′ for ul = (v, e), vl = (v

′, e′) ∈ Vl. In the following
sections, we refer the nodes on a line expansion as line-nodes. Notably, a node vi on the original
hypergraph corresponds to multiple line-nodes, each representing a vertex-hyperedge pair involving
vi. These line-nodes are interconnected and also connect to line-nodes corresponding to the 1-hop
neighbors of vi on the given hypergraph.

Incidence tensor. A k-uniform hypergraph can be represented by a k-dimensional supersymmetric
tensor such that for all distinct node sets {v1, . . . , vk} ∈ V , Ti1,...,id =

1
(k−2)! if hyperedge e =

{v1, ..., vk} ∈ E , and Ti1,...,id = 0 otherwise.

C PROOF OF PROPOSITION 3.1

Proof. In this section, we provide proofs for the clique-based, star-based, tensor-based and line-based
methods, respectively.

For the clique-based approaches,there are two specific designs for this type of approaches. The first
design is based on the hypergraph convolution operator (Feng et al., 2019; Yadati et al., 2019; Bai et al.,
2021; Duta et al., 2023; Chen et al., 2022), which is derived from the hypergraph Laplacian (Agarwal
et al., 2006). The second design (Wang et al., 2023b) relies on an optimization algorithm that
minimizes a handcrafted hypergraph energy function. Despite the differences in their designs, these
methods start by using an MLP to project the given node features to the latent space, namely, for i = 0,
we have x

(0)
vi =MLP(xvi). Moreover, these methods are analogous to using matrix multiplication

between the adjacency matrix of a clique expansion, denoted as W, and the node features XV to
facilitate information exchange among connected nodes on hypergraphs. Therefore, for i ∈ Z+, the
node-wise form of this type of methods can be summarized as:

x(l)vi = f3(f0(x
(0)
vi ) + f1(x

(l−1)
vi ) + ∑

vj∈NGvi

f2(x
(l−1)
vj )), (7)

where f0(⋅), f1(⋅), f2(⋅), f3(⋅) represent three learnable functions, and NHvi
is the set of 1-hop

neighbours of vi on the hypergraph. Here the right-hand side of Eq. (7) is a special case of
ϕΘ(x

(0)
vi ,x

(l−1)
vi ,⊕vj∈NHvi

x
(l−1)
vj ).

For the star-based approaches, three primary designs exist for this type of approach. Despite the
differences in their designs, these methods start by using an MLP to project the given node features
to the latent space, namely, for i = 0, we have x(0)vi =MLP(xvi). Moreover, the first type of methods,
as presented in (Huang & Yang, 2021), directly applies existing GNNs to a star expansion graph,
initializing the features of hypernode vej as the mean of the features of nodes connected by the
hyperedge ej . Due to the linear generation of hypernode features, for i ∈ Z+, the node-wise form of
this method can be expressed as Eq.(7). Additionally, (Chien et al., 2022) integrates set functions
with star expansion to create HNNs, while (Wang et al., 2023a) develops a model by studying the
information diffusion process on a hypergraph using star expansion. The node-wise forms of the
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Table 8: Overview for four state-of-the-art HNNs. In this table, γU , γE , γD, γ′l ∈(0,1) are hyperpa-
rameters and I ∈ Rd×d denotes an identity matrix.

Name Type Message Passing Function

UniGCNII (Huang & Yang, 2021) Direct Message Passing X
(l)
V =σ

⎛
⎝
((1−γU)D−1/2HV HD̃

−1/2
HE D−1HEH

⊺X
(l−1)
V +γUX(0)V )Θ

(l)⎞
⎠

Deep-HGNN (Chen et al., 2022) Direct Message Passing X
(l)
V =σ

⎛
⎝
((1−γD)D−1/2HV HD−1HEH

⊺D
−1/2
HV X

(l)
V +γDX

(0)
V )((1 − γ

′
D)I + γ′DΘ(l))

⎞
⎠

AllDeepSets (Chien et al., 2022) Indirect Message Passing X
(l)
V =MLP

⎛
⎝
D−1HVHMLP (D−1HEH

⊺MLP(X(l−1)V ))
⎞
⎠

ED-HNN (Wang et al., 2023a) Indirect Message Passing X
(l)
V =MLP

⎡⎢⎢⎢⎢⎣
(1 − γE)MLP

⎛
⎝
D−1HVHMLP (D−1HEH

⊺MLP(X(l−1)V ))
⎞
⎠
+ γEX(0)V

⎤⎥⎥⎥⎥⎦

models in (Chien et al., 2022) and (Wang et al., 2023a) can be summarized as:

x(l)vi = g2(g0(x
(0)
vi ) + p

⊺g1(x
(l−1)
vi ,⊕vj∈NHvi

x(l−1)vj )), (8)

g0(⋅), g1(⋅), g2(⋅) represent three learnable functions, NHvi
is the set of 1-hop neighbours of vi on

the hypergraph, and p ∈ Rmvi is a vector used to aggregate the features of hypernodes generated by
g1(⋅). Here, mvi is the number of hyperedges containing vi. Here the right-hand side of Eq. (8) is a
special case of ϕΘ(x

(0)
vi ,x

(l−1)
vi ,⊕vj∈NHvi

x
(l−1)
vj ).

For tensor-based approaches, these approaches facilitate message passing among connected nodes
using the incidence tensor. These methods start by using an MLP to project the given node features to
the latent space, namely, for i = 0, we have x

(0)
vi =MLP(xvi). Moreover, as noted by the Theorem

3.3 of (Chien et al., 2022), practically, they are implemented by combining set functions with a star
expansion. Consequently, for i ∈ Z+, the node-wise forms of these methods are specific instances of
Eq. (8), where the right-hand side is a special case of ϕΘ(x

(0)
vi ,x

(l−1)
vi ,⊕vj∈NHvi

x
(l−1)
vj ).

For line-based approaches, these approaches (Yang et al., 2022) generate node features using hyper-
graph structural information in four steps. Firstly, these methods start by using an MLP to project
the given node features to the latent space, namely, for i = 0, we have x

(0)
vi = MLP(xvi). Then,

the hypergraph is projected onto its corresponding line expansion graph, where the features of
each line-node are initialised as the features of its corresponding node on the original hypergraph.
Next, a GNN is applied to this line expansion graph to facilitate message passing among connected
line-nodes. Finally, the features of each node vi on the hypergraph are generated by aggregating
the features of the line-nodes corresponding to vi. This method can be summarized as Eq. (8),
with three key differences from star-based approaches. Firstly, NHvi

contains the m-hop neighbors
of vi, which includes all nodes with a path to vi. Secondly, the line-based method utilises only
one layer for generating node features, with the number of feature aggregation functions usually
referring to the number of GNNs used to implement g1(⋅). As a result, for i ∈ Z+, we still have
x
(l)
vi = ϕΘ(x

(0)
vi ,x

(l−1)
vi ,⊕vj∈NHvi

x
(l−1)
vj ).

D PROOF OF PROPOSITION 3.2

To recap, the overview of UniGCNII, Deep-HGNN, AllDeepSets, and ED-HNN is in Table 8.

Before proving Proposition 3.2, we first prove the following Lemmas.

Lemma D.1. Let H ∈ {0,1}n×m be an incidence matrix of a hypergraph, DHV ∈ Rn×n is a
diagonal matrix with node degrees, DHE ∈ Rm×m is a diagonal matrix with hyperedge degrees,

D̃HEjj ∈ Rm×m is a diagonal matrix with D̃HEjj =
∑n

i=1 HijDHV
ii

DHE
jj

, γU ∈ (0,1) and WU = (1 −

γU)D
−1/2
HV HD̃

−1/2
HE D−1HEH

⊺. We have: WU is the adjacency matrix of a clique expansion.

Proof. We have:

WUij = (1 − γU)
m

∑
k=1

HikHjk

D
1/2
HVii

DHE
kk
D̃

1/2
HE

kk

.
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Here WUij > 0 if and only if vi and vj are connected by a hyperedge ek onH, otherwise WUij = 0.
Therefore, WU is the adjacency matrix of a clique expansion.

Lemma D.2. Let H ∈ {0,1}n×m be an incidence matrix of a hypergraph, DHV ∈ Rn×n is a diagonal
matrix with node degrees, DHE ∈ Rm×m is a diagonal matrix with hyperedge degrees, γD ∈ (0,1)
and WD = (1−γD)D

−1/2
HV HD−1HEH

⊺D
−1/2
HV . We have: WD is the adjacency matrix of a clique

expansion.

Proof. We have:

WDij = (1 − γD)
m

∑
k=1

HikHjk

D
1/2
HVii

D
1/2
HVjj

DHE
kk

.

Here WDij > 0 if and only if vi and vj are connected by a hyperedge ek onH, otherwise WDij = 0.
Therefore, WD is the adjacency matrix of a clique expansion.

Lemma D.3. Let H ∈ {0,1}n×m be an incidence matrix of a hypergraph, DHV ∈ Rn×n be a diagonal
matrix with node degrees, and DHE ∈ Rm×m be a diagonal matrix with hyperedge degrees. We have:
WS =D

−1
HVHD−1HEH

⊺ is the adjacency matrix of a clique expansion.

Proof. We have:

WSij =
m

∑
k=1

HikHjk

DHViiDHEkk

.

Here WSij > 0 if and only if vi and vj are connected by a hyperedge on H, otherwise WSij = 0.
Therefore, WS is the adjacency matrix of a clique expansion.

With the Lemmas above, we present the proof of Proposition 3.2 as follows.

Proof. For an UniGNN (Huang & Yang, 2021) with L feature aggregation functions, devoid non-
linear activation and by setting the learnable transformation matrix to the identity matrix, its MP-
Module can be reformulated as:

X
(L)
V = ((1 − γU)

L
(D
−1/2
HV HD̃

−1/2
HE D−1HEH

⊺
)
L
+ γU

L−1
∑
l=0
(1 − γU)

l
(D
−1/2
HV HD̃

−1/2
HE D−1HEH

⊺
)
l
)XV .

Based on Lemma D.1, this equation is a special case of X̂V =((1−α)LWL+α∑
L−1
l=0 (1−α)

lWl)XV

with X̂V =X
(L)
V , W =D

−1/2
HV HD̃

−1/2
HE D−1HEH

⊺ and α = γU .

For a Deep-HGNN (Chen et al., 2022) with L feature aggregation functions, devoid non-linear
activation and by setting the learnable transformation matrix to the identity matrix, its MP-Module
can be reformulated as:

X
(L)
V = ((1 − γD)

L
(D
−1/2
HV HD−1HEH

⊺D
−1/2
HV )

L
+ γD

L−1
∑
l=0
(1 − γD)

l
(D
−1/2
HV HD−1HEH

⊺D
−1/2
HV )

l
)XV .

Based on Lemma D.2, this equation is a special case of X̂V =((1−α)LWL+α∑
L−1
l=0 (1−α)

lWl)XV

with X̂V =X
(L)
V , W =D

−1/2
HV HD−1HEH

⊺D
−1/2
HV and α = γD.

For an AllDeepSets (Chien et al., 2022) with L feature aggregation functions, devoid non-linear
activation and by setting the learnable transformation matrix to the identity matrix, its MP-Module
can be reformulated as:

X
(L)
V = (D−1HVHD−1HEH

⊺
)
LXV .

Based on Lemma D.3, this equation is a special case of X̂V =((1−α)LWL+α∑
L−1
l=0 (1−α)

lWl)XV

with X̂V =X
(L)
V , W =D−1HVHD−1HEH

⊺ and α = 0.

For an ED-HNN (Wang et al., 2023a) with L feature aggregation functions, devoid non-linear
activation and by setting the learnable transformation matrix to the identity matrix, its MP-Module
can be reformulated as:

X
(L)
V = ((1 − γE)

L
(D−1HVHD−1HEH

⊺
)
L
+ γE

L−1
∑
l=0
(1 − γE)

l
(D−1HVHD−1HEH

⊺
)
l
)XV .
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Based on Lemma D.3, this equation is a special case of X̂V =((1−α)LWL+α∑
L−1
l=0 (1−α)

lWl)XV

with X̂V =X
(L)
V , W =D−1HVHD−1HEH

⊺ and α = γE .

E PROOF OF PROPOSITION 3.3

We first introduce some concepts about neighbours on hypergraphs and graphs: 1) The k-th hop
neighbours of a node vi on a hypergraph are exactly k hyperedges away from vi; and 2) The k-hop
neighbours of a node vi on a graph are all nodes with a distance of k or less, while the k-th hop
neighbours are exactly k edges away from vi. We first introduce some Lemmas.

Based on the definition of clique expansion, we present the following Lemma without a proof:

Lemma E.1. Let H = (V,E ,H) be a hypergraph and G = (V,W) be its clique expansion with
self-loops. For any node vi, let N 1

Hvi
be the node set containing the 1-hop neighbours of vi on H,

and N 1
Gvi

be the node set containing the 1-hop neighbours of vi on G. Then, N 1
Gvi
= N 1

Hvi
⋃{vi}.

Moreover, we present the following Lemma about S:

Lemma E.2. Let H = (V,E ,H) be a hypergraph and G = (V,W) be its clique expansion with
self-loops. Assume that α ∈ [0,1), and S=(1 − α)LWL + α∑

L−1
l=0 (1 − α)

lWl. Then, for i ≠ j, we
have Sij > 0 if and only if vi is a L-hop neighbour of vj on G, and Sij = 0 otherwise.

Proof. According to previous works in graph theory (West et al., 2001), the element Wl
ij represents

the number of walks of length l from node vi to node vj on the graph G. Since W includes self-
loops, Wl

ij also accounts for paths where nodes can revisit themselves. Hence, for i ≠ j, we have
Wl

ij > 0 if and only if vi is a l-hop neighbour of vj on G, and Sij = 0 otherwise. As a result, for
S = (1 − α)LWL + α∑

L−1
l=0 (1 − α)

lWl and i ≠ j, we have Sij > 0 if and only if vi is a L-hop
neighbour of vj on G, and Sij = 0 otherwise.

On the basis of Lemmas E.1 and E.2, the proof of Proposition 3.3 can be transformed into the proof
of the following Lemma:

Lemma E.3. LetH = (V,E ,H) be a hypergraph and G = (V,W) be its clique expansion with self-
loops. For any node vi, letN l

Hvi
be the node set containing the l-hop neighbours of vi onH, andN l

Gvi
be the node set containing the l-hop neighbours of vi on G. Then, for l ∈ Z+, N l

Gvi
= N l

Hvi
⋃{vi}.

Proof. We prove this Lemma based on the mathematical induction.

Firstly, for the base case with l = 1, according to Lemma E.1, this case can be proved by the definition
of the clique expansion.

Secondly, for the inductive step, we assume that N k
Gvi
= N k

Hvi
⋃{vi}. Let N̂ k

Gvi
be the 1-hop

neighbours of the k-hop neighbours of vi on the graph G, and N̂ k
Hvi

be the 1-hop neighbours

of the k-hop neighbours of vi on the hypergraph H. Then, we have N k+1
Gvi
= N̂ k

Gvi ⋃
N k
Gvi

and

N k+1
Hvi
= N̂ k

Hvi
⋃N

k
Hvi

. According to the result in the base case, we have N k+1
Hvi
= N k+1

Hvi
⋃{vi}.

By induction, for l ∈ Z+, N l
Gvi
= N l

Hvi
⋃{vi}.

F DISCUSSION ABOUT EQ. (5)

To recap, for a given hypergraph H = {V,E ,H}, the edge weight between vi and vj in our clique
expansion is defined as:

WHij =
m

∑
k=1

δ(vi, vj , ek)

DHE
kk

,
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where δ(⋅) is a function that returns 1 if ek connects vi and vj and returns 0 otherwise. In this section,
we discuss the relationship between this edge weight and the probability of nodes vi and vj being in
the same category.

We summarise the relationship between this edge weight and the probability of nodes vi and vj being
in the same category as the following Lemma:
Lemma F.1. Let pi,j denote the probability of vi and vj having the same label, p′i,j represent the
probability of vi and vj being connected by a hyperedge that contains only nodes with the same
label, and p̂ek be the probability of ek containing nodes with different labels. Then, pi,j is positively
correlated with WHij

if the following conditions hold:

a) Hyperedges with higher degrees are more likely to connect nodes with different labels, and
p̂ek = g1(

1
DHE

kk

), where g1(⋅) is a function, for any x, y > 0, with g1(x) ⋅ g1(y) = g1(x+ y),

dg1
dx
< 0, and g1(x) ∈ (0,1).

b) pi,j is positively correlated with p′i,j , namely, pi,j =g2(p′i,j), where g2(⋅) is a function for
any x > 0 with dg2

dx
>0 and g2(x) ∈ (0,1).

Proof. According to the pre-defined condition a), we can have:
p
′
i,j =1− Π

ek∈Êvi,vj
p̂ek =1− Π

ek∈Êvi,vj
g1(

1

DHE
kk

) = 1 − g1( ∑
ek∈Êvi,vj

1

DHE
kk

) = 1 − g1(
m

∑
k=1

δ(vi, vj , ek)
DHE

kk

) = 1 − g1(WHij
), (9)

where Êvi,vj is a set containing hyperedges connecting vi and vj . Based on Eq. (9) and the pre-defined
condition b) we can have:

pi,j = g2(p
′
i,j) = g2(1 − g1(WHij)). (10)

The derivative of Eq. (10) with respect to WHij is:
dpi,j

dWHij

=
d g2

dWHij

=
d g2
dp′i,j

⋅
dp′i,j
d g1

⋅
d g1

dWHij

= −1 ⋅
d g2
dp′i,j

⋅
d g1

dWHij

.

On the basis of our pre-defined conditions a) and b), we have dg2
dp′i,j

> 0 and dg1
dWHij

< 0, thereby we
have:

dpi,j

dWHij

= −1 ⋅
d g2
dp′i,j

⋅
d g1

dWHij

> 0.

As a result, pi,j is positively correlated with WHij .

G PROOF OF PROPOSITION 4.1

Before proving Proposition 4.1, we first present two Lemmas.
Lemma G.1. Let H0 denote the entropy of the information that an HNN utilises by L feature

aggregation function ϕΘ(⋅) introduced in Propostion 3.1 for generating features of vi, and H
vL
i

2
denote the entropy of information within node vi and its L-hop neighbours on the hypergraph. Then,

H
vL
i

0 =H
vL
i

2 .

Proof. Based on the mathematical induction, we start by proving this Using mathematical induction,
we first prove this lemma for the case where NHvi

includes only the 1-hop neighbours of vi, which
applies to all models except the line-based models discussed in Appendix B.

Firstly, for the base case with L = 1, the message passing layer for generating the features of vi can
be reformulated as:

x(1)vi = ϕΘ(x
(0)
vi

,x(0)vi ,⊕vj∈NHvi
x(0)vj ), (11)

where NHvi
is a set containing the 1-hop neighbours of vi on the hypergraph. Hence, the entropy of

the input information utilised to generate x
(1)
vi is Hv1

i

2 , namely, we have H
v1
i

0 =H
v1
i

2 .

Secondly, for the inductive step, we assume that Hvk
i

0 = H
vk
i

2 . Moreover, we have the feature
generation function as:

x(k+1)vi = ϕΘ(x
(k)
vi ,x(0)vi ,⊕vj∈NHvi

x(k)vj ). (12)
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Based on the assumption about L = k, for L = k + 1, ⊕vj∈NHvi
x
(k)
vj contain the information from

the (k + 1)-hop neighbours of vi and x
(k)
vi contain the information from the k-hop neighbours of vi.

Let N l
Hvi

denote a set containing l-hop neighbours of vi. Based on information theory (Kullback,

1997), we have the information entropy of N k
Hvi

is zero with the information of N k+1
Hvi

is given, as

N k
Hvi
⊆ N k+1

Hvi
. As a result, based on the feature aggregation function introduced in Eq. (12), we have

H
vk+1
i

0 =H
vk+1
i

2 .

By induction, for L ∈ Z+, HvL
i

0 =H
vL
i

2 . Now, we conduct the proof for the line-based models.

Let HvL
i

L denote the entropy of the information contained by the L-hop neighbours of the line-nodes
corresponding to vi. According to previous papers in the GNN literature (Wu et al., 2020), the entropy
of information used by an L-layer GNN to generate the features of line-nodes corresponding to vi

is H
vL
i

L . Based on the discussion in Appendix B and Proposition 3.1, we have H
vL
i

0 = H
vL
i

L . By
definition, the line-nodes corresponding to vi are only connected to each other and the line-nodes

corresponding to the 1-hop neighbours of vi. Therefore, we have HvL
i

L =H
vL
i

2 . Accordingly, we have

H
vL
i

0 =H
vL
i

2 .

Lemma G.2. Let H1 denote the entropy of the information that an TF-HNN with an L-layer TF-MP-

Module utilises to generate features of vi, and H
vL
i

2 denote the entropy of information within node vi

and its L-hop neighbours on the hypergraph. Then, HvL
i

1 =H
vL
i

2 .

Proof. For the feature generation of vi, an L-layer TF-MP-Module can be directly reformulated as:
x̂vi = fl0(xvi) + fl1(⊕vj∈NL

Hvi

xvj), (13)

where fl0 and fl1 are two linear functions, and NL
Hvi

is a set containing L-hop neighbours of vi
on the hypergraph. Hence, we have the entropy of the input information utilised by an L-layer

TF-MP-Module for generating features of vi is HvL
i

2 , namely, HvL
i

1 =H
vL
i

2 .

After having the Lemmas above, we prove Proposition 4.1 as follows:

Proof. Based on Lemma G.1, we have H
vL
i

0 =H
vL
i

2 . Moreover, according to Lemma G.2, we have

H
vL
i

1 =H
vL
i

2 . As a result, HvL
i

0 =H
vL
i

1 =H
vL
i

2 .

H PROOF OF PROPOSITION 4.2

Before proving Proposition 4.2, we first prove the following Lemma.

Lemma H.1. LetH = {V,E ,H} denote a hypergraph, G = {V,WH} be its clique expansion with
edge weights computed by Eq. (5), L be the graph Laplacian matrix of G computed by a symmetrically
normalised and self-loops added WH , XV represent the input node features, and α ∈ (0,1). We
set F (X) = tr(X⊺LX) + α

1−α tr[(X −XV)
⊺(X −XV)], and X⋆ as the global minimal point for

F (X). Then, we have:

X⋆ = (In − (1 − α)D̃
−1/2
H W̃HD̃

−1/2
H )

−1
αXV , (14)

where W̃H =WH + In and D̃H ∈ Rn×n is the diagonal node degree matrix of W̃H .

Proof. Taking the partial derivative of F with the respective of X, we have:
∂F

∂X
= 2LX +

2α

1 − α
(X −XV).

By setting ∂f
∂X
= 0, we have:

X⋆ = (L +
α

1 − α
)
−1 α

1 − α
XV = (In − (1 − α)D̃

−1/2
H W̃HD̃

−1/2
H )

−1
αXV ,
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where W̃H =WH + In and D̃H ∈ Rn×n is the diagonal node degree matrix of W̃H .

Since the second-order derivative of F with the respect of X is:
∂2f

∂2X
= 2L +

2α

1 − α
In. (15)

Given L ∈ Rn×n is a graph Laplacian matrix, which is positive semi-definite, and, for α ∈ (0,1),
2α
1−αIn ∈ R

n×n
+ is a diagonal matrix, which is positive definite. Accordingly, we have the righthand

side of Eq.(15) is a positive definite matrix for α ∈ (0,1). As a result, for α ∈ (0,1), X⋆ in Eq. (14)
is the global minimal point for F .

With the Lemma above, we present the proof of Proposition 4.2 as follows.

Proof. LetH = {V,E ,H} denote a hypergraph and G = {V,WH} be its clique expansion with edge
weights computed by Eq. (5). According to Eq. (6), the output of an L-layer TF-MP-Module can be
reformulated as:

X̂V = ((1 − α)
L
(D̃
−1/2
H W̃HD̃

−1/2
H )

L
+ α

L−1
∑
l=0
(1 − α)l(D̃

−1/2
H W̃HD̃

−1/2
H )

l
)XV ,

where W̃H =WH + In and D̃H ∈ Rn×n is the diagonal node degree matrix of W̃H . When L→ +∞,
the left term tends to 0 and the right term becomes a convergent geometric series (Meyer & Stewart,
2023). Hence, for L→ +∞, this equation can be further represented as:

X̂V = (In − (1 − α)D̃
−1/2
H W̃HD̃

−1/2
H )

−1
αXV .

Based on Lemma H.1, we have F (X̂V) = Fmin.

I DETAILS OF BENCHMARKING DATASETS

Our benchmark datasets consist of existing six datasets (Cora-CA, DBLP-CA, Citeseer and House
from (Chien et al., 2022), Congress and Senate from (Wang et al., 2023a)). In co-citation networks
(Citeseer), all documents cited by a particular document are connected by a hyperedge. For co-
authorship networks (Cora-CA, DBLP-CA), all documents co-authored by a single author are grouped
into one hyperedge. The node features in these co-citation and co-authorship networks are represented
using bag-of-words models of the corresponding documents, with node labels corresponding to the
paper classes. In the House dataset, each node represents a member of the US House of state-of-the-
arts, with hyperedges grouping members of the same committee. Node labels denote the political
party of the state-of-the-arts. In the Congress dataset, nodes represent US Congresspersons, with
hyperedges linking the sponsor and co-sponsors of bills introduced in either the House or the Senate.
In the Senate dataset, nodes also represent US Congresspersons, but hyperedges link the sponsor and
co-sponsors of Senate bills only. Nodes in both datasets are labeled by political party affiliation.

J ADDITIONAL EXPERIMENTAL RESULTS

Table 9: The hyperlink prediction AUC (%). The best result is in bold font.
Cora-CA DBLP-CA Citeseer Congress House Senate Avg. Mean

AllSetTransformer 95.51 ± 0.46 95.77 ± 1.01 95.98 ± 0.73 71.56 ± 0.07 80.28 ± 3.33 63.56 ± 1.15 83.78
PhenomNN 97.60 ± 0.74 96.11 ± 0.86 96.13 ± 0.92 70.68 ± 0.34 74.57 ± 3.02 58.46 ± 1.98 82.26
ED-HNN 97.61 ± 0.83 95.71 ± 2.10 96.04 ± 0.85 71.48 ± 0.12 81.09 ± 3.47 65.96 ± 1.79 84.64
Deep-HGNN 97.00 ± 0.50 97.60 ± 0.18 96.45 ± 0.55 71.34 ± 0.28 78.84 ± 6.20 62.06 ± 3.13 83.88
TF-HNN (ours) 97.87 ± 0.65 97.96 ± 2.43 96.95 ± 0.97 72.33 ± 0.14 82.18 ± 3.70 65.04 ± 0.97 85.39

Table 10: The training time (s) in hyperlink prediction. The best result is in bold font.
Cora-CA DBLP-CA Citeseer Congress House Senate Avg. Mean

AllSetTransformer 20.82 ± 5.27 64.07 ± 5.75 9.18 ± 2.75 2086.49 ± 244.37 51.76 ± 13.03 33.15 ± 8.26 377.58
PhenomNN 14.34 ± 2.72 365.47 ± 144.07 25.87 ± 9.60 1029.77 ± 200.26 130.82 ± 18.67 30.89 ± 3.50 266.19
ED-HNN 8.03 ± 1.71 65.84 ± 8.52 11.28 ± 2.71 899.00 ± 162.75 75.01 ± 10.62 53.81 ± 8.34 185.50
Deep-HGNN 12.31 ± 2.72 107.97 ± 37.50 8.49 ± 1.68 795.25 ± 173.54 36.33 ± 7.74 7.82 ± 1.32 161.36
TF-HNN (ours) 3.22 ± 1.99 29.36 ± 6.31 2.75 ± 1.26 501.66 ± 111.99 17.83 ± 4.98 3.19 ± 1.31 93.00
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Table 11: The node classification accuracy (%). The best result is in bold font.
Cora-CA DBLP-CA Citeseer Congress House Senate Avg. Mean

HyperGCL 83.02 ± 1.36 91.12 ± 0.28 70.70 ± 1.77 94.30 ± 0.75 65.25 ± 7.93 48.76 ± 4.73 75.53
HDSode 85.60 ± 1.07 91.55 ± 0.33 73.68 ± 1.99 90.58 ± 1.72 71.58 ± 1.60 59.72 ± 5.60 78.79
TF-HNN (ours) 86.54 ± 1.32 91.80 ± 0.30 74.82 ± 1.67 95.09 ± 0.89 76.29 ± 1.99 70.42 ± 2.74 82.50

Table 12: The training time (s) in node classification. The best result is in bold font.
Cora-CA DBLP-CA Citeseer Congress House Senate Avg. Mean

HyperGCL 33.94 ± 3.86 722.25 ± 137.08 7.94 ± 1.72 1384.02 ± 160.35 108.08 ± 6.38 14.67 ± 1.23 378.48
HDSode 2.05 ± 0.66 531.43 ± 144.96 49.70 ± 4.39 213.87 ± 0.15 5.05 ± 0.99 72.23 ± 32.53 145.72
TF-HNN (ours) 0.22 ± 0.12 4.39 ± 0.45 1.12 ± 0.30 0.98 ± 0.35 1.01 ± 0.51 0.19 ± 0.10 1.32

K NEGATIVE SAMPLING FOR HYPERLINK PREDICTION

We adapt the algorithm from (Chen & Liu, 2023) for this purpose. For each (positive) hyperedge
e ∈ E, we generate a corresponding negative hyperedge f , where α×100% of the nodes in f are from
e and the remaining are from V e. Denote the negative hyperlink set as F . The number α controls the
genuineness of the negative hyperlinks, i.e., higher values of α indicate that the negative hyperlinks
are closer to the true ones. Additionally, we define β to be the number of times of negative sampling
which controls the ratio between positive and negative hyperlinks. In practice, we set α = 0.5 and
β = 5.

L REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide detailed hyperparameter settings used in our
experiments. The configurations for the TF-HNN model on the hypergraph node classification task
and the hyperlink prediction task are listed below.

Table 13: Hyperparameter settings for TF-HNN in Table 3 and Table 4.
Dataset TF-HNN Layers MLP Layers MLP Hidden Dimension Learning Rate Alpha Dropout Weight Decay

Cora-CA 2 3 1024 0.001 0.3 0.7 0.0
DBLP-CA 2 3 1024 0.0006 0.15 0.7 0.0
Citeseer 8 3 1024 0.001 0.65 0.9 0.0
House 16 3 128 0.005 0.7 0.9 0.0
Congress 1 3 1024 0.0001 0.05 0.8 0.0
Senate 2 7 512 0.005 0.6 0.5 0.0
Trivago 64 3 64 0.001 0.0 0.2 0.0

In practice, we conduct the hyperparameter search based on grid search. For the hypergraph node
classification task listed in Table 3, we apply grid search to the following hyperparameters:

● The number of layers of TF-MP-Module: {1,2,4,8,16}.

● The α of TF-MP-Module: {0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7}.

● The number of layers of the node classifier: {3,5,7}.

● The hidden dimension of the node classifier: {128,256,512,1024}.

● The learning rate for node classifier: {1× 10−4,2× 10−4,3× 10−4,4× 10−4,5× 10−4,6× 10−4,7×
10−4,8 × 10−4,9 × 10−4,1 × 10−3,5 × 10−3}.

● The dropout rate for node classifier: {0.5,0.6,0.7,0.8,0.9}.

For node classification listed in Table 4, we apply grid search to the following hyperparameters:

● The number of layers of TF-MP-Module: {1,4,16,64}.

● The α of TF-MP-Module: {0.0,0.1,0.3,0.5}.

● The number of layers of the node classifier: {3}.

● The hidden dimension of the node classifier: {64}.

● The learning rate for node classifier: {1 × 10−3,1 × 10−4}.

● The dropout rate for node classifier: {0.0,0.2,0.4}.

For hyperlink prediction listed in Figure 3, we apply grid search to the following hyperparameters:
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Table 14: Hyperparameter settings for TF-HNN in Figure 3 and Table 5.
Dataset TF-HNN Layers Predictor Layers Predictor Hidden Dimension Learning Rate Alpha Dropout

Cora-CA 64 3 256 0.0005 0.5 0.0
Citeseer 2 3 256 0.0005 0.5 0.0
House 4 3 128 0.0002 0.0 0.0
Trivago 1 3 64 0.0001 0.5 0.0

● The number of layers of TF-MP-Module: {1,2,4,8,16,32,64}.

● The α of TF-MP-Module: {0.0,0.01,0.05,0.1,0.5}.

● The number of layers of the hyperedge predictor: {3}.

● The hidden dimension of the hyperedge predictor: {128,256}.

● The learning rate for node classifier: {1 × 10−4,2 × 10−4,3 × 10−4,4 × 10−4,5 × 10−4}.

● The dropout rate for node classifier: {0.0,0.2,0.4,0.6,0.8}.

For hyperlink prediction listed in Table 5, we apply grid search to the following hyperparameters:

● The number of layers of TF-MP-Module: {1,2,4}.

● The α of TF-MP-Module: {0.0,0.1,0.3,0.5}.

● The number of layers of the hyperedge predictor: {3}.

● The hidden dimension of the hyperedge predictor: {64}.

● The learning rate for node classifier: {1 × 10−3,1 × 10−4}.

● The dropout rate for node classifier: {0.0,0.2}.

The experiments on Trivago are highly time-consuming and need large GPU memory. We used a
relatively small search space for hyperparameters in ours and the baselines, which are provided below.

Node classification on Trivago of TF-HNN:

● The number of layers of TF-MP-Module: {1,4,16,64}.

● The α of TF-MP-Module: {0.0,0.1,0.3,0.5}.

● The number of layers of the node classifier: {3}.

● The hidden dimension of the node classifier: {64}.

● The learning rate for node classifier: {1 × 10−4,1 × 10−3}.

● The dropout rate for node classifier: {0.0,0.2,0.4}.

Node classification on Trivago of ED-HNN:

● The number of layers of ED-HNN: {1,2,4} (larger values show the out-of-memory (OOM) issue
on our server).

● The number of layers of ϕ̂, ρ̂, and φ̂, MLPs within message passing: {0,1,2} (larger values show
the out-of-memory (OOM) issue on our server).

● The number of layers of the classifier: {3}.

● The hidden dimension of ϕ̂, ρ̂, and φ̂: {64,128} (larger values show the out-of-memory (OOM)
issue on our server).

● The hidden dimension of the classifier: {64}.

● The learning rate for the model: {1 × 10−4,1 × 10−3}.

● The dropout rate for for the model: {0.0,0.2,0.4}.

Node classification on Trivago of Deep-HGNN:

● The number of message passing layers: {1,4,16,64}.
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● The α: {0,0.1,0.3,0.5}.

● The λ: {0.1}.

● The message passing hidden dimension: {64,128,256} (larger values show the out-of-memory
(OOM) issue on our server).

● The number of layers of the classifier: {3}.

● The hidden dimension of the classifier: {64}.

● The learning rate for the model: {1 × 10−4,1 × 10−3}.

● The dropout rate for for the model: {0.0,0.2,0.4}.

Hyperlink prediction on Trivago of ours:

● The number of layers of TF-MP-Module: {1,2,4}.

● The α of TF-MP-Module: {0.0,0.1,0.3,0.5}.

● The number of layers of the predictor: {3}.

● The hidden dimension of the predictor: {64}.

● The learning rate for the predictor: {1 × 10−4,1 × 10−3}.

● The dropout rate for the predictor: {0.0,0.2}.

Hyperlink prediction on Trivago of ED-HNN:

● The number of layers of ED-HNN: {1,2,4}.

● The number of layers of ϕ̂, ρ̂, and φ̂, MLPs within message passing: {0,1,2}.

● The number of layers of the predictor: {3}.

● The hidden dimension of ϕ̂, ρ̂, and φ̂: {64,128}.

● The hidden dimension of the predictor: {64}.

● The learning rate for the model: {1 × 10−4,1 × 10−3}.

● The dropout rate for for the model: {0.0,0.2}.

Hyperlink prediction on Trivago of Deep-HGNN:

● The number of message passing layers: {1,2,4}.

● The α: {0,0.1,0.3,0.5}.

● The λ: {0.1}.

● The message passing hidden dimension: {64,128,256}.

● The number of layers of the classifier: {3}.

● The hidden dimension of the classifier: {64}.

● The learning rate for the model: {1 × 10−4,1 × 10−3}.

● The dropout rate for for the model: {0.0,0.2}.

M EFFICIENCY IMPROVEMENT FROM TF-HNN

In this section, we theoretically discuss that the efficiency improvement provided by TF-HNN is
inversely correlated with the complexity of the task-specific module. Specifically, we prove a Lemma.

Lemma M.1. Let M denote the training complexity of the task-specific module and, J denote the
training complexity of an HNN. Since an TF-HNN only requires the training of the task-specific
module, we approximate its training complexity with the function ts(M) = M . Similarly, we
approximate the training complexity of an HNN with the function th(M,J) =M + J . Furthermore,
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We quantify the efficiency improvement brought by TF-HNN using the ratio r(M,J) = th(M,J)
ts(M) ,

where a larger r(M,J) indicates a greater efficiency improvement provided by the TF-HNN. Then
we have ∂r

∂M
< 0.

Proof. We can reformulate the r(M,J) as:

r(M,J) =
M + J

M
.

Taking the partial derivative of r with the respective of M , we have:
∂r

∂M
= −

J

M2
< 0.

N ADDITIONAL DISCUSSION AND RESULTS ABOUT APPNP

The APPNP (Gasteiger et al., 2019) has contributed to the development of more efficient GNN
models by shifting learnable parameters to an MLP prior to message passing. In this section, we
aim to clarify the differences between the APPNP method proposed in [1] and our TF-HNN in two
different perspectives.

●Methodological Design: The key difference in the model design is that APPNP requires running the
message passing process during model training, whereas our TF-HNN performs message passing
only during data preprocessing. According to Eq. (4) in [1], APPNP employs a message-passing
block after a multi-layer perceptron (MLP). The MLP uses the given original node features to generate
latent features for the nodes, which then serve as inputs for message passing. This design requires
the message-passing block to be executed during each forward propagation in the training
phase, making it incompatible with preprocessing. In contrast, the training-free message-passing
module in TF-HNN directly takes the given original node features as inputs, enabling it to be fully
precomputed during the data preprocessing stage, thereby eliminating the need for computation
during training, which further enhances the training efficiency. Notably, Table 2 below demonstrates
that TF-HNN is more training efficient than an APPNP with clique expansion. As a result, we argue
the APPNP in [1] does not diminish the core novelty of our TF-HNN, which is the first model to
decouple the message-passing operation from the training process for hypergraphs.

● Practical differences: In Tables 15 and 16, we empirically demonstrate that, for hypergraph-
structured data, TF-HNN is both more training efficient and more effective than APPNP with the
clique expansion defined in our Eq. (5). For training efficiency, since APPNP requires message-
passing computations during each forward propagation step in training, its training time is at least
3 times longer than that of TF-HNN. For effectiveness, our results show that TF-HNN, which
performs message passing in the original feature space, achieves better performance compared
to APPNP, which projects features into a latent space by an MLP before message passing. We
hypothesize that this improvement may be attributed to the MLP in APPNP, which may not be able
to fully retain information from the original node features during the projection to the latent space.

Besides the two key differences between APPNP and our TF-HNN above, we also hope to emphasize
the unique theoretical contribution of our paper for hypergraph machine learning. While the
mechanism of graph neural networks (GNNs) is well-studied, the foundational component of HNNs
is not clearly identified until our work. In Sec. 3.2, we identify the feature aggregation function as
the core component of HNNs, and we show that existing HNNs primarily enhance node features by
aggregating features from neighbouring nodes. This insight encompasses various HNN models and
provides researchers with a deeper understanding of the behaviour of existing HNNs.

As a result, while APPNP represents a significant contribution to the field, it does not diminish the
unique value and contributions of TF-HNN for hypergraphs.
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Table 15: The node classification accuracy
(%) for TF-HNN, and APPNP+CE. The best
result is in bold font.

Methods / Datasets Cora-CA Citeseer

TF-HNN 86.54 ± 1.32 74.82 ± 1.67
APPNP+CE 86.01 ± 1.35 74.32 ± 1.57

Table 16: The training time (s) for TF-HNN
and APPNP+CE corresponding to results in
Table 15. The best result is in bold font.

Methods / Datasets Cora-CA Citeseer

TF-HNN 0.22 ± 0.12 1.12 ± 0.30
APPNP+CE 0.73 ± 0.16 4.61 ± 0.88

Table 17: Results for baselines with/without learnable parameters in node classification. The best
result on each dataset is in bold font (+LP /−LP means the model with/without learnable parameters).

Dataset AllDeepSets UniGNN ED-HNN Deep-HGNN
+LP −LP +LP −LP +LP −LP +LP −LP

Cora-CA 81.97 ± 1.50 82.53 ± 0.70 83.60 ± 1.14 84.82 ± 1.56 83.97 ± 1.55 85.69 ± 0.96 84.89 ± 0.88 86.22 ± 1.33
Citeseer 70.83 ± 1.63 71.10 ± 2.33 73.05 ± 2.21 73.96 ± 1.67 73.70 ± 1.38 74.08 ± 1.51 74.07 ± 1.64 74.64 ± 1.52

O RESULTS ABOUT REMOVING LEARNABLE PARAMETERS FROM BASELINES

In Table 17, we present experiments that remove only the learnable parameters from the node feature
generation process in the baselines. In this setup, all the baselines studied in Eq. (4a) to Eq. (4d)
(AllDeepSets, UniGNN, ED-HNN, Deep-HGNN) directly apply non-learnable message passing to
the original node features. These results confirm that removing the learnable parameters and directly
applying message passing on the original given node features can enhance the model performance.
These results, together with the ablation study on the weight design for S presented in Table 7 of
our submission, demonstrate that both the removal of learnable parameters and the design of our S,
contribute to the effectiveness of our TF-HNN.

P ADDITONAL RESULTS ON YELP

In this section, we conduct experiments on a dataset named Yelp from (Chien et al., 2022), and
the results are summarized in Table 18. For HGNN, HCHA, HNHN, UniGCNII, AllDeepSets, and
AllSetTransformer, we directly use the accuracy reported in (Chien et al., 2022) and record the
training time by running the models with the hyperparameters provided in (Chien et al., 2022) on our
RTX 3090 GPUs. For ED-HNN and Deep-HGNN, we report both accuracy and training time based on
runs using the optimal hyperparameters we identified. Due to out-of-memory issues with PhenomNN
on our RTX 3090 GPUs, we did not include it in the table. The results demonstrate that our model is
both effective and efficient on this dataset. Specifically, our model achieves a general second-best
performance among the baselines, with accuracy only 0.83% lower than AllSetTransformer, while
being 24 times faster. These findings highlight the effectiveness and efficiency of our TF-HNN.

Q THE ASSUMPTION ABOUT THE STRUCTURE OF HYPERGRAPH

In Sec. 2, we assume that the hypergraph does not contain isolated nodes or empty hyperedges to
maintain consistency with prior works Huang & Yang (2021); Chien et al. (2022); Kim et al. (2022);
Chen et al. (2022) in the literature. This assumption is based on the observation that most existing
hypergraph neural networks (HNNs) use node degree or hyperedge degree as denominators during
forward propagation. This inherently presumes these values are nonzero—i.e., there are no isolated
nodes or empty hyperedges—since division by zero is undefined. Moreover, we emphasize that this
assumption does not compromise the practical applicability of our method. Consistent with prior
works, we address scenarios where zero degrees occur by assigning a default value of 1 to such cases.

R ADDITIONAL DISCUSSION ABOUT THE SUPERIOR PERFORMANCE,
ESPECIALLY ON THE LARGE-SCALE HYPERGRAPH

Generaly, we attribute the superior performance of TF-HNN primarily to its more efficient utilization
of node information from the training data compared to baseline models.

Baseline models with training-required message-passing modules process node information by first
using a trainable module to project node features into a latent space, and then performing trainable
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Table 18: Results on Yelp. The best and second-best results are marked with bold font and underlined,
respectively.

HGNN HCHA HNHN UniGCNII AllDeepSets AllSetTransformer ED-HNN Deep-HGNN TF-HNN (ours)
Accuracy (%) 33.04 ± 0.62 30.99 ± 0.72 31.65 ± 0.44 31.70 ± 0.52 30.36 ± 1.57 36.89 ± 0.51 35.03 ± 0.52 35.04 ± 2.64 36.06 ± 0.32
Time (s) 326.15 ± 4.55 147.54 ± 0.87 70.35 ± 0.52 108.21 ± 5.87 193.43 ± 2.84 158.19 ± 0.66 225.64 ± 28.52 889.14 ± 40.79 6.54 ± 0.96

message passing within that space. Learning a latent space that preserves the unique characteristics
of individual nodes is extremely challenging, especially for large-scale hypergraphs. This difficulty
is compounded by computational constraints: both the projection and message-passing operations
require computing gradients for backpropagation, which are extremely resource-intensive. To prevent
out-of-memory (OOM) errors during experiments on the large-scale hypergraph Trivago, the hidden
dimensions of these baseline models need to be limited to a maximum of 256. This dimension
constraint, introduced by GPU memory limitations, makes it difficult for the model to fully preserve
information that is helpful for classifying a large number of nodes.

In contrast, TF-HNN performs message passing directly on the original node features during the data
pre-processing stage without requiring any trainable parameters. This allows TF-HNN to preserve
node-specific information without incurring the expensive memory requirements associated with
training-required models. Notably, our experimental results align with previous observations in the
Graph Neural Network (GNN) literature. For example, training-free models like SIGN (Frasca et al.,
2020) have been shown to outperform training-required models like GCN (Kipf & Welling, 2017) on
large-scale graphs such as the Protein-Protein Interaction (PPI) network by a significant margin.

Table 19: Hyperparameter search time for ED-HNN and TF-HNN in node classification on Cora-CA.
ED-HNN TF-HNN tTF /tED

Runtime for Completing the Grid Search (hours) 48.95 2.74 0.06

Table 20: Hyperparameter search time for Deep-HGNN, ED-HNN and our TF-HNN in the node
classification task on Trivago (The search time of ED-HNN and TF-HNN on Trivago is shorter than
the one on Cora, as the search space used on Trivago is much smaller than the one used on Cora).

Deep-HGNN ED-HNN TF-HNN
Hyperparameter Searching Time (hours) 59.61 30.42 1.04

S HYPERPARAMETER SEARCH

Our hyperparameter tuning process strictly adheres to standard practices using the validation set
to determine optimal settings. Following the codes of prior works (Chien et al., 2022; Wang et al.,
2023b;a), our code records the best performance on the validation set, the training epoch that achieved
the best performance on the validation set and the performance of this recorded training epoch on the
test set. The hyperparameters yielding the best results on the validation set were adopted as the final
settings for our model. Furthermore, using the node classification task on DBLP-CA as a case study,
we conducted a detailed hyperparameter sensitivity analysis. The heatmaps in Figure 5 illustrate
validation and test performance across various hyperparameter configurations. The hyperparameters
yielding the best results on the validation set highlighted with a green rectangle were adopted as the
final settings for our model. Based on these results, we derive three key insights for hyperparameter
search in TF-HNN: 1) The model exhibits minimal sensitivity (performance variations within 1%) to
the following combinations, suggesting they can be tuned independently: MLP Hidden Dimension &
Dropout, MLP Hidden Dimension & TF-HNN Layers, Learning Rate & Dropout, Learning Rate &
MLP Hidden Dimension, Learning Rate & TF-HNN Layers, TF-HNN Layers & MLP Layers, and
TF-HNN Layers & Dropout; 2) The MLP performs well with relatively few layers, reducing the need
for deeper architectures; and 3) The following combinations require more careful tuning due to their
greater impact on performance: Alpha & MLP Layers, Alpha & Dropout, Alpha & MLP Hidden
Dimension, Alpha & Learning Rate, and Alpha & TF-HNN Layers.

Generally, the efficient search for the optimal hyperparameters is challenging within the hypergraph
machine learning literature. However, with the fast training speed of TF-HNN, our hyperparameter
searching process is still efficient compared with previous methods. Table 19 shows the hyperpa-
rameter searching time used for TF-HNN and ED-HNN (Wang et al., 2023a) in node classification
on the Cora-CA dataset in our 8 RTX 3090 GPUs server. For TF-HNN, we run the hyperparameter
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(a) Alpha & MLP Layers. (b) Alpha & Dropout. (c) Alpha & MLP Hidden Dimen-
sion.

(d) Alpha & Learning Rate. (e) Alpha & TF-HNN Layers. (f) MLP Layers & Dropout.

(g) MLP Hidden Dimension & MLP
Layers.

(h) MLP Hidden Dimension &
Dropout.

(i) MLP Hidden Dimension & TF-
HNN Layers.

(j) Learning Rate & MLP Layers. (k) Learning Rate & Dropout. (l) Learning Rate & MLP Hidden
Dimension.

(m) Learning Rate & TF-HNN Lay-
ers.

(n) TF-HNN Layers & MLP Layers. (o) TF-HNN Layers & Dropout.

Figure 5: Heatmaps of validation and test performance under varying hyperparameter combinations.

combinations mentioned in Appendix L, and for ED-HNN, we run the hyperparameter combination
mentioned in Appendix F.3 of their paper. Specifically, according to the discussion and table 6 in
Appendix F.3 of Wang et al. (2023a), ED-HNN does grid search for the following hyperparameters:

● The number of layers of ED-HNN, whose search space is {1,2,4,6,8}.

● The number of layers of an MLP projector, ϕ̂, whose search space is {0,1,2,4,6,8}.

● The number of layers of an MLP projector, ρ̂, whose search space is {0,1,2,4,6,8}.

● The number of layers of an MLP projector, φ̂, whose search space is {0,1,2,4,6,8}.

● The number of layers of the node classifier, whose search space is {1,2,4,6,8}.

● The hidden dimension of ϕ̂, φ̂, and ρ̂, whose search space is {96,128,256,512}.

● The hidden dimension of the node classifier, whose search space is {96,128,256,512}.

Based on the results presented in Table 19, our hyperparameter search process requires only about
6% of the time required by ED-HNN, demonstrating its efficiency. We treat develop a more efficient
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hyperparameter search method for hypergraph neural networks based on the methods like Bayesian
Optimisation (Victoria & Maragatham, 2021; Wu et al., 2019b; Nguyen, 2019) as a future work.

T DISCUSSION ABOUT PROPOSITION 3.2

We summarise the connection between the clique expansion mentioned in Proposition 3.2 and the
clique expansion defined in Eq (5) as the following Lemmas:

Lemma T.1. For both the W of the clique expansion mentioned in Proposition 3.2 and the one
defined in Eq (5), we have Wij > 0 if and only if vi and vj are connected on the given hypergraph
and Wij = 0 otherwise.

Proof. Here we first prove this lemma for the clique expansion mentioned in Proposition 3.2.

Based on the definition of clique expansion and Lemmas D.1, D.2, D.3, we can directly conclude
that, for the weight matrix W of the clique expansion mentioned in Proposition 3.2, Wij > 0 if and
only if vi and vj are connected on the given hypergraph and Wij = 0 otherwise.

For the W defined in Eq (5), we have:

Wij =
m

∑
k=1

δ(vi, vj , ek)

DHE
kk

,

where δ(⋅) is a function that returns 1 if ek connects vi and vj and returns 0 otherwise. Since
1

DHE
kk

> 0, we have Wij = 0 if and only if, ∀k ∈ [1,2,3,⋯,m], δ(vi, vj , ek) = 0, namely, vi and

vj are not connected on the hypergraph. Further, we can have Wij > 0 if and only if there exist a
k ∈ [1,2,3,⋯,m] to make δ(vi, vj , ek) = 1, namely, vi and vj are connected on the given hypergraph.

Lemma T.2. Let E = {e1, e2,⋯, eK} denote the set of hyperedges connecting vi and vj . Then, for
both the clique expansion mentioned in Proposition 3.2 and the clique expansion defined in Eq (5),
we have dWij

d ∣ek ∣ < 0, ∀ek ∈ E, where ∣ek ∣ represents the size of ek.

Proof. Here we first prove this lemma for the clique expansion mentioned in Proposition 3.2.

Based on the discussion in Sec. D, for UniGNN (Huang & Yang, 2021), we have

Wij = (1 − γU)
m

∑
k=1

HikHjk

D
1/2
HVii

DHE
kk
D̃

1/2
HE

kk

=
m

∑
k=1

(1 − γU)∑
n
k′=1Hk′kDHV

k′k′

D
1/2
HVii

HikHjk

D
1/2
HE

kk

= ∑
ek∈E

ωk

∣ek ∣1/2
,

where ωk =
(1−γU )sk

D
1/2
HV

ii

and sk is the sum of degrees of nodes with ek. Since ωk > 0 and the design of

UniGNN only considers the positive square root, we have:
dWij

d ∣ek ∣
= −

ωk

2∣ek ∣3/2
< 0.

Based on the discussion in Sec. D, for Deep-HGNN (Chen et al., 2022), we have:

Wij = (1 − γD)
m

∑
k=1

HikHjk

D
1/2
HVii

D
1/2
HVjj

DHE
kk

=
(1 − γD)

D
1/2
HVii

D
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HVjj

m

∑
k=1

HikHjk
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= ω ∑
ek∈E

1

∣ek ∣
,

where ω = (1−γD)
D

1/2
HV

ii

D
1/2
HV

jj

. Since ω > 0, we have:

dWij

d ∣ek ∣
= −

ω

∣ek ∣2
< 0.

Based on the discussion in Sec. D, for AllDeepSets (Chien et al., 2022) and ED-HNN (Wang et al.,
2023a), we have:

Wij =
m

∑
k=1

HikHjk

DHViiDHEkk

=
1

DHVii

m

∑
k=1

HikHjk

DHE
kk

= ω ∑
ek∈E

1

∣ek ∣
,
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where ω = 1
DHV

ii

. Since ω > 0, we have:

dWij

d ∣ek ∣
= −

ω

∣ek ∣2
< 0.

Finally, we demonstrate the proof for the clique expansion defined in Eq (5):

Wij =
m

∑
k=1

δ(vi, vj , ek)

DHE
kk

= ∑
ek∈E

1

∣ek ∣
.

Then, we have:
dWij

d ∣ek ∣
= −

1

∣ek ∣2
< 0.

U DISCUSSION ABOUT PROPOSITION 4.1

In Proposition 4.1, the "information" refers to the contextual information embedded in the node
features, while "information entropy" denotes the entropy of this contextual information. Typically,
node features are generated based on specific contextual information. For example, in co-citation
datasets where nodes represent research papers, the features of a node are often derived from
keywords or sentences in the paper abstract. Consequently, the contextual information embedded
in such node features corresponds to these keywords or sentences. According to prior works in
Linguistics (Shannon, 1951; Genzel & Charniak, 2002), the information entropy of these keywords
or sentences can be computed using the Shannon entropy formula: H(X) = −∑x∈X p(x) log p(x),
represents the keywords or sentences, x denotes a token within X , and p(x) can be defined using
various methods, such as an n-gram probabilistic model mentioned in (Genzel & Charniak, 2002).

While we did not compute the exact Shannon entropy here, we use “entropy” in a conceptual way to
refer to the amount of information helpful for the downstream task. From this perspective, the key
takeaway from the proposition is to highlight that both HNN with an L-layer feature aggregation
function and TF-HNN with an L-layer TF-MP-Module can leverage the hypergraph structure to
enhance the features of each node by aggregating features containing contextual information from
its L-hop neighbouring nodes. For instance, in a co-citation hypergraph, if within L-hop a node is
connected to several nodes with features containing contextual information about machine learning
and others with features related to biology, the feature aggregation process will incorporate both
machine learning and biology related features into the node’s features.

V ADDITONAL RESULTS ABOUT THE PREPROCESSING TIME

Table 21: The training time (s) and preprocessing time (s) for TF-HNN in node classification.
Cora-CA DBLP-CA Citeseer Congress House Senate Avg. Mean

Training 0.22 ± 0.12 4.39 ± 0.45 1.12 ± 0.30 0.98 ± 0.35 1.01 ± 0.51 0.19 ± 0.10 1.32
Preprocessing 0.0012 ± 0.0002 0.0401 ± 0.0011 0.0220 ± 0.0012 0.0016 ± 0.0001 0.0080 ± 0.0001 0.0009 ± 0.0001 0.012

Let m be the number of edges of the clique expansion used in our TF-MP-Module, then the
theoretical complexity of this module is O(m). Moreover, unlike the training-required message-
passing operators used in existing HNNs, which must be computed during forward propagation in
each training epoch and require gradient descent computations for backpropagation, our training-free
message-passing operator only needs to be computed once during a single forward propagation
in preprocessing. Thus, in practice, the training-free message-passing operator is quite fast. We
summarise the runtime in Table 21. These results indicate that the average preprocessing time of our
training-free message-passing operator is about 1% of the average training time for our TF-HNN.
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