
Published as a conference paper at ICLR 2025

LEARNING FROM NEGATIVE FEEDBACK,
OR POSITIVE FEEDBACK OR BOTH

Abbas Abdolmaleki, Bilal Piot, Bobak Shahriari, Jost Tobias Springenberg
Tim Hertweck, Rishabh Joshi, Junhyuk Oh, Michael Bloesch, Thomas Lampe
Nicolas Heess, Jonas Buchli, Martin Riedmiller
Google DeepMind ∗

ABSTRACT

Existing preference optimization methods often assume scenarios where paired
preference feedback (preferred/positive vs. dis-preferred/negative examples) is
available. This requirement limits their applicability in scenarios where only
unpaired feedback—for example, either positive or negative— is available. To
address this, we introduce a novel approach that decouples learning from positive
and negative feedback. This decoupling enables control over the influence of each
feedback type and, importantly, allows learning even when only one feedback
type is present. A key contribution is demonstrating stable learning from negative
feedback alone, a capability not well-addressed by current methods. Our approach
builds upon the probabilistic framework introduced in (Dayan & Hinton, 1997),
which uses expectation-maximization (EM) to directly optimize the probability
of positive outcomes (as opposed to classic expected reward maximization). We
address a key limitation in current EM-based methods: they solely maximize the
likelihood of positive examples, while neglecting negative ones. We show how
to extend EM algorithms to explicitly incorporate negative examples, leading to
a theoretically grounded algorithm that offers an intuitive and versatile way to
learn from both positive and negative feedback. We evaluate our approach for
training language models based on human feedback as well as training policies for
sequential decision-making problems, where learned value functions are available.

1 INTRODUCTION

The use of preference annotated data for training machine learning models has a long history going
back to early algorithms for recommender systems and market research (Guo & Sanner, 2010;
Boutilier, 2002; Bonilla et al., 2010). These days preference optimization algorithms are receiving
renewed attention since they are a natural candidate for shaping the outputs of deep learning systems,
such as large language models (Ouyang et al., 2022; Team, 2024a) or control policies, via human
feedback (Christiano et al., 2017; Rafailov et al., 2023; Azar et al., 2023). Arguably, preference
optimization algorithms can also be a natural choice even when direct human feedback is not available
but one instead aims to optimize a machine learning model based on feedback from a hand-coded or
learned critic function (judging desirability of solutions). Here preference optimization methods are
useful since they let us optimize the model to achieve desired outcomes based on relative rankings
between outcomes alone (rather than requiring absolute labels or carefully crafted reward functions).

Among preference optimization approaches, those based on directly using preference data – as
opposed to casting preference optimization as reinforcement learning from (human) feedback – such
as DPO (Rafailov et al., 2023), have emerged as particularly successful since they only require
access to an offline dataset of paired preference data, and are fairly robust to application domain and
hyperparameter settings. However, algorithms within this class make specific assumptions tailored to
their application domain. They were designed to optimize LLMs from human feedback in the form
of comparisons of generated sentences and thus, by design, require paired preference data (since they
directly model a specific choice of preference distribution). We are interested in finding algorithms
that are more flexible, and applicable in settings where the assumptions underlying DPO do not apply.

∗Corresponding Author: Abbas Abdolmaleki <aabdolmaleki@google.com>

1

Published as a conference paper at ICLR 2025

In this work we take a fresh look at preference optimization from a probabilistic inference perspective
that has been used with great success in the literature on KL regularized reinforcement learning (Dayan
& Hinton, 1997; Peters et al., 2010; Abdolmaleki et al., 2018). We find that from this perspective a
simplified approach to preference optimization can be derived that is intuitive to understand and is
capable of leveraging an arbitrary number of unpaired preferred or dis-preferred outcomes, or even
solely one type (positive or negative) of preference feedback. In particular, our method is able to
learn even if exclusively positive or negative examples are available. Formally, our method involves
an objective consisting of three log likelihood terms that are derived from first principles: maximizing
the likelihood of preferred outcomes, minimizing the likelihood of dis-preferred outcomes, while
staying close to a reference distribution (see equation 10). We show the effectiveness of our method
across a wide range of benchmarks including synthetic benchmarks, training policies for continuous
control, and training large language models (LLMs) from human feedback.

2 RELATED WORK

2.1 RL AS INFERENCE

Viewing reinforcement learning through the lens of probabilistic inference offers an alternative
framing of RL (Dayan & Hinton, 1997). This “RL as inference” perspective has gained consider-
able attention recently (Levine, 2018) inspiring various expectation-maximization (EM) based RL
algorithms (Peters et al., 2010; Abdolmaleki et al., 2018). Essentially, these policy improvement
algorithms can be viewed as performing EM to optimize the likelihood of a successful outcome.
However, a limitation of these algorithms is their reliance on successes (preferred outcome) data. In
this paper, we extend this framework to incorporate dis-preference information; effectively allowing
the policy to make unwanted outcomes less likely. We show that this alone can have an positive effect
on data efficiency and performance on certain tasks, notwithstanding the added flexibility.

2.2 PREFERENCE OPTIMIZATION

Preference optimization methods like Direct Preference Optimization (DPO; Rafailov et al., 2023)
and Identity Preference Optimization (IPO; Azar et al., 2023) have enjoyed much attention lately,
especially in the LLM training literature. This success is mostly due to a so-called direct optimization
of human preferences, in contrast to reward model training required in RL from human feedback
(RLHF) training pipelines. Nevertheless, these preference optimization methods were designed
specifically to learn from a particular type of data: pairs of preferred and dis-preferred data, usually
coming from humans indicating their preference over a pair of LLM responses to their query. This
can be restrictive in scenarios where multiple outcomes need to be considered, and DPO has since
been extended to multiple generations and compared to a novel method Efficient Exact Optimization
(EXO; Ji et al., 2024), both shown to outperform the RLHF baseline in cases where a reward model
is available. In this paper, we leverage the RL as inference framework to generalize preference
optimization even further, allowing for more general algorithms derived from first principles. Our
approach can not only handle scenarios with multiple generations but it also naturally handles
cases where only one type of feedback is accessible (i.e. all generations are failures), which can be
particularly useful for challenging task with binary success/failure outcomes (e.g. code, math, safety
assurance).

3 USING POSITIVE AND NEGATIVE FEEDBACK FOR POLICY OPTIMIZATION

In this section we present an approach to optimising policies based on preference data. We build
upon a large body of existing work in probabilistic inference for policy optimization.We will show
that, when applied to preference optimization, the Expectation-Maximization (EM) approach results
in a natural formulation of maximizing (weighted) likelihood of positive outcomes. Since such a
formulation is appealing due to its simplicity but cannot effectively use information about negative
outcomes, we finally derive a simple extension that enables the use of dis-preferred/negative data-
points.

The resulting algorithm has multiple intriguing properties: it can make use of preference data
containing positive and negative outcomes but it does not require paired outcomes (i.e. it can make

2

Published as a conference paper at ICLR 2025

use of data for which we only know whether it is either good or bad, without knowing about relative
preference with respect to other data-points) and can thus also naturally utilize unbalanced datasets
(where e.g. we have multiple preferred options for each dis-preferred example, or vice-versa). Due to
the close relationship of our algorithm to the existing MPO algorithm (Abdolmaleki et al., 2018) we
refer to it as preference based MPO (PMPO). The final update rule is presented in equation 10.

3.1 BACKGROUND ON MAXIMISING FOR PREFERRED OUTCOMES

We review the preference based RL formulation common in RLHF (Ziegler et al., 2019; Rafailov
et al., 2023) and show how methods from the literature on EM based policy optimization (Rawlik
et al., 2013; Peters et al., 2010; Abdolmaleki et al., 2018) can be naturally applied to it.

In the following, x denotes the conditioning variable such as the state/observation in classical RL,
or a document and query in the LLM finetuning setting. Providing this information to a model (or
policy) produces π(y|x), a probability distribution over outputs y; these would be actions in classical
RL or responses/generations (sequences of tokens) in the LLM finetuning literature. We will also
make use of the definition of a KL divergence between conditional distributions which we define as
KL(p(·|x) ∥ q(·|x)) = KL(p, q;x) = Ey∼p(·|x)[log p(y|x)− log q(y|x)].

Objective. Define a binary random variable S, which takes a value of 1 in the event of a pre-
ferred/successful outcome and 0 otherwise. To lighten notation, we will use the shorthand p(S) and
p(S′) to mean p(S = 1) and p(S = 0), respectively, and similarly for the conditioned distributions.
In words, our goal is to optimize the parameters θ of a parametric policy πθ(y|x) to produce outcomes
y that have a high likelihood of being preferred as measured by a likelihood function p(S|y, x), i.e.
we optimize the expected likelihood that y is a ‘preferred’ or ‘successful’ response to the condition x:

max
θ

E
y∼πθ

p(S|y, x) (1)

Reference model. In addition to the above general formulation we assume access to a reference
model πref that can either consist of a previous iteration of the model we would like to improve, or be
the outcome of a pre-training or supervised fine-tuning phase (as routinely employed in RLHF for
LLMs). We refer to this model as the reference policy and in general we use the terms model and
policy interchangeably.

Preference information. In order to derive a practical sample based algorithm we assume knowledge
of the likelihood function p(S|y, x) to evaluate the samples y ∼ πref(·|x). We distinguish two cases
in this paper. In the first case, this can be achieved through an evaluation function f(y, x) that assigns
higher values to preferred responses y. We can then define likelihoods as p(S|y, x) ∝ exp(f(y, x)/η)
(for preferred) and p(S′|y, x) ∝ exp(−f(y, x)/η′) (for dis-preferred) η with temperature parameters
η and η′. The evaluation function f can be derived from available reward functions r or state-action
value functions Q1. Alternatively, preference information can be obtained from a dataset of labeled
examples:

D =
{
x(i), y(i,j), s(i,j)

}N,M

i,j=1

where s(i,j) are binary (zero or one) preference labels (preferred or dis-preferred) usually obtained
from human feedback for samples y(i,j) ∼ πref(·|x(i)) . In this case we are assuming p(S|yj , xi) =
s(i,j) and p(S′|yj , xi) = 1−s(i,j). Ultimately, our algorithm assumes access to information regarding
the likelihood of preferred or dis-preferred events for samples drawn from πref . Note that defining
the likelihood function is a design choice and depends on the information available.

Policy optimization. Let us drop the superscripts (i) for now and only consider the objective on
a per-condition basis, ultimately we average over the batch. Then for every conditioning x = x(i),
the problem is finding a policy π(y|x) that achieves the highest expected probability of preferred
outcomes for a condition x. This amounts to optimizing

max
π

log[E
y∼π

p(S|y, x)] = E
y∼q

[
log

π(y|x)p(S|y, x)
q(y|x)

]
︸ ︷︷ ︸

J (π; q, x)

+KL(q(y|x)∥ pπ(y|S, x)),
(2)

1Defined as Q(y, x) = E[
∑

t γ
tr(yt, xt)|xo = x, y0 = y] for a timeseries of observation/action pairs.

3

Published as a conference paper at ICLR 2025

where we have used a standard formulation from the probabilistic inference literature (Kingma &
Welling, 2013) to decompose the objective into an evidence lower bound J (π; q, x) and a KL term
by introducing an auxiliary variational distribution q 2. The goal of EM is to iteratively find a tight
lower bound given the current estimate πref by optimizing for q (E-Step) and improve the lower
bound J by optimizing for π (M-Step). More concretely, in the E-step, we fix π = πref and find the
q̂ which minimizes the KL; this tightens the bound. In the M-step, we fix q = q̂ and maximize the
lower bound J (πθ; q̂, x) to update πθ. This process of tightening the bound and improving the policy
constitutes one iteration of policy improvement over πref.

E-step: Tighten the lower bound by fixing π = πref and minimize KL(q(·|x) ∥ pπref(·|S, x)).
Following prior work (Dayan & Hinton, 1997; Peters et al., 2010; Abdolmaleki et al., 2018), since
the KL is minimized when both distributions are equal, the solution can be expressed in closed form
as q̂(y|x) = pπref(y|S, x). Then, according to Bayes rule:

pπref(y|S, x) =
1

Zx
πref(y|x)p(S|y, x), (3)

where we used the normalization factor Zx =
∫
πref(y|x)p(S|y, x) dy. Recall that likelihood function

p(S|y, x) is still a modelling choice discussed in the Preference information section.

M-Step: Optimize the lower bound J fixing q = q̂ from the previous step. Since this problem does
not have an analytic solution we use a parametric function approximator πθ, usually a large neural
network, and maximize the following objective via gradient ascent:

J (πθ; q̂, x) = E
y∼q̂

[
log

πθ(y|x)p(S|y, x)
1
Zx

πref(y|x)p(S|y, x)

]
= E

y∼q̂

[
log πθ(y|x)

]
+K (4)

J (πθ;x) = E
y∼πref

[p(S|y, x)
Zx

log πθ(y|x)
]
, (5)

where K represents all constant terms that are independent of θ and are dropped from the final
objective. Notice that this objective amounts to a weighted maximum likelihood with preferences
determining the weights and samples coming from πref. Notice also that the final expression subsumes
the closed form E-step solution such that we can safely consider only this objective and introduce
the short-hand J (πθ;x), dropping the implicit dependence on the E-step solution. In practice, to
optimize this objective we need to form a Monte-Carlo approximation of the expectation in Eq. (5).
We distinguish the two cases mentioned in the Preference information section.

In the first case, we assume access to a function f that is proportional to the preference log-probability,
and access to M responses y(j) for each x. We can then set p(S|y, x) ≈ w(j) ∝ exp(f(y(j), x)/η)
in Eq. (5) (a softmax of f across the responses y(j) to x). This is the case commonly studied in the
literature, e.g., in MPO where one uses f = Q(y(j), x).

It is often unrealistic to assume access to a reliable model of preference labels. For example,
preferences often come from human annotations and we thus only have access to samples or we
might only have access to a learned and unreliable preference model.3 To cover this case, let us
partition our dataset of labeled examples D = Da ∪ Dr where Da = {y(j) ∋ (s(j) = 1)}j=1:M and
Dr = {y(j) ∋ (s(j) = 0)}j=1:M , denote accepted (preferred) samples and rejected (dis-preferred)
samples, respectively. In this case we can still use the objective from Eq. (5), using the binary
preferences s(j) as weights:

J (πθ;x) ≈ Ja(πθ;x) = E
y(j)∼D

[
s(j) log πθ(y

(j)|x)
]
= E

y(j)∼Da

log πθ(y
(i)|x), (6)

which effectively filters rejected generations Dr out, thus reverting back to the maximum likelihood
objective on preferred data.

2We use the identity log p(X) =
∫
q(Z) log p(X,Z)

q(Z)
+KL(q(Z)|p(Z|X)) to obtain the decomposition .

3A case studied in the offline RL literature where the authors realised that using binary weights often works
better as in binary CRR (Wang et al., 2020).

4

Published as a conference paper at ICLR 2025

3.2 USING DIS-PREFERRED OUTCOMES VIA REGULARISED MINIMUM LIKELIHOOD

We will now derive a simple way to incorporate negative (dis-preferred) samples into the optimization
to address the shortcomings of naively applying the EM-based perspective from the previous section.
We would like to incorporate these examples without changing the overall objective since it has
well established policy improvement guarantees (Rawlik et al., 2013; Abdolmaleki et al., 2018). To
accomplish this we take a second look at the non-parametric variational distribution q̂ from Eq. (3)
that is the solution to our E-step; since it determines the sampling distribution used for the M-step.

We can realise that the restriction to positive/preferred samples stems from the fact that we express
q̂ directly in terms of likelihood of preferred event p(S|y, x). A natural question then is: can we
re-express q̂ in terms of dis-preferences? It turns out the answer to this is positive. Recall that S′

denotes the complement of the event S i.e. the event that y is not a successful action/response to a
conditioning x. Then by definition, p(S|y, x) = 1− p(S′|y, x) we can equivalently write

q̂(y|x) = 1

Zx
πref(y|x)(1− p(S′|y, x)). (7)

We can plug this form of q̂ into the evidence lower bound expressed in Eq. (4). After rearranging
terms and re-writing in terms of two expectations over πref this gives the alternative form:

J (πθ;x) = E
y∼πref

[
− p(S′|y, x)

Z ′
x

log πθ(y|x)
]
− 1

Z ′
x

KL(πref, πθ;x) +K, (8)

where K again denotes terms independent of πθ and we used the normalization factor Z ′
x =∫

πref(y|x)p(S′|y, x) dy. This version of the objective now is expressed in terms of the likelihood
dis-preference event. Additionally the state-dependent constant 1

Z′
x

weights the KL term on a per-state
basis. This weighting implies that if the reference policy has more negative than positive examples
for state x, the KL weight should be lower, permitting greater deviation from the reference policy.
Conversely, if there are fewer negative examples, the KL weight should be higher, preserving positive
examples. We simplify this by using a state-independent parameter β to subsume this weighting. We
now write the equation 8 based on dis-preferred examples:

J (πθ;x) ≈ Jr(πθ;x) = E
y(j)∼Dr

[
− log πθ(y

(j)|x)
]
− βKL(πref, πθ;x). (9)

where β should be tuned and set high enough to only remove the dis-preferred samples from the prior
πref and retain the preferred samples. As before, our use of samples s(j) (labelled data) filters out part
of the dataset; in this case, it is the accepted responses which are filtered out, hence the expectation
over Dr. We refer to the Appendix C for a full derivation. This is a fairly intuitive objective to
optimize. It tells us to minimize the likelihood of dis-preferred examples while staying close to the
reference model. Interestingly, compared to the preferred data case, it has an additional KL term
that appears as a result of the reparameterization of the variational distribution. We will see in the
experiments that this term is required when learning from negative data. Intuitively, we can think of
the objective as modifying the reference distribution such that the negative examples are removed.
Interestingly such an additional KL for the M-step has previously been considered in the literature
even for the case where we only learn from positive feedback (Abdolmaleki et al., 2018). However,
previous work used the additional KL term to prevent rapid entropy loss. In contrast, our motivation
for incorporating the KL term is to learn from negative samples, as suggested by the derivations.

3.3 LEARNING FROM PREFERRED AND DIS-PREFERRED OUTCOMES

Finally, we can form a combined objective from our two M-step estimates – which both optimize the
same quantity but can utilize different samples. That is, we combine Eq. (6) and Eq. (9):

Jar(πθ;x) = α E
y∼Da

[
log πθ(y|x)

]
︸ ︷︷ ︸

Learning From Accepted/Positive Samples

− (1− α) E
y∼Dr

[
log πθ(y|x)

]
− βKL(πref, πθ;x)︸ ︷︷ ︸

Learning From Rejected/Negative Samples

, 4

(10)
4Note that, based on the derivations, β should approach zero as α approaches one. However, for cleaner

comparisons in the experiments, we keep the α and β parameters independent. We will empirically show that, as
suggested by the derivations, no KL term is needed (β = 0) when learning only from positive examples (α = 1)
while the KL term is indeed necessary for learning from negative examples.

5

Published as a conference paper at ICLR 2025

Figure 1: Performance of PMPO and DPO on Benchmark Functions - This figure illustrates the
optimization progress of PMPO variants (PMPO-AR, PMPO-A, PMPO-R) on a selection of standard
benchmark functions, showcasing their ability to leverage different types of preference feedback.

where α is a trade-off parameter between the two estimates. Recall that in practice, this objective
will be aggregated over an entire dataset of conditions x and corresponding datasets Da and Dr.
There are a few interesting things to note about this objective. First, we emphasize that our objective
assumes categorization of samples into good/bad or preferred/dis-preferred datasets. As a result, it
can be used even when only positive or only negative samples are available (this is in contrast to
e.g. DPO (Rafailov et al., 2023) or IPO (Azar et al., 2023) which require relative scores of paired
positive and negative examples for each query x). Furthermore, the objective has also no restriction
on the number of positive / negative samples per query x and thus it automatically extends to the
multi-sample case for fine-tuning language models. Finally, the objective is intuitive and simple to
implement; it amounts simply to maximizing likelihood of good data while minimizing likelihood of
bad data and staying close to the reference model. PMPO introduces α and β hyperparameters(see
Appendix A for tuning guidance). Furthermore the KL term is implemented in closed form whenever
possible. For example, for the autoregressive models used in LLMs, we use the sum of per-token
closed-form KL divergences of categorical distributions. This enable us to learn only from a negative
feedback without access to positive feedback as suggested by our derivations. See Appendix B for
KL computation details and a discussion on the importance of closed-form KL computation..

4 EXTRACTING PREFERENCES FROM EVALUATION FUNCTIONS

Our algorithm requires access to preference information, which can come directly from human
feedback or be extracted from an evaluation function. This section describes the latter. We consider
improving policies within a traditional reinforcement learning (RL) setting; bandit optimization and
optimization of language models via RLHF. In each setting our preference-based update rule can
be used in the policy improvement step. For this we need to extract preference information from a
(possibly learned) evaluation function. This can be achieved in the following way:

Generate Samples: For a given input or state x, sample one or multiple generations y from the
current reference policy πref.

Evaluate Actions: Calculate the evaluation function f(x, y) (e.g. a reward model in RLHF) for each
input-generations pair (x, y).

Classify Actions: If f(x, y) ≥ b(x), classify the generation y as preferred in state x. Otherwise
(f(x, y) < b(x)), classify it as dis-preferred. b(x) is a state dependent baseline that is typically used
to calculate advantage values. Typically in RL average reward is used as baseline.

5 EXPERIMENTS

We evaluate our algorithm in a variety of different settings, showcasing its utility as a general
preference optimization algorithm that can deal with many different forms of preference feedback. In
this section, we aim at confirming our derivations in practice to learn from only negative feedback,
only positive feedback, or both. We first test it in a Bandit setting (optimizing synthetic benchmark
functions) then in a setting where we transform RL on control and robotics tasks into preference
optimization. And finally we showcase strong performance for RLHF of large language models. To
verify our derivations, we evaluate three different variants of the PMPO algorithm: learning only
from accepted samples (α = 1), learning only from rejected samples (α = 0), and learning from both
accepted and rejected samples (α = 0.5). We also use MPO (Abdolmaleki et al., 2018) and DPO
(Rafailov et al., 2023) as baselines. For all the experiments, we will use a beta value of 0.5 for learning

6

Published as a conference paper at ICLR 2025

Figure 2: Comparison of PMPO/DPO/MPO for high-dimensional control tasks from the DeepMind
Control Suite. We plot average reward over time of training (using 100 episodes for each evaluation).

from accept&reject, 0.0 for learning from accept only, and 2.0 for learning from reject only, unless
stated otherwise. Furthermore, in all experiments except experiment 5.3, the reference policy for all
baselines is updated every N steps to allow for multiple policy improvement steps and demonstrate
that our algorithm can effectively optimize the underlying reward function until convergence. For
experiment 5.3, we only have access to samples from the reference policy; therefore, we can make
only one improvement step, which means the reference policy is effectively fixed. Please note that
experiment 5.3 is designed to have access to only positive or negative feedback for each state.

5.1 BANDIT RL: STANDARD FUNCTIONS

Our algorithm is first evaluated on synthetic benchmarks: Rosenbrock, Sphere, and Schwefel
functions (Hansen et al., 2003) with optimum value of zero, framed as multi-armed bandits (Auer
et al., 2002) (no state conditioning, x). Per iteration, the policy samples 4 examples, receiving
function values. The top 2 samples are labeled as preferred, the others dis-preferred. Figure 1 shows
PMPO’s performance with different feedback (PMPO-AR: all 4 labeled samples, PMPO-A: accepted
only, PMPO-R: rejected only). All variants optimize the functions, demonstrating effective use of
diverse preference information. Remarkably, PMPO-R (negative samples only) optimizes with the
KL constraint. DPO (best/worst samples) performs similarly to PMPO-AR.

5.2 FULL ONLINE RL: CONTROL SUITE

We evaluate our algorithm on a range of control tasks from the DeepMind Control Suite (Tunyasuvu-
nakool et al., 2020). See Appendix E for details. We cast the setting of optimizing a policy for the
control suite as a preference optimization problem by leveraging a learned action-value function (a
Q-function)–represented by a separate network trained alongside the policy–to infer preferences for
each observed state and action. This is analogous to the actor-critic setting in classical reinforcement
learning. Similar to the bandit case, at each iteration, the reference policy proposes four actions
for each state in the batch. The top two actions with the highest Q-values are considered preferred
samples, while the two actions with the lowest Q-values are treated as dis-preferred samples. We
consider two different cases, one where the output of the neural network are mean and standard
deviation of a Gaussian control policy and one where the actions are discretized into bins (and the
network outputs categorical logits over these bins).

Figure 2 demonstrates that, as in the bandit case, our algorithm can effectively learn from different
types of available signals (accept/reject, accept-only, reject-only) to solve high-dimensional tasks,
such as controlling humanoid agents to run, stand, and walk, as well as manipulating objects. In all of
them PMPO matches or outperforms the strong MPO baseline. Notably, even with only reject signals
(PMPO-R), the algorithm is capable of achieving good performance. As predicted by the theory, not
using a KL can quickly lead to collapse when using only dis-preferred samples. We also compare
to an implementation of DPO (Rafailov et al., 2023) which uses the best and worst action sample

7

Published as a conference paper at ICLR 2025

Figure 3: Impact of the KL weight ’beta’ on the performance of PMPO. When learning solely from
dispreferences across various Control Suite tasks (Reject, α = 0), a sufficiently high beta value
is required for effective learning. However, when learning from preferences only (Accept) PMPO
is robustness to the KL weight ’beta’ across different Control Suite tasks, confirming theoretical
insights. When both both accept and reject signals are used (Accept & Reject), PMPO shows a partial
sensitivity to KL Weight ’beta’. While learning is possible with a wider range of beta values, a beta
higher than 0.5 is generally needed for optimal performance.

among the 4 samples. This still results in a strong algorithm that works well when using a discretized
action representation. However, in the continuous Gaussian case, DPO requires a very high implicit
regularization parameter (β = 20) which results in slow learning and suboptimal policies. For the
sake of fair comparison with DPO that uses the worst and best generation, we also show results for
PMPO when only the best is labeled as preferred and the worst is labeled as dispreferred, which is
still competitive with DPO. Also see Appendix F for further comparisons.

We further ablate the impact of the KL term on learning solely from dispreferences (α = 0), solely
from preferences (α = 1), and from both (α = 0.5). For each of these settings, we sweep over the β
parameter in the range (0.0, 0.5, 1.0, 1.5, 2.0). As depicted in Figure 3, when learning exclusively
from dispreferences (PMPO-R), the performance is highly sensitive to β. To achieve effective
learning, we need to set β sufficiently high (> 1.0), which aligns with our theoretical derivations.
In contrast, Figure 3 shows that the algorithm is insensitive to the setting of β when learning only
from preferred samples (PMPO-A), again confirming our theoretical insights. When learning from
both types of signals (PMPO-AR), as shown in Figure 3, we observe a partial sensitivity to the KL
weight β. While the algorithm can learn with a wider range of beta values, a β larger than 0.5 is still
necessary to ensure optimal performance across all tasks.

5.3 OFFLINE RL USING ADVANTAGE FUNCTION

In a final set of experiment on control domains we want to show that our algorithm can also be
applied to a setting where we have only access to one sample with either a reject or an accept label
per state conditioning x. We consider the RGB Stacking benchmark (Lee et al., 2021), a pick-and-
place manipulation task with image observations (see Appendix E for details). We investigate the
effect of positive and negative feedback in the context of offline RL to exclude cascading effects
from exploration. To this end we take a dataset of 140k episodes from a multi-task RL experiment
trained to convergence (Lampe et al., 2024). We then train a value function on all data and use it

8

Published as a conference paper at ICLR 2025

to label the transitions in the first 40k episodes as accept (positive advantage) or reject (negative
advantage). Different combinations of acceptance, rejection, and BC losses are then compared in
order to understand their respective effects. In summary we use: i) the full 140k episodes to train a
value function and label the first 40k episodes as accept or reject ; ii) the first 40k episodes to compute
the positive weighted part of the loss if labeled as accept and to compute the negatively weighted part
of the loss if labeled as reject. The KL part of the loss is calculated on all 140k episodes. Note that
the value function is only used to transform the reward annotations into accept and reject labels.

Table 1 shows the achieved reward for different loss combinations. First we run BC on the full 140k
episodes and we can observe that the performance is mediocre due to the data containing a significant
amount of bad episodes. Using only the accepted transitions for BC training does not result in better
performance; this is due to the limited number of positive examples contained in the first 40k episodes.
When combining both BC and using the positive (accept) part of the loss, performance does not
significantly improve as the large number of negative episodes is not compensated for. On the other
hand, combining BC with the negative (reject) part of the loss does significantly improve performance.
This is due to the rejection loss successfully pushing the policy away from the negative examples
(while keeping close on all other data due to the KL constraint). Finally, best performance is achieved
when combining all three losses; and thus effectively utilizing all data. While in this example we
have constructed the dataset in a way that the effect is strong, and this might be less the case in more
natural settings, it nevertheless shows that using a negative signal can have a significant effect on
performance by masking the effect of bad data.

BC Accept+BC Accept Reject+BC Accept+Reject+BC
Reward 24 26 27 77 93

Table 1: Comparing different mixtures of acceptance, rejection and BC losses. We measure average
reward (over 100 evaluation episodes) across stacking of all 5 triplets. Training with BC is corrupted
by bad examples. Training on only accepted examples lacks data. Only when integrating the rejection
loss bad data can be masked and performance goes up. Best performance is achieved when combining
acceptance, rejection and BC loss signals.

5.4 LANGUAGE ALIGNMENT EXPERIMENTS

We apply different versions of the PMPO algorithm to the task of aligning large language models.
Specifically, we fine-tune a Gemma 2B pre-trained model using a trained reward model (Team, 2024b)
using prompts from the LMSYS-chat-1M dataset (Zheng et al., 2023). The reward model has been
trained on human preference data with a Bradley-Terry modelisation as explained in (Christiano et al.,
2017). In these experiments, we perform one epoch of training, processing a dataset of 500k prompts
in approximatively 4000 learner steps, meaning that each batch is composed of 128 prompts and 4
generations per prompt. Similar to the typical RLHF setting, at each iteration, for each prompt in a
batch, we sample four generations from the model and rank them based on their reward values. The
top two generations are labeled as preferred, and the bottom two as dis-preferred. For the sake of
fair comparison with DPO that uses the top one (best) and bottom one (worst) generation, we also
show results for PMPO when only the top one is labeled as preferred and the bottom one is labeled as
dispreferred. Note that this particular choice could be refined further and tailored to the task. First,
Fig. 4 showcases the best PMPO setting, leveraging both accept and reject signals (PMPO-AR) (and
we compare to use either feedback signal in isolation). Notably, utilizing both types of feedback leads
to faster learning compared to using either signal in isolation (PMPO-A or PMPO-R) and overall
our approach is competitive to DPO, which is applicable in this setting by using only the best and
worst sample respectively per prompt but would be more restrictive in general (i.e. it cannot naturally
make use of unbalanced preference data). As shown on the right, when performing a side by side
comparison using GPT-4 (OpenAI, 2024) to judge whether our model is preferred over the base
Gemma model (using a set of held-out test prompts) the PMPO fine-tuned model wins over the base
model. Note in Fig. 4 right, we see some drop indicating some exploitation of the imperfect reward
model; known as reward hacking (Skalse et al., 2022). We can see that PMPO-AR is the quickest to
"hack the reward"(see Fig. 4 left), it reaches a good performance but then in the middle of training
its start hacking the reward and learns a pathological behaviour that makes it performs worse on
the independent benchmark. This phenomenon has been observed consistently in RLHF. Overall,
our language alignment experiments provide strong evidence for the effectiveness and versatility of

9

Published as a conference paper at ICLR 2025

PMPO. Finally, we illustrate in Figure 5 that, again, our algorithm demonstrates the ability to learn
effectively from various preference signals, including scenarios with only accept (PMPO-A), only
reject (PMPO-R), or both accept/reject (PMPO-AR) feedback. These results highlight the versatility
of our approach to different preference acquisition settings. The results also underline the critical
role of the KL term in enabling learning exclusively from dis-preferred generations (PMPO-R). As
predicted by our derivation, a sufficiently high value β > (1− α) is necessary to stabilize learning in
this scenario. In contrast, when learning solely from preferred samples (PMPO-A), the algorithm is
insensitive to the value of β in terms of stability.

Figure 4: Left: Impact of Combining Accept and Reject Signals - The plot demonstrates the learning
progress of PMPO-AR (using both accept and reject signals) compared to PMPO-A and PMPO-R,
showcasing faster learning when leveraging both types of feedback in language alignment task and
is competitive with DPO. Right: Win-rate when doing A/B comparisons on held-out prompts for
PMPO against the base Gemma checkpoint as judged by GPT-4.

Figure 5: Rewards obtained by the policy at each training step, averaged over the batch and smoothed.
Each curve corresponds to a configuration of β specified in the legend. This figure illustrates the
ability of PMPO to learn effectively from various preference signals (accept-only, reject-only, or both)
in language alignment tasks. highlighting its adaptability to different preference acquisition settings.

6 CONCLUSION

We propose a novel algorithm for policy optimization from preference feedback derived from the
perspective of RL as probabilistic inference. Our policy improvement algorithm has a clear and
intuitive objective: it maximizes the likelihood of preferred data while minimizing the likelihood
of dis-preferred data. We show that doing the latter in a stable way requires a regularization term
forcing the policy to stay close to a reference model. This regularization term follows naturally
from the derivation. The main advantage of our algorithm over existing preference optimization
algorithms such as DPO is that it does not rely on defining/fitting an explicit model of the preferences
and can thus use data containing partial preference information; i.e. we can use data where instead
of comparisons between samples we only have accept (or only reject) labels and make no further
assumptions on their distribution. One limitation of our approach is that to effectively learn from
negative feedback, we need a good estimate of the KL term, ideally in closed form; otherwise, enough
samples from the reference model are needed.

10

Published as a conference paper at ICLR 2025

7 ACKNOWLEDGMENTS

We are grateful to the Gemma team for providing the models and infrastructure that enabled our
language alignment experiments. We also thank Thomas Hubert and Markus Wulfmeier for their
valuable feedback, and John Agapiou for identifying a subtle inconsistency in our derivations and
providing suggestions for its resolution.

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. In International Conference on Learning
Representations, 2018.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47:235–256, 2002.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. A general theoretical paradigm to understand learning from human
preferences. ArXiv, abs/2310.12036, 2023.

Edwin V. Bonilla, Shengbo Guo, and Scott Sanner. Gaussian process preference elicitation. In Neural
Information Processing Systems, 2010.

Craig Boutilier. A pomdp formulation of preference elicitation problems. Proceedings of the National
Conference on Artificial Intelligence, 05 2002.

Paul Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. arXiv preprint arXiv:1706.03741, 2017.

Peter Dayan and Geoffrey E Hinton. Using expectation-maximization for reinforcement learning.
Neural Computation, 9(2):271–278, 1997.

Shengbo Guo and Scott Sanner. Real-time multiattribute bayesian preference elicitation with pairwise
comparison queries. In Yee Whye Teh and Mike Titterington (eds.), Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pp. 289–296, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010.
PMLR. URL https://proceedings.mlr.press/v9/guo10b.html.

Nikolaus Hansen, Sibylle D Müller, and Petros Koumoutsakos. Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation (cma-es). Evolutionary
computation, 11(1):1–18, 2003.

Haozhe Ji, Cheng Lu, Yilin Niu, Pei Ke, Hongning Wang, Jun Zhu, Jie Tang, and Minlie
Huang. Towards efficient and exact optimization of language model alignment. arXiv preprint
arXiv:2402.00856, 2024.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Thomas Lampe, Abbas Abdolmaleki, Sarah Bechtle, Sandy H Huang, Jost Tobias Springenberg,
Michael Bloesch, Oliver Groth, Roland Hafner, Tim Hertweck, Michael Neunert, et al. Mastering
stacking of diverse shapes with large-scale iterative reinforcement learning on real robots. In 2024
IEEE International Conference on Robotics and Automation (ICRA), pp. 7772–7779. IEEE, 2024.

Alex X. Lee, Coline Devin, Yuxiang Zhou, Thomas Lampe, Konstantinos Bousmalis, Jost Tobias
Springenberg, Arunkumar Byravan, Abbas Abdolmaleki, Nimrod Gileadi, David Khosid, Claudio
Fantacci, José Enrique Chen, Akhil Raju, Rae Jeong, Michael Neunert, Antoine Laurens, Stefano
Saliceti, Federico Casarini, Martin A. Riedmiller, Raia Hadsell, and Francesco Nori. Beyond
pick-and-place: Tackling robotic stacking of diverse shapes. CoRR, abs/2110.06192, 2021. URL
https://arxiv.org/abs/2110.06192.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review,
2018. URL https://arxiv.org/abs/1805.00909.

11

https://proceedings.mlr.press/v9/guo10b.html
https://arxiv.org/abs/2110.06192
https://arxiv.org/abs/1805.00909

Published as a conference paper at ICLR 2025

OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022. URL
https://arxiv.org/abs/2203.02155.

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 24, pp. 1607–1612, 2010.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//arxiv.org/abs/2305.18290.

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and rein-
forcement learning by approximate inference. In R:SS 2021, 2013.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and characterizing
reward gaming. Advances in Neural Information Processing Systems, 35:9460–9471, 2022.

Jost Tobias Springenberg, Abbas Abdolmaleki, Jingwei Zhang, Oliver Groth, Michael Bloesch,
Thomas Lampe, Philemon Brakel, Sarah Bechtle, Steven Kapturowski, Roland Hafner, Nicolas
Heess, and Martin Riedmiller. Offline actor-critic reinforcement learning scales to large models,
2024. URL https://arxiv.org/abs/2402.05546.

Gemini Team. Gemini: A family of highly capable multimodal models, 2024a. URL https:
//arxiv.org/abs/2312.11805.

Gemma Team. Gemma 2: Improving open language models at a practical size, 2024b. URL
https://arxiv.org/abs/2408.00118.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In IROS, pp. 5026–5033. IEEE, 2012. ISBN 978-1-4673-1737-5. URL http:
//dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020. ISSN 2665-9638. doi: https://doi.
org/10.1016/j.simpa.2020.100022. URL https://www.sciencedirect.com/science/
article/pii/S2665963820300099.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, and Nando de Freitas. Critic
regularized regression. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 7768–7778. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/588cb956d6bbe67078f29f8de420a13d-Paper.pdf.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zhuohan Li, Zi Lin, Eric. P Xing, Joseph E. Gonzalez, Ion Stoica, and Hao Zhang.
Lmsys-chat-1m: A large-scale real-world llm conversation dataset, 2023.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

12

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2402.05546
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2408.00118
http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12
http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://proceedings.neurips.cc/paper_files/paper/2020/file/588cb956d6bbe67078f29f8de420a13d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/588cb956d6bbe67078f29f8de420a13d-Paper.pdf

Published as a conference paper at ICLR 2025

A HYPER PARAMETER TUNING

PMPO introduces two hyperparameters, α and β. However, we found them relatively easy to tune in
practice based on the following guidelines:

• α: This parameter reflects the relative importance of positive and negative feedback. When
both are available, α = 0.5 is a reasonable starting point if both types of feedback are
equally reliable. Otherwise, can be adjusted to reflect the confidence in each feedback type.
In cases with only one type of feedback, is naturally determined by the data.

• β: This parameter controls the influence of the prior or reference policy. Our experiments
suggest that a higher is generally beneficial when learning from negative feedback such
that the more is contribution of negative feedback to the policy update (lower α) the more
β should be. This can also be motivate from the derivations that KL term is appear as the
result of learning from negative feedback. We also find that as long as β is large enough, the
algorithm is fairly insensitive to the exact choice of the parameter. Please also see section
3.2 in the main paper for more insights regarding derivation of parameter β.

B COMPUTING THE KULLBACK-LEIBLER DIVERGENCE

learning from negative feedback is only feasible with a correct KL term and access to a reference
policy πref . When logits are available using an exact KL computation is ideal. In the absence of
logits (Experiment 5.3), we relied on an abundance of unlabelled data to estimate it. This enables
us to learn only from negative feedback without access to positive feedback as suggested by our
derivations.

Subsequently, we present the derivations for computing KL divergence for LLMs with autoregressive
policies in our experiments.

Let’s consider a single two-token generation (y1, y2) sampled autoregressively from a prompt x. We
can factorize the joint distribution associated with such a generation as follows:

π(y1, y2|x) = π1(y1|x)π2(y2|x, y1) (11)

Using this factorization for both πθ and πref in our KL regularizer, we compute the following:

KL(πref∥πθ) = Eπref log
πref

πθ
(12)

= Eπ1
ref
Eπ2

ref
log

π1
ref π

2
ref

π1
θ π2

θ

(13)

= Eπ1
ref
Eπ2

ref
log

π1
ref

π1
θ

+ Eπ1
ref
Eπ2

ref
log

π2
ref

π2
θ

(14)

= Eπ1
ref
log

π1
ref

π1
θ

+ Eπ1
ref
Eπ2

ref
log

π2
ref

π2
θ

, (15)

where the first term can drop the expectation with respect to Eπ2
ref

since the integrand log
π1

ref
π1
θ

does not

depend on y2. The first term can be computed analytically because π1
ref and π1

θ are simply categorical
distributions over the entire vocabulary of tokens. The second term, however, is problematic due
to the outer expectation Eπ1

ref
, which requires us to integrate a KL over all possible values of y1.

While we can easily compute this KL for any one value of y1, the integration would be unwieldy
and certainly becomes intractable as we extend this to longer sequences y3, y4, etc. Luckily, during
training we obtain samples ỹ1, ỹ2 ∼ πref and so ỹ1 ∼ π1

ref, which allows us to use a single-sample
Monte Carlo unbiased estimate of the second term such that:

≈ Eπ1
ref
log

π1
ref

π1
θ

+ Eπ2
ref
log

π2
ref(·|x, ỹ1)
π2
θ(·|x, ỹ1)

. (16)

13

Published as a conference paper at ICLR 2025

Extending this to sequences of length L, and dropping the superscripts on the policies as they are
autoregressive, we obtain the following approximation:

KL(πref∥πθ) ≈ Eπref log
πref(·|x)
πθ(·|x)

+

L−1∑
i=1

Eπref log
πref(·|x, ỹ1:i)
πθ(·|x, ỹ1:i)

. (17)

where ỹ1:L ∼ πref.

C FULL DERIVATIONS OF PMPO UPDATE RULES

Consider a decision-making scenario characterized by the following elements:

Stationary State Distribution: A stationary distribution µ(x) describes the probability of encounter-
ing different states or contexts x. We typically have access to samples from this distribution.

Policy: A policy π(y|x) dictates the probability of selecting an action/outcome y given a state x. We
also refer to the current estimate of the policy as the reference policy, denoted by πref (y|x).
Preference Information: We have access to knowledge for driving the likelihood of preference or
dis-preference toward actions taken by a policy π(y|x) . This information takes one of these forms:

• Preference Probabilities: q(I = 1|y, x), where I is a binary indicator with I = 1 repre-
senting preference. When only a reward or Q-function is available, this probability can be
derived as q(I = 1|y, x) = exp(Q(y,x))

Zq
.

• Dis-preference Probabilities: q(I = 0|y, x), where I = 0 denotes dis-preference. When
only a reward or Q-function is available, this probability can be derived as q(I = 0|y, x) =
exp(−Q(y,x))

Zq
.

where Zq is a normalization constant Zq = exp(Q(y, x))+exp(−Q(y, x)) to ensure q(I = 0|y, x)+
q(I = 1|y, x) = 1. Note that q(I = 1|y, x) and q(I = 0|y, x) are likelihood functions and can be
defined depending on the problem at hand.

Objective: Derive an optimal policy to give the highest probability to the preferred outcomes:

max
θ

log pθ(I = 1) = log

∫
µ(x)

∫
πθ(y|x)q(I = 1|y, x) dy dx

C.1 MAXIMIZING FOR PREFERRED OUTCOMES

We start with the stated objective:

max
θ

log pθ(I = 1) = log

∫
µ(x)

∫
πθ(y|x)q(I = 1|y, x) dy dx

This objective can be solved by the EM algorithm to iteratively create a tight lower bound on the
current estimate of the objective log pref(I = 1), and then we optimize the objective. By repeating
these two steps, it is guaranteed that the algorithm will converge. We will show one iteration of EM
to improve the current estimate πref. In order to do so, we use the following identity:

log p(X) =

∫
q(Z) log

p(X,Z)

q(Z)
dZ +KL(q(Z)|p(Z|X))

which gives us the following equivalent right-hand side:

log pθ(I = 1) =

∫
µ(x)

∫
q(y|x) log pθ(I = 1, y|x)

q(y|x)
dydx+

∫
µ(x)KL(q(y|x)|pθ(y|I = 1, x))dx

14

Published as a conference paper at ICLR 2025

C.1.1 E-STEP

In the E-step, our goal is to choose the variational distribution q(y|x) such that the lower bound on

log pref(I = 1)

is as tight as possible, which is the case when the KL term in the equation above is zero at the current
estimate of the policy πref. This simply leads to q(y|x) = pref(y|I = 1, x), or according to Bayes’
rule, we get:

q(y|x) = πref(y|x)p(I = 1|x, y)
pref(I = 1|x)

where pref(I = 1|x) =
∫
πref(y|x)p(I = 1|x, y)dy is a normalizer for a given state x.

C.1.2 M-STEP

In the E-step, we found non-parametric variational distributions q(y|x) for x ∼ µ(x) that give higher
probability to preferred actions sampled from πref. The E-step can be seen as sample-based policy
improvement of πref with respect to preferences. In the M-step, we optimize the lower bound to
obtain a new distribution, i.e.,

max
θ

∫
µ(x)

∫
q(y|x) log pθ(I = 1, y|x)

q(y|x)
dydx

where

q(y|x) = πref(y|x)p(I = 1|x, y)∫
πref(y|x)p(I = 1|y, x)

according to the derivations in the E-step. After rearranging the terms and removing the terms that do
not depend on θ, we get

max
θ

∫
µ(x)

∫
q(y|x) log πθ(y|x)dydx

which effectively is a weighted maximum likelihood objective to fit improved non-parametric policies.

C.2 INCORPORATING DIS-PREFERRED OUTCOMES FOR POLICY OPTIMIZATION

In the previous section, we showed how optimizing for preferred outcomes can lead us to useful
policy update rules. However, we only incorporated preferred outcomes q(I = 1) to update the policy.
Now we ask this question: how can we incorporate dis-preferred outcomes to directly optimize the
policy? In order to do that, we first write down the policy optimization objective we derived in terms
of preferences:

max
θ

∫
µ(x)

∫
q(y|x) log πθ(y|x)dydx

where

q(y|x) = πref(y|x)p(I = 1|x, y)∫
πref(y|x)p(I = 1|y, x)

.

We also know that p(I = 1|x, y) = 1 − p(I = 0|x, y). This is correct as p(I|x, y) is a probability
function over a binary random variable I . Therefore, the variational distribution can be rewritten in
terms of dis-preferences, i.e.,

15

Published as a conference paper at ICLR 2025

q(y|x) = πref(y|x)(1− p(I = 0|x, y))∫
πref(y|x)(1− p(I = 0|x, y))

.

Substituting this into the maximum likelihood term above, we get:

max
θ

∫
µ(x)

∫
1

1− Z ′(x)
πref(y|x) log πθ(y|x) dy dx−

∫
µ(x)

∫
1

1− Z ′(x)
πref(y|x)p(I = 0|x, y) log πθ(y|x) dy dx

where Z ′(x) =
∫
πref(y|x)p(I = 0|x, y) dy.

After rearranging the terms, we get the equivalent form:

max
θ

∫
µ(x)

1

1− Z ′(x)

∫
πref(y|x) log πθ(y|x) dy dx−∫

µ(x)
Z ′(x)

1− Z ′(x)

∫
1

Z ′(x)
πref(y|x)p(I = 0|x, y) log πθ(y|x) dy dx

which will simplify to

max
θ

∫
µ(x)

∫
1

Z ′(x)
πref(y|x) log πθ(y|x) dy dx−

∫
µ(x)

∫
1

Z ′(x)
πref(y|x)p(I = 0|x, y) log πθ(y|x) dy dx

first term can be written as a KL term, i.e,

max
θ

−
∫

µ(x)
1

Z ′(x)
KL(πref(y|x)|πθ(y|x))dx−

∫
µ(x)

∫
1

Z ′(x)
πref(y|x)p(I = 0|x, y) log πθ(y|x) dy dx

Note that 1
Z′(x) is a state-dependent constant that weights the KL term on a state-by-state basis. This

constant suggests that for a state x, when the reference policy contains more negative examples
compared to positive examples, then the KL term weight should be lower so more samples from
the reference policy can be removed. Otherwise, when there are not as many negative examples to
remove, then the KL term should have a high weight so positive examples remains. For simplicity, we
subsume this weight into a parameter β that is state-independent. Now the final update rule reads::

max
θ

−
∫

µ(x)

∫
t(y|x) log πθ(y|x) dy dx− β

∫
µ(x)KL(πref(y|x)|πθ(y|x)) dx

where t(y|x) = πref(y|x)p(I=0|x,y)∫
πref(y|x)p(I=0|x,y) dy and β is a tuning parameter. This update rule minimizes the

probability of the dis-preferred distribution while staying close to the reference policy. Note that the
KL term and its direction emerge directly from the derivations.

C.3 FINAL UPDATE RULE: LEVERAGING BOTH PREFERENCES AND DIS-PREFERENCES

After putting things together, we get the following update rule that maximizes the preferred outcomes
and minimizes the dis-preferred outcomes, i.e.,

max
θ

α

∫
µ(x)

∫
q(y|x) log πθ(y|x) dy dx−

(1− α)
[∫

µ(x)

∫
t(y|x) log πθ(y|x) dy dx− β

∫
µ(x)KL(πref(y|x)|πθ(y|x)) dx

]

16

Published as a conference paper at ICLR 2025

where q is a distribution modified with respect to preference probabilities resulting from πref
weighted by preference probabilities, i.e.,

q(y|x) = πref(y|x)p(I = 1|x, y)∫
πref(y|x)p(I = 1|x, y) dy

and t is a distribution modified with respect to dis-preference probabilities resulting from πref
weighted by dis-preference probabilities, i.e.,

t(y|x) = πref(y|x)p(I = 0|x, y)∫
πref(y|x)p(I = 0|x, y) dy

Now we can choose likelihood functions q(I = 1|y, x) and q(I = 0|y, x). Note that we can choose
different likelihood functions depending on the problem and available information; for example, the
likelihood function can depend on advantage values.

Intuitively, this objective learns from the preferred distribution q(y|x) and gets away from the dis-
preferred distribution t(y|x) while staying close to the reference policy (which enables learning from
dis-preferred distributions) .

D FUNDAMENTAL RESULTS

This section explains precisely why the EM method is a sound approach to optimization. We will
present the case of a discrete function. This section relies on classical results in discrete optimization
and shows how one can build a simple strictly improving algorithm that maximises a discrete function.
For simplicity and clarity, we will optimize a function f ∈ RS mapping elements of S to real numbers,
where S is a finite set. More precisely, our goal is to find a distribution δ ∈ ∆S (parameterized policy
in RL) that maximises the expectation of f under δ (expected value function in RL):

Es∼δ[f(s)] =
∑
s∈S

δ(s)f(s).

We recall that a discrete probability distribution δ ∈ ∆S can be identified as a positive real function
δ ∈ RS

+ verifying: ∑
s∈S

δ(s) = 1.

To find a good distribution to maximise Es∼δ[f(s)], the algorithm relies on the following results:

• Starting from a distribution η ∈ ∆S , there exists a unique closed-form argmaximum δ∗ of
the regularised expectation Es∼δ[f(s)]− τKL(δ || η), where τ ∈ R∗

+ is a strictly positive

real number. We have δ∗ = η(·) exp(τ−1f(·))∑
s′∈S η(s′) exp(τ−1f(s′)) .

• Unless δ∗ = η, we have a strict improvement between δ∗ and η:

Es∼δ∗ [f(s)] > Es∼η[f(s)].

We prove these results in the main paper. Those results implies that the following algorithm that starts
at δ0 = η and computes:

∀k ∈ N, δk+1 =
δk(·) exp(τ−1f(·))∑

s′∈S δk(s′) exp(τ−1f(s′))
,

is strictly monotonically improving until there is K ∈ N such that δK+1 = δK :

Es∼δ0 [f(s)] < Es∼δ1 [f(s)] < · · · < Es∼δK [f(s)] = Es∼δK+1
[f(s)].

In practice, we have a set of learnable weights θ to parameterize a distribution qθ in order to fit δk+1

and another set of fixed weights µ to parameterize a distribution qµ = δk. Then, to fit δk+1 the idea

17

Published as a conference paper at ICLR 2025

is to minimize the following KL divergence (this is the maximisation step):

L(θ) = KL(
qµ(·) exp(τ−1f(·))∑

s′∈S qµ(s′) exp(τ−1f(s′))
|| qθ),

= E
s∼ qµ(·) exp(τ−1f(·))∑

s′∈S qµ(s′) exp(τ−1f(s′))

log
 qµ(·) exp(τ−1f(·))∑

s′∈S qµ(s′) exp(τ−1f(s′))

qθ

 ,

= −E
s∼ qµ(·) exp(τ−1f(·))∑

s′∈S qµ(s′) exp(τ−1f(s′))

[log (qθ)] + E
s∼ qµ(·) exp(τ−1f(·))∑

s′∈S qµ(s′) exp(τ−1f(s′))

[
log

(
qµ(·) exp(τ−1f(·))∑

s′∈S qµ(s′) exp(τ−1f(s′))

)]

The term E
s∼ qµ(·) exp(τ−1f(·))∑

s′∈S qµ(s′) exp(τ−1f(s′))

[
log

(
qµ(·) exp(τ−1f(·))∑

s′∈S qµ(s′) exp(τ−1f(s′))

)]
does not depend on θ so is

irrelevant in the minimization. Using the re-weighting formula Es∼δ[f(s)] = Es∼η[
δ(s)
η(s)f(s)], the

minimization problem is equivalent to:

L(θ) = −E
s∼ qµ(·) exp(τ−1f(·))∑

s′∈S qµ(s′) exp(τ−1f(s′))

[log (qθ)] ,

= −Es∼qµ

[
exp(τ−1f(·))∑

s′∈S qµ(s′) exp(τ−1f(s′))
log (qθ)

]
,

As
∑

s′∈S qµ(s
′) exp(τ−1f(s′)) is a constant, this is equivalent to minimizing:

L(θ) = −Es∼qµ [exp(τ
−1f(s)) log (qθ(s))].

D.1 EXISTENCE AND UNIQUENESS OF THE REGULARIZED ARGMAXIMUM

For completeness, we briefly recall the proof of existence and uniqueness of the argmaximum of the
following regularized criterion that can also be found in the work of Rafailov et al. (2023):

Lτ (δ) = Es∼δ[f(s)]− τKL(δ || η),

=
∑
s∈S

δ(s)f(s)− τKL(δ || η).

Now, if we define the softmax probability δ∗ ∈ ∆S as:

∀s ∈ S, δ∗(s) = η(s) exp(τ−1f(s))∑
s′∈S η(s′) exp(τ−1f(s′))

,

then, under the previous definitions, we have the following results:

δ∗ = arg max
δ∈∆S

Lτ (δ)

18

Published as a conference paper at ICLR 2025

Proof.

Lτ (δ)

τ
=

∑
s∈S

δ(s)
f(s)

τ
− KL(δ || η),

=
∑
s∈S

δ(s)
f(s)

τ
−

∑
s∈S

δ(s) log
(δ(s)
η(s)

)
,

=
∑
s∈S

δ(s)
(f(s)

τ
− log

(δ(s)
η(s)

))
,

=
∑
s∈S

δ(s)
(
log

(
exp(τ−1f(s))

)
− log

(δ(s)
η(s)

))
,

=
∑
s∈S

δ(s)
(
log

(η(s) exp(τ−1f(s))

δ(s)

))
,

=
∑
s∈S

δ(s)
(
log

(η(s) exp(τ−1f(s))
∑

s′∈S η(s′) exp(τ−1f(s′))∑
s′∈S η(s′) exp(τ−1f(s′))

δ(s)

))
,

=
∑
s∈S

δ(s)
(
log

(η(s) exp(τ−1f(s))∑
s′∈S η(s′) exp(τ−1f(s′))

δ(s)

))
+

∑
s∈S

δ(s) log
(∑
s′∈S

η(s′) exp(τ−1f(s′))
)
,

=
∑
s∈S

δ(s)
(
log

(δ∗(s)
δ(s)

))
+ log

(∑
s′∈S

η(s′) exp(τ−1f(s′))
)
,

= −KL(δ || δ∗) + log
(∑
s∈S

η(s) exp(τ−1f(s))
)
.

By definition of the KL, we now that δ∗ = arg maxδ∈∆S

[
− KL(δ || δ∗)

]
and as:

− KL(δ || δ∗) = Lτ (δ)

τ
− log

(∑
s∈S

η(s) exp(τ−1f(s))
)

(18)

where log
(∑

s∈S η(s) exp(τ−1f(s))
)

is a constant (does not depend on δ) and τ a positive mul-
tiplicative term, then −KL(δ || δ∗) and Lτ (δ) share the same argmaximum. This concludes the
proof.

The fact that we have:

δ∗ =
η(·) exp(τ−1f(·))∑

s′∈S η(s′) exp(τ−1f(s′))
= arg max

δ∈∆S

Lτ (δ),

implies by simply replacing δ by δ∗ in equation (18) that:

−KL(δ∗ || δ∗) = Lτ (δ
∗)

τ
− log

(∑
s∈S

η(s) exp(τ−1f(s))
)
.

As KL(δ∗ || δ∗) = 0, we have:

Lτ (δ
∗) = max

δ∈∆S
Lτ (δ) = τ log

(∑
s∈S

η(s) exp(τ−1f(s))
)
. (19)

This result is often expressed in term of an inequality that says that the logsumexp is a majorant of
the regularized expectation:

∀δ ∈ ∆S , τ log
(∑
s∈S

η(s) exp(τ−1f(s))
)
≥

∑
s∈S

δ(s)f(s)− τKL(δ || η). (20)

19

Published as a conference paper at ICLR 2025

D.2 PROOF OF IMPROVEMENT.

We use the same notations as in the previous section, and our goal is to show that using the distribution
δ∗ instead of η strictly increases the expected value of our function f :

Es∼δ∗ [f(s)] > Es∼η[f(s)],

unless δ∗ = η. This means that we can confidently replace η by δ∗ for the next iteration of the
algorithm.

Proof. From Eq.(19), we have:

τ log
(∑
s∈S

η(s) exp(τ−1f(s))
)
= Lτ (δ

∗) = Es∼δ∗ [f(s)]− τKL(δ∗ || η).

Using Jensen inequality we have:

τ log
(∑
s∈S

η(s) exp(τ−1f(s))
)
≥ τ

∑
s∈S

η(s) log
(
exp(τ−1f(s))

)
,

= τ
∑
s∈S

η(s)τ−1f(s),

=
∑
s∈S

η(s)f(s) = Es∼η[f(s)].

This implies that:

Es∼δ∗ [f(s)]− τKL(δ∗ || η) ≥ Es∼η[f(s)].

As τKL(δ∗ || η) is strictly positive unless δ∗ = η, we conclude that we have strict improvement of
the algorithm unless δ∗ = η which means in this case that the method has converged.

D.3 LINK BETWEEN IPO AND PMPO

In this section, we draw a parallel between the IPO and the PMPO losses. For a dataset of triplets
(xi, yia, y

i
r)

N
i=1, the IPO loss is:

LIPO(θ) =
1

N

N∑
i=1

[
− log

(
πθ(y

i
a|xi)

)
+ log

(
πθ(y

i
r|xi)

)
+ β

(
log

(
πθ(y

i
a|xi)

πref(yia|xi)

)
− log

(
πθ(y

i
r|xi)

πref(yir|xi)

))2
]
.

The IPO loss is composed of two terms the policy optimisation term:

PIPO(θ) =
1

N

N∑
i=1

− log
(
πθ(y

i
a|xi)

)
+ log

(
πθ(y

i
r|xi)

)
,

and the policy regularisation term:

RIPO(θ) =
1

N

N∑
i=1

[(
log

(
πθ(y

i
a|xi)

πref(yia|xi)

)
− log

(
πθ(y

i
r|xi)

πref(yir|xi)

))2
]
.

When α = 1
2 , the PMPO loss can be written as:

LPMPO(θ) =
1

N

N∑
i=1

[
−1

2
log

(
πθ(y

i
a|xi)

)
+

1

2
log

(
πθ(y

i
r|xi)

)
+ βKL(πref(.|xi)||πθ(.|xi))

]
.

The PMPO loss is also composed of two terms the policy optimisation term:

PPMPO(θ) =
1

N

N∑
i=1

−1

2
log

(
πθ(y

i
a|xi)

)
+

1

2
log

(
πθ(y

i
r|xi)

)
,

20

Published as a conference paper at ICLR 2025

and the policy regularisation term:

RPMPO(θ) =
1

N

N∑
i=1

[
KL(πref(.|xi)||πθ(.|xi))

]
.

Therefore, the policy optimisation terms of the IPO PIPO(θ) and PMPO PPMPO(θ) losses
are identical at a constant factor. Now we are going to create a connection between the
IPO and PMPO regularisation terms when yia and yir are sampled from πref(.|xi). The

first thing to remark is that
(
log

(
πθ(y

i
a|x

i)
πref(yi

a|xi)

)
− log

(
πθ(y

i
r|x

i)
πref(yi

r|xi)

))2

is an unbiased estimate of

EY,Y ′∼πref(.|xi)

[(
log

(
πθ(Y |xi)
πref(Y |xi)

)
− log

(
πθ(Y

′|xi)
πref(Y ′|xi)

))2
]

. Then, we remind the reader that the

variance of a random variable X under distribution µ verifies:

VARX∼µ[X] =
1

2
EX,X′∼µ[(X −X ′)2],

where X and X ′ are independent variables with distribution µ. This

means that
(
log

(
πθ(y

i
a|x

i)
πref(yi

a|xi)

)
− log

(
πθ(y

i
r|x

i)
πref(yi

r|xi)

))2

is an unbiased estimate of

2VARY∼πref(.|xi)

[
log

(
πθ(Y |xi)
πref(Y |xi)

)]
.

Therefore the expectation (over πref) of the IPO regularization term is:

Eπref [RIPO(θ)] =
2

N

N∑
i=1

VARY∼πref(.|xi)

[
log

(
πθ(Y |xi)

πref(Y |xi)

)]
.

As VARX∼µ[X] = VARX∼µ[−X], we also have:

Eπref [RIPO(θ)] =
2

N

N∑
i=1

VARY∼πref(.|xi)

[
log

(
πref(Y |xi)

πθ(Y |xi)

)]
.

This is in contrast with the regularization term of PMPO:

RPMPO(θ) =
1

N

N∑
i=1

[
KL(πref(.|xi)||πθ(.|xi))

]
=

1

N

N∑
i=1

EY∼πref(.|xi)

[
log

(
πref(Y |xi)

πθ(Y |xi)

)]
.

So the difference between PMPO and IPO is that PMPO will minimize the expectation of the log
ratio between the reference policy and the online policy whereas IPO will minimize the variance of
the same quantity.

E BENCHMARKS

E.1 CONTROL SUITE

The DeepMind Control Suite (Tunyasuvunakool et al., 2020) is a collection of benchmark tasks
implemented in the MuJoCo simulator (Todorov et al., 2012). The suite includes a variety of
embodiments of different complexity and action dimensionality. For each of these embodiments,
there are multiple tasks implemented, each of which defines a single reward function. Example
images for some of the domains are shown in Figure 6.

E.2 RGB STACKING

The RGB Stacking benchmark (Lee et al., 2021) is a robotics task involving a Rethink Sawyer robot
arm outfitted with a Robotiq 2F-85 gripper, as well as a basket containing a number of parameterized
geometric shapes in red, green and blue color. See Figure 7 for an illustration. The goal of this
task is to have the robot arrange the shapes into varying arrangements, such as stacking one on
top of another or building a tower. The policy only provides proprioception information and the

21

Published as a conference paper at ICLR 2025

Figure 6: Example domains in the Control Suite. From left to right: Cartpole, Acrobot, Reacher,
Manipulator, Cheetah, Humanoid

images from three cameras surrounding the basket; there is no explicit tracking of the objects’ relative
positions, or their identities. Specifically, the agent is provided the observations listed in Table 2.
Thus the task’s challenge lies in forcing the agent to learn a control policy directly from vision, and
recognizing which objects are in the workspace, since their different geometric properties demand
different manipulation strategies.

Figure 7: Illustration of the simulated RGB Stacking domain. Top right corner: goal image (left) and
current observation (right) for the front left camera, both as provided to the agent. Bottom: reward
trace for the dense triple-stacking objective.

The task is implemented in the MuJoCo physics simulator (Todorov et al., 2012). Using the ground
truth positions of the objects’ positions (which is not provided to the agent), several reward terms are
calculated, including stacking two objects, stacking three objects, and building a pyramid, for each
object permutation. Details of these rewards can be found in Springenberg et al. (2024).

F ADDITIONAL EXPERIMENTS

In this section we evaluate the performance of PMPO and DPO in high-dimensional control tasks
from the DeepMind Control Suite (Figure 8). For each state, we sample four responses from a
reference policy. We compare PMPO and DPO under two conditions:

1. Two Samples: Both algorithms utilize only two samples for learning; the best and worst
responses (Accept[Best] & Reject[Worst]).

2. Four Samples: Both algorithms utilize all four samples (Accept&Reject). For PMPO, the
top two responses are used as preferred generations and the bottom two as dispreferred

22

Published as a conference paper at ICLR 2025

Modality Dimensions
Arm joint angles 7 x 3

Arm joint velocities 7 x 3
Arm joint torque 7 x 3

Gripper motor angle 1 x 3
Gripper motor velocity 1 x 3
Gripper grasp sensor 1 x 3

Cartesian tool center point pose 7 x 3
Cartesian wrist endpoint velocity 6 x 3

Cartesian wrist endpoint force 3 x 3
Cartesian wrist endpoint torque 3 x 3

Back left basket camera 80 x 80
Front left basket camera 80 x 80

Front right basket camera 80 x 80

Table 2: Observations given to the agent in the RGB Stacking benchmark. Note that for all ob-
servations except the camera images, a history of 3 time steps is provided, resulting in the x3
dimensionalities.

Figure 8: Comparison of PMPO and DPO for high-dimensional control tasks from the DeepMind
Control Suite. We plot average reward over time of training (using 100 episodes for each evaluation).
For each state we sample 4 responses from reference policy. We compare PMPO and DPO when both
use only 2 samples for learning; the best and worst responses only (Accept[Best]&Reject[Worst]).
We also compare PMPO and DPO when both use all 4 samples. For PMPO these would be top two
as preferred generations and bottom two as dispreferred generations (Accept[Best]&Reject[Worst]).
For DPO we create two sets of pairs, i.e., (best and worst) and (second best and second worst).
Results show in general using two samples for learning and all 4 samples in learning yielded similar
performance.

generations. For DPO, we create two sets of pairs for each prompt: (best and worst) and
(second best and second worst).

Figure 8 indicates that using two samples for learning yields similar performance to using all
four samples. Moreover, PMPO remains competitive with DPO when using pairs, while generally
performing better when the policy is represented as Gaussian.

23

	Introduction
	Related Work
	RL as Inference
	Preference optimization

	Using positive and negative feedback for policy optimization
	Background on maximising for preferred outcomes
	Using dis-preferred outcomes via regularised minimum likelihood
	Learning from preferred and dis-preferred outcomes

	Extracting preferences from evaluation functions
	Experiments
	Bandit RL: Standard Functions
	Full online RL: control suite
	Offline RL using Advantage Function
	Language alignment experiments

	Conclusion
	Acknowledgments
	Hyper parameter tuning
	Computing the Kullback-Leibler divergence
	Full derivations of PMPO update rules
	Maximizing for Preferred Outcomes
	E-Step
	M-Step

	Incorporating Dis-preferred Outcomes for Policy Optimization
	Final Update Rule: Leveraging Both Preferences and Dis-preferences

	Fundamental results
	Existence and uniqueness of the regularized argmaximum
	Proof of Improvement.
	Link Between IPO and PMPO

	Benchmarks
	Control Suite
	RGB Stacking

	Additional Experiments

