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IOShift: Backdoor Defense via Model Bias Shift in Federated Learning
Supplementary Material

A BROADER IMPACTS

Federated learning, while offering strong data protection, is particularly vulnerable to sophisticated
security threats such as backdoor attacks. These attacks can lead to unforeseen and potentially
harmful consequences in real-world applications. This work provides a deep investigation into the
underlying mechanisms that contribute to the success of backdoor attacks in federated learning sys-
tems and introduces IOShift, a novel defense framework grounded in the observation of Backdoor-
Induced Model Bias Shift phenomenon. IOShift can be seamlessly integrated into existing federated
learning infrastructures, enhancing their security without compromising performance. By strength-
ening the resilience of federated learning against malicious interference, this work contributes to the
development of more robust and trustworthy distributed learning systems. Ultimately, it promotes
safer adoption of AI technologies and facilitates the secure flow of knowledge across different sec-
tors and institutions, yielding positive impacts on data-driven decision-making and collaborative
innovation across society.

Algorithm 1 Overview of IOShift
Input: Clients {Ci} and their data {Di}, dataset size κ, detection threshold α and β.
Output: Global model at epoch t, θ(T )

G .
1: Server prepares ID dataset DI and OOD dataset DO with size κ
2: for epoch e to T do
3: Server selects M clients and distributes θ(e)G

/* Client Local Training */
4: Client i trains θ(e+1)

G by Di, uploads updates g(e)i
/* Backdoor Detection */

5: Server computes ID bias score BSI for DI and OOD bias score BSO for DO by Equation
1 and Equation 2

6: Server gets IOShift score IOS =∥ BSO −BSI ∥
7: if IOS

j ∈ IOS > α then
8: Label class j as target class
9: end if

/* Backdoor Removal */
10: while IOS

j < β do
11: Server labels the class of samples in DO as j
12: Server computes neuron importance by Equation 4
13: Server prunes top K neurons in g

(e)
i and recalculates IOS

j
14: K ++
15: end while
16: Server updates global model
17: end for
18: return Global model at epoch t: θ(T )

G .

B VISUALIZATION OF MODEL BIAS SCORES

Figure 7 and Figure 8 visualize the model bias and IOShift score under d = 0.5 and d = 1 (IID). The
results confirm that backdoors indeed shift IOShift score, regardless of whether the data distribution
is IID or Non-IID.

C OTHER EXPERIMENTS

Other Detection Performance. Table 5 shows the performance results with Multi-Krum Blanchard
et al. (2017), Deepsight Rieger et al. (2022), Foolsgold Fung et al. (2018), Rflabt Wang et al. (2022).
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(a) Benign / Bias (b) Benign / IOShift (c) Malicious / Bias (d) Malicious / IOShift

Figure 7: Model bias scores on ID and OOD data, and their IOShift scores under Dirichlet parameter
d = 0.5 for benign and BadNets-implanted malicious models.

(a) Benign / Bias (b) Benign / IOShift (c) Malicious / Bias (d) Malicious / IOShift

Figure 8: Model bias scores on ID and OOD data, and their IOShift scores under Dirichlet parameter
d = 1 (IID) for benign and BadNets-implanted malicious models.

Multi-Krum Blanchard et al. (2017) selects client updates with minimal Euclidean distance to filter
out malicious contributions. Foolsgold Fung et al. (2018) differentiates attackers by assessing up-
date diversity, as benign clients typically exhibit greater variability. Deepsight Rieger et al. (2022)
identifies backdoor patterns by analyzing subtle model update behaviors, assuming that backdoored
models reflect distinct training data characteristics. RFLBAT Wang et al. (2022) enhances detec-
tion using dimensionality reduction to amplify differences between benign and malicious updates,
followed by a two-stage filtering process with outlier removal and cluster analysis.

Comparison of TPR, FPR and ASR under different defenses, d = 0.1. From the results, existing
anomaly detection-based methods struggle to identify malicious updates, with TPRs falling below
20%. Specifically, Multi-Krum and RFLBAT fail to detect any malicious updates in most cases.
This is because, under highly Non-IID settings, defining a reliable benign parameter space from
client updates becomes infeasible. Consequently, these methods fail in both detection and removal,
leading to persistently high ASRs. As for the FPR in benign update detection, most existing meth-
ods exhibit extremely high misclassification rates. In particular, Indicator and Multi-Krum exceed
40%, meaning that nearly half of the benign clients are excluded in each epoch, resulting in signifi-
cant resource waste. The relatively lower FPRs of Deepsight and RFLBAT stem from their limited
number of flagged anomalies. However, given their extremely low TPRs, the updates they classify
as anomalies are predominantly benign. Although Indicator achieves a moderately high TPR, it
suffers from an excessively high FPR. This occurs because, under low Dirichlet parameters, model
biases on benign samples strengthen the defense-oriented Indicator Task embedded by the defender
in advance.

Different Dirichlet Parameters d and Poisoned Learning Rate. Table 6 shows the performance
of IOShift under different backdoor attacks with varying Dirichlet parameters d and poisoned learn-
ing rate (plr). The attackers can manually adjust poisoned learning rate to control the magnitude of
malicious updates, enabling them to evade existing anomaly detection methods. The learning rate of
benign client is set to 0.05. Extensive experimental results show that regardless of plr adjustments,
as long as the attack success rate reaches 60%, IOShift maintains stable performance.

Visualization of IOShift Scores. Figure 9 shows IOShift scores corresponding to Table 1. The
high IOShift score in target class 2 indicates why IOShift is able to succeed.

Different Sizes of OOD Dataset. Figure 10 shows the performance of IOShift under different
sizes of OOD dataset. The results show that as the size of OOD dataset increases, IOShift achieves a
higher TPR, lower FPR, and reduced ASR. This is because a larger OOD dataset allows for a more
precise separation of backdoor-induced biases from the model’s genuine features. As the sample
size exceeds 1000, the ASR is almost entirely suppressed, indicating that IOShift can effectively
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Table 5: Comparison of TPR, FPR and ASR under different defenses, d = 0.1.

Datasets Attack Epoch No Defense Multi-Krum Deepsight Foolsgold RFLBAT
ASR TPR FPR ASR TPR FPR ASR TPR FPR ASR TPR FPR ASR

CIFAR
10

Vanilla
400 46.7 0.0 49.6 76.2 4.0 6.4 43.2 3.0 38.9 49.1 0.0 11.7 46.8
800 52.4 0.0 48.5 80.2 7.0 8.9 56.8 3.0 41.9 52.5 0.0 5.7 53.5
1200 70.5 0.0 47.4 88.6 6.0 8.4 69.1 2.0 45.2 60.7 0.0 5.0 71.2

PGD
400 48.4 0.0 46.4 74.8 5.0 4.9 47.1 1.0 40.2 49.1 0.0 14.2 42.8
800 51.1 0.0 44.1 77.2 3.0 7.7 52.6 5.0 45.7 52.5 0.0 4.8 49.6
1200 67.3 0.0 45.3 82.6 8.0 6.2 57.7 6.0 47.8 60.7 0.0 7.6 66.4

Chameleon
400 50.2 0.0 43.4 64.8 8.0 9.0 47.0 13.0 39.1 42.2 0.0 14.2 42.8
800 62.6 0.0 46.3 78.0 5.0 7.9 55.6 29.0 42.7 52.5 0.0 4.8 59.6
1200 71.9 0.0 43.0 84.6 5.0 7.2 67.1 26.0 44.3 60.7 0.0 7.6 66.4

DarkFed
400 65.5 4.0 43.6 80.5 13.0 6.1 54.7 12.0 40.6 60.6 9.0 4.4 60.0
800 80.1 5.0 43.3 85.6 12.0 6.5 72.4 47.0 45.2 67.4 4.0 8.0 78.2
1200 88.2 3.0 44.2 89.2 15.0 6.9 78.4 36.0 43.9 71.4 7.0 6.8 82.4

A3FL
400 94.5 0.0 43.5 100.0 9.0 8.8 79.5 7.0 39.9 89.9 0.0 4.5 94.6
800 96.9 0.0 42.2 100.0 7.0 10.5 77.5 5.0 41.6 96.7 0.0 10.7 96.7
1200 100 0.0 44.1 100.0 9.0 14.9 85.2 2.0 45.9 99.5 0.0 11.9 98.4

PFedBA
400 90.1 0.0 44.9 100.0 10.0 9.3 74.5 7.0 32.4 83.2 0.0 5.0 88.7
800 93.5 0.0 44.3 100.0 6.0 11.5 76.1 3.0 43.9 92.1 0.0 9.8 92.9
1200 100 0.0 40.8 100.0 5.0 13.8 80.2 1.0 42.2 100.0 0.0 14.5 96.1

Mirages
400 92.2 0.0 44.1 100.0 7.0 8.5 72.7 4.0 35.2 85.3 0.0 4.6 90.1
800 95.1 0.0 44.5 100.0 4.0 10.3 77.9 2.0 46.1 94.2 0.0 8.5 94.0
1200 100 0.0 40.7 100.0 5.0 12.5 82.1 1.0 48.7 100.0 0.0 12.9 98.8

Tiny-
ImageNet

Vanilla
800 57.5 0.0 50.0 69.4 1.0 4.0 44.2 0.0 13.5 58.9 0.0 3.1 58.5
1200 70.2 0.0 49.6 78.0 4.0 9.0 65.8 0.0 12.8 69.9 0.0 19.4 70.4
1600 81.4 0.0 46.4 84.2 4.0 11.9 72.8 0.0 11.4 80.1 0.0 17.5 82.9

PGD
800 54.1 0.0 49.5 64.8 3.0 12.9 41.2 0.0 13.0 52.1 0.0 2.9 51.7
1200 67.8 0.0 52.6 72.9 5.0 8.4 61.8 0.0 16.2 64.9 0.0 20.6 67.9
1600 75.9 0.0 59.8 81.5 3.0 12.8 69.1 0.0 12.1 78.2 0.0 15.9 77.9

Chameleon
800 58.4 0.0 49.2 71.3 4.0 7.6 49.8 0.0 13.1 56.4 0.0 6.7 63.2
1200 72.6 0.0 51.5 78.9 4.0 8.5 67.4 0.0 12.8 70.4 0.0 11.4 75.3
1600 84.1 0.0 50.2 85.9 5.0 8.8 77.9 0.0 12.5 82.1 0.0 12.5 86.2

DarkFed
800 74.2 0.0 49.8 78.3 9.0 9.1 70.6 20.0 14.2 68.2 0.0 4.6 73.1
1200 85.6 0.0 49.3 88.2 11.0 8.4 81.2 23.0 13.9 76.9 0.0 6.2 85.9
1600 90.1 0.0 50.0 93.4 10.0 8.8 88.4 26.0 13.8 81.4 0.0 6.8 91.3

A3FL
800 99.5 0.0 49.0 100 0.0 14.0 99.1 0.0 12.8 99.8 0.0 8.9 99.2
1200 98.8 0.0 49.1 100 1.0 13.2 97.2 0.0 11.5 99.1 0.0 15.0 99.0
1600 100.0 0.0 50.2 100 0.0 12.9 98.9 0.0 13.9 99.2 0.0 17.2 99.8

PFedBA
800 96.2 0.0 50.8 100 0.0 18.6 96.2 0.0 12.2 97.2 0.0 9.8 98.9
1200 97.6 0.0 50.1 100 2.0 17.5 95.8 0.0 12.8 98.3 0.0 14.2 98.7
1600 99.5 0.0 51.8 100 1.0 16.8 95.9 0.0 11.5 99.8 0.0 15.0 98.9

Mirages
800 98.5 0.0 50.1 100 0.0 17.6 98.1 0.0 14.1 98.1 0.0 9.2 99.2
1200 98.9 0.0 50.8 100 2.0 18.1 97.3 0.0 15.2 99.2 0.0 13.9 99.8
1600 99.5 0.0 50.4 100 1.0 17.2 98.3 0.0 14.5 100 0.0 14.8 100.0

Table 6: Comparison of TPR, FPR and ASR under different Dirichlet settings d and poisoned learn-
ing rates.

d plr Vanilla PGD A3FL
TPR FPR ASR ACC LASR TPR FPR ASR ACC LASR TPR FPR ASR ACC LASR

0.1

0.01 94.0 1.8 8.6 83.5 63.4 94.0 2.6 9.4 83.1 61.1 100.0 1.3 14.2 83.4 100.0
0.025 95.0 2.1 9.1 83.3 80.2 95.0 2.8 9.6 83.3 78.2 100.0 1.2 14.4 83.6 100.0
0.05 95.0 2.0 9.5 83.1 85.6 96.0 3.1 9.9 83.3 84.6 100.0 1.1 14.6 83.5 100.0
0.08 98.0 2.2 9.3 83.0 86.2 98.0 3.0 9.8 83.2 86.0 100.0 1.0 14.8 83.3 100.0

0.5

0.01 95.0 1.6 9.0 88.5 65.1 94.0 2.5 9.5 88.7 63.5 100.0 1.3 14.0 88.0 100.0
0.025 95.0 1.7 9.2 88.1 81.4 94.0 2.7 9.6 88.9 80.1 100.0 1.2 14.1 88.2 100.0
0.05 95.0 1.5 9.1 88.2 87.2 94.0 2.6 9.7 88.8 85.3 100.0 1.2 14.2 88.1 100.0
0.08 99.0 1.8 9.3 88.0 88.1 96.0 2.8 9.8 88.9 87.1 100.0 1.1 14.3 88.0 100.0

0.9

0.01 95.0 1.1 8.8 92.0 66.2 96.0 1.9 8.5 91.9 64.1 100.0 1.4 14.8 91.8 100.0
0.025 96.0 1.2 8.9 92.0 83.1 97.0 2.1 8.6 91.8 80.1 100.0 1.3 14.9 91.9 100.0
0.05 96.0 1.0 8.9 92.1 88.9 97.0 2.0 8.4 92.0 86.8 100.0 1.5 15.0 91.9 100.0
0.08 100.0 1.3 9.0 91.9 88.6 98.0 2.2 8.7 91.7 87.3 100.0 1.6 15.1 91.7 100.0

d plr Chameleon DarkFed PFedBA
TPR FPR ASR ACC LASR TPR FPR ASR ACC LASR TPR FPR ASR ACC LASR

0.1

0.01 95.0 2.0 9.3 83.0 84.1 100.0 3.8 9.0 83.7 88.2 100.0 2.5 13.5 83.1 100.0
0.025 95.0 2.2 9.4 83.9 88.0 100.0 4.1 9.0 83.5 93.1 100.0 2.7 13.7 83.3 100.0
0.05 95.0 2.1 9.6 83.9 90.9 100.0 4.5 9.2 83.4 96.8 100.0 2.6 13.9 83.2 100.0
0.08 97.0 2.3 9.5 83.8 91.2 100.0 4.2 9.1 83.3 99.4 100.0 2.4 14.0 83.0 100.0

0.5

0.01 95.0 2.0 9.3 88.8 84.9 100.0 3.0 8.8 88.6 89.1 100.0 2.1 14.3 88.7 100.0
0.025 95.0 2.1 9.4 88.0 89.3 100.0 3.1 8.9 88.8 94.0 100.0 2.2 14.4 88.9 100.0
0.05 97.0 2.0 9.4 88.1 91.2 100.0 3.2 8.9 88.9 97.2 100.0 2.0 14.5 88.8 100.0
0.08 98.0 2.2 9.5 88.2 92.6 100.0 3.4 9.0 88.7 100.0 100.0 2.3 14.6 88.6 100.0

0.9

0.01 95.0 2.2 9.2 91.0 85.3 100.0 2.0 9.0 92.0 91.0 100.0 1.8 13.2 91.7 100.0
0.025 95.0 2.4 9.3 91.2 90.6 100.0 2.3 9.1 92.2 95.9 100.0 2.0 13.3 91.8 100.0
0.05 98.0 2.3 9.3 91.1 93.5 100.0 2.1 9.1 92.1 98.2 100.0 1.9 13.1 91.8 100.0
0.08 98.0 2.5 9.4 91.0 94.1 100.0 2.5 9.2 91.9 100.0 100.0 2.1 13.4 91.6 100.0

neutralize backdoor effects when sufficient data is available. Considering the defender’s capability,
we report results based on a dataset size of 1000.

Visualization of Activation. Figure 11 shows the activation values on backdoor, OOD and clean
samples. The results show that the activation positions of OOD samples almost completely cover
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(a) Vanilla (b) PGD (c) Chameleon

(d) DarkFed (e) A3FL (f) PFedBA

Figure 9: Visualization of IOShift scores corresponding to Table 1.

(a) Vanilla / CIFAR (b) Vanilla / Tiny (c) A3FL / CIFAR (d) A3FL / Tiny

Figure 10: Performance of IOShift under different sizes of ID and OOD dataset.

that of the ground truth backdoor samples, indicating that we can use OOD samples to accurately
locate the neurons related to the backdoor samples.

Table 7: Performance of IOShift on different network archi-
tectures.

Attack VGG16 ResNet50
TPR FPR ASR TPR FPR ASR

Vanilla 94.0 3.2 9.2 94.0 10.3 13.4
PGD 92.0 3.6 10.1 91.0 10.1 12.1

Chameleon 94.0 2.9 9.6 93.0 9.2 13.2
DarkFed 98.0 3.3 9.7 100.0 9.5 8.6

A3FL 100.0 3.4 14.1 96.0 8.9 15.1
PFedBA 100.0 3.2 13.7 95.0 9.2 14.8

Different Network Architectures.
Table 7 shows the performance of
IOShift under different widely used
network architectures. Experiments
on VGG16 and ResNet50 demon-
strate that IOShift remains robust
when the model architecture changes.
This robustness comes from the fact
that IOShift relies on the underlying
principle of backdoor-induced activa-
tion pathways, which is independent
of network structures.

Removal Performance under A3FL attack. Figure 12 shows the comparison of accuracy of
global model and SOTA methods at different training epochs under A3FL attack. The results show
that IOShift outperforms other defenses, regardless of which training epoch.

Table 8: Running times.

Flame FDCR Indicator AlignIns IOShift
TPR (%) 0.0 44.0 73.0 40.2 100.0
FPR (%) 43.2 37.7 41.2 37.5 1.7
ASR (%) 99.3 74.8 78.5 76.2 6.5
Time (s) 5.2 10.1 19.6 6.4 12.1

Computational Costs. Table 8 shows the running time
of backdoor detection within one epoch of FL under Tiny-
ImageNet dataset and A3FL attack. The experiments
are conducted on a system equipped with an i7-9700K
CPU and a GeForce RTX 2060 Super GPU. Although
our method is not the fastest in terms of running time
(12 seconds), it achieves an exceptionally high TPR of
100.0% and an impressively low FPR of 1.7%, along with
a low ASR of 6.5%. Compared to other methods, IOShift
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Figure 11: Visualization of activation on 50 backdoor, OOD and clean samples.

(a) CIFAR10 (b) Tiny-ImageNet

Figure 12: Comparison of removal performance on Accuracy (ACC) under different global training
epochs and different defenses under A3FL attack.

demonstrates a superior balance between detection performance and robustness, making it a highly
effective solution for backdoor detection. IOShift consists of three major steps: Forward Inference
on ID and OOD samples, IOShift Score Computation (via averaging and subtraction) and Removal
under Fisher Information (on OOD data only).

Fortunately, IOShift supports scalability with respect to class number by allowing a larger batch
size during inference. The detailed complexity analysis are as followed: (1) Suppose the number
of classes is N , and we select KI = 20 labeled samples per class. For OOD data, we use MO

unlabeled samples. Therefore, total forward inference count is: KI ∗ N + MO. With batch size
B, the computational complexity is: O((KI ∗ N +MO)/B). (2) IOShift Score computation only
involves vector addition and averaging. Its costs are negligible compared to forward inference. (3)
Removal under Fisher Information computes Fisher Information on only OOD samples. Complexity
is approximately: O((MO ∗F )/B), where F is per-sample cost on Fisher information computation.
This step is independent of the number of classes because it only conduct adaptive pruning for
target class, whose number is usually small. When applied to larger-scale datasets, IOShift’s time
complexity grows linearly with the number of classes, approximately: O((KI ∗N)/B). However,
this cost can be significantly reduced by using a reasonable batch size (e.g., B = 256).
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