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ABSTRACT

Score-based diffusion models, which generate new data by learning to reverse
a diffusion process that perturbs data from the target distribution into noise,
have achieved remarkable success across various generative tasks. Despite
their superior empirical performance, existing theoretical guarantees are often
constrained by stringent assumptions or suboptimal convergence rates. In
this paper, we establish a fast convergence theory for the denoising diffusion
probabilistic model (DDPM), a widely used SDE-based sampler, under minimal
assumptions. Our analysis shows that, provided ℓ2-accurate estimates of the
score functions, the total variation distance between the target and generated
distributions is upper bounded by O(d/T ) (ignoring logarithmic factors), where d
is the data dimensionality and T is the number of steps. This result holds for any
target distribution with finite first-order moment. To our knowledge, this improves
upon existing convergence theory for the DDPM sampler, while imposing minimal
assumptions on the target data distribution and score estimates. This is achieved
through a novel set of analytical tools that provides a fine-grained characterization
of how the error propagates at each step of the reverse process.

1 INTRODUCTION

Score-based generative models (SGMs) have emerged as a powerful class of generative frameworks,
capable of learning and sampling from complex data distributions (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2021b; Song & Ermon, 2019; Dhariwal & Nichol, 2021). These models,
including Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) and Denoising
Diffusion Implicit Models (DDIM) (Song et al., 2021a), operate by gradually transforming a simple
noise-like distribution (e.g., standard Gaussian) into a target data distribution through a series of
diffusion steps. This transformation is achieved by learning a sequence of denoising processes
governed by score functions, which estimate the gradient of the log-density of the data at each
step. SGMs have demonstrated remarkable success in various generative tasks, including image
generation (Rombach et al., 2022; Ramesh et al., 2022; Saharia et al., 2022), audio generation (Kong
et al., 2021), video generation (Villegas et al., 2022), and molecular design (Hoogeboom et al.,
2022). See e.g., Yang et al. (2023); Croitoru et al. (2023) for overviews of recent development.

At the core of SGMs are two stochastic processes: a forward process, which progressively adds
noise to the data,

X0 → X1 → · · · → XT ,

where X0 is drawn from the target data distribution pdata and is gradually transformed into XT that
resembles standard Gaussian noise; and a reverse process,

YT → YT−1 → · · · → Y0,
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which starts from pure Gaussian noise YT and sequentially converts it into Y0 that closely mimics
the target data distribution pdata. At each step, the distributions of Yt and Xt are kept close. The key
challenge lies in constructing this reverse process effectively to ensure accurate sampling from the
target distribution.

Motivated by classical results on the time-reversal of stochastic differential equations (SDEs)
(Anderson, 1982; Haussmann & Pardoux, 1986), SGMs construct the reverse process using the
gradients of the log marginal density of the forward process, known as score functions. At each
step, Yt−1 is generated from Yt with the help of the score function ∇ log pXt

(·), where pXt
denotes

the density of Xt. Both the DDPM sampler (Ho et al., 2020) and the DDIM sampler (Song et al.,
2021a) follow this denoising framework, with the key distinction being whether additional random
noise is injected when generating each Yt−1. Although the score functions are not known explicitly,
they are pre-trained using large neural networks through score-matching techniques (Hyvärinen,
2005; 2007; Vincent, 2011; Song & Ermon, 2019).

Despite their impressive empirical success, the theoretical foundations of diffusion models remain
relatively underdeveloped. Early studies on the convergence of SGMs (De Bortoli et al., 2021;
De Bortoli, 2022; Liu et al., 2022; Pidstrigach, 2022; Block et al., 2020) did not provide polynomial
convergence guarantees. In recent years, a line of works have explored the convergence of the
generated distribution to the target distribution, treating the score-matching step as a black box and
focusing on the effects of the number of steps T and the score estimation error on the convergence of
the sampling phase (Chen et al., 2023c;a; 2024; Benton et al., 2023a; Lee et al., 2022; 2023; Li et al.,
2023; 2024b; Li & Yan, 2024; Gao & Zhu, 2024; Huang et al., 2024; Tang & Zhao, 2024; Liang
et al., 2024; Chen et al., 2023d). Recent studies have investigated the performance guarantees of
SGMs in the presence of low-dimensional structures (e.g., Li & Yan (2024); Tang & Yang (2024);
Chen et al. (2023b); Wang et al. (2024)) and the acceleration of SGMs (e.g., Li et al. (2024a);
Liang et al. (2024)). Following this general avenue, the goal of this paper is to establish a sharp
convergence theory for diffusion models with minimal assumptions.

Prior convergence guarantees. In recent years, a flurry of work has emerged on the convergence
guarantees for the DDPM and DDIM type samplers. However, these prior studies fall short of
providing a fully satisfactory convergence theory due to at least one of the following three obstacles:

• Stringent data assumptions. Earlier works, such as Lee et al. (2022), required the target data
distribution to satisfy the log-Sobolev inequality. Similarly, Chen et al. (2023c); Lee et al. (2023);
Chen et al. (2024; 2023d) assumed that the score functions along the forward process must satisfy
a Lipschitz smoothness condition. More recent work Gao & Zhu (2024) relied on the strong log-
concavity assumption of the target distribution to establish convergence guarantees in Wasserstein
distance. These assumptions are often impractical to verify and may not hold for complex
distributions commonly seen in image data. Some newer studies on the DDPM sampler (e.g.,
Chen et al. (2023a); Benton et al. (2023a)) and the DDIM sampler (e.g., Li et al. (2024b)) have
relaxed these stringent assumptions, and their results applied to more general target distributions
with bounded second-order moments or sufficiently large support.

• Slow convergence rate. We follow most existing works and focus on the total variation (TV)
distance between the target and the generated distributions.1 Let T be the number of steps and
d be the dimensionality of the data. For the DDPM sampler, Chen et al. (2023c) established a
convergence rate of O(L

√
(d+M2)/T ), where L is the Lipschitz constant of the score functions

along the forward process, and M2 is the second-order moment of the target distribution. Later,
Chen et al. (2023a) lifted the Lipschitz condition, but this came at the cost of a rate O(d/

√
T )

with worse dimension dependence. The state-of-the-art result for the DDPM samplers is due to
Benton et al. (2023a), achieving a convergence rate of O

√
d/T ). However, this is still slower than

the convergence rate for the DDIM sampler, achieved in Li et al. (2024b), which attains O(d/T )
in the regime T ≫ d2.

• Additional score estimation requirements. Convergence theory for diffusion models must also
account for the impact of imperfect score estimation on performance. While recent results for the
DDPM sampler (Chen et al., 2023c;a; Benton et al., 2023a) require only ℓ2-accurate score function

1Convergence rates in Kullback-Leibler (KL) divergence in Chen et al. (2023a); Benton et al. (2023a) are
transferred to TV distance using Pinsker’s inequality, because the KL divergence is not a distance.
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Sampler
Convergence rate Data assumption Requirements on score
(in TV distance) (X0 ∼ pdata, s⋆t = ∇ log pXt ) estimates st

DDPM
L
√
d/T

L-Lipschitz s⋆t ;
st ≈ s⋆t in L2(pXt)(Chen et al., 2023c) E[∥X0∥22] < ∞

DDPM √
d2/T E[∥X0∥22] < ∞ st ≈ s⋆t in L2(pXt

)
(Chen et al., 2023a)

DDPM √
d/T E[∥X0∥22] < ∞ st ≈ s⋆t in L2(pXt

)
(Benton et al., 2023a)

DDIM
L2

√
d/T

L-Lipschitz s⋆t ; L-Lipschitz st;
(Chen et al., 2024) E[∥X0∥22] < ∞ st ≈ s⋆t in L2(pXt

)

DDIM
d2/T + d6/T 2 bounded support

st ≈ s⋆t in L2(pXt);
(Li et al., 2023) Jst ≈ Js⋆t in L2(pXt

)

DDIM
d/T when T ≳ d2 bounded support

st ≈ s⋆t in L2(pXt
);

(Li et al., 2024b) Jst ≈ Js⋆t in L2(pXt
)

DDPM
(this paper)

d/T E[∥X0∥2] < ∞ st ≈ s⋆t in L2(pXt
)

Table 1: Comparison with prior convergence guarantees for diffusion models (ignoring log factors).
Convergence rates in KL divergence are transferred to TV distance using Pinsker’s inequality. Here
Jf : Rd → Rd×d denotes the Jacobian matrix of a function f : Rd → Rd.

estimates, another line of work on the DDIM sampler (Li et al., 2023; 2024b; Huang et al.,
2024) achieves faster convergence rates, albeit under stricter requirements for score estimates.
Specifically, Li et al. (2023; 2024b) require not only that the score estimates be close to the true
score functions, but also that the Jacobian of the score estimates be close to the Jacobian of the
true score functions, which is a significantly stronger condition. Additionally, Huang et al. (2024)
assumes higher-order smoothness in the score estimates.

From this discussion, it is evident that while the state-of-the-art convergence rates for the DDIM
sampler surpass those for the DDPM sampler, they also rely on more restrictive assumptions. This
motivates us to think whether it is possible to achieve the best of both worlds, namely,

Can we establish a convergence theory for diffusion models that achieves a fast
convergence rate under minimal data and score estimation assumptions?

As noted in Li et al. (2024b), a counterexample demonstrates that ℓ2-accurate score estimation alone
is insufficient for convergence of the DDIM sampler under TV distance. The current paper answers
this question affirmatively by focusing on the DDPM sampler.

Our contributions. This paper develops a fast convergence theory for the DDPM sampler under
minimal assumptions. We show that the TV distance between the generated and target distributions
is bounded by:

d

T
+

√√√√ 1

T

T∑
t=1

E
[∥∥st(Xt)− s⋆t (Xt)

∥∥2
2

]
,

up to logarithmic factors. The first term reflects the discretization error, while the second term
accounts for score estimation error. Compared to the two most relevant works (Benton et al., 2023a;
Li et al., 2024b) , which provide state-of-the-art results for the DDPM and DDIM samplers, our
main contributions are as follows:

• O(d/T ) convergence rate. Under perfect score function estimation, we establish an O(d/T )
convergence rate for the DDPM sampler in TV distance, improving on the previous best rate of
O(

√
d/T ) from Benton et al. (2023a). Our result also matches the convergence rate of the DDIM

sampler achieved in Li et al. (2024b), but is more general, as their result only holds when T ≫ d2,
while ours applies for arbitrary T and d.
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• Minimal assumptions. Our theory requires only that the target distribution has finite first-order
moment, which, to the best of our knowledge, is the weakest data assumption in the current
literature. Additionally, we require only ℓ2-accurate score estimates, which is a significantly
weaker condition than the Jacobian accuracy required by Li et al. (2023; 2024b).

In summary, our results achieve the fastest convergence rate in the literature for both DDPM and
DDIM samplers while requiring minimal assumptions. A comparative summary with prior work is
presented in Table 1.

2 PROBLEM SET-UP

In this section, we provide an overview of the diffusion model and the DDPM sampler.

Forward process. We consider a Markov process in Rd starting from X0 ∼ pdata, evolving
according to the recursion:

Xt =
√
1− βtXt−1 +

√
βtWt (t = 1, . . . , T ), (2.1)

where W1, . . . ,WT are independent draws from N (0, Id), and β1, . . . , βt ∈ (0, 1) are the learning
rates. For each 1 ≤ t ≤ T , define αt := 1− βt and αt :=

∏t
i=1 αi. This allows us to express Xt in

closed form as:
Xt =

√
αtX0 +

√
1− αt W t where W t ∼ N (0, Id). (2.2)

We select the learning rates such that (i) βt is small for every 1 ≤ t ≤ T ; and (ii) αT is vanishingly
small, ensuring that the distribution of XT is exceedingly close to N (0, Id). In this paper, we adopt
the following learning rate schedule

β1 =
1

T c0
, βt+1 =

c1 log T

T
min

{
β1

(
1 +

c1 log T

T

)t

, 1

}
(t = 1, . . . , T − 1), (2.3)

for sufficiently large constants c0, c1 > 0. This schedule is commonly used in the diffusion model
literature (see, e.g., Li et al. (2023; 2024b)), although the results in this paper hold for any learning
rate schedule satisfying the conditions in Lemma 7.

Reverse process. The crucial elements in constructing the reverse process are the score functions
associated with the marginal distributions of the forward diffusion process (2.1). For each t =
1, . . . , T , we define the score function as:

s⋆t (x) := ∇ log pXt
(x) (t = 1, . . . , T ),

where pXt(·) represents the smooth probability density of Xt. Since the true score functions are
typically unknown, we assume access to estimates st(·) for each s⋆t (·). To quantify the error in these
estimates, we define the averaged ℓ2 score estimation error as:

ε2score :=
1

T

T∑
t=1

E
[
∥st(Xt)− s⋆t (Xt)∥22

]
.

This error term quantifies the effect of imperfect score approximation in our theoretical analysis.
Using these score estimates, we can construct the reverse process, which starts from YT ∼ N (0, Id)
and evolves as: and proceeds as

Yt−1 =
1

√
αt

(
Yt + (1− αt)st(Yt) +

√
1− αtZt

)
(t = T, . . . , 1), (2.4)

where Z1, . . . , ZT are independent draws from N (0, Id). This is the popular DDPM sampler (Ho
et al., 2020). Although not the primary focus of this paper, we also include the definition of another
widely-used ODE-based sampler (Song et al., 2021a):

Yt−1 =
1

√
αt

(
Yt +

1− αt

2
st(Yt)

)
(t = T, . . . , 1), YT ∼ N (0, Id), (2.5)

which frequently appears in our discussions.
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3 MAIN RESULTS

In this section, we will establish a fast convergence theory for the DDPM sampler under minimal
assumptions. Before proceeding, we introduce the only data assumption that our theory requires.
Assumption 1. The target distribution pdata has finite first-order moment. Furthermore, we assume
that there exists some constant cM > 0 such that

M1 := E[∥X0∥2] ≤ T cM .

Here we require the first-order moment M1 to be at most polynomially large in T , which allows
cleaner and more concise result that avoids unnecessary technical complicacy. Since cM > 0 can be
arbitrarily large, we allow the target data distribution to have exceedingly large first-order moment,
which is a mild assumption.

Now we are positioned to present our convergence theory for the DDPM sampler.
Theorem 1. Suppose that Assumption 1 holds. There exists some universal constant c > 0 such
that the DDPM sampler (2.4) satisfies

TV(pX1
, pY1

) ≤ c
d log3 T

T
+ cεscore

√
log T , (3.1)

The two terms in the error bound (3.1) correspond to discretization error and score matching error,
respectively. A few remarks are in order.

• Sharp convergence guarantees. Consider the setting with perfect score estimation (i.e., εscore = 0)
and ignore any log factor. Theorem 1 reveals that the DDPM sampler converges at the order of
O(d/T ) in total variation distance, suggesting an iteration complexity of order d/ε for achieving
ε-accuracy, for any nontrivial target accuracy level ε ∈ (0, 1). This improves the state-of-the-art
convergence rate O(

√
d/T ) in TV distance for the DDPM sampler (Benton et al., 2023a). It is

important to note that the bound in Benton et al. (2023a) was originally stated in terms of KL
divergence, and here we apply Pinsker’s inequality to translate their result into TV distance. Our
theory does not, however, provide improved convergence rates under KL divergence. Turning to
the ODE-based sampler (2.5), Li et al. (2024b) achieved the same O(d/T ) convergence rate, but
only in the regime T ≫ d2. Our result holds for general T and d, including the regime T ≍ d,
hence is more general.

• Stability vis-à-vis imperfect score estimation. The score estimation error in (3.1) is linear in εscore,
which suggests that the performance of the DDPM sampler degrades gracefully when the score
estimates become less accurate. In other words, our theory holds with ℓ2-accurate score estimates,
consistent with recent work on the DDPM sampler (Chen et al., 2023c;a; Benton et al., 2023a).
In comparison, the convergence bound in Li et al. (2024b) for the ODE-based sampler reads

TV(pX1
, pY1

) ≲
d

T
+
√
dεscore+dεJacobi where εJacobi :=

1

T

T∑
t=1

E
[∥∥∥∂s⋆t

∂x
(Xt)−

∂st
∂x

(Xt)
∥∥∥],

(3.2)
which exhibits worse stability against imperfect score estimation. First, the term involving εscore in
their bound (3.2) is amplified by a factor of

√
d compared to our bound (3.1). Second, their bound

includes an additional term proportional to εJacobi, meaning their theory requires the Jacobian of
st to closely match that of s⋆t , which is a more stringent requirement.

• Minimal data assumption. The only data assumption is Assumption 1, which requires that the
first-order moment M1 of the target distribution is at most polynomially large in T . In comparison,
Assumption 1 is weaker than the finite second-order moment condition in e.g., Chen et al.
(2023c;a); Benton et al. (2023a) and bounded support condition in e.g., Li et al. (2023; 2024b). In
fact, by slightly modifying the proof, we can further relax Assumption 1 to accommodate target
data distributions with polynomially large δ-th order moment

Mδ :=
(
E[∥X0∥δ2]

)1/δ ≤ T cM ,

for any constant δ > 0. The same bound (3.1) holds, provided that T ≫ max{1, δ−1}d log2 T .
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• Error metric. Theorem 1 provides convergence guarantees to pX1
instead of the target data

distribution (i.e., the distribution of X0), which is similar to the results in e.g., Chen et al. (2023a);
Benton et al. (2023a); Li et al. (2023; 2024b). On one hand, since X1 =

√
1− β1X0 +

√
β1W1

and β1 = T−c0 is vanishingly small, the distributions of X1 and X0 are exceedingly close. Hence
TV(pX1

, pY1
) is a valid error metric. On the other hand, the smoothness of pX1

allows us to
circumvent imposing any Lipschitz assumption on the score functions, which provides technical
benefit for the analysis.

It is worth noting that most previous studies on the convergence of the DDPM sampler (e.g., Chen
et al. (2023c;a); Benton et al. (2023a); Li et al. (2023); Li & Yan (2024)) typically begin by upper
bounding the squared TV error using the KL divergence of the forward process from the reverse
process. This is done through the following argument:

TV2(pX1
, pY1

) ≤ 1

2
KL (pX1

∥pY1
) ≤ 1

2
KL (pX1,...,XT

∥pY1,...,YT
) , (3.3)

where the first inequality follows from Pinsker’s inequality and the second from the data-processing
inequality. The KL divergence on the right-hand side of (3.3) is more tractable and can be further
bounded, for example, using Girsanov’s theorem. In fact, (Chen et al., 2023c, Theorem 7) provides
theoretical evidence that the KL divergence between the forward and reverse processes is lower
bound by Ω(d/T ), even when the target distribution is as simple as a standard Gaussian and perfect
score estimates are available. This suggests that such an approach cannot yield error bounds better
than O(

√
d/T ) in general.

To achieve a sharper convergence rate, we take a different approach by directly analyzing the total
variation error without resorting to intermediate KL divergence bounds. Specifically, we establish a
fine-grained recursive relation that tracks how the error TV(pXt , pYt) propagates through the reverse
process as t decreases from T to 1. See Section 4 for more details.

4 PROOF OF THEOREM 1

4.1 PRELIMINARIES

For each 1 ≤ t ≤ T and any x ∈ Rd, it is known that the score function s⋆t (x) associated with pXt

admits the following expression

s⋆t (x) = − 1

1− αt

∫
pX0|Xt

(x0 |x)
(
x−

√
αtx0

)
dx0 =: − 1

1− αt
gt(x).

Let Jt(x) = ∂gt(x)/∂x be the Jacobian matrix of gt(x), which can be expressed as

Jt(x) =
1

1− αt

{(∫
x0

pX0|Xt
(x0 |x)

(
x−

√
αtx0

)
dx0

)(∫
x0

pX0|Xt
(x0 |x)

(
x−

√
αtx0

)
dx0

)⊤

−
∫
x0

pX0|Xt
(x0 |x)

(
x−

√
αtx0

)(
x−

√
αtx0

)⊤
dx0

}
+ I. (4.1)

It is straightforward to check that I − Jt(xt) ⪰ 0. The following lemma will be useful in the
analysis.
Lemma 1. Suppose that x ∈ Rd satisfies − log pXt

(x) ≤ θd log T for any given θ ≥ 1. Then we
have

∥s⋆t (x)∥2 ≤ 5

√
(θ + c0)d log T

1− αt
and Tr(I − Jt(x)) ≤ 12(θ + c0)d log T,

where the constant c0 > 0 is defined in (2.3). In addition, there exists universal constant C0 > 0
such that

T∑
t=2

1− αt

1− αt

∫
xt

∥Jt(xt)∥2F pXt(xt)dxt ≤ C0d log T.

Proof. See Appendix A.1.
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For some sufficiently large constants C1, C2 > 0, we define for each 2 ≤ t ≤ T the set

Et,1 :=
{
xt : − log pXt

(xt) ≤ C1d log T, ∥xt∥2 ≤
√
αtT

2cR + C2

√
d(1− αt) log T

}
(4.2)

Define the extended d-dimensional Euclidean space Rd ∪ {∞} by adding a point ∞ to Rd. From
now on, the random vectors can take value in Rd ∪ {∞}, namely, they can be constructed in the
following way:

X =

{
X ′, with probability θ,

∞, with probability 1− θ,

where θ ∈ [0, 1] and X ′ is a random vector in Rd in the usual sense. If X ′ has a density, denoted by
pX′(·), then the generalized density of X is

pX(x) = θpX′(x)1{x ∈ Rd}+ (1− θ)δ∞.

To simplify presentation, we will abbreviate generalized density to density.

4.2 STEP 1: INTRODUCING AUXILIARY SEQUENCES

We first define an auxiliary reverse process that uses the true score function:

Y ⋆
T ∼ N (0, Id), Y ⋆

t−1 =
1

√
αt

(
Y ⋆
t + (1− αt)s

⋆
t (Y

⋆
t ) +

√
1− αtZt

)
for t = T, . . . , 1. (4.3)

To control discretization error, we introduce an auxiliary sequence {Y t : t = T, . . . , 1} along with
intermediate variables {Y −

t : t = T, . . . , 1} as follows.

1. (Initialization) Define Y
−
T = YT if YT ∈ ET,1 and Y

−
T = ∞ otherwise. The density of Y

−
T is

p
Y

−
T
(y−T ) = pYT

(y−T )1
{
y−T ∈ ET,1

}
+

∫
y∈Ec

T,1

pYT
(y)dyδ∞. (4.4a)

2. (Transition from Y
−
t to Y t) For t = T, . . . , 1, the conditional density of Y t given Y

−
t = y−t is

p
Y t|Y

−
t
(yt | y−t ) = min

{
pXt

(y−t )

p
Y

−
t
(y−t )

, 1

}
δy−

t
+

(
1−min

{
pXt

(y−t )

p
Y

−
t
(y−t )

, 1

})
δ∞. (4.4b)

3. (Transition from Y t to Y
−
t−1) For t = T, . . . , 2, the conditional density of Y

−
t−1 given Y t = yt is

defined as follows: if yt ∈ Et,1, then

p
Y

−
t−1|Y t

(y−t−1 | yt) = pY ⋆
t−1|Y ⋆

t
(y−t−1 | yt); (4.4c)

otherwise, we let p
Y

−
t−1|Y t

(y−t−1 | yt) = δ∞.

This defines a Markov chain

YT → Y
−
T → Y T → Y

−
T−1 → Y T−1 → · · · → Y

−
1 → Y 1. (4.5)

An important consequence of the construction (4.4b) is that, for any yt ̸= ∞,

pY t
(yt) =

∫
Rd

p
Y t|Y

−
t
(yt | y−t )pY −

t
(y−t )dy

−
t = min

{
pXt(yt), pY −

t
(yt)

}
. (4.6)

To control estimation error, we introduce another auxiliary sequence {Ŷt : t = T, . . . , 1} along with
intermediate variables {Ŷ −

t : t = T, . . . , 1} as follows.

1. (Initialization) Let Ŷ −
T = Y

−
T .

2. (Transition from Ŷ −
t to Ŷt) For t = T, . . . , 1, the conditional density of Ŷt given Ŷ −

t = y−t is

pŶt|Ŷ −
t
(yt | y−t ) = p

Y t|Y
−
t
(yt | y−t ). (4.7a)
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3. (Transition from Ŷt to Ŷ −
t−1) For t = T, . . . , 2, the conditional density of Ŷ −

t−1 given Ŷt = yt is
defined as follows: if yt ∈ Et,1, then

pŶ −
t−1|Ŷt

(y−t−1 | yt) = pYt−1|Yt
(y−t−1 | yt); (4.7b)

otherwise, we let pŶ −
t−1|Ŷt

(y−t−1 | yt) = δ∞.

This defines another Markov chain

YT → Ŷ −
T → ŶT → Ŷ −

T−1 → ŶT−1 → · · · → Ŷ −
1 → Ŷ1, (4.8)

which is similar to (4.5) except that now the transitions from Ŷt to Ŷ −
t−1 are constructed using the

estimated score functions. We can use induction to show that

pYt(yt) ≥ pŶt
(yt), ∀ yt ̸= ∞ (4.9)

holds for all t = T, . . . , 1. First, it is straightforward to check that (4.9) holds for t = T . Suppose
that (4.9) holds for t+ 1. Then for any yt ̸= ∞, we have

pŶt
(yt) =

∫
Rd

pŶt|Ŷ −
t
(yt | y−t )pŶ −

t
(y−t )dy

−
t

(i)
= min

{
pXt

(yt)/pY −
t
(yt), 1

}
pŶ −

t
(yt)

≤ pŶ −
t
(yt) =

∫
Rd

pŶ −
t |Ŷt+1

(yt | yt+1)pŶt+1
(yt+1)dyt+1

(ii)
≤

∫
pYt|Yt+1

(yt | yt+1)pYt+1(yt+1)dyt+1 = pYt(yt).

Here step (i) follows from (4.7a) and (4.4b), while step (ii) follows from the induction hypothesis
and (4.7b).

4.3 STEP 2: CONTROLLING DISCRETIZATION ERROR

In this section, we will bound the total variation distance between pX1
and pY 1

. For each t =
T, . . . , 1, let

∆t(x) := pXt(x)− pY t
(x), ∀x ∈ Rd. (4.10)

We emphasize that ∆t(·) is not defined at ∞. In view of (4.6), we know that ∆t(xt) ≥ 0 for any
xt ̸= ∞. The following lemma characterizes the propagation of the error

∫
∆t(x)dx through the

reverse process.
Lemma 2. There exists some universal constant C4 > 0 such that, for t = T, . . . , 2,∫

∆t−1(x)dx ≤
∫

∆t(x)dx+ C4

(1− αt

1− αt

)2
∫
xt∈Et,1

(
d log T + ∥Jt(xt)∥2F

)
pXt(xt)dxt + T−3.

In addition, we have
∫
∆T (x)dx ≤ T−4.

Proof. See Appendix A.2.

We can apply Lemma 2 recursively to achieve∫
∆1(x)dx ≤

∫
∆T (x)dx+

T∑
t=2

[
C4

(1− αt

1− αt

)2
∫
xt∈Et,1

(
d log T + ∥Jt(xt)∥2F

)
pXt

(xt)dxt + T−3
]

(a)
≤ 8c1C4

log T

T

T∑
t=2

1− αt

1− αt

∫
xt∈Et,1

∥Jt(xt)∥2FpXt(xt)dxt + 64c21C4
d log3 T

T
+ T−2

(b)
≤ 8c1C4C0

d log2 T

T
+ 64c21C4

d log3 T

T
+ T−3 ≤ C5

d log3 T

T
.

Here step (a) utilizes Lemma 7; step (b) follows from Lemma 1; while step (c) holds provided that
C5 ≫ c21C4C0. This further implies that

TV(pX1
, pY 1

) =

∫
pX1

(x)>pY 1
(x)

(
pX1

(x)− pY 1
(x)

)
dx =

∫
∆1(x)dx ≤ C5

d log3 T

T
. (4.11)
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4.4 STEP 3: CONTROLLING ESTIMATION ERROR

In this section, we will bound the total variation distance between pY1
and pY 1

. Note that

TV
(
pY1

, pY 1

)
=

∫
Rd

(
pY 1

(x)− pY1
(x)

)
1
{
pY 1

(x) > pY1
(x)

}
dx+ P

(
Y 1 = ∞

)
(i)
≤

∫
Rd

(
pY 1

(x)− pŶ1
(x)

)
1
{
pY 1

(x) > pŶ1
(x)

}
dx+ P

(
Y 1 = ∞

)
(ii)
≤ TV

(
pY 1

, pŶ1

)
+ TV

(
pX1 , pY 1

) (iii)
≤

√
KL

(
pY 1

∥pŶ1

)
+ C5

d log3 T

T
. (4.12)

Here step (i) follows from (4.9); step (ii) follows from P(Y 1 = ∞) ≤ TV(pX1
, pY 1

), which holds
since X1 does not take value at ∞; step (iii) utilizes Pinsker’s inequality and (4.11). Hence it suffices
to bound KL(pY 1

∥ pŶ1
), which can be decomposed into

KL
(
pY 1

∥pŶ1

) (a)
≤ KL

(
p
Y 1,Y

−
1 ,...,Y T ,Y

−
T
∥pŶ1,Ŷ

−
1 ,...,ŶT ,Ŷ −

T

)
(b)
= KL

(
p
Y

−
T
∥pŶ −

T

)
+

T∑
t=2

E
xt∼pY t

[
KL

(
p
Y

−
t−1|Y t=xt

∥pŶ −
t−1|Ŷt=xt

)]
+

T∑
t=1

E
xt∼p

Y
−
t

[
KL

(
p
Y t|Y

−
t =xt

∥pŶt|Ŷ −
t =xt

)]
(c)
=

T∑
t=2

Ext∼pY t

[
KL

(
p
Y

−
t−1|Y t=xt

∥pŶ −
t−1|Ŷt=xt

)]
. (4.13)

Here step (a) follows from the data-processing inequality; step (b) uses the chain rule of KL
divergence, where we use the fact that (4.5) and (4.8) are both Markov chains; step (c) follows
from the facts that, by construction, Y

−
T = Ŷ −

T , and for any x ̸= ∞, the conditional distributions of
Ŷt given Ŷ −

t = x and Y t given Y
−
t = x are identical. For any xt ∈ Et,1, we have

KL
(
p
Y

−
t−1|Y t=xt

∥pŶ −
t−1|Ŷt=xt

) (i)
=

1− αt

2
∥st(xt)− s⋆t (xt)∥22

(ii)
≤ c1 log T

2T
∥st(xt)− s⋆t (xt)∥22. (4.14)

Here step (i) follows from the transition probability (4.4c) and (4.7b), which give

Y
−
t−1|Y t = xt ∼ N

(
xt + (1− αt)s

⋆
t (xt)√

αt
,
1− αt

αt
Id

)
and

Ŷ −
t−1|Ŷt = xt ∼ N

(
xt + (1− αt)st(xt)√

αt
,
1− αt

αt
Id

)
,

and the KL divergence between two Gaussian measures can be computed in closed-form; step (ii)
utilizes Lemma 7. On the other hand, for any xt ∈ Ec

t,1, we have

KL
(
p
Y

−
t−1|Y t=xt

∥ pŶ −
t−1|Ŷt=xt

)
= 0. (4.15)

Therefore we have

KL
(
pY 1

∥ pŶ1

) (i)
≤

T∑
t=2

Ext∼pXt

[
KL

(
p
Y

−
t−1|Y t=xt

∥ pŶ −
t−1|Ŷt=xt

)] (ii)
≤ c1

2
ε2score log T. (4.16)

Here step (i) follows from (4.13) and the relation pY t
(x) ≤ pXt(x) for any x ̸= ∞ (see (4.6)); while

step (ii) follows from (4.14) and (4.15). Substitution of the bound (4.16) into (4.12) yields

TV
(
pY1

, pY 1

)
≤

√
c1
2
log Tεscore + C5

d log3 T

T
. (4.17)

Taking the two bounds (4.11) and (4.17) collectively, we achieve the desired result

TV(pX1
, pY1

) ≤ TV(pX1
, pY 1

) + TV
(
pY1

, pY 1

)
≤ C

d log3 T

T
+ Cεscore

√
log T

for some constant C ≫ √
c1 + C5.
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5 DISCUSSION

In this paper, we establish an O(d/T ) convergence theory for the DDPM sampler, assuming access
to ℓ2-accurate score estimates. This significantly improves upon the state-of-the-art convergence rate
of O(

√
d/T ) in Benton et al. (2023a). Compared to the recent work Li et al. (2024b) for another

ODE-based sampler, which also achieves a rate of O(d/T ), our result relaxes the stringent score
estimation requirements, such as the need for the Jacobian of the score estimates to closely match
that of the true score functions.

This work opens several promising directions for future research. First, it remains unclear whether
the O(d/T ) is tight for the DDPM sampler; it would be of interest to develop lower bounds on
certain hard instances. Additionally, when the target data distribution is concentrated on or near
low-dimensional manifolds embedded in a higher-dimensional space — such as in the case of image
data — an important question is whether a sharp convergence rate can be established based on
the intrinsic dimension k, rather than the ambient dimension d? Existing work (Li & Yan, 2024)
provides a rate of O(

√
k4/T ), and extending our analysis to improve upon this result would be

highly valuable. Lastly, another intriguing direction is to explore whether the analysis in this paper
can extend to developing convergence theory in Wasserstein distance (e.g., Gao & Zhu (2024);
Benton et al. (2023b)).
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A PROOF OF AUXILIARY LEMMAS

A.1 PROOF OF LEMMA 1

For any pairs (x, x0) ∈ Rd × Rd satisfying

∥x−
√
αtx0∥22 ≥ (6θ + 3c0)d(1− αt) log T =: R2 (A.1)
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where c0 is defined in (2.3), we have

pX0|Xt
(x0 |x) =

pX0
(x0)

pXt
(x)

pXt|X0
(x |x0)

(i)
= pX0

(x0) ·
(
2π(1− αt)

)−d/2
exp

(
− ∥x−

√
αtx0∥22

2(1− αt)
− log pXt

(x)
)

(ii)
≤ pX0(x0) exp

(
− ∥x−

√
αtx0∥22

3(1− αt)

)
. (A.2)

Here step (i) uses the fact that Xt |X0 = x0 ∼ N (
√
αtx0, (1− αt)Id), while step (ii) holds since

−d

2
log 2π(1− αt)−

∥x−
√
αtx0∥22

2(1− αt)
− log pXt

(x)
(iii)
≤ c0

2
d log T − ∥x−

√
αtx0∥22

2(1− αt)
+ θd log T

(iv)
≤ −∥x−

√
αtx0∥22

3(1− αt)
,

where step (iii) follows from the fact that 1 − αt ≥ 1 − α1 = β1 for any 1 ≤ t ≤ T , and
− log pXt

(x) ≤ θd log T ; step (iv) follows from (A.1). Recall that

s⋆t (x) = − 1

1− αt

∫
x0

pX0|Xt
(x0 |x)

(
x−

√
αtx0

)
dx0 (A.3)

and

Tr (I − Jt(x)) =
1

1− αt

(∫
x0

pX0|Xt
(x0 |x)∥x−

√
αtx0∥22dx0−

∥∥∫
x0

pX0|Xt
(x0 |x)

(
x−

√
αtx0

)
dx0

∥∥2
2

)
.

(A.4)
Then we have

∥s⋆t (x)∥2 =
1

1− αt

∥∥∥∫
x0

pX0|Xt
(x0 |x)

(
x−

√
αtx0

)
dx0

∥∥∥
2

(a)
≤ 1

1− αt

∫
x0

pX0|Xt
(x0 |x)∥x−

√
αtx0∥2dx0

≤ 1

1− αt

∫
pX0|Xt

(x0 |x)∥x−
√
αtx0∥2 1

{
∥x−

√
αtx0∥2 ≤ R

}
dx0

+
1

1− αt

∫
pX0|Xt

(x0 |x)∥x−
√
αtx0∥2 1

{
∥x−

√
αtx0∥2 > R

}
dx0

(b)
≤ R

1− αt
+

1

1− αt

∫
pX0

(x0) exp
(
− ∥x−

√
αtx0∥22

3(1− αt)

)
∥x−

√
αtx0∥2 1

{
∥x−

√
αtx0∥2 > R

}
dx0

(c)
≤ R

1− αt
+

√
3

1− αt

∫
pX0

(x0) exp
(
− ∥x−

√
αtx0∥22

6(1− αt)

)
1
{
∥x−

√
αtx0∥2 > R

}
dx0

≤ R

1− αt
+

√
3

1− αt
exp

(
− R2

6(1− αt)

) (d)
≤ 2R

1− αt
. (A.5)

Here step (a) utilizes Jensen’s inequality; step (b) follows from (A.2); step (c) follows from the fact
that z exp(−z2) ≤ exp

(
−z2/2

)
holds for any z ≥ 0; whereas step (d) holds provided that c0 is

sufficiently large. In addition, we have

Tr(I − Jt(x)) ≤
1

1− αt
E
[
∥Xt −

√
αtX0∥22 |Xt = x

]
=

1

1− αt

∫
x0

pX0|Xt
(x0 |x)∥x−

√
αtx0∥22dx0.

Then we can use the analysis similar to (A.5) to show that

Tr(I − Jt(x))
(i)
≤ 1

1− αt

∫
x0

pX0|Xt
(x0 |x)∥x−

√
αtx0∥22dx0

≤ 1

1− αt

∫
pX0|Xt

(x0 |x)∥x−
√
αtx0∥22 1

{
∥x−

√
αtx0∥2 ≤ R

}
dx0
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+
1

1− αt

∫
pX0|Xt

(x0 |x)∥x−
√
αtx0∥22 1

{
∥x−

√
αtx0∥2 > R

}
dx0

(ii)
≤ R2

1− αt
+

1

1− αt

∫
pX0

(x0) exp
(
− ∥x−

√
αtx0∥22

3(1− αt)

)
∥x−

√
αtx0∥22 1

{
∥x−

√
αtx0∥2 > R

}
dx0

(iii)
≤ R2

1− αt
+ 3

∫
pX0

(x0) exp
(
− ∥x−

√
αtx0∥22

6(1− αt)

)
1
{
∥x−

√
αtx0∥2 > R

}
dx0

≤ R2

1− αt
+ 3 exp

(
− R2

6(1− αt)

) (iv)
≤ 2R2

1− αt
. (A.6)

Here step (i) follows from ((A.4)); step (ii) follows from (A.2); step (iii) follows from the fact that
x exp(−x) ≤ exp (−x/2) holds for any z ≥ 0; while step (iv) holds provided that c0 is sufficiently
large.

Finally, we invoke Lemma 10 to achieve
T∑

t=2

1− αt

1− αt
Tr
(
E
[(
Σαt

(Xt)
)2]) ≤ CJd log T, (A.7)

where the matrix function Σαt
(·) is defined in Lemma 10 as

Σαt
(x) := Cov

(
Z |

√
αtX0 +

√
1− αtZ = x

)
for an independent Z ∼ N (0, Id). It is straightforward to check that Jt(x) = Id−Σαt(x), therefore
we have

T∑
t=2

1− αt

1− αt
Tr
(
E
[(
Σαt(Xt)

)2])
=

T∑
t=2

1− αt

1− αt
E
[
Tr
(
(Id − Jt(Xt))

2
)]

=

T∑
t=2

1− αt

1− αt
E
[
∥Id − Jt(Xt)∥2F

]
. (A.8)

Here the last relation holds since Tr(A2) = ∥A∥2F for any symmetric matrix A. We conclude that
T∑

t=2

1− αt

1− αt

∫
xt

∥Jt(xt)∥2FpXt
(xt)dxt =

T∑
t=2

1− αt

1− αt
E
[
∥Jt(Xt)∥2F

]
(a)
≤

T∑
t=2

1− αt

1− αt
E
[
2∥Id − Jt(Xt)∥2F + 2∥Id∥2F

]
(b)
≤ 2CJd log T + 16c1d log T

(c)
≤ C0d log T.

Here step (a) utilizes the triangle inequality and the AM-GM inequality; step (b) follows from (A.7),
(A.8) and Lemma 7; while step (c) holds provided that C0 ≫ CJ + c1.

A.2 PROOF OF LEMMA 2

We first observe that

p
Y

−
t−1

(xt−1) ≥
∫
Rd

p
Y

−
t−1|Y t

(xt−1 |xt)pY t
(xt)dxt

(i)
≥

∫
xt∈Et,1

pY ⋆
t−1|Y ⋆

t
(xt−1 |xt)pY t

(xt)dxt

(ii)
=

∫
xt∈Et,1

pY ⋆
t−1|Y ⋆

t
(xt−1 |xt)pXt

(xt)dxt −∆t→t−1(xt−1) (A.9)

where we define

∆t→t−1(xt−1) :=

∫
xt∈Et,1

pY ⋆
t−1|Y ⋆

t
(xt−1 |xt)∆t(xt)dxt ≥ 0.

Here step (i) follows from (4.4c), while step (ii) makes use of the definition (4.10). It is
straightforward to check that∫

∆t→t−1(x)dx =

∫
xt−1

∫
xt∈Et,1

pY ⋆
t−1|Y ⋆

t
(xt−1 |xt)∆t(xt)dxtdxt−1 ≤

∫
∆t(x)dx. (A.10)

14



Published as a conference paper at ICLR 2025

For any xt−1 such that ∆t−1(xt−1) > 0, we have

pXt−1
(xt−1)−∆t−1(xt−1) + ∆t→t−1(xt−1)

(a)
= p

Y
−
t−1

(xt−1) + ∆t→t−1(xt−1)
(b)
≥

∫
xt∈Et,1

pY ⋆
t−1|Y ⋆

t
(xt−1 |xt)pXt(xt)dxt

(c)
=

∫
xt∈Et,1

pXt(xt)
( αt

2π(1− αt)

)d/2

exp
(
−

∥∥√αtxt−1 −
(
xt + (1− αt)s

⋆
t (xt)

)∥∥2
2(1− αt)

)
dxt

(d)
=

∫
xt∈Et,1

det
(
I − 1− αt

1− αt
Jt(xt)

)−1

pXt(xt)
( αt

2π(1− αt)

)d/2

exp
(
−

∥∥√αtxt−1 − ut

∥∥2
2(1− αt)

)
dut.

(A.11)

Here step (a) utilizes the definition (4.10) and pY t−1
(xt−1) = p

Y
−
t−1

(xt−1), which is a consequence

of (4.6) and ∆t−1(xt−1) > 0; step (b) follows from (A.9); step (c) follows from the definition (4.3);
whereas step (d) applies the change of variable ut = xt+(1−αt)s

⋆
t (xt). Moving forward, we need

the following lemma.
Lemma 3. For any xt ∈ Et,1, we have

det
(
I − 1− αt

1− αt
Jt(xt)

)−1

pXt
(xt)

=
(
2π(2αt − 1− αt)

)−d/2
∫
x0

pX0
(x0) exp

(
− ∥ut −

√
αtx0∥2

2(2αt − 1− αt)

)
dx0

· exp
(
ξt(xt) +O

((1− αt

1− αt

)2(
d log T + ∥Jt(xt)∥2F

)))
, (A.12)

where ξt(xt) ≤ 0 satisfies∫
xt∈Et,1

|ξt(xt)|pXt
(xt)dxt ≤ C3

(1− αt

1− αt

)2
∫
xt∈Et,1

(
d log T + ∥Jt(xt)∥2F

)
pXt

(xt)dxt + T−4

(A.13)
for some universal constant C3 > 0.

Proof. See Appendix A.3.

Taking the decomposition (A.12) and (A.11) collectively, we have

pXt−1(xt−1)−∆t−1(xt−1) + ∆t→t−1(xt−1) + δt−1(xt−1) (A.14)

≥
∫
x0

∫
xt

exp

([
ξt(xt) +O

((1− αt

1− αt

)2(
d log T + ∥Jt(xt)∥2F

))]
1 {xt ∈ Et,1}

)
pX0(x0)

·
( αt

4π2(1− αt)(2αt − 1− αt)

)d/2

exp
(
− ∥ut −

√
αtx0∥2

2(2αt − 1− αt)

)
exp

(
−

∥∥√αtxt−1 − ut

∥∥2
2(1− αt)

)
dutdx0,

where we define

δt−1(xt−1) :=

∫
x0

∫
xt /∈Et,1

pX0
(x0)

( αt

4π2(1− αt)(2αt − 1− αt)

)d/2

· exp
(
− ∥ut −

√
αtx0∥2

2(2αt − 1− αt)

)
exp

(
−

∥∥√αtxt−1 − ut

∥∥2
2(1− αt)

)
dutdx0. (A.15)

Moreover, it is straightforward to check that∫
x0

∫
xt

pX0(x0)
( αt

4π2(1− αt)(2αt − 1− αt)

)d/2

exp
(
− ∥ut −

√
αtx0∥2

2(2αt − 1− αt)

)
· exp

(
−

∥∥√αtxt−1 − ut

∥∥2
2(1− αt)

)
dutdx0 = pXt−1

(xt−1). (A.16)
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Then we can continue the derivation in (A.14):

pXt−1(xt−1)−∆t−1(xt−1) + ∆t→t−1(xt−1) + δt−1(xt−1)

(i)
≥

∫
x0

∫
xt

(
1 +

[
ξt(xt) +O

((1− αt

1− αt

)2(
d log T + ∥Jt(xt)∥2F

))]
1 {xt ∈ Et,1}

)
pX0(x0)

·
( αt

4π2(1− αt)(2αt − 1− αt)

)d/2

exp
(
− ∥ut −

√
αtx0∥2

2(2αt − 1− αt)

)
exp

(
−

∥∥√αtxt−1 − ut

∥∥2
2(1− αt)

)
dutdx0

(ii)
= pXt−1(xt−1) +

∫
x0

∫
xt∈Et,1

[
ξt(xt) +O

((1− αt

1− αt

)2(
d log T + ∥Jt(xt)∥2F

))]
pX0(x0)

·
( αt

4π2(1− αt)(2αt − 1− αt)

)d/2

exp
(
− ∥ut −

√
αtx0∥2

2(2αt − 1− αt)

)
exp

(
−

∥∥√αtxt−1 − ut

∥∥2
2(1− αt)

)
dutdx0.

Here step (i) follows from the fact that ex ≥ 1+x for all x ∈ R, while step (ii) follows from (A.16).
By rearranging terms and integrate over the variable xt−1, we arrive at∫

xt−1

∆t−1(xt−1)dxt−1 ≤
∫
xt−1

(
∆t(xt−1) + δt−1(xt−1)

)
dxt−1

+

∫
x0

∫
xt∈Et,1

(
|ξt(xt)|+O

((1− αt

1− αt

)2(
d log T + ∥Jt(xt)∥2F

)))
pX0

(x0)

·
(
2π(2αt − 1− αt)

)−d/2
exp

(
− ∥ut −

√
αtx0∥22

2(2αt − 1− αt)

)
dutdx0, (A.17)

where we used (A.10) and for any fixed ut, the function(
2π

1− αt

αt

)−d/2

exp
(
−

∥∥√αtxt−1 − ut

∥∥2
2

2(1− αt)

)
is a density function of xt−1. To establish the desired result, we need the following two lemmas.
Lemma 4. For xt ∈ Et,1, we have∫
x0

pX0
(x0)

(
2π(2αt−1−αt)

)−d/2
exp

(
− ∥ut −

√
αtx0∥2

2(2αt − 1− αt)

)
dx0 ≤ 20 det

(
I−1− αt

1− αt
Jt(xt)

)−1

pXt
(xt).

Proof. See Appendix A.4.

Lemma 5. For the function δt−1(·) defined in (A.15), we have∫
xt−1

δt−1(xt−1)dxt−1 ≤ T−4.

Proof. See Appendix A.5.

Equipped with these two lemmas, we can continue the derivation in (A.17) as follows:∫
xt−1

∆t−1(xt−1)dxt−1

(a)
≤

∫
xt

∆t(xt)dxt + 20

∫
xt∈Et,1

(
|ξt(xt)|+O

((1− αt

1− αt

)2(
d log T + ∥Jt(xt)∥2F

)))
· det

(
I − 1− αt

1− αt
Jt(xt)

)−1

pXt
(xt)dut + T−4

(b)
=

∫
xt

∆t(xt)dxt + T−4 + 20

∫
xt∈Et,1

(
|ξt(xt)|+O

((1− αt

1− αt

)2(
d log T + ∥Jt(xt)∥2F

)))
pXt(xt)dxt

(c)
≤

∫
xt

∆t(xt)dxt + T−3 + C4

(1− αt

1− αt

)2
∫
xt∈Et,1

(
d log T + ∥Jt(xt)∥2F

)
pXt

(xt)dxt,
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which establishes the desired recursive relation. Here step (a) follows from Lemmas 4 and 5; step
(b) follows from ut = xt + (1− αt)s

⋆
t (xt), hence

dut = det
(
I − 1− αt

1− αt
Jt(xt)

)
dxt;

whereas step (c) uses (A.13) in Lemma 3, and holds provided that C4 ≫ C3 is sufficiently large.

Finally, we control the error
∫
∆T (x)dx in the initial step of the reverse process. Notice that∫

∆T (x)dx =

∫
xT ̸=∞

(
pXT

(xT )− pY T
(xT )

)
dxT

(i)
= TV

(
pXT

, p
Y

−
T

)
(ii)
≤ TV

(
pXT

, pYT

)
+ TV

(
pYT

, p
Y

−
T

)
, (A.18)

where step (i) follows from (4.6) and step (ii) utilizes the triangle inequality. The first term can be
bounded by Lemma 9, so it boils down to bounding the second. By definition of Y

−
T in (4.4a), we

have

TV
(
pYT

, p
Y

−
T

)
=

∫
y∈Ec

T,1

pYT
(y)dy

(a)
=

∫
pYT

(y)1
{
− log pXT

(y) > C1d log T, ∥y∥2 ≤
√
αTT

2cR + C2

√
d(1− αT ) log T

}
dy

+

∫
pYT

(y)1
{
∥y∥2 >

√
αTT

2cR + C2

√
d(1− αT ) log T

}
dy

(b)
≤

∫
pXT

(y)1
{
− log pXT

(y) > C1d log T, ∥y∥2 ≤
√
αTT

2cR + C2

√
d(1− αT ) log T

}
dy

+ TV
(
pXT

, pYT

)
+ P

(
∥YT ∥2 >

√
αTT

2cR + C2

√
d(1− αT ) log T

)
(c)
≤

[
2
√
αTT

2cR + 2C2

√
d(1− αT ) log T

]d
exp(−C1d log T )

+ P
(
∥YT ∥2 >

C2

2

√
d log T

)
+ TV

(
pXT

, pYT

)
(d)
≤ exp

(
− C1

2
d log T

)
+ P

(
∥YT ∥2 >

C2

2

√
d log T

)
+ TV

(
pXT

, pYT

)
. (A.19)

Here step (a) follows from the definition of ET,1 in (4.2); step (b) follows from the definition of
total variation distance, i.e., TV(p, q) = supB |p(B)− q(B)|, where the supremum is taken over all
Borel set B in Rd; step (c) holds since αT ≤ T−c1/2 (see Lemma 7), provided that C2 is sufficiently
large; whereas step (d) holds provided that C1 ≫ cR and T ≫ d log T . By putting (A.18) and
(A.19) together, we have∫

∆T (x)dx ≤ 2TV
(
pXT

, pYT

)
+ exp

(
− C1

2
d log T

)
+ P

(
∥YT ∥2 >

C2

2

√
d log T

)
≤ T−4,

where the last relation follows from Lemmas 9 and 8, provided that C1, C2 > 0 are both sufficiently
large.

A.3 PROOF OF LEMMA 3

Consider any xt ∈ Et,1. Recall the definition ut = xt + (1− αt)s
⋆
t (xt), and we decompose

∥ut −
√
αtx0∥22

2(2αt − 1− αt)

=
∥xt −

√
αtx0∥22

2(1− αt)
+

(1− αt)∥xt −
√
αtx0∥22

(2αt − 1− αt)(1− αt)
+

(1− αt)s
⋆
t (xt)

⊤(xt −
√
αtx0)

2αt − 1− αt
+

(1− αt)
2∥s⋆t (xt)∥22

2(2αt − 1− αt)

=
∥xt −

√
αtx0∥22

2(1− αt)
+

1− αt

(2αt − 1− αt)(1− αt)

∫
x0

pX0|Xt
(x0 |xt)∥xt −

√
αtx0∥22dx0

+
1− αt

2αt − 1− αt
s⋆t (xt)

⊤
∫
x0

pX0|Xt
(x0 |xt)

(
xt −

√
αtx0

)
dx0 +

(1− αt)
2∥s⋆t (xt)∥22

2(2αt − 1− αt)
+ ζt(xt, x0),
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where we let

ζt(xt, x0) :=
(1− αt)

(
∥xt −

√
αtx0∥22 −

∫
x0

pX0|Xt
(x0 |xt)∥xt −

√
αtx0∥22dx0

)
(2αt − 1− αt)(1− αt)

+
(1− αt)s

⋆
t (xt)

⊤[(xt −
√
αtx0)−

∫
x0

pX0|Xt
(x0 |xt)

(
xt −

√
αtx0

)
dx0

]
2αt − 1− αt

.

(A.20)

In view of (A.3) and (A.4), we can further derive

∥ut −
√
αtx0∥22

2(2αt − 1− αt)
=

∥xt −
√
αtx0∥22

2(1− αt)
+

1− αt

2αt − 1− αt
Tr (I − Jt(xt)) +

(1− αt)
2∥s⋆t (xt)∥22

2(2αt − 1− αt)
+ ζt(xt, x0)

(i)
=

∥xt −
√
αtx0∥22

2(1− αt)
+

(
1 +O

(1− αt

1− αt

))(
1− αt

1− αt
Tr (I − Jt(xt)) +

(1− αt)
2∥s⋆t (xt)∥22

2(1− αt)

)
+ ζt(xt, x0)

(ii)
=

∥xt −
√
αtx0∥22

2(1− αt)
+

1− αt

1− αt
Tr (I − Jt(xt)) +O

((1− αt

1− αt

)2

d log T

)
+ ζt(xt, x0)

(iii)
=

∥xt −
√
αtx0∥22

2(1− αt)
+ log det

(
I − 1− αt

1− αt
Jt(xt)

)
− d

2
log

2αt − 1− αt

1− αt

+ ζt(xt, x0) +O

((1− αt

1− αt

)2(
d log T + ∥Jt(xt)∥2F

))
. (A.21)

Here, step (i) utilizes an immediate consequence of Lemma 7

1− αt

2αt − 1− αt
= 1 +

2(1− αt)/(1− αt)

1− 2(1− αt)/(1− αt)
= 1 +O

(
1− αt

1− αt

)
= 1 +O

(
log T

T

)
, (A.22)

which holds provided that T ≫ c1 log T ; step (ii) follows from xt ∈ Et,1 and Lemma 1; whereas
step (iii) follows from the following two facts:

log det
(
I − 1− αt

1− αt
Jt(xt)

)
= −1− αt

1− αt
Tr
(
Jt(xt)

)
+O

((1− αt

1− αt

)2

∥Jt(xt)∥2F
)
,

and
d

2
log

2αt − 1− αt

1− αt
=

d(1− αt)

1− αt
+O

(
d(1− αt)

2

(1− αt)2

)
= O

(
d log T

T

)
. (A.23)

Then we can use (A.21) to achieve∫
x0

pX0(x0) exp
(
− ∥ut −

√
αtx0∥22

2(2αt − 1− αt)

)
dx0 =

∫
x0

pX0(x0) exp
(
− ∥xt −

√
αtx0∥22

2(1− αt)
− ζt(xt, x0)

)
dx0

· exp
(
− log det

(
I − 1− αt

1− αt
Jt(xt)

)
+

d

2
log

2αt − 1− αt

1− αt
+O

((1− αt

1− αt

)2(
d log T + ∥Jt(xt)∥2F

)))
.

Define a function ξt(·) as follows

ξt(xt) := − log

∫
x0

pX0
(x0) exp

(
− ∥xt−

√
αtx0∥2

2

2(1−αt)
− ζt(xt, x0)

)
dx0∫

x0
pX0

(x0) exp
(
− ∥xt−

√
αtx0∥2

2

2(1−αt)

)
dx0

. (A.24)

Then we can write∫
x0

pX0
(x0) exp

(
− ∥ut −

√
αtx0∥22

2(2αt − 1− αt)

)
dx0 (A.25)

= exp

(
− ξt(xt) +O

((1− αt

1− αt

)2(
d log T + ∥Jt(xt)∥2F

)))
·
∫
x0

pX0
(x0) exp

(
− ∥xt −

√
αtx0∥22

2(1− αt)
− log det

(
I − 1− αt

1− αt
Jt(xt)

)
+

d

2
log

2αt − 1− αt

1− αt

)
dx0,
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and ξt(xt) ≤ 0 for any xt ∈ Et,1 since

exp(−ξt(xt)) =

∫
x0

pX0|Xt
(x0 |xt) exp

(
− ζt(xt, x0)

)
dx0

≥ 1−
∫
x0

pX0|Xt
(x0 |xt)ζt(xt, x0)dx0 = 1,

where we have used the fact that ex ≥ 1 + x for any x ∈ R. Notice that

pXt
(xt) =

(
2π(1− αt)

)−d/2
∫
x0

pX0
(x0) exp

(
− ∥xt −

√
αtx0∥2

2(1− αt)

)
dx0, (A.26)

we can rearrange terms in (A.25) to achieve

det
(
I − 1− αt

1− αt
Jt(xt)

)−1

pXt(xt)

=
(
2π(2αt − 1− αt)

)−d/2
∫
x0

pX0(x0) exp
(
− ∥ut −

√
αtx0∥2

2(2αt − 1− αt)

)
dx0

· exp
(
ξt(xt) +O

((1− αt

1− αt

)2(
d log T + ∥Jt(xt)∥2F

)))
, (A.27)

which gives the desired decomposition (A.12).

To establish (A.13), we need the following result.
Lemma 6. We have∫

x0

∫
xt /∈Et,1

(2π(2αt − 1− αt))
−d/2pX0(x0) exp

(
− ∥ut −

√
αtx0∥22

2(2αt − 1− αt)

)
dx0dut ≤ T−4 (A.28a)

and ∫
xt∈Ec

t,1

pXt(xt)dxt ≤ T−4. (A.28b)

Proof. See Appendix A.6.

Then we have

1
(i)
≥

∫
xt∈Et,1

∫
x0

(2π(2αt − 1− αt))
−d/2pX0

(x0) exp
(
− ∥ut −

√
αtx0∥22

2(2αt − 1− αt)

)
dx0dut

(ii)
=

∫
xt∈Et,1

det
(
I − 1− αt

1− αt
Jt(xt)

)−1

pXt
(xt) exp

(
− ξt(xt) +O

((1− αt

1− αt

)2(
d log T + ∥Jt(xt)∥2F

)))
dut

(iii)
=

∫
xt∈Et,1

pXt
(xt) exp

(
− ξt(xt) +O

((1− αt

1− αt

)2(
d log T + ∥Jt(xt)∥2F

)))
dxt

(iv)
≥

∫
xt∈Et,1

(
1− ξt(xt) +O

((1− αt

1− αt

)2(
d log T + ∥Jt(xt)∥2F

)))
pXt

(xt)dxt.

Here step (i) follows from (A.28a); step (ii) utilizes (A.27); step (iii) holds since ut = xt + (1 −
αt)s

⋆
t (xt), namely

dut = det
(
I − 1− αt

1− αt
Jt(xt)

)
dxt;

while step (iv) follows from the fact that ex ≥ 1 + x for any x ∈ R. Recall that ξt(xt) ≤ 0 for any
xt ∈ Et,1. By rearranging terms, we have∫

xt∈Et,1

|ξt(xt)|pXt
(xt)dxt

≤
∫
xt∈Ec

t,1

pXt(xt)dxt + C3

(1− αt

1− αt

)2
∫
xt∈Et,1

(
d log T + ∥Jt(xt)∥2F

)
pXt(xt)dxt

≤ C3

(1− αt

1− αt

)2
∫
xt∈Et,1

(
d log T + ∥Jt(xt)∥2F

)
pXt

(xt)dxt + T−4

for some universal constant C3 > 0, where the last step follows from (A.28b).
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A.4 PROOF OF LEMMA 4

Recall the definition of ζt(xt, x0) from (A.20) in Appendix A.3. For any xt ∈ Et,1, we have

−ζt(xt, x0)
(i)
≤ 2

1− αt

(1− αt)2

∫
x0

pX0|Xt
(x0 |xt)∥xt −

√
αtx0∥22dx0 + 2

1− αt

1− αt

∣∣s⋆t (xt)
⊤(xt −

√
αtx0)

∣∣
(ii)
≤ 4

1− αt

1− αt
(6C1 + 3c0)d log T + (1− αt)∥s⋆t (xt)∥22 +

1− αt

(1− αt)2
∥xt −

√
αtx0∥22

(iii)
≤ 50

1− αt

1− αt
(C1 + c0)d log T +

1− αt

(1− αt)2
∥xt −

√
αtx0∥22

(iv)
≤ 1 +

1− αt

(1− αt)2
∥xt −

√
αtx0∥22. (A.29)

Here step (i) utilizes (A.3), (A.20) and (A.22); step (ii) follows from the AM-GM inequality and an
intermediate step in (A.6):

1

1− αt

∫
x0

pX0|Xt
(x0 |xt)∥xt −

√
αtx0∥22dx0 ≤ 2(6C1 + 3c0)d log T,

where we also use the fact that − log pXt(xt) ≤ C1d log T for xt ∈ Et,1; step (iii) follows from
Lemma 1; while step (iv) follows from Lemma 7 and holds provided that T ≫ c1(C1 + c0). In
addition, we also have

∥Jt(xt)∥2F ≤ 2∥Id − Jt(xt)∥2F + 2∥Id∥2F
(a)
≤ 2

[
Tr
(
Id − Jt(xt)

)]2
+ 2d

(b)
≤ 288(C1 + c0)

2d2 log2 T + 2d, (A.30)

for xt ∈ Et,1, where step (a) holds since Id − Jt(xt) ⪰ 0 and step (b) follows from Lemma 1.
Substituting the bounds (A.29), (A.30) and (A.23) into (A.21) gives

− ∥ut −
√
αtx0∥22

2(2αt − 1− αt)
≤ −∥xt −

√
αtx0∥22

2(1− αt)
− log det

(
I − 1− αt

1− αt
Jt(xt)

)
+

1− αt

(1− αt)2
∥xt −

√
αtx0∥22 + 2, (A.31)

provided that T ≫ c1(C1 + c0)d log
2 T . Taking (A.31) and (A.23) collectively yields

det
(
I − 1− αt

1− αt
Jt(xt)

)∫
x0

pX0
(x0)

(
2π(2αt − 1− αt)

)−d/2
exp

(
− ∥ut −

√
αtx0∥2

2(2αt − 1− αt)

)
dx0

≤ 10

∫
x0

pX0
(x0)

(
2π(1− αt)

)−d/2
exp

(
− ∥xt −

√
αtx0∥22

2(1− αt)
+

1− αt

(1− αt)2
∥xt −

√
αtx0∥22

)
dx0.

(A.32)

provided that T ≫ d log T . To achieve the desired result, it suffices to connect the above expression
with

pXt
(xt) =

∫
x0

pX0
(x0)

(
2π(1− αt)

)−d/2
exp

(
− ∥xt −

√
αtx0∥22

2(1− αt)

)
dx0.

For any xt ∈ Et,1, define a set

A(xt) :=
{
x0 :

1− αt

(1− αt)2
∥xt −

√
αtx0∥22 > (6C1 + 3c0)

1− αt

1− αt
d log T

}
.

We have∫
x0∈A(xt)

pX0
(x0)

(
2π(1− αt)

)−d/2
exp

(
− ∥xt −

√
αtx0∥22

2(1− αt)
+

1− αt

(1− αt)2
∥xt −

√
αtx0∥22

)
dx0

= pXt
(xt)

∫
x0∈A(xt)

pX0|Xt
(x0 |xt) exp

( 1− αt

(1− αt)2
∥xt −

√
αtx0∥22

)
dx0
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(i)
≤ pXt

(xt)

∫
x0∈A(xt)

pX0
(x0) exp

(
− ∥x−

√
αtx0∥22

3(1− αt)
+

1− αt

(1− αt)2
∥xt −

√
αtx0∥22

)
dx0

(ii)
≤ pXt(xt)

∫
x0∈A(xt)

pX0(x0) exp
(
− ∥x−

√
αtx0∥22

4(1− αt)

)
dx0

(iii)
≤ pXt

(xt) exp
(
− (6C1 + 3c0)d log T

4

)∫
x0∈A(xt)

pX0
(x0)dx0

(iv)
≤ 1

2
pXt

(xt). (A.33)

Here step (i) follows from (A.2); step (ii) utilizes Lemma 7 and holds provided that T ≫ c1 log T ;
step (iii) follows from the definition of A(xt); while step (iv) holds provided that C1 is sufficiently
large. On the other hand, we have∫

x0∈A(xt)c
pX0

(x0)
(
2π(1− αt)

)−d/2
exp

(
− ∥xt −

√
αtx0∥22

2(1− αt)
+

1− αt

(1− αt)2
∥xt −

√
αtx0∥22

)
dx0

(a)
≤ exp

(
(6C1 + 3c0)

1− αt

1− αt
d log T

)∫
x0

pX0(x0)
(
2π(1− αt)

)−d/2
exp

(
− ∥xt −

√
αtx0∥22

2(1− αt)

)
dx0

(b)
≤ exp

(
(6C1 + 3c0)

8c1d log
2 T

T

)
pXt(xt)

(c)
≤ 3

2
pXt(xt). (A.34)

Here step (a) follows from the definition of A(xt); step (b) utilizes Lemma 7; whereas step (c) holds
provided that T ≫ c1(C1 + c0)d log

2 T . Taking (A.32), (A.33) and (A.34) collectively gives

det
(
I−1− αt

1− αt
Jt(xt)

)∫
x0

pX0
(x0)

(
2π(2αt−1−αt)

)−d/2
exp

(
− ∥ut −

√
αtx0∥2

2(2αt − 1− αt)

)
dx0 ≤ 20pXt

(xt).

Rearrange terms to achieve the desired result.

A.5 PROOF OF LEMMA 5

By definition of δt−1(xt−1) in (A.15), we have∫
xt−1

δt−1(xt−1)dxt−1

=

∫
x0

∫
xt−1

∫
xt /∈Et,1

pX0
(x0)

( αt

4π2(1− αt)(2αt − 1− αt)

)d/2

· exp
(
− ∥ut −

√
αtx0∥22

2(2αt − 1− αt)

)
exp

(
−

∥∥√αtxt−1 − ut

∥∥2
2

2(1− αt)

)
dxt−1dutdx0

(i)
=

∫
x0

∫
xt /∈Et,1

(2π(2αt − 1− αt))
−d/2pX0

(x0) exp
(
− ∥ut −

√
αtx0∥22

2(2αt − 1− αt)

)
dx0dut

(ii)
≤ T−4. (A.35)

Here step (i) holds since for fixed ut, the following function(
2π

1− αt

αt

)−d/2

exp
(
−

∥∥√αtxt−1 − ut

∥∥2
2

2(1− αt)

)
is a density function w.r.t. xt−1, while step (ii) was established in (A.28a).

A.6 PROOF OF LEMMA 6

Proof of (A.28). We first prove (A.28b). Recall that

Et,1 =
{
xt : − log pXt

(xt) ≤ C1d log T, ∥xt∥2 ≤
√
αtT

2cR + C2

√
d(1− αt) log T

}
.

Then we can decompose∫
xt∈Ec

t,1

pXt
(xt)dxt

21



Published as a conference paper at ICLR 2025

=

∫
pXt

(xt)1
{
− log pXt

(xt) > C1d log T, ∥xt∥2 ≤
√
αtT

2cR + C2

√
d(1− αt) log T

}
dxt

+

∫
pXt(xt)1

{
∥xt∥2 >

√
αtT

2cR + C2

√
d(1− αt) log T

}
dxt

(i)
≤ exp

(
− C1

2
d log T

)
+ P

(
∥Xt∥2 >

√
αtT

2cR + C2

√
d(1− αt) log T

)
(ii)
≤ exp

(
− C1

2
d log T

)
+ P

(
∥X0∥2 > T 2cR

)
+ P

(
∥W t∥2 > C2

√
d log T

)
(iii)
≤ exp

(
− C1

2
d log T

)
+

E[∥X0∥2]
T 2cR

+ P
(
∥W t∥2 > C2

√
d log T

) (iv)
≤ T−4.

Here step (i) follows from a simple volume argument∫
pXt

(xt)1
{
− log pXt

(xt) > C1d log T, ∥xt∥2 ≤
√
αtT

2cR + C2

√
d(1− αt) log T

}
dxt

≤
(
2
√
αtT

2cR + 2C2

√
d(1− αt) log T

)d
exp (−C1d log T ) ≤ exp

(
− C1

2
d log T

)
,

provided that C1 ≫ cR and T ≫ d log T ; step (ii) follows from Xt =
√
αtX0 +

√
1− αt W t;

step (iii) utilizes Markov’s inequality; while step (iv) holds provided that C1, C2, cR > 0 are large
enough. This establishes (A.28b).

Then we prove (A.28a). Define

Bt :=
{
x : ∥x∥2 ≤

√
αtT

2cR + C2

√
d(2αt − 1− αt) log T

}
,

and for each k ≥ 1,
Lt,k :=

{
xt : 2

k−1C1d log T < − log pXt
(xt) ≤ 2kC1d log T

}
.

We first decompose

I :=

∫
x0

∫
xt /∈Et,1

(2π(2αt − 1− αt))
−d/2pX0

(x0) exp
(
− ∥ut −

√
αtx0∥22

2(2αt − 1− αt)

)
dx0dut

(a)
≤

∫
x0

∫
ut /∈Bt

pX0(x0)
(
2π(2αt − 1− αt)

)−d/2
exp

(
− ∥ut −

√
αtx0∥22

2(2αt − 1− αt)

)
dutdx0︸ ︷︷ ︸

=:I0

+

∞∑
k=1

∫
x0

∫
xt∈Lt,k,ut∈Bt

pX0(x0)
(
2π(2αt − 1− αt)

)−d/2
exp

(
− ∥ut −

√
αtx0∥22

2(2αt − 1− αt)

)
dx0dut︸ ︷︷ ︸

=:Ik

,

where step (a) holds since Ec
t,1 = ∪∞

k=1Lt,k. The first term I0 can be upper bounded as follows:

I0 ≤
(∫

∥x0∥2≥T 2cR

∫
ut

+

∫
∥ut−

√
αtx0∥2≥C2

√
d(2αt−1−αt) log T

∫
x0

)
pX0(x0)

·
( 1

2π(2αt − 1− αt)

)d/2

exp
(
− ∥ut −

√
αtx0∥22

2(2αt − 1− αt)

)
dutdx0

(i)
≤ P

(
∥X0∥2 ≥ T 2cR

)
+ P

(
∥Z∥2 ≥ C2

√
d log T

)
(ii)
≤ E[∥X0∥2]

T 2cR
+ P

(
∥Z∥2 ≥ C2

√
d log T

) (iii)
≤ T−5. (A.36)

Here step (i) holds since

(2π(2αt − 1− αt))
−d/2pX0(x0) exp

(
− ∥ut −

√
αtx0∥22

2(2αt − 1− αt)

)
is the joint density of (X0,

√
αtX0 +

√
2αt − 1− αtZ) where Z ∼ N (0, Id) is independent of

X0; step (ii) follows from Markov’s inequality; whereas step (iii) holds provided that cR and C2 are
sufficiently large. Regarding Ik, we first show that

− ∥ut −
√
αtx0∥22

2(2αt − 1− αt)

(a)
≤ − (∥xt −

√
αtx0∥2 − (1− αt)∥s⋆t (xt)∥2)2

2(2αt − 1− αt)

22



Published as a conference paper at ICLR 2025

≤ − ∥xt −
√
αtx0∥22

2(2αt − 1− αt)
+

1− αt

2αt − 1− αt
∥xt −

√
αtx0∥2∥s⋆t (xt)∥2

(b)
≤ −∥xt −

√
αtx0∥22

2(1− αt)
− 1− αt

(1− αt)(2αt − 1− αt)
∥xt −

√
αtx0∥22

+
1− αt

(1− αt)(2αt − 1− αt)
∥xt −

√
αtx0∥22 +

(1− αt)(1− αt)

4(2αt − 1− αt)
∥s⋆t (xt)∥22

(c)
≤ −∥xt −

√
αtx0∥22

2(1− αt)
+ (1− αt) ∥s⋆t (xt)∥22. (A.37)

Here step (a) utilizes the triangle inequality and ut = xt + (1 − αt)s
⋆
t (xt); step (b) invokes the

AM-GM inequality; whereas step (c) follows from (A.22). Therefore we have

Ik
(i)
≤

∫
xt∈Lt,k,ut∈Bt

∫
x0

pX0
(x0)

( 1

2π(1− αt)

)d/2

exp
(
− ∥xt −

√
αtx0∥22

2(1− αt)
+ (1− αt) ∥s⋆t (xt)∥22

)
dx0dut

=

∫
xt∈Lt,k,ut∈Bt

∫
x0

pX0,Xt(x0, xt) exp
(
(1− αt) ∥s⋆t (xt)∥22

)
dx0dut

(ii)
= exp

(
200c1(2

kC1 + c0)
d log2 T

T

)∫
xt∈Lt,k,ut∈Bt

pXt
(xt)dut

(iii)
≤ exp

(
200c1(2

kC1 + c0)
d log2 T

T

)∫
ut∈Bt

exp
(
−2k−1C1d log T

)
dut

(iv)
≤ exp

(
200c1(2

kC1 + c0)
d log2 T

T
− 2k−1C1d log T + 4dcR log T + 4d log(C2d)

)
(v)
≤ exp

(
− C1

4
2kd log T

)
= T−(C1/4)2

kd. (A.38)

Here step (i) follows from (A.37); step (ii) uses a consequence of Lemma 1 and Lemma 7: for
xt ∈ Lt,k,

(1− αt) ∥s⋆t (xt)∥22 ≤ 25
1− αt

1− αt
(2kC1 + c0)d log T ≤ 200c1(2

kC1 + c0)
d log2 T

T
;

step (iii) follows from the definition of Lt,k, which ensures tht pXt
(xt) ≤ exp(−2k−1C1d log T )

for any xt ∈ Lt,k; step (iv) follows from

log vol(Bt) ≤ d log
(
2
√
αtT

2cR + 2C2

√
d(2αt − 1− αt) log T

)
≤ 4cRd log T + 4d log(C2d);

and finally, step (v) holds provided that C1 ≫ cR+ c0 and T ≫ d log2 T . Taking (A.37) and (A.38)
collectively yields

I ≤ I0 +

∞∑
k=1

Ik ≤ T−5 +

∞∑
k=1

T−(C1/4)2
kd ≤ T−4,

provided that C1 is sufficiently large.

B TECHNICAL LEMMAS

In this section, we gather a couple of useful technical lemmas.
Lemma 7. When T is sufficiently large, for 1 ≤ t ≤ T , we have

αt ≥ 1− c1 log T

T
≥ 1

2
.

For 2 ≤ t ≤ T , we have
1− αt

1− αt
≤ 1− αt

αt − αt
≤ 8c1 log T

T
.

In addition, we have
αT ≤ T−c1/2.
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Proof. See Li et al. (2023, Appendix A.2).

Lemma 8. For Z ∼ N (0, 1) and any t ≥ 1, we know that

P (|Z| ≥ t) ≤ e−t2/2, ∀ t ≥ 1.

In addition, for a chi-square random variable Y ∼ χ2(d), we have

P(
√
Y ≥

√
d+ t) ≤ e−t2/2, ∀ t ≥ 1.

Proof. See Vershynin (2018, Proposition 2.1.2) and Laurent & Massart (2000, Section 4.1).

Lemma 9. Suppose that Assumption 1 holds, and that T and c2 are sufficiently large. Then we have
TV

(
pXT

∥pYT

)
≤ T−99.

Proof. Define a random variable X−
0 := X0 1{∥X0∥2 ≤ T cM+100} by truncating X0. Let

X−
T =

√
αTX

−
0 +

√
1− αTZ,

where Z ∼ N (0, Id) is independent of X−
0 . Notice that X−

0 has bounded support, which allows us
to invoke (Li et al., 2023, Lemma 3) to achieve

TV(pXT
, pYT

) = O(T−100), (B.1)
provided that c2 and T are sufficiently large. In addition, we have

TV(pXT
, pXT

) =
1

2

∫
|pXT

(x)− pXT
(x)|dx

=
1

2

∫
x

∣∣∣ ∫
x0

(
pX0

(x0)− pX0(x0)
)(
2π(1− αT )

)−d/2
exp

(
− ∥x−

√
αTx0∥22

2(1− αT )

)
dx0

∣∣∣dx
≤ 1

2

∫
x

∫
x0

∣∣pX0
(x0)− pX0

(x0)
∣∣(2π(1− αT )

)−d/2
exp

(
− ∥x−

√
αTx0∥22

2(1− αT )

)
dx0dx

(i)
=

1

2

∫
x0

∣∣pX0
(x0)− pX0(x0)

∣∣dx0 = TV(pX0
, pX0) = P

(
∥X0∥2 > T cM+100

)
(ii)
≤ E[∥X0∥2]

T cM+100
= T−100. (B.2)

Here step (i) invokes Tonelli’s theorem, while step (ii) follows from Markov’s inequality. Taking
(B.1) and (B.2) collectively yields the desired result, provided that T is sufficiently large.

Lemma 10. Suppose that Assumption 1 holds, and that T is sufficiently large. Then we have
T∑

t=2

1− αt

1− αt
Tr
(
E
[(
Σαt(Xt)

)2]) ≤ CJd log T (B.3)

for some universal constant CJ > 0. Here the matrix function Σαt(·) is defined as

Σαt
(x) := Cov

(
Z |

√
αtX0 +

√
1− αtZ = x

)
,

where Z ∼ N (0, Id) is independent of X0.

Proof. This result (B.3) was established in Li et al. (2024b, Lemma 2) under the stronger assumption
that

P(∥X0∥2 < T cR) = 1 (B.4)
for some universal constant cR > 0. The assumption (B.4) is used to prove part (a) of their Lemma 2,
which states that for any α′, α ∈ [αt, αt−1] with 1 ≤ t ≤ T , one has

E
[(

Σα′
(√

α′X0 +
√

1− α′Z
))2]

⪯ c′1E
[(

Σα

(√
αX0 +

√
1− αZ

))2]
+ c′1 exp(−c′2d log T )Id.

for some universal constants c′1, c
′
2 > 0. Through a similar truncation argument as in the proof of

Lemma 9, we can show that

E
[(

Σα′
(√

α′X0 +
√
1− α′Z

))2]
⪯ c′1E

[(
Σα

(√
αX0 +

√
1− αZ

))2]
+ c′1T

−100Id.

Armed with this result, we can use the same analysis for proving part (b) of Li et al. (2024b, Lemma
2) to establish (B.3) under our Assumption 1. The details are omitted here for simplicity.
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