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I10Shift: Backdoor Defense via Model Bias Shift in Federated Learning
Supplementary Material

A BROADER IMPACTS

Federated learning, while offering strong data protection, is particularly vulnerable to sophisticated
security threats such as backdoor attacks. These attacks can lead to unforeseen and potentially
harmful consequences in real-world applications. This work provides a deep investigation into the
underlying mechanisms that contribute to the success of backdoor attacks in federated learning sys-
tems and introduces /OShift, a novel defense framework grounded in the observation of Backdoor-
Induced Model Bias Shift phenomenon. /OShift can be seamlessly integrated into existing federated
learning infrastructures, enhancing their security without compromising performance. By strength-
ening the resilience of federated learning against malicious interference, this work contributes to the
development of more robust and trustworthy distributed learning systems. Ultimately, it promotes
safer adoption of Al technologies and facilitates the secure flow of knowledge across different sec-
tors and institutions, yielding positive impacts on data-driven decision-making and collaborative
innovation across society.

Algorithm 1 Overview of /OShift
Input: Clients {C;} and their data { D; }, dataset size &, detection threshold « and £5.
Output: Global model at epoch t, Hg).

1: Server prepares ID dataset D; and OOD dataset Do with size s
2: for epoch e to T" do

3: Server selects M clients and distributes HS )
/* Client Local Training */
4: Client ¢ trains Gg +1) by D;, uploads updates gl(e)
/* Backdoor Detection */
Server computes ID bias score BS’ for D; and OOD bias score BSC for Do by Equation
1 and Equation 2
Server gets IOShift score 10 =|| BS® — BS! ||
if IO;s € I10° > a then
Label class j as target class
end if
/* Backdoor Removal */
10:  while 105 < 3 do

bd

o e

11: Server labels the class of samples in Dg as j
12: Server computes neuron importance by Equation 4
13: Server prunes top K neurons in g§e) and recalculates I Of

14: K+ +

15: end while

16: Server updates global model

17: end for

18: return Global model at epoch ¢: Gg).

B VISUALIZATION OF MODEL BIAS SCORES

Figure 7 and Figure 8 visualize the model bias and /OShift score under d = 0.5 and d = 1 (IID). The
results confirm that backdoors indeed shift /OShift score, regardless of whether the data distribution
is IID or Non-IID.

C OTHER EXPERIMENTS

Other Detection Performance. Table 5 shows the performance results with Multi-Krum Blanchard
etal. (2017), Deepsight Rieger et al. (2022), Foolsgold Fung et al. (2018), Rflabt Wang et al. (2022).
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Figure 7: Model bias scores on ID and OOD data, and their /OShift scores under Dirichlet parameter
d = 0.5 for benign and BadNets-implanted malicious models.
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Figure 8: Model bias scores on ID and OOD data, and their /OShift scores under Dirichlet parameter
d = 1 (IID) for benign and BadNets-implanted malicious models.

Multi-Krum Blanchard et al. (2017) selects client updates with minimal Euclidean distance to filter
out malicious contributions. Foolsgold Fung et al. (2018) differentiates attackers by assessing up-
date diversity, as benign clients typically exhibit greater variability. Deepsight Rieger et al. (2022)
identifies backdoor patterns by analyzing subtle model update behaviors, assuming that backdoored
models reflect distinct training data characteristics. RFLBAT Wang et al. (2022) enhances detec-
tion using dimensionality reduction to amplify differences between benign and malicious updates,
followed by a two-stage filtering process with outlier removal and cluster analysis.

Comparison of TPR, FPR and ASR under different defenses, d = 0.1. From the results, existing
anomaly detection-based methods struggle to identify malicious updates, with TPRs falling below
20%. Specifically, Multi-Krum and RFLBAT fail to detect any malicious updates in most cases.
This is because, under highly Non-IID settings, defining a reliable benign parameter space from
client updates becomes infeasible. Consequently, these methods fail in both detection and removal,
leading to persistently high ASRs. As for the FPR in benign update detection, most existing meth-
ods exhibit extremely high misclassification rates. In particular, Indicator and Multi-Krum exceed
40%, meaning that nearly half of the benign clients are excluded in each epoch, resulting in signifi-
cant resource waste. The relatively lower FPRs of Deepsight and RFLBAT stem from their limited
number of flagged anomalies. However, given their extremely low TPRs, the updates they classify
as anomalies are predominantly benign. Although Indicator achieves a moderately high TPR, it
suffers from an excessively high FPR. This occurs because, under low Dirichlet parameters, model
biases on benign samples strengthen the defense-oriented Indicator Task embedded by the defender
in advance.

Different Dirichlet Parameters d and Poisoned Learning Rate. Table 6 shows the performance
of IOShift under different backdoor attacks with varying Dirichlet parameters d and poisoned learn-
ing rate (plr). The attackers can manually adjust poisoned learning rate to control the magnitude of
malicious updates, enabling them to evade existing anomaly detection methods. The learning rate of
benign client is set to 0.05. Extensive experimental results show that regardless of plr adjustments,
as long as the attack success rate reaches 60%, IOShift maintains stable performance.

Visualization of I0Shift Scores. Figure 9 shows IOShift scores corresponding to Table 1. The
high /OShift score in target class 2 indicates why /OShift is able to succeed.

Different Sizes of OOD Dataset. Figure 10 shows the performance of /OShift under different
sizes of OOD dataset. The results show that as the size of OOD dataset increases, /OShift achieves a
higher TPR, lower FPR, and reduced ASR. This is because a larger OOD dataset allows for a more
precise separation of backdoor-induced biases from the model’s genuine features. As the sample
size exceeds 1000, the ASR is almost entirely suppressed, indicating that /OShift can effectively
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Table 5: Comparison of TPR, FPR and ASR under different defenses, d = 0.1.

Datasets Attack Epoch No Defense Multi-Krum Deepsight Foolsgold RFLBAT
ASR TPR [FPR | ASR [ TPR [ FPR [ ASR [ TPR | FPR | ASR | TPR | FPR | ASR
400 46.7 0.0 | 496 | 76.2 4.0 6.4 | 432 | 3.0 | 389 | 49.1 0.0 | 11.7 | 46.8
Vanilla 800 524 0.0 | 485 [ 80.2 7.0 89 [ 568 [ 3.0 [ 419 [ 525 0.0 5.7 53.5
1200 70.5 0.0 [ 4741 8.6 | 6.0 84 | 69.1 2.0 | 452 ] 60.7 0.0 50 [ 712
400 484 0.0 | 464 [ 748 5.0 49 1471 1.0 [ 402 49.1 0.0 [ 142 428
PGD 800 ST.1 0.0 [441 ] 772 3.0 77 1526 | 5.0 [ 457 ] 525 0.0 48 | 49.6
1200 67.3 0.0 | 453 ] 826 8.0 62 | 577 60 | 47.8 ] 60.7 0.0 7.6 66.4
400 50.2 0.0 | 434 ] 648 8.0 9.0 [ 470 [ 13.0 [ 39.1 | 422 0.0 [ 142 ] 428
Ct 1 800 62.6 00 | 463 | 78.0 5.0 79 [ 556 ] 29.0 | 427 | 525 0.0 4.8 59.6
CIFAR 1200 71.9 00 | 43.0 | 84.6 5.0 72 [ 67.1 ] 26.0 | 443 | 60.7 0.0 7.6 66.4
10 400 65.5 40 [ 436 | 805 [ 13.0 [ 6.1 547 [ 12.0 [ 40.6 | 60.6 9.0 4.4 | 60.0
DarkFed 800 80.1 50 [ 433 ] 856 | 120 | 65 | 724 | 470 | 452 | 674 | 4.0 8.0 | 782
1200 88.2 3.0 [ 442 ] 892 | 150 [ 69 | 784 [ 36.0 [ 439 | 714 7.0 6.8 82.4
400 94.5 0.0 | 435 ]100.0 | 9.0 88 [ 795 ] 7.0 ]399 [ 89.9 0.0 4.5 94.6
A3FL 800 96.9 0.0 | 422 ]100.0 | 70 [ 105 | 775 [ 5.0 [ 41.6 | 96.7 0.0 | 10.7 | 96.7
1200 100 0.0 | 441 ]100.0 | 9.0 [ 149 | 852 [ 2.0 [ 459 | 99.5 0.0 [ 119 | 984
400 90.1 0.0 [ 449 [100.0 | 10.0 [ 93 [ 745 [ 70 [ 324 | 832 0.0 50 | 887
PFedBA 800 935 0.0 [ 443 [100.0 | 6.0 [ I1.5 | 76.1 3.0 [ 439 ] 92.1 0.0 9.8 929
1200 100 0.0 | 408 [ 100.0 | 5.0 | 13.8 | 80.2 1.0 [ 42211000 0.0 | 145 [ 96.1
400 92.2 0.0 | 441 [100.0 | 7.0 85 [ 727 ] 40 [ 352 ] 83 0.0 4.6 90.1
Mirages 800 95.1 0.0 [ 445 100.0 | 40 [ 103 [ 779 [ 2.0 [ 46.1 | 942 0.0 8.5 94.0
1200 100 0.0 [ 40.7 [ 100.0 | 5.0 [ 12,5 | 82.1 1.0 [ 487 11000 0.0 | 129 | 988
800 57.5 0.0 | 50.0 | 69.4 1.0 40 | 442 | 00 | 135 | 589 0.0 3.1 58.5
Vanilla 1200 70.2 0.0 [ 496 [ 780 | 4.0 9.0 [ 658 [ 00 [ 128 ] 69.9 0.0 | 194 704
1600 81.4 0.0 | 464 | 842 40 [ 119 [ 728 [ 00 | 114 | 80.1 0.0 [ 175 829
800 54.1 0.0 | 495 ] 648 30 [ 129 [ 412 [ 0.0 [ 13.0 | 52.1 0.0 2.9 51.7
PGD 1200 67.8 0.0 [ 526 [ 729 5.0 84 [ 618 [ 0.0 162 [ 649 0.0 | 206 [ 679
1600 75.9 0.0 | 598 [ 815 30 [ 128 7 69.1 [ 0.0 | 121 [ 782 0.0 [ 159 [ 779
800 584 0.0 [ 492 [ 713 4.0 7.6 | 498 | 0.0 13.1 [ 56.4 0.0 6.7 63.2
Ct 1 1200 72.6 0.0 | 515 789 4.0 85 [ 674 ] 0.0 [ 128 [ 704 00 | 114 [ 753
Tiny- 1600 84.1 0.0 | 502 [ 859 5.0 88 [ 779 1 0.0 125 [ 821 0.0 | 125 [ 86.2
ImageNet 800 74.2 0.0 | 498 [ 783 9.0 9.1 70.6 [ 20.0 [ 142 | 68.2 0.0 4.6 73.1
DarkFed 1200 85.6 00 | 493 [ 82 | 11.0 | 84 [ 81.2 | 23.0 | 139 [ 769 0.0 6.2 85.9
1600 90.1 0.0 | 500 ] 934 | 10.0 [ 88 | 884 [ 26.0 [ 13.8 | 81.4 0.0 6.8 91.3
800 99.5 0.0 | 49.0 | 100 0.0 | 140 | 99.1 00 | 128 | 99.8 0.0 8.9 99.2
A3FL 1200 98.8 0.0 | 49.1 100 1.0 [ 132972 ] 00 | 11.5 [ 99.1 0.0 | 150 ] 99.0
1600 100.0 0.0 | 50.2 | 100 00 [ 1291989 | 00 | 139 ] 99.2 0.0 | 172 ] 99.8
800 96.2 0.0 | 50.8 100 00 [ 186 ] 962 | 00 | 122 ] 972 0.0 9.8 98.9
PFedBA 1200 97.6 0.0 | 50.1 100 20 | 175 [ 958 | 0.0 | 12.8 | 98.3 0.0 | 142 | 987
1600 99.5 0.0 | 51.8 100 1.0 [ 168 959 00 [ 11.5 ] 99.8 0.0 | 150 [ 989
800 98.5 0.0 | 50.1 100 00 [ 176 [ 981 | 0.0 | 141 [ 98.1 0.0 9.2 99.2
Mirages 1200 98.9 0.0 | 50.8 100 20 [ 18T [ 973 ] 0.0 [ 152 ] 99.2 0.0 [ 139 [ 99.8
1600 99.5 0.0 | 50.4 [ 100 1.0 [ 172983 | 00 [ 145 100 0.0 | 14.8 [ 100.0

Table 6: Comparison of TPR, FPR and ASR under different Dirichlet settings d and poisoned learn-
ing rates.

a | o Vanilla PGD A3FL
TPR | FPR | ASR | ACC | LASKR | TPR | FPR | ASK [ ACC | LASR | TPR | FPR [ ASR | ACC | LASK
0.01 [ 040 | 18 | 86 | 835 | 634 | 940 | 26 | 94 | 831 | 6.1 [ 1000 | 13 | 142 | 834 | 100.0
o | 0925 [ 050 [ 2T [ O1 | 833 | 802 | 950 | 28 | 06 | 833 | 782 | 1000 | 12 | 144 | 836 | 1000
" [005 [ 950 | 20 | 95 | 8501 | 856 | 960 | 3.1 | 99 | 833 | 846 | 1000 | 1.1 | 146 | 835 | 1000
0.08 [ 980 | 22 | 93 | 830 | 862 | 980 | 30 | 98 | 832 | 860 | 1000 | 1.0 | 148 | 853 | 100.0
0.01 [ 950 | 16 | 90 | 885 | 651 | 940 | 25 | 95 | 887 | 635 | 1000 | 1.3 | 140 | 880 | 100.0
o5 | 9925 [ 050 | 17 [ 92 | 881 | 814 | 040 | 27 | 06 | 880 | 801 | 1000 | 12 | 141 | 882 | 1000
= [005 [ 950 | 15 | 91 | 882 | 872 | 940 | 26 | 9.7 | 888 | 853 | 1000 | 12 | 142 | 88.1 | 1000
0.08 [ 990 | 18 | 93 | 880 | 881 | 960 | 2.8 | 98 | 889 | 7.1 | 1000 | I.I | 143 | §8.0 | 100.0
001 | 950 | .1 | 88 [ 920 | 662 | 960 | 19 | 85 | 919 | 641 | 1000 | 14 | 148 | 918 | 1000
09 | 0025 | 960 | 12 | 89 | 920 | 831 | 970 | 21 | 86 | OI.8 | 801 | 1000 | I3 | 149 | OL9 | 1000
" [T0.05 | 960 | 1.0 | 89 | 921 | 889 | 970 | 20 | 84 | 920 | 868 | 1000 | 15 | 150 | 919 | 1000
0.08 [ 1000 | 13 | 90 | 019 | 886 | 980 | 22 | 87 | 917 | 873 [ 1000 | 1.6 | 151 | 91.7 | 100.0

4] pir Chamel DarkFed PFedBA
TPR | FPR | ASR | ACC | LASKR | TPR | FPR | ASKR | ACC | LASR | TPR | FPR [ ASR | ACC | LASK
0.01 [ 950 | 20 | 93 | 830 | 841 | 1000 | 38 | 90 | 837 | 882 [ 1000 | 25 | 135 | 83.1 | 100.0
o | 9925 [ 050 [ 22 | 04 | 830 | 880 | 1000 | 41 | 0.0 | 835 | 031 | 1000 | 27 | 137 | 833 | 1000
" [005 [ 950 | 21 | 96 | 839 | 909 | 1000 | 45 | 92 | 834 | 968 | 1000 | 2.6 | 139 | 832 | 1000
0.08 [ 970 | 23 | 95 | 838 | 912 | 1000 | 42 | 91 | 833 | 994 | 1000 | 24 | 140 | §5.0 | 100.0
0.01 | 950 | 20 | 93 | 888 | 849 | 1000 | 3.0 | 88 | 886 | 9.1 | 1000 | 2.1 | 143 | 887 | 100.0
o5 | 0925 [ 050 | 21 | 04 | 880 | 893 [ 1000 | 3.1 | 80 | 888 | 040 | 1000 | 22 | 144 | 880 | 1000
> [005 [ 970 | 20 | 94 | 881 | 912 [ 1000 | 32 | 89 | 889 | 972 | 1000 | 2.0 | 145 | 888 | 1000
008 | 980 | 22 | 95 | 882 | 926 | 1000 | 34 | 9.0 | 887 | 1000 | 1000 | 23 | 146 | 886 | 100.0
001 [ 950 | 22 | 02 [ 010 | 853 | 1000 | 20 | 90 | 920 | 1.0 [ 1000 | 1.8 | 132 | 917 | 100.0
09 | 0025 | 050 | 24 | 93 | 012 | 906 | 1000 | 23 | 0.1 | 922 | 959 | 1000 | 20 | 133 | OL8 | 1000
" [0.05 | 980 | 23 | 93 | OLI | 935 | 1000 | 21 | 01 | 921 | 982 | 1000 | 19 | 131 | 918 | 1000
008 | 980 | 25 | 94 | 910 | 941 | 1000 | 25 | 92 | 919 | 1000 | 1000 | 21 | 134 | 91.6 | 100.0

neutralize backdoor effects when sufficient data is available. Considering the defender’s capability,
we report results based on a dataset size of 1000.

Visualization of Activation. Figure 11 shows the activation values on backdoor, OOD and clean
samples. The results show that the activation positions of OOD samples almost completely cover
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Figure 9: Visualization of /OShift scores corresponding to Table 1.
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Figure 10: Performance of /OShift under different sizes of ID and OOD dataset.

that of the ground truth backdoor samples, indicating that we can use OOD samples to accurately

locate

the neurons related to the backdoor samples.

Different Network Architectures.

Table

7 shows the performance of Table 7: Performance of IOShift on different network archi-

I0Shift under different widely used tectures.
network architectures. Experiments

on VGG16 and .ResNetS.O demon- o VGG16 ResNets0
strate that JOShift remains robust TPR_ [ FPR T ASR | TPR | FPR [ ASR
. Vanilla 94.0 32 9.2 94.0 10.3 13.4
when the model architecture changes. PGD 20 | 36 | 1001 | 910 | 100 | 121
1 Chameleon 94.0 2.9 9.6 93.0 9.2 13.2
This robu.stness. comes from the fact pameleon 1 w0 | 2 | o8 | 20 | o2 Lk
that /OShift relies on the underlying ASFL 1000 | 34 [ 141 | 960 | 89 [ 151
PRedBA | 1000 | 32 | 137 | 950 | 92 | 148

principle of backdoor-induced activa-

tion pathways, which is independent
of network structures.

Removal Performance under A3FL attack. Figure 12 shows the comparison of accuracy of
global model and SOTA methods at different training epochs under A3FL attack. The results show
that /OShift outperforms other defenses, regardless of which training epoch.

Computational Costs. Table 8 shows the running time
of backdoor detection within one epoch of FL under Tiny- Table 8: Running times.
ImageNet dataset and A3FL attack. The experiments

are conducted on a system equipped with an 17-9700K

Flame | FDCR | Indicator | AlignIns | JOShift

CPU and a GeForce RTX 2060 Super GPU. Although TPR(%)| 00 [ 440 | 730 402 | 1000

FPR (%) | 43.2 37.7 41.2 375 1.7

our method is not the fastest in terms of running time gt o5 745 T 785 e 53
(12 seconds), it achieves an exceptionally high TPR of Tme® [ 52 | 101 | 196 64 2.1
100.0% and an impressively low FPR of 1.7%, along with
alow ASR of 6.5%. Compared to other methods, /OShift
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Figure 11: Visualization of activation on 50 backdoor, OOD and clean samples.
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Figure 12: Comparison of removal performance on Accuracy (ACC) under different global training
epochs and different defenses under A3FL attack.

demonstrates a superior balance between detection performance and robustness, making it a highly
effective solution for backdoor detection. /OShift consists of three major steps: Forward Inference
on ID and OOD samples, IOShift Score Computation (via averaging and subtraction) and Removal
under Fisher Information (on OOD data only).

Fortunately, IOShift supports scalability with respect to class number by allowing a larger batch
size during inference. The detailed complexity analysis are as followed: (1) Suppose the number
of classes is NV, and we select K; = 20 labeled samples per class. For OOD data, we use Mo
unlabeled samples. Therefore, total forward inference count is: K; «+ N + Mp. With batch size
B, the computational complexity is: O((Ky * N + Mo)/B). (2) IOShift Score computation only
involves vector addition and averaging. Its costs are negligible compared to forward inference. (3)
Removal under Fisher Information computes Fisher Information on only OOD samples. Complexity
is approximately: O((Mo * F')/B), where F is per-sample cost on Fisher information computation.
This step is independent of the number of classes because it only conduct adaptive pruning for
target class, whose number is usually small. When applied to larger-scale datasets, IOShift’s time
complexity grows linearly with the number of classes, approximately: O((K; x N)/B). However,
this cost can be significantly reduced by using a reasonable batch size (e.g., B = 256).

17



