
Sharp Analysis of Stochastic Optimization under
Global Kurdyka-Łojasiewicz Inequality

Ilyas Fatkhullin∗

ETH AI Center & ETH Zurich
Jalal Etesami*

EPFL†
Niao He

ETH Zurich
Negar Kiyavash

EPFL†

Abstract

We study the complexity of finding the global solution to stochastic nonconvex
optimization when the objective function satisfies global Kurdyka-Łojasiewicz
(KŁ) inequality and the queries from stochastic gradient oracles satisfy mild ex-
pected smoothness assumption. We first introduce a general framework to analyze
Stochastic Gradient Descent (SGD) and its associated nonlinear dynamics under
the setting. As a byproduct of our analysis, we obtain a sample complexity of
O(ϵ−(4−α)/α) for SGD when the objective satisfies the so called α-PŁ condition,
where α is the degree of gradient domination. Furthermore, we show that a modi-
fied SGD with variance reduction and restarting (PAGER) achieves an improved
sample complexity of O(ϵ−2/α) when the objective satisfies the average smooth-
ness assumption. This leads to the first optimal algorithm for the important case of
α = 1 which appears in applications such as policy optimization in reinforcement
learning.

1 Introduction
Nonconvex optimization problems are ubiquitous in machine learning domains such as training deep
neural networks [22] or policy optimization in reinforcement learning [52]. Stochastic Gradient
Descent (SGD) and its variants are driving the practical success of machine learning approaches.
Naturally, understanding the limits of performance of SGD in the nonconvex setting has become an
important avenue of research in recent years [21, 4, 30, 44, 23, 15, 59].

We are interested in solving the unconstrained stochastic, nonconvex optimization problem of the
form

min
x∈Rd

f(x) := Eξ∼D [fξ(x)] , (1)

where f(·) is smooth and possibly nonconvex, and ξ is a random vector drawn from a distribution D.
Moreover, we are interested in an important special case of (1), when the expectation can be written
as the average of n smooth functions:

min
x∈Rd

[
f(x) :=

1

n

n∑
i=1

fi(x)
]
. (2)

For a general nonconvex differentiable objective f : Rd → R, finding a global minimum of f is
in general intractable [42, 54]. There are two common strategies to analyze optimization methods
for nonconvex functions. The first one is to scale down the requirements on the solution of interest
from global optimality to some relaxed version, e.g., first-order stationary point. However, such
solutions do not exclude the possibility of approaching a suboptimal local minima or a saddle point.
Another approach is to study nonconvex problems with additional structural assumption in the hope of

∗First two authors have equal contribution.
†École polytechnique fédérale de Lausanne

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

convergence to global solutions. In this direction, several relaxations of convexity have been proposed
and analyzed, for instance, star convexity, quasar-convexity, error bounds condition, restricted secant
inequality, and quadratic growth [26, 24, 23]. Many of the aforementioned relaxations have limited
application in real-world problems.

Recently, there has been a surge of interest in the analysis of functions satisfying the so-called
Kurdyka-Łojasiewicz (KŁ) inequality [9, 10]. Of particular interest is the family of functions that
satisfy global KŁ inequality. Specifically, we say that f(·) satisfies (global) KŁ inequality if there
exists some continuous function ϕ(·) such that ||∇f(x)|| ≥ ϕ (f(x)− infx f(x)) for all x ∈ Rd.
If this inequality is satisfied for ϕ(t) =

√
2µ t1/α, then we say that (global) α-PŁ condition is

satisfied for f(·). The special case of KŁ condition, 2-PŁ, often referred as Polyak-Łojasiewicz
or PŁ condition, was originally discovered independently in the seminal works of B. Polyak, T.
Ležanski and S. Łojasiewicz [48, 33, 38, 39]. Notably, this class of problems has found many
interesting emerging applications in machine learning, for instance, policy gradient (PG) methods
in reinforcement learning [41, 1, 56], generalized linear models [40], over-parameterized neural
networks [2, 57], linear quadratic regulator in optimal control [13, 19], and low-rank matrix recovery
[7].

Despite increased popularity of KŁ and α-PŁ assumptions, the analysis of stochastic optimization
under it remains limited and the majority of works focus on deterministic gradient methods. Indeed
until recently, only the special case of α-PŁ with α = 2 was mainly addressed in the literature
[26, 23, 30, 53, 49]. In this paper, we study the sample complexities of stochastic optimization for
the broader class of nonconvex functions with global KŁ property.

1.1 Related Works and Open Questions

Stochastic gradient descent. A plethora of existing works has studied the sample complexity of
SGD and its variants for finding an ϵ-stationary point of general nonconvex function f , that is, a
point x ∈ Rd for which E[||∇f(x̂)||] ≤ ϵ. For instance, [21] showed that for a smooth objective
(one with Lipschitz gradients) under bounded variance (BV) assumption, SGD with properly chosen
stepsizes reaches an ϵ-stationary point with the sample complexity of O(ϵ−4). Recently, [30, 56]
further extended the result under a much milder expected smoothness (ES) assumption on stochastic
gradient. While this sample complexity is known to be optimal for general nonconvex functions, a
naive application of this result to the function value using α-PŁ condition would lead to a suboptimal
O(ϵ−4/α

f) sample complexity for finding an ϵf -optimal solution, i.e., E [f(x)− f⋆] ≤ ϵf . Recently,
[20] studied SGD and established convergence rates for α-PŁ functions under BV assumption. Their
sample complexity result is O(ϵ−(4−α)/α

f) in our notation. Later [35] considered SGD scheme with
random reshuffling under local and global KŁ conditions and provided convergence in the iterates for
α ∈ (1, 2]. We note that our proof techniques are different from [20] and [35] and are not limited
merely to the case of BV assumption. In this work, we will answer the following open question:

What is the exact performance limit of SGD under global KŁ condition and a more
practical model of stochastic oracle?

Variance reduction. There has been extensive research on development of algorithms which
improve the dependence on n and/or ϵ for both problems (1) and (2) (over simple methods such as
SGD and Gradient Descent (GD)). One important family of techniques3 is variance reduction, which
has emerged from the seminal works of Blatt et. al [8]. The main idea of variance reduction is to make
use of the stochastic gradients computed at previous iterations to construct a better gradient estimator
at a relatively small computational cost. Various modifications, generalizations, and improvements of
the variance reduction technique appeared in subsequent work, for instance, [50, 28, 16] to name a
few.

Finite-sum case. A number of recently proposed algorithms such as SNVRG [58], SARAH [45],
STORM [15], SPIDER [17], and PAGE [36] achieve the sample complexity O

(
n +

√
n

ϵ2

)
when

minimizing a general nonconvex function with finite sum structure (2). This result is also known to
be optimal in this setting [36]. [27] studies SARAH in finite sum case under local KŁ assumption and
proves convergence in the iterates. The study in [27] is only asymptotic analysis and the dependence

3Another independent direction is to make use of higher order information [43, 18, 3].

2

on the parameters κ and n, which are important in practice for quantifying the improvement over GD
and SGD are ignored. [34] proposes an SVRG-based algorithm for KŁ functions and [55, 45, 46]
study other variance reduction techniques, but they only analyze the special case α = 2. Under
2-PŁ condition, these methods further improve to O

(
(n+ κ

√
n) log(1

ϵf
)
)

sample complexity4 for
finding an ϵf -optimal solution. However, it is not clear if it is possible to provide any non-asymptotic
guaranties for variance reduced methods under α-PŁ condition for any α ∈ [1, 2). In our work, we
will answer the following open question:

What is the extent of improvement any variance reduction scheme can provide
under global α-PŁ condition for finite-sum objectives of the form (2)?

Online/streaming case. While variance reduction methods have been initially designed for prob-
lems of the form (2), it was later discovered that they also improve over SGD when solving (1)
[32, 37]5. The analysis of these methods was obtained for general nonconvex functions (for minimiz-
ing the norm of the gradient, E [∥∇f(x̂)∥] ≤ ϵ) and later extended to 2-PŁ objectives for minimizing
the function value, E [f(x)− f⋆] ≤ ϵf . For example, the methods in [58, 45, 17, 36] achieveO(ϵ−3)
complexity improving over O(ϵ−4) complexity of SGD for finding an ϵ-stationary point. Under the
2-PŁ condition, these results can be extended to global convergence with O(ϵ−1

f) sample complexity
[36]. However, in contrast to a general nonconvex case, variance reduction under 2-PŁ assumption
does not show any improvement over SGD in terms of ϵf . We highlight that all existing analysis
of variance reduction under α-PŁ condition is restricted only to a special case α = 2. We refer
the reader to Appendix C, where we elaborate on the key difficulties in the analysis for the cases
α ∈ [1, 2). Since the direct analysis for α ∈ [1, 2) is challenging, in order to obtain the global
convergence in this setting, one could naively translate the complexity for finding a stationary point
of a general nonconvex function (which is O(ϵ−3)) to convergence in a function value by using α-PŁ
condition:

√
2µ (f(x̂)− f⋆)

1/α ≤ ||∇f(x̂)||. This would result in O
(
ϵ
−3/α
f

)
sample complexity.

However, there are two serious issues with this approach. First, this complexity does not provide any
improvement over SGD in the most interesting practical case α = 1 and gives strictly worse result
for all α > 1. Second, the guarantees for general nonconvex optimization hold on average, in the
sense that the point x̂ is sampled uniformly from all the iterates of the algorithm. It would be more
desirable to instead derive last iterate convergence guarantees under KŁ (α-PŁ) condition. In this
work, we will address the following open question:

Is it possible to accelerate the O
(
ϵ
−(4−α)/α
f

)
sample complexity of SGD under

global α-PŁ condition for stochastic objectives of the form (1)?

1.2 Contributions

In this work, we provide an extensive analysis of stochastic optimization under global KŁ condition
and answer all the above questions. More precisely, our contributions are as follows

• We provide a new framework for the analysis of the dynamics of SGD under global KŁ
condition (see Section 3). It is based on the analysis of SGD dynamic which is governed by
a recursive inequality (see Equation (6)). As a result of this analysis, we introduce a set of
conditions (see Theorem 1) for designing proper stepsizes to guarantee convergence.

• Using this framework, we provide sharp analysis of SGD under a general ES assumption
(Assumption 4) and demonstrate that the sample complexity O

(
ϵ
−(4−α)/α
f

)
is tight for the

dynamical system describing SGD.
• Next, we propose PAGER, a new variance reduction scheme with parameter restart. A

carefully chosen sequence of parameters of PAGER allows the algorithm to adapt to the
nonconvex geometry of the problem and establish state-of-the-art convergence guarantees for
minimizing α-PŁ functions. In online setting (1), we obtain O

(
ϵ
−2/α
f

)
sample complexity

of PAGER, which beats O
(
ϵ
−(4−α)/α
f

)
complexity of SGD for the whole spectrum of

4κ = L/µ is the analogue of condition number, L is defined in Assumption 6.
5Under additional assumptions such as smoothness of individual functions fξ(·) or even milder condition

such as average L-smoothness (Assumption 6).

3

parameters α ∈ [1, 2). In particular, for the important special case of 1-PŁ, this leads to the
first optimal algorithm with O(ϵ−2

f) sample complexity, which already matches with the
lower bound known for stochastic convex optimization [42].

• Furthermore, we obtain faster rates with PAGER in finite sum case (2), providing the first
acceleration over GD and SGD under α-PŁ condition.

In Table 1, we summarize the sample complexity results for stochastic optimization under α-PŁ and
BV assumptions. We also establish sharp convergence results for convergence in the iterates to the
set X⋆ of optimal points and provide a summary in Table 2 in the Appendix.

Table 1: Summary of sample complexity results for α-PŁ functions (Assumption 3) under average
L-smoothness (Assumptions 6) and bounded variance (Assumptions 5). Quantities: α = PŁ power;
µ = PŁ constant; κ = L/µ; σ2 = variance. The entries of the table show the expected number of
stochastic gradient calls to achieve E [f(xk)− f⋆] ≤ ϵf .

Method Finite sum case Online case

GD O
(
nκ

(
1
ϵf

) 2−α
α

)
N/A

SGD O
(

κσ2

µ

(
1
ϵf

) 4−α
α

)
O

(
κσ2

µ

(
1
ϵf

) 4−α
α

)
PAGER Õ

(
n+

√
nκ

(
1
ϵf

) 2−α
α

)
(new) O

((
σ2

µ
+ κ2

)(
1
ϵf

) 2
α

)
(new)

2 Assumptions and Discussion

In this section, we introduce the assumptions we make throughout the paper.
Assumption 1. The gradient of f(·) is Lipschitz continuous, that is, for all x and y,
∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥, L > 0 is referred to as the Lipschitz constant.

Furthermore, we assume that the objective function f is lower bounded, i.e., f∗ := infx f(x) > −∞,
and it satisfies the following inequality
Assumption 2 (global KŁ or global Kurdyka-Łojasiewicz). Let ϕ : R+ → R+ be a continuous
function such that ϕ(0) = 0 and ϕ2(·) is convex. The function f(·) is said to satisfy global Kurdyka-
Łojasiewicz inequality if

||∇f(x)|| ≥ ϕ (f(x)− f∗) for all x ∈ Rd. (3)

Assumption 3 (α-PŁ or Polyak-Łojasiewicz). There exists α ∈ [1, 2] and µ > 0 such that

∥∇f(x)∥α ≥ (2µ)
α/2 (f(x)− f∗) for all x ∈ Rd. (4)

We refer to α as the PŁ power and µ as the PŁ constant.

It is straightforward to see that the α-PŁ is a special case of KŁ with ϕ(t) =
√
2µ t1/α.

Connections with other assumptions. Another commonly adopted way to define the global KŁ
property is to assume that ρ′ (f(x)− f⋆) · ∥∇f(x)∥ ≥ 1 for all x ∈ Rd, where ρ(t) is called a
disingularizing function and ρ′(·) denotes its derivative. Moreover, disingularizing function satisfies
the following conditions, it is continuous, concave, ρ(0) = 0, and ρ′(t) > 0 [35].

If the above assumption holds for ρ(t) := 1
θ t

θ and θ > 0, then Assumption 3 is satisfied with PŁ
power α = 1

1−θ . However, α-PŁ condition is more general since it allows to consider the case α = 1.
For example, consider the function of one variable f(x) = (ex + e−x)/2− 1, then |f ′(x)| ≥ f(x)
for all x. Thus f(x) satisfies Assumption 3 with α = 1 and µ = 1/2. Moreover, this function is
convex, but it does not satisfy inequality ρ′ (f(x)− f⋆) · ∥∇f(x)∥ ≥ 1 for any choice of ρ(t).

We also provide several non-convex problems for which α-PŁ holds with α ∈ [1, 2] in the Appendix A.
Other forms of ϕ(t) also appear in practice, e.g., squared cross entropy loss function satisfies the KL
condition with ϕ(t) = min{t,

√
t}, [51].

4

The intuition behind the special case α = 1 is that the function is allowed to be flat near the set of
optimal points X⋆ = argminx f(x).

Assumption 4 (k-ES, Expected Smoothness of order k). The stochastic gradient estimator gk(x, ξ)
is an unbiased estimate of the gradient∇f(x) at any given point x and its second moment satisfies

E
[
∥gk(x, ξ)∥2

]
≤ 2A · h

(
f(x)− f∗)+B · ||∇f(x)||2 + C

bk
, for all x ∈ Rd, (5)

where A,B,C are non-negative constants. h : R+ → R+ is a concave continuously differentiable
function with h′(t) ≥ 0, h(0) = 0. The expectation is taken over random vector ξ ∼ D. We call bk
the cost of such estimator.

This assumption encompasses previous assumptions in the literature. For instance, it is straightforward
to see that an estimator satisfies the standard bounded variance assumption [21] when h(t) = 0, B =
1, and bk = 1 in (5). Gradient estimators with relaxed growth assumption [6, 11] are also special
cases of (5) for h(t) = 0 and bk = 1. A closely related assumption to the relaxed growth was
introduced in [53] which holds when h(t) = 0 and C = 0 in (5). Expected smoothness assumption
[30, 24, 56] is the closest assumption to k-ES and it holds when h(t) = t and bk = 1. Notably,
ES assumption is satisfied in practical scenarios such as mini-batching, importance sampling and
compressed communication [30]. More recently, it has been shown that PG method with softmax
policies and log barrier regularization can be modeled using ES assumption [56]. Note that due to
the first term in (5), i.e., 2A · h(f(x) − f∗), the second moment can be large when the objective
gap at x is large. Such property is not captured by standard bounded variance (Assumption 5). The
flexibility and advantages of introducing such additional term are elaborated in detail in the literature
[24, 30, 25, 56].

We highlight two special cases for the sequence bk: bk = Θ(kτ) with τ ≥ 0 and bk = Θ(qk) with
q > 1. For example, Monte Carlo sampling and mini-batching allow us to design estimators with
such {bk}k≥0 sequences. When a gradient estimator satisfies Assumption 4, unless bk is bounded
for all k, it essentially means that we have a mechanism to reduce its variance. More precisely, the
variance decreases according to the sequence 1/bk. As we show in Section 4, if such estimator exists,
it results in a better convergence rate compared to vanilla SGD and the improvement is captured by
sequence bk. On the other hand, usually the access to such estimator comes with a cost proportional
to bk, e.g., mini-batch setting described in Section 4. Thus we refer to bk as the cost of the estimator
gk(x, ξ).

3 Stochastic Gradient Method
Algorithm 1 summarizes the steps of a slightly modified SGD which we analyze in this work. We
call this algorithm SGD with restarts.6 This algorithm updates the point x for T number of iterations
within an inner-loop. Note that, in the inner-loop, the step-size remains unchanged and the iterates are
updated via xt+1 = xt − ηgk(xt, ξt), where η is the step-size and {ξt}t≥0 are independent random
vectors. The cost bk of the gradient estimator gk(x, ξ) remain the same within the inner loop of
Algorithm 1.
Algorithm 1: SGD with restarts

1: Initialization: x, T,K, {ηk : k = 0, ...,K − 1}
2: for k = 0, . . . ,K − 1 do
3: η ← ηk
4: for t = 0, . . . , T − 1 do
5: x← x− ηgk(x, ξt)
6: return x

3.1 Dynamics of SGD
Let {xt}t≥0 be the sequence of points generated by the inner loop of Algorithm 1, and Assumptions
1, 2, 4 are satisfied. Then the dynamics of SGD in the inner-loop of Algorithm 1 is characterized by

6Note that if we set K = 1, then Algorithm 1 reduces to SGD with constant step-size.

5

Lemma 1. Under Assumptions 1, 2, and 4 with constant cost, i.e., b := bk, we obtain

δt+1 ≤ δt + aη2 · h
(
δt
)
− η

2
ϕ2(δt) +

dη2

b
, (6)

where δt := E [f(xt)− f⋆], a := LA, d := LC
2 , η := ηk.

Understanding the dynamics of this recursion, allows us to establish the global convergence of SGD.
Our approach consists of two main steps: i) Finding the stationary7 point of (6) when the inequality
is replaced by equality and for a fixed step-size, ηk = η, which we denote by r(η). ii) Selecting the
step-sizes {ηk} and sequence {bk}k≥0, such that the corresponding stationary points {r(ηk)}k≥0

(defined below) converge to zero as k increases.

The stationary point of (6) after replacing inequality with equality must satisfy the equation:

aη2h(t) +
dη2

b
=

η

2
ϕ2(t). (7)

Let us call this stationary point r(η). To complete the first step, we approximate r(η) by a polynomial
function of η. In other words, we find ν ∈ R+ such that r(η) = Θ(ην).

For the second step of our framework, we should design the stepsizes. Next result introduces a set
of conditions that allow us to design the stepsizes, which will guarantee convergence. The detailed
derivations are presented in the Appendix.

Theorem 1. Suppose there exist ν ≥ 0, {ωj}j≥0, and ζ ≥ 0 such that ηk = Θ(k−ζ), r(ηk) =
Θ(k−ζν), |1− ωk| < 1, and

1 + aη2kh
′(r(ηk))− ηkϕ

′(r(ηk))ϕ(r(ηk)) = 1− ωkk
−1. (8)

Then, δk=O(k−ζν) and the iteration complexity of Algorithm 1 with T=Ω(1/minj ωj) isO(ϵ−1/(ζν)
f).

As a consequence of Theorem 1, we present the iteration complexity of SGD for α-PŁ functions.

Corollary 1. Consider a special case of Assumption 4 with h(t) = tβ and bk = kτ , where β ∈ (0, 1]
and τ ≥ 0. Suppose the objective function f satisfies Assumptions 1 and 3. Let γ := αβ. Then, for
any ϵf > 0, Algorithm 1 returns a point x with E [f(x)− f⋆] ≤ ϵf after N := K · T iterations.

i) If γ = 2 (α = 2 and β = 1), we have

N = O(ϵ−
1

1+τ

f), with ηk = Θ(k−1).

ii) If γ < 2, we have

N = O
(
ϵ
− 4−α

α(τ+1)

f

)
with ηk = Θ(k−

τ+1
2−α/2

+τ) if τ ≤ γ

4− α− γ
, and

N = O
(
ϵ
− 4−α−γ

α

f

)
with ηk = Θ(k−

2−γ
4−α−γ) if τ >

γ

4− α− γ
.

To verify the above result empirically, we simulated δt in (6) throughout all iterations of Algorithms 1
for different sets of parameters and presented the results in Figure 1 along with their corresponding
convergence rates given in Corollary 1. As it is shown in these figure, the above convergence rates
correctly capture the behaviour of the dynamics in (6). As an example, in Figure 1(b), the red solid
curve shows the rate of δk, i.e., log(δk) as a function of log(k) for γ = 1.1, α = 1.4, and τ = 0.9.
Based on Corollary 1, the convergence rate of Algorithm 1 for this setting isO(ϵ−0.98

f) or equivalently

log(δk) = (−α(τ+1)
4−α) log(k) ≈ −1.02 log(k) which is shown by red dashed line. Next, we discuss

how the results in Corollary 1 generalizes the existing work in the literature.

Comparison to related works. Authors in [30] studied the convergence of SGD for 2-PŁ objectives,
under a stronger assumption than Assumption 4. More precisely, they assumed an estimator that
satisfies Assumption 4 with τ = 0 and h(t) = t and obtained the convergence rate of O(ϵ−1

f). This

7Stationary point of a dynamic is its convergence point.

6

4.5 5 5.5 6 6.5 7 7.5

log(k)

-7

-6

-5

-4

-3

-2

-1

lo
g

(
k
)

=1.1, =1.2

-0.38

=1.1, =1.4

-0.54

=1.1, =1.7

-0.74

=1.1, =2

=2, =2

-1

(a) τ = 0.

5.7 5.8 5.9 6 6.1 6.2 6.3 6.4

log(k)

-9

-8

-7

-6

-5

-4

lo
g

(
k
)

=1.1, =1.4

-1.02

=1.1, =1.7

-1.4

=1.1, =2

=2, =2

-1.9

(b) τ = 0.9.

5.7 5.8 5.9 6 6.1 6.2 6.3 6.4

log(k)

-9

-8

-7

-6

-5

-4

lo
g

(
k
)

=1.1, =1.4

-0.93

=1.1, =1.7

-1.4

=1.1, =2

-2.2

(c) τ = 2.

Figure 1: Behavior of the dynamics in (6) for h(t) = tβ , ϕ(t) =
√
2µ t1/α, τ ∈ {0, 0.9, 2}, and

different α, β. Each solid line shows log(δk) as a function of log(k), for a given set of parameters and
each dashed line shows the corresponding theoretical convergence rate of δk presented in Corollary 1.
The numbers assigned to dashed lines indicate the slope of those lines. (a) and (b) verify the case
corresponding to τ ≤ γ/(4 − α − γ) and (c) verifies the case τ > γ/(4 − α − γ). Note that the
distance between the dashed and solid lines is due to constant factors.

is consistent with our rate presented in the Corollary 1. It is worth noting that in this setting, O(ϵ−1
f)

is optimal [30].

The authors in [56] studied the performance of SGD for 1-PŁ objectives. Assuming that the gradient
estimator satisfies Assumption 4 with τ = 0 and h(t) = t, they obtain O(ϵ−3

f) sample complexity.
This result can be recovered from Corollary 1 by setting τ = 0, γ = 1, and α = 1. Note that in
this case, the cost of each iteration is bk = 1, which means that the iteration complexity coincides
with the sample complexity. We note that our proof technique is different than in [56] and allows to
consider more general assumptions. Finally, [20] studied SGD with α-PŁ objectives for α ∈ [1, 2]
under bounded variance Assumption 5 with bk = 1 and obtained similar convergence rate to ours. We
recover their result as a special case by setting A = 0 and τ = 0 in Corollary 1, if we set T = 1 we
also recover the same (up to a constant) step-sizes ηk = Θ

(
k−

2
4−α

)
. However, we highlight that our

proof technique is different from [20], and more generic since it holds for a general Assumption 4.

3.2 Sample complexity of SGD

The result of Corollary 1 suggests that by increasing the cost of the gradient estimator bk over the
iterations, one can achieve a better iteration complexity of Algortihm 1. In particular, it improves

with τ until it reaches the minimum N = O
(
ϵ
− 4−α−γ

α

f

)
at τ = γ

4−α−γ and does not change for
larger values of τ . However, we are merely interested in the iteration complexity in practice, since
the computational cost at each iteration can be prohibitively large. A more adequate measure is the
total computational cost (sample complexity) of the method. It is interesting whether increasing bk
over the iterations may also result in a better sample complexity for finding an ϵf -optimal solution,
than for the constant choice, e.g., bk = 1. The following lemma shows the contrary.
Proposition 1. Let the assumptions of Corollary 1 hold, bk = Θ(kτ), T = Θ(1). Then the expected
total computational cost (sample complexity) of Algorithm 1 is

cost := T ·
K−1∑
k=0

bk =


O
(
ϵ
− 4−α

α

f

)
for 0 ≤ τ ≤ γ

4−α−γ ,

O
(
ϵ
− (4−α−γ)(τ+1)

α

f

)
for τ > γ

4−α−γ .

The above result implies that increasing the cost of the gradient estimator with iterations does not
improve the total sample complexity of Algorithm 1. Therefore, one can simply select bk = 1 (τ = 0)

and obtain O
(
ϵ
− 4−α

α

f

)
sample complexity.

3.3 Tightness of rates in Corollary 1
In this section, we show that when τ = 0, the convergence rates presented in Corollary 1 are tight for
the dynamic (6) describing the progress of SGD. More precisely, if there exists a function f and a

7

gradient estimator satisfying the assumptions in Corollary 1 such that its corresponding recursive
inequality (6) is an equality, then its convergence rate, presented in Corollary 1 cannot be improved
by any choices of stepsizes {ηk}k≥0. Next proposition summarizes our results about the tightness of
our convergence rates in Corollary 1.
Proposition 2. Consider the following recursion

δk+1 = δk + aη2k · h
(
δk
)
− ηk

2
ϕ2(δk) +

dη2k
bk

, for all k ≥ 0,

where a ≥ 0, d > 0, h(t) = tβ with β ∈ (0, 1], ϕ(t) =
√
2µt1/α with α ∈ [1, 2], and bk = Θ(1).

Then δk = Ω(k−
α

4−α) for any sequence of {ηk}k≥0. Moreover, this rate is achieved by the choice

ηk = Θ(k−
1

2−α/2).

4 Faster Rates with Variance Reduction

Algorithm 2: PAGER (PAGE with restarts)
1: Initialization: x̄0, ḡ0,K, {Λk = (ηk, Tk, pk, bk, b

′
k) : k = 0, ...,K − 1}

2: for k = 0, . . . ,K − 1 do
3: (x0, g0)← (x̄k, ḡk)
4: (η, p, b, b′)← (ηk, pk, bk, b

′
k)

5: for t = 0, . . . , Tk − 1 do
6: xt+1 = xt − ηgt
7: Sample χ ∼ Bernoulli(p)
8: if χ = 1 then
9: gt+1 = 1

b

∑b
i=1∇fξit+1

(xt+1)

10: else
11: gt+1 = gt +

1
b′

∑b′

i=1∇fξit+1
(xt+1)− 1

b′

∑b′

i=1∇fξit+1
(xt)

12: (x̄k+1, ḡk+1)← (xt+1, gt+1)
13: Return: x̄K

To simplify the exposition of the results in this section, let us assume that gk(xt, ξt) is constructed
explicitly via mini-batching gk(xt, ξt) := 1

bk

∑bk
i=1∇fξit(xt), where ξt :=

(
ξ1t , . . . , ξ

bk
t

)
is a

random vector of independent entries, ξt are independent for all iterations, {∇fξit(xt)}bki=1
are queries

provided by an oracle such that E[∇fξit(xt)] = ∇f(xt) and E[||∇fξit(xt) − ∇f(xt)||2] ≤ σ2 for
all t ≥ 0. The variance of this estimator diminishes linearly in the size of the mini-batch bk, i.e.,
gk(xt, ξt) satisfies
Assumption 5 (k-BV, bounded variance). Let Assumption 4 hold with A = 0, B = 1 and C = σ2,
i.e., E

[
∥gk(x, ξ)−∇f(x)∥2

]
≤ σ2

bk
.

Additionally, we assume that we have access to a gradient estimator g′k(x, ξ), which satisfies the
following

Assumption 6 (Average L-smoothness (of order k)). Let g′k(x, ξ) := 1
b′k

∑b′k
i=1∇fξi(x) and

g′k(y, ξ) :=
1
b′k

∑b′k
i=1∇fξi(y) be unbiased mini-batch estimators of the gradient of f(·) at points x

and y, respectively for shared stochasticity ξi ∼ D for each i = 1, . . . , b′k and ξ = (ξ1, . . . , ξbk).
Define ∆̃(x, y) := g′k(x, ξ) − g′k(y, ξ). The average L-smoothness (of order k) holds if there

exists L ≥ 0 such that E
[∥∥∥∆̃(x, y)−∆(x, y)

∥∥∥2] ≤ L2

b′k
∥x− y∥2 for all x, y ∈ Rd, where

∆(x, y) := ∇f(x)−∇f(y).
Remark 1. The Assumption 6 holds in several standard settings. For instance, if each ∇fξi(x)
is Lipschitz with constant L̄ (almost surely or on average), then Assumption 6 holds with L ≤ L̄.
Another example is when f(·) is of the form (2) and b′k = n, then L = 0.

8

4.1 PAGER – a new variance reduction for α-PŁ objectives

We remark from the analysis of Algorithm 1 in Section 3 that merely playing with choice of ηk and
bk (chosen as polynomial functions of k) is not sufficient to improve the convergence, hence, we need
to construct more sophisticated gradient estimator and reduce the variance using control variate. Now,
we highlight the main algorithmic ingredients of our construction. First, let us describe the variance
reduced estimator named PAGE, which will be the main building block for our Algorithm 2. PAGE
was introduced and analyzed in [36] and is known to be optimal for finding a first order stationary
point. Moreover, it is easy to implement and designed via a small modification to mini-batch SGD

gt+1 =

{
1
b

∑b
i=1∇fξit+1

(xt+1), w.p. p,

gt +
1
b′

∑b′

i=1

(
∇fξit+1

(xt+1)−∇fξit+1
(xt)

)
, w.p. 1− p,

where p is a small probability and mini-batch sizes satisfy b > b′.

However, while the method looks simple, the extension of its analysis to α-PŁ functions faces several
difficulties. 8 Therefore, we introduce a new method, which we call PAGER (Algorithm 2) – a
Probabilistic Average Gradient Estimator with parameter Restart. It takes as input the sequence
of parameters {Λk := (ηk, Tk, pk, bk, b

′
k) : k = 0, ...,K − 1}, where Tk is the length of stage k,

ηk, pk, bk, b
′
k step-size, probability, and batch-sizes at stage k. PAGER updates this sequence of

parameters in the outer loop k = 0, . . . ,K − 1 and applies PAGE estimator with a fixed set of
parameters in the inner loop t = 0, . . . , Tk − 1. We will select {Λk}k≥0 depending on the PŁ power
α to capture the dependence on the geometry of the problem and establish fast rates for each α in
settings (1) and (2).

4.2 Online case

We present convergence guarantees for Algorithm 2 in the setting (1) and defer its formal proof to
Appendix C.

Theorem 2. Let f(·) have the form (1) and satisfy Assumptions 1, 3 (with α ∈ [1, 2)), 5 and
6, let the sequences9 in Algorithm 2 be chosen as b′k = Θ

(
2

(2−α)k
α

)
, pk = Θ

(
2

−(2−α)k
α

)
, bk =

Θ
(
2

2k
α

)
, Tk = Θ

(
2

(2−α)k
α

)
, ηk = Θ

(
1
)
. Then, for any ϵf > 0 Algorithm 2 returns a point x with

E [f(x)− f⋆] ≤ ϵf after N :=
∑K−1

k=0 Tk = O
(
κϵ

− 2−α
α

f

)
iterations, where κ = L/µ. The expected

total computational cost (sample complexity) is O
((

σ2

µ + κ2
)
ϵ
− 2

α

f

)
.

Improvement over SGD. Theorem 2 implies that PAGER improves the sample complexity of SGD

from O
(
ϵ
− 4−α

α

f

)
to O

(
ϵ
− 2

α

f

)
under α-PŁ condition for the whole spectrum of parameters α ∈ [1, 2).

In the case α = 1, which holds in many interesting applications (see Appendix A for examples), this
leads to O

(
ϵ−2
f

)
sample complexity compared to the best known O

(
ϵ−3
f

)
for SGD.

Relation to convex optimization and last iterate convergence. As a consequence of our analysis
we obtain the optimal sample complexity for convex stochastic optimization under the additional
assumption that the iterates of the method remain bounded, i.e., ∥xt − x⋆∥2 ≤ D for all t ≥ 0, where
x⋆ ∈ argminx f(x).

10 For 1-PŁ objectives, PAGER has O
(
ϵ−2
f

)
sample complexity. Since the

iterates of the algorithm are bounded, convexity ⟨∇f(x), x − x⋆⟩ ≥ f(x) − f(x⋆) implies 1-PŁ
with µ = 1

2D . This observation implies convergence of PAGER for convex objectives with O
(
ϵ−2
f

)
sample complexity, which is known to be non-improvable for convex stochastic optimization [42].

8We refer the reader to Appendix C, where we explain the challenges in the analysis of variance reduction
under α-PŁ condition and show how we overcome these difficulties using the restart strategy.

9For brevity, in Theorem 2 we define the input sequences up to constants hidden in Θ(·) notation. In fact,
our analysis allows to specify these constants and we present detailed derivations in Appendix C.

10Note that this assumption is mild since it holds for the iterates of PAGER, for example, if we additionally
assume that f(·) is coercive, i.e., f(x) → ∞ for x → ∞.

9

Moreover, we highlight that this result holds for the last iterate of PAGER, while the standard analysis
of first order methods for convex functions guarantees convergence for the average iterate [31]. The
last iterate convergence for convex objectives was only recently established for SGD by following an
involved analysis with a careful control of iterates via suffix-averaging scheme [20].

4.3 Finite sum case

Let f(·) have the finite sum form (2). Then we obtain the following result.

Theorem 3. Let f(·) have the form (2) and satisfy Assumptions 1, 3 (with α ∈ [1, 2)) and 6, let
the sequences be chosen as pk = 1

n+1 , b′k = 1, bk = n, Tk = Θ
(
2

(2−α)k
α

)
, ηk = Θ

(
1
)
. Then,

for any ϵf > 0, Algorithm 2 returns a point x with E [f(x)− f⋆] ≤ ϵf after N :=
∑K−1

k=0 Tk =

Õ
(
n +
√
nκϵ

− 2−α
α

f

)
iterations, where κ = L/µ The expected total computational cost (sample

complexity) is Õ
(
n+
√
nκϵ

− 2−α
α

f

)
.

The proof is deferred to Appendix C. Theorem 3 quantifies the improvement of PAGER over GD in
the finite sum setting in terms of n and over SGD in terms of ϵf , see Table 1 for comparison. Recall

that GD has sample complexity O
(
nκϵ

−(2−α)
α

f

)
. When n is large, we get the improvement of order√

n. Notice that in the limit α→ 2, it matches the best known result for 2-PŁ objectives [36].

5 Conclusion

We analyzed the complexity of SGD when the objective satisfies global KŁ inequality and the
queries from stochastic gradient oracle satisfy weak expected smoothness. We introduced a general
framework for this analysis which resulted in a sample complexity of O(ϵ−(4−α)/α) for SGD with
objectives satisfying α-PŁ condition. We also demonstrated the tightness of this rate under the
specific choice of stepsizes. Last but not least, we developed a modified SGD with variance reduction
and restarting (PAGER), which improves the sample complexity of SGD for the whole spectrum of
parameters α ∈ [1, 2) and achieves the optimal rate for the important case of 1-PŁ objectives.

Acknowledgements

We would like to thank Anas Barakat and Anastasia Kireeva for valuable discussions. This work
was supported by ETH AI Center doctoral fellowship, ETH Research Grant funded through the ETH
Zurich Foundation, and NCCR Automation funded through the Swiss National Science Foundation.

References
[1] Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. On the Theory of

Policy Gradient Methods: Optimality, Approximation, and Distribution Shift. arXiv preprint
arXiv:1908.00261, 2020.

[2] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A Convergence Theory for Deep Learning
via Over-Parameterization. In Proceedings of International Conference on Machine Learning,
2019.

[3] Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Ayush Sekhari, and Karthik Srid-
haran. Second-order information in non-convex stochastic optimization: Power and limitations.
In Proceedings of Thirty Third Conference on Learning Theory, 2020.

[4] Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Wood-
worth. Lower bounds for non-convex stochastic optimization. arXiv preprint arXiv:1912.02365,
2019.

[5] Jonathan Baxter and Peter L. Bartlett. Infinite-horizon policy-gradient estimation. Journal of
Artificial Intelligence Research, 2001.

10

[6] Dimitri P Bertsekas and John N Tsitsiklis. Gradient convergence in gradient methods with
errors. SIAM Journal on Optimization, 2000.

[7] Yingjie Bi, Haixiang Zhang, and Javad Lavaei. Local and Global Linear Convergence of General
Low-rank Matrix Recovery Problems. arXiv preprint arXiv:2104.13348, 2021.

[8] Doron Blatt, Alfred O. Hero, and Hillel Gauchman. A convergent incremental gradient method
with a constant step size. SIAM Journal on Optimization, 2007.

[9] Jérôme Bolte, Aris Daniilidis, and Adrian Lewis. The Łojasiewicz inequality for nonsmooth
subanalytic functions with applications to subgradient dynamical systems. SIAM Journal on
Optimization, 2007.

[10] Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized minimization
for nonconvex and nonsmooth problems. Mathematical Programming, 2014.

[11] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 2018.

[12] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[13] Jingjing Bu, Afshin Mesbahi, Maryam Fazel, and Mehran Mesbahi. LQR through the lens of
first order methods: Discrete-time case. arXiv preprint arXiv:1907.08921, 2019.

[14] Xin Chen, Niao He, Yifan Hu, and Zikun Ye. Efficient Algorithms for Minimizing Composi-
tions of Convex Functions and Random Functions and Its Applications in Network Revenue
Management. arXiv preprint arXiv:2205.01774, 2022.

[15] Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex
SGD. In Advances in Neural Information Processing Systems, 2019.

[16] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A Fast Incremental Gradient
Method With Support for Non-Strongly Convex Composite Objectives. In Advances in Neural
Information Processing Systems, 2014.

[17] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. SPIDER: Near-Optimal Non-
Convex Optimization via Stochastic Path-Integrated Differential Estimator. In Advances in
Neural Information Processing Systems, 2018.

[18] Cong Fang, Zhouchen Lin, and Tong Zhang. Sharp analysis for nonconvex sgd escaping from
saddle points. In Proceedings of the Thirty-Second Conference on Learning Theory, 2019.

[19] Ilyas Fatkhullin and Boris Polyak. Optimizing static linear feedback: Gradient method. SIAM
Journal on Control and Optimization, 2021.

[20] Xavier Fontaine, Valentin De Bortoli, and Alain Durmus. Convergence rates and approximation
results for SGD and its continuous-time counterpart. In Conference on Learning Theory, 2021.

[21] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 2013.

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press, 2016.

[23] Robert Gower, Othmane Sebbouh, and Nicolas Loizou. SGD for structured nonconvex functions:
Learning rates, minibatching and interpolation. In Proceedings of International Conference on
Machine Learning, 2021.

[24] Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and
Peter Richtárik. SGD: General analysis and improved rates. In Proceedings of International
Conference on Machine Learning, 2019.

[25] Benjamin Grimmer. Convergence rates for deterministic and stochastic subgradient methods
without lipschitz continuity. SIAM Journal on Optimization, 2019.

11

[26] Mark Schmidt Hamed Karimi, Julie Nutini. Linear convergence of gradient and proximal-
gradient methods under the Polyak-Łojasiewicz condition. arXiv preprint arXiv:1608.04636v4,
2016.

[27] Jia Hu, Congying Han, Tiande Guo, and Tong Zhao. On the Convergence of Stochastic Splitting
Methods for Nonsmooth Nonconvex Optimization. arXiv: Optimization and Control, 2021.

[28] Rie Johnson and Tong Zhang. Accelerating Stochastic Gradient Descent using Predictive
Variance Reduction. In Advances in Neural Information Processing Systems, 2013.

[29] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-Łojasiewicz condition. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, 2016.

[30] Ahmed Khaled and Peter Richtárik. Better theory for SGD in the nonconvex world. arXiv
preprint arXiv:2002.03329, 2020.

[31] Guanghui Lan. First-Order and Stochastic Optimization Methods for Machine Learning.
Springer Series in the Data Sciences. Springer International Publishing, 2020.

[32] Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Non-convex Finite-Sum Optimization
Via SCSG Methods. In Advances in Neural Information Processing Systems, 2017.

[33] Tadeusz Ležanski. Gradient methods for minimizing functionals. Mathematische Annalen,
1963.

[34] Qunwei Li, Yi Zhou, Yingbin Liang, and Pramod K. Varshney. Convergence analysis of
proximal gradient with momentum for nonconvex optimization. In Proceedings of International
Conference on Machine Learning, 2017.

[35] Xiao Li, Andre Milzarek, and Junwen Qiu. Convergence of random reshuffling under the
Kurdyka-Łojasiewicz inequality. arXiv preprint arXiv:2110.04926, 2021.

[36] Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. Page: A simple and optimal
probabilistic gradient estimator for nonconvex optimization. arXiv preprint arXiv:2008.10898,
2021.

[37] Zhize Li and Jian Li. A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex
Optimization. In Advances in Neural Information Processing Systems, 2018.

[38] Stanisław Łojasiewicz. Sur le probleme de la division. Studia Mathematica, 1959.

[39] Stanislaw Łojasiewicz. A topological property of real analytic subsets. Coll. du CNRS, Les
équations aux dérivées partielles, 1963.

[40] Jincheng Mei, Yue Gao, Bo Dai, Csaba Szepesvari, and Dale Schuurmans. Leveraging non-
uniformity in first-order non-convex optimization. In Proceedings of International Conference
on Machine Learning, 2021.

[41] Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the Global Conver-
gence Rates of Softmax Policy Gradient Methods. In Proceedings of International Conference
on Machine Learning, 2020.

[42] Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. SIAM Review, 1983.

[43] Yurii Nesterov and B.T. Polyak. Cubic regularization of newton method and its global perfor-
mance. Mathematical Programming, 2006.

[44] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for
machine learning problems using stochastic recursive gradient. In Proceedings of International
Conference on Machine Learning, 2017.

12

[45] Lam M. Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. SARAH: A Novel Method
for Machine Learning Problems Using Stochastic Recursive Gradient. arXiv preprint
arXiv:1703.00102, 2017.

[46] Lam M. Nguyen, Marten van Dijk, Dzung T. Phan, Phuong Ha Nguyen, Tsui-Wei Weng,
and Jayant R. Kalagnanam. Finite-Sum Smooth Optimization with SARAH. arXiv preprint
arXiv:1901.07648, 2019.

[47] Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli.
Stochastic variance-reduced policy gradient. In Proceedings of International Conference on
Machine Learning, 2018.

[48] Boris Teodorovich Polyak. Gradient methods for minimizing functionals. Zhurnal vychislitel’noi
matematiki i matematicheskoi fiziki, 1963.

[49] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic
variance reduction for nonconvex optimization. In Proceedings of International Conference on
Machine Learning, 2016.

[50] Nicolas Roux, Mark Schmidt, and Francis Bach. A Stochastic Gradient Method with an
Exponential Convergence _Rate for Finite Training Sets. In Advances in Neural Information
Processing Systems, 2012.

[51] Kevin Scaman, Cedric Malherbe, and Ludovic Dos Santos. Convergence rates of non-convex
stochastic gradient descent under a generic lojasiewicz condition and local smoothness. In
Proceedings of International Conference on Machine Learning, 2022.

[52] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic Policy Gradient Algorithms. In Proceedings of International Conference on
Machine Learning, 2014.

[53] Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of SGD for
over-parameterized models and an accelerated perceptron. In International Conference on
Artificial Intelligence and Statistics, 2019.

[54] Stephen A Vavasis. Complexity issues in global optimization: a survey. In Handbook of global
optimization. Springer, 1995.

[55] Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh. SpiderBoost and Momentum:
Faster Variance Reduction Algorithms. In Advances in Neural Information Processing Systems,
2019.

[56] Rui Yuan, Robert M Gower, and Alessandro Lazaric. A general sample complexity analysis of
vanilla policy gradient. arXiv preprint arXiv:2107.11433, 2021.

[57] Jinshan Zeng, Shikang Ouyang, Tim Tsz-Kit Lau, Shaobo Lin, and Y. Yao. Global conver-
gence in deep learning with variable splitting via the Kurdyka-Łojasiewicz property. arXiv:
Optimization and Control, 2018.

[58] Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic nested variance reduction for nonconvex
optimization. In Advances in Neural Information Processing Systems, 2018.

[59] Yi Zhou, Yingbin Liang, and Huishuai Zhang. Understanding generalization error of SGD in
nonconvex optimization. Machine Learning, 2021.

13

Contents

1 Introduction 1

1.1 Related Works and Open Questions . 2

1.2 Contributions . 3

2 Assumptions and Discussion 4

3 Stochastic Gradient Method 5

3.1 Dynamics of SGD . 5

3.2 Sample complexity of SGD . 7

3.3 Tightness of rates in Corollary 1 . 7

4 Faster Rates with Variance Reduction 8

4.1 PAGER – a new variance reduction for α-PŁ objectives 9

4.2 Online case . 9

4.3 Finite sum case . 10

5 Conclusion 10

A Examples 15

A.1 α-PŁ Functions . 15

A.2 KŁ Functions . 16

B Proofs for Section 3 17

B.1 Proof of Lemma 1 . 17

B.2 Proof of Theorem 1 . 18

B.3 Proof of Corollary 1 . 19

B.4 Proof of Proposition 1 . 21

B.5 Proof of Proposition 2 . 22

C Proofs for Section 4 and Additional Discussion 24

C.1 Proof of Theorem 2 . 26

C.2 Proof of Theorem 3 . 30

C.3 Technical lemmas . 31

D Convergence in the Iterates 34

E Simulations 35

14

Appendix

A Examples

A.1 α-PŁ Functions

In this section, we provide some examples and applications of global KŁ functions. Particularly, we
focus on the class of α-PŁ functions with α ∈ [1, 2]. We start with simple one dimensional functions.
Example 1. Consider f(x) = c · |x|q, where q > 1, c > 0. f(x) satisfies Assumption 3 with

α = q
q−1 and µ = c

2/qq2

2 .

Example 2. Consider f(x) = ex+e−x

2 − 1. f(x) satisfies Assumption 3 with α = 1 and µ = 1/2.

Example 3. Consider f(x) = cosh(x) + 8 · cosh(sin(x))− 9, where cosh(x) = (ex+e−x)/2. The
derivative is f ′(x) = sinh(x)+ 8 · cos(x) · sinh(sin(x)) and |f ′(x)| ≥ 10−2 · f(x) for all x. Then
f(x) satisfies Assumption 3 with α = 1 and µ = 5 · 10−5.

Note that the functions in Example 1 and Example 2 are convex, whereas the function in Example 3
is nonconvex.

The following proposition shows that KŁ property is preserved under some operators such as direct
addition.
Proposition 3. Let f(·) be a separable function, i.e., f(x) := 1

n

∑n
i=1 fi(xi), where x =

(x1, . . . , xn), xi ∈ Rdi ,
∑n

i=1 di = d. Let each fi(·) satisfy KŁ inequality (Assumption 2) with ϕi(t).
Then f(·) also satisfies KŁ inequality with ϕ(t) := 1√

n
min1≤i≤n ϕi(t).

Proof. By separability and KŁ condition we have

∥∇f(x)∥2 =

n∑
i=1

1

n2
∥∇fi(xi)∥2

≥
n∑

i=1

1

n2
ϕ2
i

(
fi(xi)− f inf

i

)
(i)

≥ 1

n

n∑
i=1

ϕ2
(
fi(xi)− f inf

i

)
(ii)

≥ ϕ2

(
1

n

n∑
i=1

fi(xi)− f inf
i

)
(iii)

≥ ϕ2
(
f(x)− f inf

)
, (9)

where (i) holds by definition of ϕ(t), (ii) is due to convexity of ϕ(t) := 1√
n
min1≤i≤n ϕi(t) and

Jensen’s inequality and (iii) follows from 1
n

∑n
i=1 infxi

fi(xi) ≤ infx
1
n

∑n
i=1 fi(x) for any x =

(x1, . . . , xn).

The above Proposition 3 implies, in particular, that if we have a separable function f(x) =∑n
i=1 fi(xi) and each fi(xi) is 1-PŁ with µi, i = 1, . . . , n, then f(x) satisfies 1-PŁ with µ = µmin

n .
Example 4. Consider f(x, y) = cosh(x)+8·cosh(sin(x))+0.5·cosh(y)+2.5·cosh(sin(y))−12.
This function of two variables satisfies Assumption 3 with α = 1 and µ = 5 · 10−5.

Now we list several problems which occur in applications and satisfy α-PŁ with α = 1.
Example 5 (Policy gradient optimization in RL). Consider a Markov Decision Process (MDP)
M = {S,A,P,R, γ, ρ}, where S is a state space; A is an action space; P is a transition model,
where P(s′|s, a) is the transition density to state s′ from a given state s under a given action a;
R = R(s, a) is the bounded reward function for state-action pair (s, a); γ ∈ [0, 1) is the discount
factor; and ρ is the initial state distribution. The behavior of the agent in MDP is characterized by the

15

parametric policy πθ(a|s) over S ×A, which denotes the probability of taking action a at the state s.
The policy πθ is assumed to be differentiable with respect to parameter θ ∈ Rd. Let τ = {st, at}t≥0

be a trajectory generated by the policy πθ and it is distributed according to distribution τ ∼ p(τ |πθ).
The expected return of the policy πθ is defined by

J (θ) := Eτ

[∞∑
t=0

γtR (st, at)

]
.

The goal of policy-based methods is to find θ which maximizes the expected return θ⋆ ∈
argmaxθ J(θ). It was recently shown that the above objective satisfies 1-PŁ assumption

∥∇J(θ)∥ ≥
√

2µ (J⋆ − J(θ)) for all θ ∈ Rd

under the standard assumptions on πθ and ρ such as non-degenerate Fisher matrix and transferred
compatible function approximation error [41, 1, 56].

Example 6 (Operations management problems). In applications such as supply chain or revenue
management [14], problems can often be formulated as

min
x∈X

F (x) := E [ϕ(x ∧ ξ)] , (10)

where X is a convex compact subset of Rd, ξ is a random vector, ∧ denotes a component-wise
minimum and ϕ(·) is convex. As a result, F (·) becomes non-convex. On the other hand, such problem
often admits a convex reformulation

min
y∈Y

G(y) := F (g−1(y)), (11)

where g(x) = E [x ∧ ξ] and function G(·) is convex. Suppose g : X → Y is a bijective differentiable
map with ∇g(x) ⪰ λI , λ > 0 for all x ∈ X , then function F (·) satisfies 1-PŁ condition. This is
because: for any x with g(x) = y,

F (x)− F (x⋆) = G(y)−G(y⋆)

≤ ⟨∇G(y), y − y⋆⟩
≤ ∥∇G(y)∥ ∥y − y⋆∥
=

∥∥∇g−1(y)∇F (x)
∥∥ ∥y − y⋆∥

≤ DY

λ
∥∇F (x)∥ ,

where DY is the diameter of the set Y . Therefore, F (·) is 1-PŁ with µ = 1
2

λ2

D2
Y

.

Remark 2. Note that even though the problem in Example 6 satisfies 1-PŁ condition, our theory
developed in this work is not directly applicable to solve this problem The reason is that this problem
has a compact constraint and therefore requires an appropriate generalization of PŁ condition, e.g.,
using the notion of gradient mapping or the subgradient of the indicator function of the set X , see
[29] for examples. However, our theory becomes applicable for this problem if we additionally
assume that the solution of (10) lies in the interior of X and all the iterates {xt}t≥0 generated by
the method remain in the interior of X .

A.2 KŁ Functions

Example 7. A commonly used type of loss function in machine learning applications is a squared
cross entropy (CE), it is given by

ℓ(x, y) :=
∑
i

yi log
(exi∑

j e
xj

)2
.

Under such loss function, it is known [51] that KŁ condition holds with corresponding function
ϕ(t) = min{t,

√
t}. This is function is both positive and ϕ(t)2 is convex. Next, we apply the result

of Theorem 1 to obtain the convergence rate of SGD for this type of loss functions assuming the

16

stochastic gradient estimator satisfying Assumption 4 with h(t) = t. First step is to obtain the
stationary point r(η) using Equation (7).

2aη2t+ 2
dη2

b
= η

(
min{t,

√
t}
)2
.

It is straightforward to see that for small enough η, the stationary point is smaller than 1. In this
case, min{t,

√
t} is t. Therefore, we are in the setting of Corollary 1 with α = 1, β = 1, and τ = 0.

This implies that the interation (and sample) complexity of SGD is of the order O(ϵ−3
f). Moreover, if

A in Assumption 4 is zero, using a similar argument and the result of Theorem 2, one can derive that
PAGER give us O(ϵ−2

f) sample complexity.

To illustrate the generality of the result of Theorem 1, next we present the convergence rate of
SGD for objective functions that satisfy the global KŁ condition with ϕ(t) =

√
t log(t+ 1) under

Assumption 4 with h(t) = log(1 + t).
Example 8. Consider the scenario in which the objective function satisfies the global KŁ condition
with ϕ(t) =

√
t log(t+ 1) and a stochastic gradient estimator satisfies Assumption 4 with h(t) =

log(1 + t). In this case, Equation (7) becomes

2aη2 log(1 + t) + 2
dη2

b
= ηt log(1 + t).

Defining u := log(t+ 1) yields

η
(
2au+ 2

d

b

)
= (eu − 1)u ≈ (u+

u2

2
)u.

The last approximation is true since for small enough η, u is less than one. Solving the above cubic
equation leads to a solution that is of the order u = Θ(

√
η) or equivalently r(η) = Θ(exp(

√
η)− 1).

Note that for small enough η ≪ 1, we have Θ(exp(
√
η)− 1) = Θ(

√
η + η) = Θ(

√
η), i.e., ν = 0.5.

To obtain ζ in Theorem 1, we use Equation (8) which leads to

1 +
aη2k

1 + r(ηk)
− ηk

2

(r(ηk)

1 + r(ηk)
+ log(1 + r(ηk))

)
= 1 +

aη2k
1 +
√
ηk
− ηk

2

(√
ηk

1 +
√
ηk

+ log(1 +
√
ηk)
)
= 1− ωkk

−1,

In order to have the above equality, we can have ηk = Θ(k−1). Finally, the result of Theorem 1
yields δk = O(k−ζν) = O(k−0.5).

B Proofs for Section 3

B.1 Proof of Lemma 1

Lemma 1. Under Assumptions 1, 2, and 4 with constant cost, i.e., b := bk, we obtain

δt+1 ≤ δt + aη2 · h
(
δt
)
− η

2
ϕ2(δt) +

dη2

b
,

where δt := E [f(xt)− f⋆], a := LA, d := LC
2 , η := ηk.

Proof. Let {x0, x1, x2, ...} denote the sequence of points that are obtained from SGD. From the
L-smoothness assumption, we obtain

f(xt+1) ≤ f(xt)− η⟨∇f(xt), gk(xt, ξt)⟩+
L

2
||xt+1 − xt||2.

Taking the conditional expectation of both side of the above inequality given xt yields

E[f(xt+1)− f(xt)|xt] ≤ −ηE
[
⟨∇f(xt), gk(xt, ξt)⟩|xt

]
+

L

2
η2E

[
||gk(xt, ξt)||2|xt

]
.

17

Using Assumption 4 and the fact that oracle’s queries are unbiased, we obtain

E[f(xt+1)−f(xt)|xt] ≤ LAη2 · h
(
f(xt)−f∗)− η(1−L

2
ηB) · ϕ2

(
f(xt)−f∗)+ L

2
η2

C

b
,

where b = bk denotes the cost of gradient gk. Since the choice of learning rate is ours, we select it
such that (1− L

2 ηB) ≥ 1
2 . Using Assumption 2 for points around the optimum point x∗, we obtain

E[ϱt+1|xt]− ϱt ≤ aη2 · h
(
ϱt
)
− η

2
ϕ2(ϱt) +

dη2

b
,

where ϱt := f(xt)− f∗, a := LA, and d := LC
2 . Let δt = E[ϱt]. Using the fact h(t) is concave and

ϕ2 is convex, and Jensen’s inequality, we obtain the result.

B.2 Proof of Theorem 1

We first prove the following technical lemma.
Lemma 2. Consider a series {rt}t≥0 that for every integer T > 0 satisfies the following inequality

rt ≤
k∏

i=1

(1− aii
−1)T r0 +O(k−b),

where t = kT and a < ai < A ≤ 1 for some positive constants a and A and all i. Then, there exists
T such that rt = O(t−b).

Proof. Using the fact that ais are bounded and 1− x ≤ exp(−x), we obtain
k∏

i=1

(1− aii
−1)T ≤ exp

(
− aT

k∑
i=1

i−1
)
≤ (k + 1)−aT .

In the above inequality, we used
∑k

i=1 i
−1 ≥

∫ k+1

1
x−1dx = log(k + 1). Selecting T = ⌈b/a⌉ will

imply the result.

Theorem 1. Suppose there exist ν, {ωj}j≥0, and ζ ≥ 0 such that ηk = Θ(k−ζ), r(ηk) = Θ(k−ζν),
|1− ωk| < 1, and

1 + aη2kh
′(r(ηk))− ηkϕ

′(r(ηk))ϕ(r(ηk)) = 1− ωkk
−1.

Then, δk = O(k−ζν) and the iteration complexity of Algorithm 1 is O(ϵ−1/(ζν)
f).

Proof. Suppose, we are in the k iteration of the outer-loop of Algorithm 1. Using Lemma 1 and the
definition of r(η) in (7), we have

δt+1 ≤ δt + aη2k

(
h
(
δt
)
− h
(
r(ηk)

))
− ηk

2

(
ϕ2(δt)− ϕ2

(
r(ηk)

))
.

By defining yt := δt − r(ηk) and using the concavity of functions h(·) and −ϕ2(·), we obtain

yt+1 ≤ yt

(
1 + aη2kh

′(r(ηk))− ηϕ′(r(ηk))ϕ(r(ηk))).
Given the assumption in Theorem 1, we have

yt+1 ≤ yt
(
1− ωkk

−1
)
.

Recall that k corresponds to the index of the outer-loop. After t iterations of the inner-loop (in which
index k is fixed), we obtain

yt ≤ y0
(
1− ωkk

−1
)t
. (12)

This shows the rate at which the inner-loop of Algorithm 1 (lines 4-5) converges to point x, where
r(ηk) = f(x)− f∗. Based on Equation (12), after setting η = η1 and T1 rounds of the inner-loop,
we obtain

yT1
≤ y0

(
1− ω1

)T1 ⇒ δT1
≤ y0

(
1− ω1

)T1
+ r(η1).

18

Continuing this process, after updating η = η2 and going through the inner-loop for another T2

iterations imply

yT1+T2
≤ (δT1

− r(η2))
(
1− ω2

2

)T2 ⇒ δT1+T2
≤
(
y0
(
1− ω1

)T1
+ r(η1)− r(η2)

)(
1− ω2

2

)T2
+ r(η2).

The above inequality is because before starting the inner-loop for the second round, the initial point
for y is yT1 := δT1 − r(η2). Using induction and after k rounds of outer-loop, we obtain

δt ≤
k∏

i=1

∣∣1− ωi

i

∣∣Ti
y0 +

k∏
i=1

∣∣1− ωi

i

∣∣Ti

k−1∑
j=1

r(ηj)− r(ηj+1)∏j
i′=1

(
1− ωi′

i′

)Ti′

+ r(ηk)

=

k∏
i=1

∣∣1− ωi

i

∣∣Ti
y0 +

k−1∑
j=1

(
r(ηj)− r(ηj+1)

) k∏
i=j+1

∣∣1− ωi

i

∣∣Ti
+ r(ηk)

where t =
∑

j Tj . In Algorithm 1, Ti are selected to be T . Next, using Lemma 2, we show there
exist a positive constant T such that δt = O(t−νζ). Following the proof of Lemma 2, we have

δt ≤
k∏

i=1

∣∣1− ωi

i

∣∣T y0 + k−1∑
j=1

(
r(ηj)− r(ηj+1)

) k∏
i=j+1

∣∣1− ωi

i

∣∣T + r(ηk)

≤ (k + 1)−ωT y0 +

k−1∑
j=1

(
r(ηj)− r(ηj+1)

)(j + 1

k + 1

)ωT

+ r(ηk),

where t = kT and ω = mini ωi. Let b := νζ and T := ⌈(b + 1)/ω⌉. Since r(η) = Θ(ην) and
ηj = Θ(j−ζ), then there exists a constant C > 0 such that

δt ≤ (k + 1)−ωT y0 + C

k−1∑
j=1

(
j−b − (j + 1)−b

)(j + 1

k + 1

)ωT

+O(k−b)

≤ O(k−b) +
C

(k + 1)b+1

k−1∑
j=1

(
(1 +

1

j
)b − 1

)
(j + 1) +O(k−b).

Using (1 + x)b − 1 ≤ bx/(1− bx) for x < 1/b and b ≥ 0, we obtain

δt ≤ O(k−b) +
C ′

(k + 1)b+1
+

Cb

(k + 1)b+1

k−1∑
j>b

j + 1

j − b
+O(k−b) = O(k−b).

where C ′ ≥ 0 is a constant corresponding to the part of the summation for j ≤ b. The result follows
from the fact that k = t/T and T is a constant.

B.3 Proof of Corollary 1

Corollary 1. Consider a special case of Assumption 4 with h(t) = tβ and bk = kτ , where β ∈ (0, 1]
and τ ≥ 0. Suppose the objective function f satisfies Assumptions 1 and 3. Let γ := αβ. Then, for
any ϵf > 0, Algorithm 1 returns a point x with E [f(x)− f⋆] ≤ ϵf after N := K · T iterations.
i) When γ = 2 (α = 2 and β = 1), we have

N = O(ϵ−
1

1+τ

f), with ηk = Θ(k−1).

ii) When γ < 2, we have

N = O
(
ϵ
− 4−α

α(τ+1)

f

)
with ηk = Θ(k−

τ+1
2−α/2

+τ) if τ ≤ γ

4− α− γ
, and

N = O
(
ϵ
− 4−α−γ

α

f

)
with ηk = Θ(k−

2−γ
4−α−γ) if τ >

γ

4− α− γ
.

19

Proof. Using the result of Theorem 1, we need to specify the constants ν and ζ. To do so, we first
characterize the stationary point for the special setting of this corollary. Equation (7) becomes

aη · tβ +
dη

b
= µt2/α. (13)

Let γ := αβ and define the following function

Hη(t) := aη2tβ − µηt
2
α +

dη2

b
.

Next, we either find r(η) exactly or bound it. Depending on whether γ is less than or equal to 2, the
analysis of Hη(t) = 0 is different. We study each case separately.

I) γ = 2 (or β = 1 and α = 2): In this case, we can find r(η) exactly and it is given
by

r(η) =
dη
b

µ− aη
= Θ

(η
b

)
= Θ

(
k−τη

)
.

Note that in the above expression, we used the fact that bk = Θ(kτ). Next is to find the parameters in
Theorem 1. To do so, from Equation 8 with h(t) = t and ϕ(t) =

√
2µt, we have

1 + aη2kh
′(r(ηk))− ηkϕ

′(r(ηk))ϕ(r(ηk)) = 1 + a
(
Θ(k−ζ)

)2 − µΘ(k−ζ) = 1− ωkk
−1.

In order to have the above equality, we should have ζ = 1. Now, suppose that τ ≥ 0, then
r(η) = Θ(k−(1+τ)) and based on Theorem 1, we obtain the convergence rate of O(k−(1+τ)) for δk.

II) 0 ≤ γ < 2: In this case, we find lower and upper bound for r(η). To this end, consider the
following point for some constant S,

t0 :=

(
dη
b + S η

b

µ

)α
2

= Θ

((η
b

)α
2

)
.

For this point, we have

Hη(t0) = a
η2+

γ
2

b
γ
2

(d+ S

µ

) γ
2 − S

η2

b
.

For S = 0, Hη(t0) > 0. On the other hand, if η = Θ(k−ζ) and bk = Θ(kτ), then for (τ + ζ)γ2 ≥ τ
and large enough S, we have Hη(t0) < 0. This implies

r(η) = Θ

((η
b

)α
2

)
.

Next is to check whether (8) holds for ηk = Θ(k−ζ), bk = Θ(kτ), h(t) = tβ , and ϕ(t) =
√
2µt2/α,

i.e.,

1 + aβ
(
Θ(k−ζ)

)2(
Θ(k−(ζ+τ)α/2)

)β−1

− 2µ

α
Θ(k−ζ)

(
Θ(k−(ζ+τ)α/2)

)2/α−1

= 1− ωkk
−1.

The order of the first term is O(k−(2ζ+(ζ+τ)α(β−1)/2)) and the order of the second term is
O(k−(ζ+(ζ+τ)α(2/α−1)/2)). In order for the above expression to hold, we should have

ζ + (ζ + τ)α(2/α− 1)/2 ≤ 2ζ + (ζ + τ)α(β − 1)/2, (14)

and

ζ + (ζ + τ)α(2/α− 1)/2 ≤ 1. (15)

Inequality (14) implies γζ ≥ (2− γ)τ and inequality (15) leads to ζ < τ+1
2−α/2 − τ . See Figure 2 for

an example of the region (ζ, τ) for which both (14) and (15) hold. Putting everything together, we
obtain

If τ ≤ γ

4− α− γ
, then δk = O(k−

α(τ+1)
4−α), with ηk = Θ(k−

τ+1
2−α/2

+τ).

20

,- = 2 − , /

- + / 2 − &
2 = / + 1

#

$

Figure 2: An illustration of the region (τ, ζ) that ensures both (14) and (15) hold. This is the
highlighted area. Within this region, the maximum γ is at the red line. In this figure γ = 1.2, α = 1.3,
and β = 1.2/1.3 = 0.92.

Note that γ
4−α−γ is the intersection point of two lines. For τ > γ

4−α−γ , the dynamic is equivalent to

δt+1 ≤ δt + aη2 · δβt − ηµδ
2
α
t , (16)

with the stationary point r(η) =
(
aη/µ

) α
2−γ . Following the steps similar to the previous case, we get

the following equation

1 + aβ
(
Θ(k−ζ)

)2(
Θ(k−ζ α

2−γ)
)β−1

− 2µ

α
Θ(k−ζ)

(
Θ(k−ζ α

2−γ)
)2/α−1

= 1− ωkk
−1.

This leads to ζ = 2−γ
4−α−γ and subsequently to

If τ >
γ

4− α− γ
, then δk = O(k−

α
4−α−γ), with ηk = Θ(k−

2−γ
4−α−γ).

B.4 Proof of Proposition 1

Proposition 1. Let the assumptions of Corollary 1 hold, bk = Θ(kτ), T = Θ(1). Then the expected
total computational cost (sample complexity) of Algorithm 1 is

cost := T ·
K−1∑
k=0

bk =


O
(
ϵ
− 4−α

α

f

)
for 0 ≤ τ ≤ γ

4−α−γ ,

O
(
ϵ
− (4−α−γ)(τ+1)

α

f

)
for τ > γ

4−α−γ .

Proof. Corollary 1 says that Algorithm 1 finds the global ϵf -stationary point after N = K ·T number
of iterations, where

N = O
(
ϵ
− 4−α

α(τ+1)

f

)
with ηk = Θ(k−

τ+1
2−α/2

+τ) if τ ≤ γ

4− α− γ
,

N = O
(
ϵ
− 4−α−γ

α

f

)
with ηk = Θ(k−

2−γ
4−α−γ) if τ >

γ

4− α− γ
.

For τ ≤ γ
4−α−γ , the expected total computational cost (sample complexity) is

cost := T ·
K−1∑
k=0

bk = T

K−1∑
k=0

kτ = O(Nτ+1) = O
(
ϵ
− 4−α

α(τ+1)
·(τ+1)

f

)
= O

(
ϵ
− 4−α

α

f

)
.

For τ > γ
4−α−γ , the iteration complexity does not improve and the sample complexity becomes

worse when increasing τ

cost = T ·
K−1∑
k=0

bk = T

K−1∑
k=0

kτ = O(Nτ+1) = O
(
ϵ
− (4−α−γ)(τ+1)

α

f

)
.

21

B.5 Proof of Proposition 2

Proposition 2. Consider the following recursion

δk+1 = δk + aη2k · h
(
δk
)
− ηk

2
ϕ2(δk) +

dη2k
bk

, for all k ≥ 0,

where a ≥ 0, d > 0, h(t) = tβ with β ∈ (0, 1], ϕ(t) =
√
2µt1/α with α ∈ [1, 2], and bk = Θ(1).

Then δk = Ω(k−
α

4−α) for any sequence of {ηk}k≥0. Moreover, this rate is achieved by the choice

ηk = Θ(k−
1

2−α/2).

Proof. We begin with the fact that if δk defined in (6) converges to zero with stepsizes {ηk}, then
there exists a K0 such that for all k ≥ K0, δk < 1. Hence, for k ≥ K0, we have δk ≤ δβk for
β ∈ (0, 1]. An immediate consequence of this fact is that for h(t) = tβ and ϕ(t) =

√
2µt1/α, the

above dynamic can be bounded as follows

δk + aη2kδk − ηkµδ
2
α

k + dη2k ≤ δk + aη2kδ
β
k − ηkµδ

2
α

k + dη2k, ∀k ≥ K0. (17)

Let us define two new dynamics as follows, i.e.,

rk+1 := rk + aη2krk − ηkµr
2
α

k + dη2k, r0 := δ0, (18)

rk+1,ε := rk

(
1− a′η

1+ 2−α−ε
2

k

)
+ d′η2k, r0,ε := δ0, (19)

First, we show that for any 0 < ε < 2−α
2 , there exist K, a′, d′, such that for all k ≥ K, rk+1,ε ≤ rk+1.

To do so, we need to understand for what values of z, the following inequality holds.

z
(
1− a′η

1+ 2−α−ε
2

k

)
+ d′η2k ≤ z + aη2kz − ηkµz

2
α + dη2k.

This implies

0 ≤
(
a′η

1+ 2−α−ε
2

k + aη2k

)
z − ηkµz

2
α + (d− d′)η2k. (20)

By choosing d′ = d, the above inequality holds for

0 ≤ z ≤

a′η
2−α−ε

2

k + aηk
µ

α
2

.

Since a ≥ 0, (20) also holds for

z ∈
[
0,
(a′η 2−α−ε

2

k

µ

)α
2
]
.

Therefore, if rk is within the above interval, then rk+1,ε ≤ rk+1. Using (17), we know that
rk+1 ≤ δk+1. On the other hand, based on the result of Theorem 1, we have δk = O(η

α
2

k). Because
of 2−α−ε

2 ≤ 1 and the fact that there exists K such that for all k ≥ K, ηk ≤ 1, then δk will lay inside
the above interval for large enough k. This implies that there exists K ′ such that for all k ≥ K ′,
rk+1,ε ≤ rk+1 ≤ δk+1. Finally, using the result of Lemma 3 with ϵ′ = 2−α−ε

2 , we obtain the optimal
convergence rate of rk,ε that is

Θ
(
k−

1−ϵ′
1+ϵ′

)
= Θ

(
k−

α−ε
4−α−ε

)
.

Comparing the above rate with the rate of δk presented in Corollary 1, i.e., O(k−
α

4−α), concludes the
result.

22

Next, we present a generalization of Theorem 3.2 in [24] that helps us to establish our tightness result.
Lemma 3. Consider the following recursive equation

rk+1 := (1− a′η1+ϵ′

k)rk + c′η2k, k ≥ 0, (21)

where ηk ≤ 1
b′ for all k and a′, c′, ϵ′ ≥ 0 with a′ ≤ b′. Then, choosing s ≥ 2 and

ηk :=


(
1
b′

) 1
1+ϵ′ , k < [K2] or K ≤

b
′ 1−ϵ′
1+ϵ′

a′ ,(
2/(1+ϵ′)

a′(s+k−[K2])

) 1
1+ϵ′

, otherwise,

will result in rK = Θ
(
K− 1−ϵ′

1+ϵ′
)
.

Proof. For k ≤ [K2], we obtain

rk ≤
(
1− a′

b′

)k

r0 +
c

b
2

1+ϵ′

k−1∑
t=0

(1− a′

b′
)t ≤

(
1− a′

b′

)k

r0 + d1,

where d1 := c′

a′b
′ 1−ϵ′
1+ϵ′

. Note that if K ≤ b
′ 1−ϵ′
1+ϵ′

a′ , then

rK ≤
(
1− a′

b′

)K

r0 +
c′

a′2K
,

But for K > b
′ 1−ϵ′
1+ϵ′

a′ and k = [K/2], we have

r[K2] ≤
(
1− a′

b′

)[K2]

r0 + d1,

Then for k ≥ 1 + [K2], we have

rk ≤

(
1− 2/(1 + ϵ′)

s+ k − 1− [K2]

)
rk−1 + c′

(
2/(1 + ϵ′)

a′(s+ k − 1− [K2])

) 2
1+ϵ′

Multiplying both sides by ek := (s+ k − 1− [K2])
2

1+ϵ′ results in

ekrk ≤
(
s+ k − 3 + ϵ′

1 + ϵ′
− [

K

2
]

)(
s+ k − 1− [

K

2
]

) 1−ϵ′
1+ϵ′

rk−1 + c

(
2

a′(1 + ϵ′)

) 2
1+ϵ′

≤ ek−1rk−1 + d2, (22)

where d2 := c′
(

2
a′(1+ϵ′)

) 2
1+ϵ′ . The last inequality is due to the Jensen’s inequality and the fact that

log(x) is concave, hence, (
x− 2

1 + ϵ

)1+ϵ

x1−ϵ ≤ (x− 1)2.

Summing up (22) from k = [K/2] + 1 to k = K gives us

eKrK ≤ e[K/2]r[K/2] + d2(K − [K/2]).

Consequently,

rK ≤
e[K/2]

eK
r[K/2] + d2

(K − [K/2])

eK
=

(s− 1)
2

1+ϵ′

eK
r[K/2] + d2

(K − [K/2])

eK

≤ (s− 1)
2

1+ϵ′

eK

((
1− a′

b′

)[K2]

r0 + d1

)
+ d2

(K − [K/2])

eK
.

23

On the other hand, we have eK ≥ (K − [K/2])
2

1+ϵ ≥ (K/2)
2

1+ϵ , which leads to the following upper
bound for rK

rK ≤
(s− 1)

2
1+ϵ′

(K − [K/2])
2

1+ϵ′

((
1− a′

b′

)[K2]

r0 + d1

)
+

d2

(K − [K/2])
1−ϵ′
1+ϵ′

≤ (s− 1)
2

1+ϵ′

(K/2)
2

1+ϵ′

((
1− a′

b′

)[K2]

r0 + d1

)
+

d2

(K/2)
1−ϵ′
1+ϵ′

.

For the lower bound, we use the following inequality(
x− 2

1 + ϵ

)1+ϵ

x1−ϵ ≥ (x− 2)2, ∀x ≥ 2.

This implies

ekrk ≥ ek−2rk−1 + d2.

Multiplying the above by ek−1, we get

ek−1ekrk ≥ ek−1ek−2rk−1 + d2ek−1.

Summing up the above expression from k = [K/2] + 1 to k = K gives us

eK−1eKrK ≥ e[K/2]e[K/2]−1r[K/2] + d2

(
e[K/2] + ...+ eK

)
.

Using
∑s+K

i=s−1 i
2

1+ϵ′ ≥
∫ s+K

s−1
x

2
1+ϵ′ dx, we obtain

rK = Ω
(K1+ 2

1+ϵ′

K
2

1+ϵ′ K
2

1+ϵ′

)
= Ω(K

1−ϵ′
1+ϵ′).

To show that no other designs of stepsizes can achieve better rate, we show that even with the optimal
stepsizes, the rate will be the same as above. Note that the dynamic in (21) is a nonlinear function of
the stepsize ηk that has a global minimum which can be obtained by taking a derivative of (21) with
respect to ηk. This optimal stepsize is given by

ηk =

(
a′(1 + ϵ)rk

2c′

)1/(1−ϵ)

. (23)

Using this stepsizes will lead to the following dynamic

rk+1 = rk(1−Ar
2

1−ϵ−1

k), (24)

where A := c′(1−ϵ
1+ϵ)(

a′(1+ϵ)
2c′)

2
1−ϵ . Given the result of Lemma 6, the convergence rate of this dynamic

is O(k−
1−ϵ
1+ϵ). See Figure 3 for an illustration of an example that shows both the simulated rk in (24)

and its corresponding optimal rate. Different colours show different ϵ.

C Proofs for Section 4 and Additional Discussion

This Section is organized as follows. First, we elaborate on the intuition why one needs to resort to
variance reduction techniques in order to improve over SGD analysis provided in Section 3. Then we
highlight the key challenges associated with the analysis of variance reduced methods under global
KŁ condition and introduce a new variance reduced method PAGER. We explain the intuition why
PAGER overcomes the aforementioned challenges and improves over SGD in online case (1), and
over SGD and GD in finite sum (2) case. Finally, we provide convergence guarantees for each setting
in Theorems 4 and 5.11

11Note that Theorems 4 and 5 are detailed versions of Theorems 2 and 3 provided in Section 4.

24

6.5 7 7.5 8 8.5

log(k)

-6

-5

-4

-3

-2

-1

lo
g

(r
k
)

=0.2

-0.66

=0.8

-0.11

Figure 3: An example to verify equation (24) for ϵ ∈ {0.2, 0.8}. Solid and dashed lines denote the
simulated dynamic in Lemma 3 and its corresponding theoretical rates, i.e., O(k−

1−ϵ
1+ϵ), respectively.

Numbers assigned to dashed lines indicate the slope of those lines.

Why SGD is not enough? Notice that the analysis in Section 3, in particular, implies that if we
want to solve problem (1) using SGD with constant step-size η and a mini-batch with replacement
gradient estimator of size b, we immediately obtain a recursion

δt+1 − δt ≤ −ηµδ
2
α
t +

η2Lσ2

2b
. (25)

It is easy to see that if η is fixed, then the last (variance) term in the above recursion can be only
controlled by selecting large enough b.12 Assume that we want to solve our problem to ϵf accuracy

(δT ≤ ϵf). Then to balance the two terms on the RHS, one needs to take b ∼ ϵ
− 2

α

f . This choice

simplifies the recursion to δt+1 − δt ≤ −ηµ
2 δ

2
α
t . Applying Lemma 6 with c = 2−α

α , we conclude

that one needs T ∼ ϵ
−(2−α)

α

f iterations to reach δT ≤ ϵf . Thus, the total sample complexity is

b · T ∼ ϵ
−(4−α)

α

f . This observation implies that we need to construct a more sophisticated gradient
estimator than mini-batch estimator in order to improve the sample complexity of SGD.

Variance reduction and challenges under KŁ condition. One common technique to design faster
algorithms in stochastic optimization is to reduce variance of the gradient estimator using a control
variate. It turns out that using such variance reduction techniques one can often design a gradient
estimator at a much lower cost, while maintaining the same iteration complexity. Let us turn our
attention to one popular variance reduction mechanism called PAGE. The main steps of PAGE method
is described in Section 4, the detailed pseudo-code is presented in Algorithm 3. This method was
originally proposed and analyzed for general non-convex and 2-PŁ objectives [36]. However, its
application to α-PŁ functions with α ∈ [1, 2) remains elusive. If we try to apply the standard analysis
of PAGE, it will become apparent that we face several challenges. In particular, Lemma 8 along with
Lemma 4 provides the following inequality for the iterates of the Algorithm 3

Ψt+1 −Ψt ≤ −ηµΨ
2
α
t −

ptλt

2
Gt

(
1− 4ηµ

ptα
Ψ

2−α
α

t

)
+

ptλt

2

σ2

bt
, (26)

where Ψt = δt + λGt is a candidate for a Lyapunov function and Gt is the variance of the gradient
estimator, and λ > 0. To illustrate one key obstacle in the analysis of PAGE in online setting, let us
set Gt = 0 for simplicity

Ψt+1 −Ψt ≤ −ηµΨ
2
α
t +

pλσ2

2b
. (27)

12The results of Corollary 1 and Lemma 1 implies that changing η and b with iterations does not help.

25

Now, this recursion is very similar to (25). Therefore, the same argument applies here. In particular,
one can argue that given constant parameters η, b′ and p, we need to take b ∼ ϵ

− 2
α

f . Thus the total

sample complexity is again no better than b · T ∼ ϵ
−(4−α)

α

f . Note that the assumption Gt = 0 was
only made to illustrate one difficulty. Rigorously proving the fact that the term including Gt is small
constitutes another challenge.

Faster rates via PAGER in online case. However, we notice that in (26), we have one more degree
of freedom – the parameter p, which can be selected small enough to ensure smaller per iteration
cost of the method. This intuition brings us to PAGER (Algorithm 2), a new modification of PAGE
method with varying parameter p. 13 We carefully select the sequences {pk}k≥0, {bk}k≥0, {b′k}k≥0

for PAGER in order to obtain a small per iteration cost of order pkbk + b′k ∼ ϵ−1
f . This leads to a

much faster convergence with ϵ
−2/α
f sample complexity.

Difficulties in finite sum case and a fix via PAGER framework. Let us now consider a finite sum
problem (2) and directly apply Algorithm 3 with (constant) parameters η, p, b, b′. Then we arrive at
the following recursion

Ψt+1 −Ψt ≤ −ηµ (Ψt − λGt)
2
α − pλ

2
Gt

≤ −ηµΨ
2
α
t −

pλ

2
Gt

(
1− 4ηµ(n+ 1)

α
Ψ

2−α
α

t

)
,

where we applied Lemma 8, 4 and selected optimal parameters p = 1
n+1 , b = n, b′ = 1. By choosing

a small enough stepsize η, we can unroll the above recursion and obtain the sample complexity

O
(
(nδ0 +

√
nκ)

(
1+δ0
ϵf

) 2−α
α)

, where δ0 = f(x0) − f⋆, κ = L/µ. However, this complexity is
clearly not what one should hope for when analyzing a variance reduction scheme for problem (2).

Notably, this complexity can be even worse than the one of standard GD, which isO
(
nκ
(

1+δ0
ϵf

) 2−α
α)

,
for instance, when δ0 > κ. The main reason for this slowdown is that in the analysis of Algorithm 3
with constant parameters, we are forced to take small step-sizes of order η = O

(
1

nδ0

)
to ensure

progress. Luckily, thanks to a flexible choice of parameters in PAGER, we can overcome this difficulty
and provide improved convergence guaranties. Specifically, the framework of Algorithm 2 allows us
to select an increasing sequence of step-sizes until it reaches the value η = O

(
1√
nL
)
.

Algorithm 3: PAGE

1: Initialization: x0, g0 ∈ Rd, step-size η , number of iterations T , probability p, batch-sizes b, b′
2: for t = 0, . . . , T − 1 do
3: xt+1 = xt − ηgt
4: Sample χ ∼ Bernoulli(p)
5: if χ = 1 then
6: gt+1 = 1

b

∑b
i=1∇fξit+1

(xt+1)

7: else
8: gt+1 = gt +

1
b′

∑b′

i=1∇fξit+1
(xt+1)− 1

b′

∑b′

i=1∇fξit+1
(xt)

9: Return: xT

C.1 Proof of Theorem 2

Now we state and prove a detailed version of Theorem 2.

13Note that originally PAGE was only analyzed with constant parameter p, the extension to an arbitrarily
changing pt is not trivial.

26

Theorem 4. Let f(·) have the form (1) and satisfy Assumptions 1, 3 (with α ∈ [1, 2)), 5 and 6, let
the sequences in Algorithm 2 be chosen as

b′k =
α

8ηµ

(
2k

Ψ̄0

) 2−α
α

, pk =
1

1 + b′k
,

bk =

(
2 · 2 2−α

α · 2k

Ψ̄0

) 2
α

σ2

4µη2L2
,

Tk =
2

ηµ

(
2 · 2

2−α
α

(
2kU

Ψ̄0
+ 2

(ηµ
2

) α
2−α

)) 2−α
α

,

ηk = η =
1

µ
min

{
1

2κ
,
α

8

}
,

where Ψ̄0 := f(x̄0) − f(x⋆) + λ0 ∥ḡ0 −∇f(x̄0)∥2, λ0 :=
b′0

4η0(1−p0)L2 . Then, for any ϵf > 0

Algorithm 2 returns a point x̄K with E [f(x̄K)− f⋆] ≤ ϵf after N :=
∑K−1

k=0 Tk = O
(
ϵ
− 2−α

α

f

)
iterations. The expected total computational cost (sample complexity) is

cost :=
K−1∑
k=0

Tk (pkbk + 2(1− pk)b
′
k) = O

(
ϵ
− 2

α

f

)
.

Proof. Combining the result of Lemma 8 and Lemma 4 with a = 2
α , x = λGt

Ψt
≤ 1, we obtain the

following recursion

Ψt+1 −Ψt ≤ −ηµΨ
2
α
t −

pkλk

2
Gt

(
1− 4ηµ

pkα
Ψ

2−α
α

t

)
+

pkλk

2

σ2

bk
, (28)

where Ψt := δt + λkGt, Gt := E
[
1
2 ∥gt −∇f(xt)∥2

]
, δt := E [f(xt)− f(x⋆)], λk :=

b′k
4ηk(1−pk)L2 .

Define the sequence
{
Ψ̄k

}
k≥0

as Ψ̄k := E
[
f(x̄k)− f(x⋆) + λk ∥ḡk −∇f(x̄k)∥2

]
, which corre-

sponds to the outer loop of the Algorithm 2. For each k = 0, . . . ,K−1, the inner loop of Algorithm 2
starts with x0 such that Ψ0 := Ψ̄k. Let us prove by induction that within the outer loop Ψ̄k ≤ Ψ̄0

2k

for k = 0, . . . ,K − 1 and, for each k = 0, . . . ,K − 1, within the inner loop we have Ψt+1 ≤ Ψt

for t = 0, . . . Tk − 1 (unless we reached the desired accuracy Ψt ≤ Ψ̄k

2·2
2−α
α

within the inner loop).

The induction base for the outer loop and k = 0 is trivial. The induction base for the inner loop and
t = 0 is verified by the assumption on the step-size and the choice of batch-sizes when k = 0. Fix
k = 0, . . . ,K − 1 and t = 0, . . . , Tk − 1 and assume that we have Ψt ≤ Ψt−1 ≤ Ψ0 = Ψ̄k and

27

Ψ̄k ≤ Ψ̄0

2k
. Then it follows from (28) that

Ψt+1 −Ψt ≤ −ηµΨ
2
α
t −

pkλk

2
Gt

(
1− 4ηµ

pkα
Ψ

2−α
α

t

)
+

pkλk

2

σ2

bk

≤ −ηµΨ
2
α
t −

pkλk

2
Gt

(
1− 4ηµ

pkα
Ψ̄

2−α
α

k

)
+

pkλk

2

σ2

bk

≤ −ηµΨ
2
α
t −

pkλk

2
Gt

(
1− 4ηµ

pkα

(
Ψ̄0

2k

) 2−α
α

)
+

pkλk

2

σ2

bk

(i)

≤ −ηµΨ
2
α
t +

pkλk

2

σ2

bk
(ii)
= −ηµΨ

2
α
t +

pk
2

σ2

bk

b′k
4η(1− pk)L2

(iii)
= −ηµΨ

2
α
t +

σ2

bk

1

8ηL2

(iv)
= −ηµΨ

2
α
t +

ηµ

2

(
Ψ̄0

2 · 2 2−α
α · 2k

) 2
α

.

where (i) follows by pk ≥ 1
2b′k

= 4ηµ
α

(
Ψ̄0

2k

) 2−α
α

and the assumption on the step-size, (ii) is due

to λk =
b′k

4η(1−pk)L2 , (iii) is due to pkb
′
k

1−pk
= 1, and (iv) holds by the assumption on the batch-size

bk. The above recursion guaranties that after at most Tk = 2
ηµ

(
2 · 2 2−α

α

(
2kU
Ψ̄0

+ 2
(
ηµ
2

) α
2−α

)) 2−α
α

inner loop iterations, we have ΨTk
≤ Ψ0

4 = Ψ̄k

2·2
2−α
α

= Ψ̄0

2·2
2−α
α ·2k

. Indeed, if for t = 0, . . . , Tk − 1,

we have not reached Ψt ≤ Ψ̄0

2·2
2−α
α ·2k

, then Ψt+1 − Ψt ≤ −ηµ
2 Ψ

2
α
t ≤ 0 and by Lemma 6 (with

c = 2−α
α , b = ηµ/2), we get ΨTk

≤ Ψ0

2·2
2−α
α

= Ψ̄k

2·2
2−α
α

. Now it remains to analyze the outer loop of

Algorithm 2. By the definition of Ψ̄k and the choice of batch-sizes b′k we have λk+1 ≤ 2
2−α
α λk and

Ψ̄k+1 ≤ 2
2−α
α ΨTk

≤ Ψ̄k

2 ≤
Ψ̄0

2k+1 . Thus, the induction step is complete.

In order to achieve Ψ̄K ≤ ϵf , we need K = log2

(
Ψ̄0

ϵf

)
outer loop iterations. The total number of

iterations is

N =

K−1∑
k=0

Tk

=

K−1∑
k=0

2

ηµ

(
2 · 2

2−α
α

(
2kU

Ψ̄0
+ 2

(ηµ
2

) α
2−α

)) 2−α
α

=
2

ηµ

(
2 · 2

2−α
α

) 2−α
α

K−1∑
k=0

(
2kU

Ψ̄0
+ 2

(ηµ
2

) α
2−α

) 2−α
α

=
2 · 2

2(2−α)

α2

ηµ

(
U

Ψ̄0
+ 2

(ηµ
2

) α
2−α

) 2−α
α

K−1∑
k=0

(
2

2−α
α

)k
≤ 2 · 2

2(2−α)

α2

ηµ

(
U

Ψ̄0
+ 2

(ηµ
2

) α
2−α

) 2−α
α (

2
2−α
α

)K (
2

2−α
α − 1

)−1

≤ 2 · 2
2(2−α)

α2

ηµ

(
U

Ψ̄0
+ 2

(ηµ
2

) α
2−α

) 2−α
α (

2
2−α
α − 1

)−1
(
Ψ̄0

ϵf

) 2−α
α

.

28

The expected computational cost per iteration is

pkbk + 2(1− pk)b
′
k ≤ bk

1 + b′k
+ 2b′k

≤ bk
b′k

+ 2b′k

≤

(
2·2

2−α
α ·2k
Ψ̄0

) 2
α

σ2

4µη2L2

α
8ηµ

(
2k

Ψ̄0

) 2−α
α

+ 2
α

8ηµ

(
2k

Ψ̄0

) 2−α
α

≤
(
2 · 2

2−α
α

) 2
α 2σ2

ηL2

2k

Ψ̄0
+

α

4ηµ

(
2k

Ψ̄0

) 2−α
α

≤ 2σ2 · 24/α2

4ηL2

2k

Ψ̄0
+

α

4ηµ

(
2k

Ψ̄0

) 2−α
α

≤

(
σ2 · 24/α2

4ηL2Ψ̄0
+

α

4ηµΨ̄
2−α
α

0

)
2k.

Denote A :=

(
σ2·24/α

2

4ηL2Ψ̄0
+ α

4ηµΨ̄
2−α
α

0

)
, then the total cost is

cost =

K−1∑
k=0

Tk (pkbk + 2(1− pk)b
′
k)

= A

K−1∑
k=0

Tk · 2k

= A

K−1∑
k=0

2

ηµ

(
2 · 2

2−α
α

(
2kU

Ψ̄0
+ 2

(ηµ
2

) α
2−α

)) 2−α
α

2k

= 2 · 2
2(2−α)

α2 A

(
2

ηµ

(
U

Ψ̄0

) 2−α
α

K−1∑
k=0

(
2k
) 2−α

α 2k + 2
2−α
α

K−1∑
k=0

2k

)

= 2 · 2
2(2−α)

α2 A

(
2

ηµ

(
U

Ψ̄0

) 2−α
α

K−1∑
k=0

(
2k
) 2

α + 2
2−α
α

K−1∑
k=0

2k

)

= 2 · 2
2(2−α)

α2 A

(
2

ηµ

(
U

Ψ̄0

) 2−α
α (

2K
) 2

α

(
2

2/α − 1
)−1

+ 2
2−α
α 2K

)
,

29

which further simplifies by using the value of A and the step-size

cost = O

(
A

ηµ

(
1

Ψ̄0

) 2−α
α (

2K
) 2

α

)

= O

(
A

ηµ

(
1

Ψ̄0

) 2−α
α
(
Ψ̄0

ϵf

) 2
α

)

= O

(
AΨ̄0

ηµ

(
1

ϵf

) 2
α

)

= O

σ2

µ
+

Ψ̄
2(α−1)

α
0

η2µ2

(1

ϵf

) 2
α


= O

((
σ2

µ
+ κ2Ψ̄

2(α−1)
α

0

)(
1

ϵf

) 2
α

)
= O

(
ϵ
−2/α
f

)
.

C.2 Proof of Theorem 3

Now we state and prove a detailed version of Theorem 3.
Theorem 5. Let f(·) have the form (2) and satisfy Assumptions 1, 3 (with α ∈ [1, 2)) and 6, let the
sequences in Algorithm 2 be chosen as pk = 1

n+1 , b′k = 1, bk = n,

Tk =
1

ηkµ

(
U2k+1

Ψ̄0
+ 2 (ηkµ)

α
2−α

) 2−α
α

,

ηk = min

 1

2
√
nL

,
α

4µ(n+ 1)

(
2k

Ψ̄0

) 2−α
α

 ,

where Ψ̄0 := f(x̄0) − f(x⋆) + λ0 ∥ḡ0 −∇f(x̄0)∥2, λ0 := b′

4η0(1−p)L2 Then, for any ϵf > 0,
Algorithm 2 returns a point x̄K with E [f(x̄K)− f⋆] ≤ ϵf after

N :=

K−1∑
k=0

Tk = Õ
(
n+
√
nκϵ

− 2−α
α

f

)
iterations. The expected total computational cost (sample complexity) is

cost :=
K−1∑
k=0

Tk (pkbk + 2(1− pk)b
′
k) = Õ

(
n+
√
nκϵ

− 2−α
α

f

)
.

Proof. Combining the result of Lemma 8 and Lemma 4 with a = 2
α , x = λGt

Ψt
≤ 1 and noticing that

σ2 = 0, we obtain the following recursion

Ψt+1 −Ψt ≤ −ηµΨ
2
α
t −

pλ

2
Gt

(
1− 4ηµ(n+ 1)

α
Ψ

2−α
α

t

)
, (29)

where Ψt := δt+λkGt, Gt := E
[
1
2 ∥gt −∇f(xt)∥2

]
, δt := E [f(xt)− f(x⋆)], λk := b′

4ηk(1−p)L2 .

Define the sequence
{
Ψ̄k

}
k≥0

as Ψ̄k := E
[
f(x̄k)− f(x⋆) + λk ∥ḡk −∇f(x̄k)∥2

]
and λk :=

b′

4ηk(1−p)L2 , which corresponds to the outer loop of the algorithm. For each k = 0, . . . ,K − 1,

30

the inner loop of Algorithm 2 starts with x0 such that Ψ0 := Ψ̄k. Let us prove by induction
that the sequence

{
Ψ̄k

}
k≥0

satisfies Ψ̄k ≤ Ψ̄0

2k
for all k = 0, . . . ,K − 1. The induction base for

k = 0 is trivial. Let us prove the induction step for k + 1. The evolution of the inner loop is
characterized by (34) and given the assumption on the step-size, we have Ψt+1 −Ψt ≤ −ηµΨ

2
α
t for

all t = 0, . . . , Tk − 1 . Therefore, by Lemma 6 (with c = 2−α
α , b = ηµ) we have

ΨTk
≤ U + (ηkµ)

α
2−α Ψ̄k

(ηkµTk)
α

2−α
=

U + (ηkµ)
α

2−α Ψ̄k

U ·2k+1

Ψ̄0
+ 2 (ηkµ)

α
2−α

=
U + (ηkµ)

α
2−α Ψ̄k

U + (ηkµ)
α

2−α Ψ̄0

2k

· Ψ̄0

2k+1

(i)

≤ Ψ̄0

2k+1
,

where in (i), we used Ψ̄k ≤ Ψ̄0

2k
. Furthermore, since ηk+1 ≥ ηk, then λk+1 ≤ λk and Ψ̄k+1 ≤

ΨTk
≤ Ψ̄0

2k+1 , and the induction step is complete.

In order to achieve Ψ̄K ≤ ϵf , we need K = log2

(
Ψ̄0

ϵf

)
outer loop iterations. The total number of

iterations is

N =

K−1∑
k=0

Tk

(i)

≤
K−1∑
k=0

max

4(n+ 1)

α

(
Ψ̄0

2k

) (2−α)
α

, 2
√
nκ


(
U2k+1

Ψ̄0
+

µ√
nL

) 2−α
α

≤
K−1∑
k=0

max

{
4(n+ 1)

α

(
2

(
U +

Ψ̄0√
nκ

)) 2−α
α

, 2
√
nκ

(
2U

Ψ̄0
+

1√
nκ

) 2−α
α (

2
2−α
α

)k}

≤ max

{
4(n+ 1)

α

(
2

(
U +

Ψ̄0√
nκ

)) 2−α
α

K, 2
√
nκ

(
2U

Ψ̄0
+

1√
nκ

) 2−α
α (

2
2−α
α

)K (
2

2−α
α − 1

)−1
}

≤ max

{
4(n+ 1)

α

(
2

(
U +

Ψ̄0√
nκ

)) 2−α
α

log2

(
Ψ̄0

ϵf

)
,

2
√
n

2
2−α
α − 1

κ

(
2U

Ψ̄0
+

1√
nκ

) 2−α
α
(
Ψ̄0

ϵf

) 2−α
α

}
= Õ

(
n+
√
nκϵ

− 2−α
α

f

)
,

where in (i) we used the assumption on the step-sizes. The expected computational cost per iteration

is pkbk + 2(1− pk)b
′
k ≤ 3 and thus the total cost is Õ

(
n+
√
nκϵ

− 2−α
α

f

)
.

C.3 Technical lemmas

Lemma 4. Let x ≤ 1 and a ≥ 1, then (1− x)a ≥ 1− ax.

Proof. The results follows directly by applying the definition of convexity.

The following lemma is standard, we provide its proof for completeness.

Lemma 5. Suppose that function f(·) is L-smooth and let xt+1 := xt − ηgt, where gt ∈ Rd is any
vector, and η > 0 any scalar. Then we have

f(xt+1) ≤ f(xt)−
η

2
∥∇f(xt)∥2 −

(
1

2η
− L

2

)
∥xt+1 − xt∥2 +

η

2
∥gt −∇f(xt)∥2 . (30)

31

Proof. Define x̄t+1 := xt − η∇f (xt), then using Assumption 1 after some rearrangements we
obtain

f (xt+1) ≤ f (xt) + ⟨∇f (xt) , xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

= f (xt) + ⟨∇f (xt)− gt, xt+1 − xt⟩+ ⟨gt, xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

= f (xt) + ⟨∇f (xt)− gt,−ηgt⟩ −
(
1

η
− L

2

)
∥xt+1 − xt∥2

= f (xt) + η ∥∇f (xt)− gt∥2 − η ⟨∇f (xt)− gt,∇f (xt)⟩ −
(
1

η
− L

2

)
∥xt+1 − xt∥2

= f (xt) + η ∥∇f (xt)− gt∥2 −
1

η
⟨xt+1 − x̄t+1, xt − x̄t+1⟩ −

(
1

η
− L

2

)
∥xt+1 − xt∥2

= f (xt) + η ∥∇f (xt)− gt∥2 −
(
1

η
− L

2

)
∥xt+1 − xt∥2

− 1

2η

(
∥xt+1 − x̄t+1∥2 + ∥xt − x̄t+1∥2 − ∥xt+1 − xt∥2

)
= f (xt) + η ∥∇f (xt)− gt∥2 −

(
1

η
− L

2

)
∥xt+1 − xt∥2

− 1

2η

(
η2 ∥∇f (xt)− gt∥2 + η2 ∥∇f (xt)∥2 − ∥xt+1 − xt∥2

)
= f (xt)−

η

2
∥∇f (xt)∥2 −

(
1

2η
− L

2

)
∥xt+1 − xt∥2 +

η

2
∥gt −∇f (xt)∥2 .

Lemma 6. Let {rk}k≥0 be a non-negative sequence, which satisfies

rk+1 ≤ rk(1− brck), for all k

and c > 0. Then

rk ≤
U + b1/cr0

(b (k + 1))
1/c

,

where U := 21/c · c− 2
c−1 + c−1/c.

Proof. Define uk := φ(k)rk, φ(k) := (b(k + 1))
1/c. Then using φ(k + 1)− φ(k) ≤ 1

c
φ(k+1)
k+2 and

1 ≤ φ(k + 1) (φ(k))
−1 ≤ 21/c, we obtain

uk+1 − uk = φ(k + 1)rk+1 − φ(k)rk

≤ (φ(k + 1)− φ(k)) rk − bφ(k + 1)r1+c
k

= (φ(k + 1)− φ(k)) (φ(k))
−1

uk − bφ(k + 1) (φ(k))
−1−c

u1+c
k

= (φ(k + 1)− φ(k)) (φ(k))
−1

uk

(
1− φ(k + 1)uc

k

(k + 1) (φ(k + 1)− φ(k))

)
≤ (φ(k + 1)− φ(k)) (φ(k))

−1
uk (1− cuc

k) .

It follows from the above recursion that the sequence {uk}k≥0 is bounded for all k. Indeed, define
F (k, u) := (φ(k + 1)− φ(k)) (φ(k))

−1
u (1− cuc). Notice that for all k ≥ 0 and u > c−1/c we

have F (k, u) < 0 and for all k, u ≥ 0 we have F (k, u) ≤ 21/c · c− 2
c−1. Now it is straightforward

to see that uk ≤ u0 + 21/c · c− 2
c−1 + c−1/c. It only remains to return to rk sequence to obtain the

desired result.

32

Lemma 7 (Lemma 4 of [36]). Let Assumptions 5 and 6 hold, and let for χ ∼ Bernoulli(p) and
gt ∈ Rd, we construct gt+1 via

gt+1 =

{
1
b

∑b
i=1∇fξit+1

(xt+1) if χ = 1,

gt +
1
b′

∑b′

i=1

(
∇fξit+1

(xt+1)−∇fξit+1
(xt)

)
if χ = 0.

(31)

Then

Gt+1 −Gt ≤ −pGt +
(1− p)L2

b′
Rt +

pσ2

2b
, (32)

where Gt := E
[
1
2 ∥gt −∇f(xt)∥2

]
, Rn := E

[
1
2 ∥xt+1 − xt∥2

]
.

Proof.

Gt+1 = E
[
1

2
∥gt+1 −∇f (xt+1)∥2

]

= pE

1
2

∥∥∥∥∥1b
b∑

i=1

∇fξit+1
(xt+1)−∇f (xt+1)

∥∥∥∥∥
2


+(1− p)E

1
2

∥∥∥∥∥∥gt + 1

b′

b′∑
i=1

(
∇fξit+1

(xt+1)−∇fξit+1
(xt)

)
−∇f (xt+1)

∥∥∥∥∥∥
2


≤ pσ2

2b
+ (1− p)E

1
2

∥∥∥∥∥∥gt + 1

b′

b′∑
i=1

(
∇fξit+1

(xt+1)−∇fξit+1
(xt)

)
−∇f (xt+1)

∥∥∥∥∥∥
2


=
pσ2

2b
+ (1− p)E

[
1

2

∥∥∥gt −∇f (xt) + ∆̃(xt+1, xt)−∆(xt+1, xt)
∥∥∥2]

=
pσ2

2b
+ (1− p)E

[
1

2
∥gt −∇f (xt)∥2

]
+ (1− p)E

[
1

2

∥∥∥∆̃(xt+1, xt)−∆(xt+1, xt)
∥∥∥2]

≤ (1− p)E
[
1

2
∥gt −∇f (xt)∥2

]
+

(1− p)L2

b′
E
[
1

2
∥xt+1 − xt∥2

]
+

pσ2

2b

= (1− p)Gt +
(1− p)L2

b′
Rt +

pσ2

2b
,

where the first inequality holds by Assumption 5 and the second inequality is due to Assumption 6
with ∆̃(x, y) := 1

b′

∑b′

i=1

(
∇fξit+1

(x)−∇fξit+1
(y)
)

, ∆(x, y) := ∇f(x) − ∇f(y), x = xt+1,
y = xt.

Lemma 8. Let f(·) satisfy Assumptions 1, 3, 5 and 6. Assume that the step-size in Algorithm 3
satisfies

η ≤ min

{
1

2L
,

√
pb′

1− p

1

2L

}
. (33)

Define Ψt := E
[
f(xt)− f(x⋆) + λ ∥gt −∇f(xt)∥2

]
, λ := b′

4η(1−p)L2 . Then Algorithm 3 gener-

ates a sequence of points {xt}t≥0 such that

Ψt+1 −Ψt ≤ −ηµ (Ψt − λGt)
2
α − pλ

2
Gt +

pλ

2

σ2

b
. (34)

Proof. Using the notation Gt := E
[
1
2 ∥gt −∇f(xt)∥2

]
, Rt := E

[
1
2 ∥xt+1 − xt∥2

]
, δt :=

E [f(xt)− f(x⋆)] and assumption on the step-size η ≤ 1
2L , it follows by Lemma 5 that

δt+1 − δt ≤ −
η

2
E
[
∥∇f(xt)∥2

]
− 1

2η
Rt + ηGt.

33

Using Assumption 3, Jensen’s inequality for x 7→ x
2
α , we get

δt+1 − δt ≤ −ηµδ
2
α
t + ηGt −

1

2η
Rt.

For p < 1, it follows from Lemma 7 that

−Rt ≤ −
b′

(1− p)L2
(Gt+1 −Gt)−

pb′

(1− p)L2
Gt +

b′

(1− p)L2

pσ2

2b
.

Thus, combining the above two inequalities, we get

δt+1 − δt +
1

2η

b′

(1− p)L2
(Gt+1 −Gt) ≤ −ηµδ

2
α
t −

(
1

2η

pb′

(1− p)L2
− η

)
Gt +

1

2η

b′

(1− p)L2

pσ2

2b
.

Let Ψt := δt + λGt, λ := b′

2η(1−p)L2 . Using the assumption on the step-size, η ≤
√

pb′

4(1−p)L2 , we
get

Ψt+1 −Ψt = δt+1 − δt + λ (Gt+1 −Gt)

= δt+1 − δt +
b′

2η(1− p)L2
(Gt+1 −Gt)

≤ −ηµδ
2
α
t −

pb′

4η(1− p)L2
Gt +

1

2η

b′

(1− p)L2

pσ2

2b

= −ηµδ
2
α
t −

pλ

2
Gt +

pλ

2

σ2

b

= −ηµ (Ψt − λGt)
2
α − pλ

2
Gt +

pλ

2

σ2

b
.

D Convergence in the Iterates

In this Section, we assume that α-PŁ condition holds with α ∈ (1, 2]. We provide convergence
guaranties in the iterates to the set of optimal points X⋆, which we assume to be non-empty. The
sample complexity results are summarized in Table 2. The results in Table 2 are obtained by translating
the sample complexity results reported in Table 1 to convergence in the iterates via Proposition 4.
Note that in the special case α = 2, our rates in both Tables 1 and 2 recover the optimal rates for
online case [26, 23, 30] and the best known results for finite sum case [49, 36]. 14

Proposition 4. Let Assumption 3 hold with α ∈ (1, 2] and the set of optimal points X⋆ :=
argminx f(x) is not empty. Then

dist (x,X⋆) ≤ α

α− 1

1√
2µ

(f(x)− f⋆)
α−1
α for all x ∈ Rd, (35)

where dist (x,X⋆) := miny∈X⋆ ∥y − x∥.

The above result can be obtained by following the argument similar to the proof of Theorem 2
in [26] (where it is shown for a particular case α = 2). The only difference is that one should
take a disingularizing function as g(x) = (f(x)− f⋆)

α−1
α , where f⋆ = minx f(x). This result

immediately implies convergence in the iterates via

E
[
min
y∈X⋆

∥x− y∥
]

= E [dist (x,X⋆)]

(35)
≤ α

α− 1

1√
2µ

E
[
(f(x)− f⋆)

α−1
α

]
≤ α

α− 1

1√
2µ

(E [f(x)− f⋆])
α−1
α , (36)

where the last inequality holds by Jensen’s inequality for a concave function t 7→ t
α−1
α .

14While our analysis for variance reduction formally holds for α < 2 only, the special case α = 2 can be
easily recovered via standard techniques, e.g., [49, 36].

34

Table 2: Summary of sample complexity results for α-PŁ functions (Assumption 3) with α ∈ (1, 2]
under average L-smoothness (Assumptions 6) and bounded variance (Assumptions 5). Quantities: α
= PL power; µ = PL constant; κ = L/µ; σ2 = variance. The entries of the table show the expected
number of stochastic gradient calls to achieve E [dist (x,X⋆)] ≤ ϵx, where X⋆ ̸= ∅ is the set of
optimal points of f(·).

Method Finite sum case Online case

GD O
(
nκµ

α−2
2(α−1)

(
1
ϵx

) 2−α
α−1

)
N/A

SGD O
(
κσ2µ

α+2
2(1−α)

(
1
ϵx

) 4−α
α−1

)
O

(
κσ2µ

α+2
2(1−α)

(
1
ϵx

) 4−α
α−1

)
PAGER Õ

(
n+

√
nκµ

α−2
2(α−1)

(
1
ϵx

) 2−α
α−1

)
(new) O

((
σ2

µ
+ κ2

)
µ

1
1−α

(
1
ϵf

) 2
α−1

)
(new)

E Simulations

In this section, we perform numerical tests to evaluate the performance of the discussed methods.
Our experiments are based on the RL setup described in Example 5 since we believe that it is one of
the most interesting applications of our theoretical results. The goal of our experiments is twofold.
First, we want to make sure that variance reduction technique is useful in maximizing a cumulative
reward for policy optimization tasks. Second, it is interesting to find out if the restarting procedure in
PAGER is helpful in practice.

Algorithmic adjustments. In order to make Algorithms 1 and 2 applicable to the setup of Exam-
ple 5, one needs to make some standard adjustments. First, we should specify the way the stochastic
gradient is computed. In our experiments, we use the standard GPOMDP estimator [5], which is
given by

gk(θ, τ) :=
1

bk

bk∑
i=1

H−1∑
h=0

γhr(sih, a
i
h)Zθ,h,

where Zθ,h :=
∑h

z=0∇θ log πθ(a
i
z|siz), τ :=

{
(sih, a

i
h)
}H−1

h=0
is generated according to the trajectory

distribution p(τ |πθ), πθ is the parametric policy and H is the horizon length of an episode. Second,
the data distribution changes over iterations (distribution shift), and one needs to use an importance
weighting technique in order to apply variance reduction methods [47]. Importance weighting is
implemented as

g′k,ωθ2
(θ1, τ) :=

1

b′k

b′k∑
i=1

ω(τi|θ2, θ1)
H−1∑
h=0

γhr(sih, a
i
h)Zθ,h ω(τi|θ2, θ1) := ΠH−1

j=0

πθ1(a
i
j |sij)

πθ2(a
i
j |sij)

.

Given the above notation PAGE gradient estimator can be computed as

gt+1 =

{
gk(θt+1, τt+1), w.p. p,

gt + g′k(θt+1, τt+1)− g′k,ωθt+1
(θt, τt), w.p. 1− p.

Experimental setup. We test the discussed methods on benchmark RL environments CartPole and
Acrobot that are available on OpenAI gym [12]. Both environments have discrete action space and
continuous state space. We use a neural network with two hidden layers of width 32 each and Tanh
activation function. We set parameters by default as H = 200, γ = 0.9999 and initialize all runs
with the same randomly generated policy. For SGD, we use T = 1, b = 50. For PAGE we use b = 50,
b′ = 5, p = 0.1. For PAGER, we set initial batch-sizes as b′0 = 15, b0 = 5, p0 = 1 T0 = 50 and
change the values from one stage to another based the formulas given by Theorem 2 (with α = 1).
We tune step-sizes from the set

{
10−5, 2 · 10−5, . . . 26 · 10−5

}
and select the one that gives the best

performance based on the average reward in the last 10 iterations. The convergence curves Figure 4
are calculated as the mean over multiple runs with fixed parameters, the shaded regions represent one
standard deviation.

35

0 500 1000 1500 2000 2500 3000
of episodes

500

400

300

200

100

av
er

ag
e

re
w

ar
d

Acrobot

SGD
PAGER
PAGE

0 5000 10000 15000 20000 25000 30000
of episodes

25

50

75

100

125

150

175

200

av
er

ag
e

re
w

ar
d

CartPole

SGD
PAGER
PAGE

Figure 4: Performance of SGD, PAGER and PAGE on benchmark RL tasks.

Results. The empirical results shown in Figure 4 seem to be in line with our theoretical findings
(Theorem 2). There are two interesting observations. First, SGD requires more time to converge
compared to variance reduced methods. The difference is especially tangible for CartPole environ-
ment, where PAGER stabilizes at the maximal average reward 3 times faster than SGD. This is in line
with the theoretical sample complexity gap between PAGER – O(ϵ−2

f) and SGD – O(ϵ−3
f). Second,

PAGER converges much faster than its (non-restarted) variant PAGE on CartPole task, which shows
empirically the benefit of the restarting procedure. Moreover, the behavior of PAGER is more stable
near optimum. This observation is in accordance with the intuition described in Section C and our
theoretical analysis because PAGER is able to reduce the variance term in (26) at the desired rate by
varying parameters p and b over time.

36

	Introduction
	Related Works and Open Questions
	Contributions

	Assumptions and Discussion
	Stochastic Gradient Method
	Dynamics of SGD
	Sample complexity of SGD
	Tightness of rates in Corollary 1

	Faster Rates with Variance Reduction
	PAGER – a new variance reduction for -PŁ objectives
	Online case
	Finite sum case

	Conclusion
	Examples
	-PŁ Functions
	KŁ Functions

	Proofs for Section 3
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Proposition 1
	Proof of Proposition 2

	Proofs for Section 4 and Additional Discussion
	Proof of Theorem 2
	Proof of Theorem 3
	Technical lemmas

	Convergence in the Iterates
	Simulations

