
Published as a conference paper at ICLR 2025

SCALING LLM TEST-TIME COMPUTE OPTIMALLY CAN BE MORE
EFFECTIVE THAN SCALING PARAMETERS FOR REASONING

Charlie Snell*, Jaehoon Lee§, Kelvin Xu§†, Aviral Kumar#§†

ABSTRACT

Enabling LLMs to improve their outputs by using more test-time compute is a crit-
ical step towards building self-improving agents that can operate on open-ended
natural language. In this paper, we scale up inference-time computation in LLMs,
with a focus on answering: if an LLM is allowed to use a fixed but non-trivial
amount of inference-time compute, how much can it improve its performance on a
challenging prompt? Answering this question has implications not only on perfor-
mance, but also on the future of LLM pretraining and how to tradeoff inference-
time and pre-training compute. Little research has attempted to understand the
scaling behaviors of test-time inference methods, with current work largely pro-
viding negative results for a number of these strategies. In this work, we analyze
two primary mechanisms to scale test-time computation: (1) searching against
dense, process-based verifier reward models (PRMs); and (2) updating the model’s
distribution over a response adaptively, given the prompt at test time. We find that
in both cases, the effectiveness of different approaches to scaling test-time com-
pute critically varies depending on the difficulty of the prompt. This observation
motivates applying a “compute-optimal” scaling strategy, which acts to, as effec-
tively as possible, allocate test-time compute per prompt in an adaptive manner.
Using this compute-optimal strategy, we can improve the efficiency of test-time
compute scaling for math reasoning problems by more than 4× compared to a
best-of-N baseline. Additionally, in a FLOPs-matched evaluation, we find that on
problems where a smaller base model attains somewhat non-trivial success rates,
test-time compute can be used to outperform a 14× larger model.

1 INTRODUCTION

Given a challenging input, can we enable LLMs to most effectively make use of additional com-
putation at test-time to improve their responses? In theory, additional test-time compute should
enable an LLM to do better than what it was trained to do in zero-shot. Such a capability at test-
time bears the potential to unlock agentic and reasoning abilities (Shinn et al., 2023; Qu et al.,
2024b). Additionally, if pre-trained model size can be traded off for additional inference compute,
this would enable the deployment of smaller on-device models in place of datacenter scale LLMs.
Automating the inference-time improvement of model outputs also provides a path towards a general
self-improvement algorithm that can function with reduced human supervision.

Prior work studying inference-time computation provides mixed results. On the one hand, some
prior work shows that current LLMs can use test-time computation to improve their outputs (Bai
et al., 2022; Madaan et al., 2023; Du et al., 2023; Saunders et al., 2022; Yao et al., 2023), on the
other hand, several other works show that the effectiveness of these methods on complex tasks such
as math reasoning remains limited (Huang et al., 2023; Stechly et al., 2023; Valmeekam et al., 2023;
Wang et al., 2024a; Olausson et al., 2024). However, reasoning is a domain we should expect to
benefit from test-time compute, since reasoning involves drawing inferences from existing knowl-
edge as opposed to acquiring new knowledge. Therefore, the disagreement in these prior findings
motivates the need for a systematic analysis of different approaches for scaling test-time compute.

In this paper we understand the pros and cons of scaling up test-time compute, and how it compares
with scaling up pre-training compute. While the simplest approach for scaling test-time compute is
best-of-N sampling – sampling N outputs in “parallel” from a base LLM and selecting the one that
scores the highest per a learned verifier or a reward model (Cobbe et al., 2021; Lightman et al., 2023)

*UC Berkeley (work done during an internship at Google DeepMind); §Google DeepMind; #CMU; †Equal advising

1



Published as a conference paper at ICLR 2025

21 23 25 27

Generation Budget

20

25

30

35

40

45

M
AT

H
 A

cc
ur

ac
y 

(%
)

Compute Optimal Revisions

Majority
Best-of-N Weighted
Compute Optimal
Parallel

<<1 ~=1 >>1

Ratio of Inference Tokens to Pretraining Tokens

40

30

20

10

0

10

20

30

R
el

at
iv

e 
Im

pr
ov

em
en

t i
n 

A
cc

ur
ac

y
Fr

om
 T

es
t-t

im
e 

C
om

pu
te

 (%
)

+21.6%

+16.7%

+5.4%

+27.8%

+3.5%

-24.3%

+11.8%

-11.9%

-37.2%

Comparing Test-time and Pretraining Compute
in a FLOPs Matched Evauation

Easy Questions
Medium Questions
Hard Questions

Iteratively Revising Answers at Test-time

2
1

2
3

2
5

2
7

2
9

Generation Budget

10

15

20

25

30

35

40

45

M
AT

H
 A

cc
ur

ac
y 

(%
)

Compute Optimal Search

Majority
ORM Best-of-N Weighted
PRM Best-of-N Weighted
PRM Compute Optimal

<<1 ~=1 >>1

Ratio of Inference Tokens to Pretraining Tokens

50

40

30

20

10

0

10

20

R
el

at
iv

e 
Im

pr
ov

em
en

t i
n 

A
cc

ur
ac

y
Fr

om
 T

es
t-t

im
e 

C
om

pu
te

 (%
)

+19.1%

+2.2% +2.0%

-5.6%

-35.6%

-30.6%

0.0%

-35.3%

-52.9%

Comparing Test-time and Pretraining Compute
in a FLOPs Matched Evauation

Easy Questions
Medium Questions
Hard Questions

Test-time Search Against a PRM Verifier

Figure 1: Summary of results. Left: Compute-optimal scaling for revisions and search. We compare
the compute-optimal scaling policy with PaLM 2-S* against baselines in the revision (top) and PRM search
(bottom) settings. In the revision setting, we find that compute-optimal scaling outperforms best-of-N with 4×
less compute. Similarly, with PRM search, compute-optimal scaling shows large early improvements over best-
of-N, nearly outperforming best-of-N with 4× less compute at points (see Sec. 5 and 6). Right: Comparing
test-time compute and parameter scaling. We compare compute-optimal test-time scaling with PaLM 2-S*
against a ∼ 14× larger model without additional test-time compute. We expect X tokens of pretraining for
both models and Y tokens of inference. A larger model, multiplies the FLOPs for both. If we were to apply
additional test-time compute to the smaller model, to match this FLOPs multiplier, we see that for the revisions
(top) when Y << X , test-time compute is preferable to pretraining. As inference to pretraining ratio increases,
test-time compute is preferable on easy questions. However, on hard questions, pretraining is preferable.

– there are many other ways we could conceivably scale up test-time compute. We unify methods
into those that modify either the proposal distribution from which responses are sampled (for e.g.,
by asking the base model to revise its responses (Qu et al., 2024b)) or those that alter how the verifier
is used for searching directly in the output space (e.g. by training a PRM (Lightman et al., 2023)).

To understand the benefits of scaling up test-time compute, we carry out experiments on
MATH (Hendrycks et al., 2021) using PaLM-2 (Anil et al., 2023) models fine-tuned to either revise
incorrect answers (Qu et al., 2024b) (e.g. improving the proposal distribution; Section 6) or verify
the correctness of individual steps in an answer using a process-based reward model (PRM) (Light-
man et al., 2023; Wang et al., 2023) (Section 5). We find that the efficacy of different test-time
strategies depends on both the nature of the specific problem at hand and the base LLM used. For
example, on “easier” problems, for which the base LLM can already produce reasonable-looking
responses, allowing the model to sequentially revise its initial answer (i.e., modifying the proposal
distribution) is a more effective use of compute than reranking N independent answers sampled in
parallel. On the other hand, on difficult problems which require searching over many high-level
strategies, re-sampling new responses independently in parallel or deploying tree-search against a
process reward model is more effective. This underscores the need to deploy an adaptive “compute-
optimal” strategy for scaling test-time compute, wherein the specific approach for utilizing test-time
compute is selected depending on the prompt, so as to make the best use of additional computation.
We also show that a notion of question difficulty (Section 4) from the perspective of the base LLM
can be used to predict the efficacy of test-time computation, enabling us to practically instantiate this
“compute-optimal” scaling. By appropriately allocating test-time compute in this way, we are able
to greatly improve test-time compute scaling, surpassing the performance of a best-of-N baseline
while only using ∼ 4× less computation with both revisions and search (Sections 5 and 6).

Using our scaling strategy, we then study to what extent test-time computation can substitute for
additional pretraining. Specifically, we conduct a FLOPs-matched comparison between a smaller

2



Published as a conference paper at ICLR 2025

model with test-time compute and pretraining a 14× larger model. We find that on easy and interme-
diate questions, additional test-time compute is often preferable to scaling pretraining. This finding
suggests that rather than focusing purely on scaling pretraining, in some settings it is more efficient
to pretrain smaller models with less compute, and then apply test-time compute to improve outputs.
That said, with the most challenging questions, we observe few benefits from scaling up test-time
compute. Instead, on these questions, it is more effective to make progress by applying additional
pretraining, demonstrating that current approaches to scaling test-time compute may not be 1-to-1
exchangeable with scaling pretraining. Overall, this suggests that even with a fairly naı̈ve methodol-
ogy, scaling up test-time computation can already be preferable to pretraining in some settings, with
only more improvements as test-time strategies mature. Longer term, this hints at a future where
fewer FLOPs are spent during pretraining and more FLOPs are spent at inference.

2 UNIFIED PERSPECTIVE ON TEST-TIME COMPUTE: PROPOSER & VERIFIER

We first provide an unified abstraction of test-time compute to situate contemporary approaches. We
view the use of test-time compute through the lens of modifying the model’s distribution on a given
prompt, adaptively at test-time. Ideally, test-time compute should allow for the ability to express
more complex distributions than naı̈vely sampling from the LLM. In general, there are two knobs to
modify an LLM’s distribution: (1) at the input level: by augmenting the given prompt with an addi-
tional set of tokens that the LLM conditions on to obtain a modified proposal distribution, or (2) at
the output level: by sampling multiple candidates from the standard LLM and performing surgery
on them, using some post-hoc verifiers or scorers. This process is reminiscent of Markov chain
Monte Carlo (MCMC) (Andrieu et al., 2003) sampling from a complex distribution by combining
a simple proposal distribution and a score function. Modifying the proposal distribution by altering
inputs tokens and using a verifier form the two independent axes of our study.

(1) Modifying the proposal distribution. One way to improve the proposal distribution is to di-
rectly optimize the model for a given reasoning task via RL-inspired finetuning methods such as
STaR or ReSTEM (Zelikman et al., 2022; Singh et al., 2024). These techniques specifically finetune
the model to directly improve the proposal distribution, rather than generating additional tokens at
test-time. Instead, techniques such as self-critique (Bai et al., 2022; Madaan et al., 2023; Du et al.,
2023; Saunders et al., 2022) enable the model to improve its own proposals at test time by instructing
it to critique and revise its outputs iteratively. Since prompting off-the-shelf models is not effective
at enabling effective revisions at test time, we specifically finetune models to iteratively revise their
answers for complex reasoning, using Best-of-N guidance (Qu et al., 2024b; Kumar et al., 2024).

(2) Optimizing the verifier. The verifier selects the best answer from the proposal distribution. The
most canonical way to use such a verifier is by applying best-of-N sampling, wherein we sample
N solutions and then select the best one with a verifier (Cobbe et al., 2021). This approach can be
further improved by training a process-based reward model (PRM) (Lightman et al., 2023), which
produces a prediction of the correctness of each intermediate step in a solution. We can then utilize
these per-step predictions to perform tree search over the solution space, enabling a more effective
modification of the proposal distribution (Yao et al., 2023; Feng et al., 2024; Chen et al., 2024).

3 HOW TO SCALE TEST-TIME COMPUTATION OPTIMALLY

Using this unified view of different methods, we would like to understand and characterize how to
most effectively use test-time computation to improve performance on a given prompt by answering
the question below. When either refining the proposal distribution or searching against a verifier,
there are numerous choices on how to allocate test-time compute. For example, when using a model
finetuned for revisions as the proposal distribution and an ORM verifier, we could either spend the
full test-time budget on generating N independent samples in parallel from the model and then apply
best-of-N, or we could sample N revisions in sequence using a revision model and then select the
best answer in the sequence with an ORM, or strike a balance between these extremes. Intuitively,
we might expect that problems where the initial samples are more likely to be on the right track
to benefit more from revisions. On the other hand, problems that require exploration over high-
level problem solving strategies might benefit from sampling more independent answers in parallel.
Finally, in the case of verifiers, we also can choose between different search algorithms (e.g. beam-
search, lookahead-search, best-of-N), each of which may exhibit different properties depending on
the quality of the verifier and proposal distribution at hand. More sophisticated search procedures
might be more useful in harder problems compared to a much simpler best-of-N or majority baseline.

3



Published as a conference paper at ICLR 2025

Problem setup

We are given a prompt and a test-time compute budget within which to solve the problem. Under the
abstraction above, there are different knobs we can tune when utilizing test-time computation. How
can we determine the most effective way to utilize test-time compute for a given prompt? And how
well would this do against simply utilizing a much bigger pretrained model?

3.1 COMPUTE-OPTIMAL TEST-TIME SCALING STRATEGY

Per the discussion above, we would like to prescribe the optimal allocation of our test-time compute
budget onto a given problem. To this end, for any given approach of utilizing test-time compute
(e.g., revisions and search against a verifier in this paper, some combination or other methods in
general), we define the “test-time compute-optimal scaling strategy” as the strategy that chooses
hyperparameters appearing in a given approach for maximal performance benefits on a given prompt
at test time. Formally, define Target(θ,N, q) as the distribution over natural language output tokens
induced by the model for a given prompt q, using test-time compute hyper-parameters θ, and a
compute budget of N . We would like to select the hyper-parameters θ which maximize the accuracy
of the target distribution for a given problem. We express this formally as:

θ∗q,a∗(q)(N) = argmaxθ
(
Ey∼Target(θ,N,q)

[
1y=y∗(q)

])
, (1)

where y∗(q) denotes the ground-truth correct response for input query q, and θ∗q,y∗(q)(N) repre-
sents the test-time compute-optimal scaling strategy for the problem q with compute budget N . We
note that our definition of test-time compute-optimal scaling differs slightly from that of concurrent
work (Wu et al., 2024) in that our notion of scaling is question dependent.

3.2 QUESTION DIFFICULTY IS A GOOD APPROXIMATION FOR THE OPTIMAL STRATEGY

In order to effectively analyze the test-time scaling properties of the different mechanisms discussed
in Section 2 (e.g. proposal distribution and verifier), we will prescribe an approximation to this
optimal strategy θ∗q,y∗(q)(N) as a function of a statistic of a given prompt. Our approximation
estimates a notion of difficulty for a given prompt. The compute-optimal strategy is then defined as
a function of the difficulty of a prompt. Despite being only an heuristic approach to solve Equation 1,
we find that it can still induce substantial improvements in performance over a baseline strategy of
allocating this inference-time compute in an ad-hoc manner.

Our estimate of question difficulty assigns a given question to one of five discrete difficulty lev-
els. We then use these bins to estimate θ∗q,y∗(q)(N) on a validation set (given a compute budget),
and apply the optimal strategy on the test set. Thus, question difficulty acts as a sufficient statistic
for designing the compute-optimal strategy. For example, to optimally allocate test-time compute
between parallel best-of-N and sequential sampling, we first pre-compute the accuracy of both tech-
niques within each difficulty bin using a held-out set. Given a new test question, we then determine
the difficulty bin it belongs to and select the best performing strategy within that bin.

Defining question difficulty. Following Lightman et al. (2023), we define question difficulty as
a function of the given base LLM. Specifically, we bin the model’s pass@1 rate – estimated from
2048 samples – on each test question into five quantiles, each corresponding to increasing difficulty
levels. We find this notion of model-specific difficulty bins to be more predictive of the efficacy of
using test-time compute compared to the hand-labeled difficulty bins in the MATH dataset.

That said, we note that assessing difficulty as described assumes oracle access to a correctness
checker, which is unavailable at deployment. To enable a realistic estimate of difficulty, we approx-
imate difficulty via a model-predicted notion of difficulty, which constructs the bins by averaging
the score of a learned verifier on the same 2048 samples per problem. We refer to this setting as
model-predicted difficulty and the setting which relies on ground-truth correctness as oracle diffi-
culty. Predicted difficulty removes the reliance on ground truth labels, but still incurs computational
cost. Our experiments do not account for this cost largely for simplicity, since our goal is to present
some of the first results of what is in fact possible by effectively allocating test-time compute.

4 EXPERIMENTAL SETUP

We first outline our experimental setup for conducting this analysis with multiple verifier design
choices and proposal distributions, followed by the analysis results in the subsequent sections.

4



Published as a conference paper at ICLR 2025

                 
                            =   Apply Verifier                             =   Full Solution                             =   Intermediate solution step                        =   Selected by verifier                     =   Rejected by verifier

Best-of-N Beam Search Lookahead Search

Question

Select the top-N samples 
at each step using the 
PRM

Beam search, but at each step 
rollout k-steps in advance, using 
the PRM value at the end of the 
rollout to represent the value for 
the current step

Propagate 
PRM value 
back to 
step

Continue Search from 
the top-N options

…Select the best final answer using the verifier

Key:

Select the best final answer using the verifier

Generate N full solutions, 
selecting the best one with the 
verifier Question Question

Rollout 
k-steps

Figure 2: Comparing different PRM search methods. Left: Best-of-N samples N full answers and then
selects the best answer according to the PRM final score. Center: Beam search samples N candidates at each
step, and selects the top M according to the PRM to continue the search from. Right: lookahead-search extends
each step in beam-search to utilize a k-step lookahead while assessing which steps to retain and continue the
search from. Thus lookahead-search needs more compute.

Datasets. We expect test-time compute to be most helpful when models already have all the basic
“knowledge” needed to answer a query, and instead the primary challenge is about drawing (com-
plex) inferences from this knowledge. To this end, we focus on the MATH (Hendrycks et al., 2021)
benchmark, which consists of high-school competition level math problems with a range of difficulty
levels. For all experiments, we use the dataset split consisting of 12k train and 500 test questions.

Models. We use the PaLM 2-S* (Anil et al., 2023) (Codey) model. We chose this model, as it is
representative of the capabilities of many contemporary LLMs, and is small enough to efficiently
run many experiments on. Most importantly, this model attains a non-trivial performance on MATH
(but not saturated). For these reasons, we expect this model to provide a good test-bed.

5 SCALING TEST-TIME COMPUTE VIA VERIFIERS

In this section, we study how test-time compute can be most effectively scaled by searching against
a verifier and keeping the proposal distribution fixed to the base LM. Specifically, we study different
search approaches with PRMs and analyze their test-time compute scaling properties, but first we
provide a brief overview of how a PRM can be trained.

5.1 TRAINING VERIFIERS AMENABLE TO SEARCH

We follow the approach of Wang et al. (2023), which supervises the PRM using estimates of per-step
correctness obtained from running Monte Carlo rollouts from each step in the solution. Our PRM’s
per-step predictions therefore correspond to value estimates of reward-to-go for the base model’s
sampling policy, similar to recent work (Wang et al., 2023; Setlur et al., 2024). We also compared to
an ORM baseline (Appendix H) but found that our PRM consistently outperforms the ORM. Hence,
all of the search experiments in this section use a PRM model. Additional details are in Appendix F.

Answer aggregation. At test time, PRMs can be used to score each individual step appearing in
a set of solutions sampled from the base model. To pick out the best answer from N samples with
the PRM, we need a function that can aggregate across all the per-step scores for each answer to
determine the best candidate for the correct answer. To do this, we take the PRM’s prediction at the
last step as representative of the full-answer score and then follow Li et al. (2023) by applying “best-
of-N weighted” selection across answers. We include more detail on these decisions in Appendix G.

5.2 SEARCH METHODS AGAINST A PRM

We optimize the PRM at test time via tree search methods. We study three search approaches that
sample outputs from a few-shot prompted base LLM (see Appendix J). An illustration is shown in

5



Published as a conference paper at ICLR 2025

2
1

2
3

2
5

2
7

2
9

Generation Budget

10

15

20

25

30

35

40

M
AT

H
 T

es
t A

cc
ur

ac
y 

(%
)

Comparing PRM Search Methods

Best-of-N Weighted
Majority
Beam; M := sqrt(N)
Beam; M := 4
1 Step Lookahead; M := sqrt(N)
3 Step Lookahead; M := sqrt(N)
3 Step Lookahead; M := 4

1 2 3 4 5

Test Questions Binned by Increasing Difficulty Level

0

20

40

60

80

M
AT

H
 T

es
t A

cc
ur

ac
y 

(%
)

Comparing Beam Search and Best-of-N by Difficulty Level

Beam Search
Best-of-N Weighted
Majority

Figure 3: Left: Comparing different methods for conducting search against PRM verifiers. We see that
at low generation budgets, beam search performs best, but as we scale the budget further the improvements
diminish, falling below the best-of-N baseline. Lookahead-search generally underperforms other methods at
the same generation budget. Right: Comparing beam search and best-of-N binned by difficulty level. The
four bars in each difficulty bin correspond to increasing test-time budgets (4, 16, 64, and 256 generations). On
the easier problems (bins 1/2), beam search shows signs of over-optimization at higher budgets, whereas best-
of-N does not. On the medium difficulty problems (bins 3/4), beam search consistently outperforms best-of-N.

Figure 2. We note that for all search algorithms, we use the same PRM verifier, enabling an even
comparison. We include additional details about our different search methods in Appendix C.

Best-of-N weighted. We sample N answers independently from the base LLM and then select the
best answer according to the PRM’s final answer judgment.

Beam search. Beam search optimizes the PRM by searching over its per-step predictions. Our
implementation is similar to BFS-V (Yao et al., 2023; Feng et al., 2024). Concretely, we consider a
fixed number of beams N and a beam width M . At the end of the search we have N final answer
candidates, to which we apply best-of-N weighted selection to make our final answer prediction.

Lookahead search. Lookahead search modifies how beam search evaluates each step. At each step
in the search, rather than using the PRM score at the current step to select the top options, lookahead
search performs a simulation, rolling out k steps. We stop early if the end of a solution is reached.

5.3 ANALYSIS RESULTS: TEST-TIME SCALING FOR SEARCH WITH VERIFIERS

We now present our results comparing various search algorithms and identify a prompt difficulty
dependent compute-optimal scaling strategy for search methods.

Comparing search algorithms. We first conduct a sweep over different search settings. In addition
to the standard best-of-N approach, we sweep over the two main parameters that distinguish these
methods: beam-width M and number of lookahead steps k. While we are not able to exhaustively
sweep all configurations, we sweep over the following settings with a maximum budget of 256: 1)
Beam search with the beam width set to

√
N , where N is the generation budget; 2) Beam search

with a fixed beam width of 4; 3) Lookahead search with k = 3 applied to both beam-search settings
1) and 2); 4) Lookahead search with k = 1 applied to beam-search setting 1).

To compare search methods as a function of generation budget fairly, we estimate the inference-
time cost of each method. For beam search and best-of-N the generation budget corresponds to the
number of beams and N respectively. Lookahead search utilizes additional compute: at each step,
we sample k additional steps ahead. Therefore, the cost of lookahead-search is N×(k+1) samples.
Querying the verifier also adds a 2x overhead for all methods but we account for this in our analysis.

Results. As shown in Figure 3 (left), with small budgets, beam search outperforms best-of-N.
However, at high budgets, these improvements diminish, with beam search underperforming. Ad-
ditionally, lookahead-search underperforms other methods, likely due to the additional computation
induced by looking-ahead. It is possible that with further test-time scaling or with an online MCST
trained value function, lookahead search may perform better; we leave further exploration of this
to future work. The diminishing returns from search are likely due to exploitation of the PRM’s
predictions. For example, we see instances (such as in Figure 32), where search causes the model to
generate repetitive low-information steps. In other cases, we find that over-optimizing search can re-
sult in overly short solutions, of just 1-2 steps. We include several of these examples in Appendix R.

6



Published as a conference paper at ICLR 2025

2
1

2
3

2
5

2
7

2
9

Generation Budget

10

15

20

25

30

35

40

M
AT

H
 T

es
t A

cc
ur

ac
y 

(%
)

Compute Optimal Search

Majority
ORM Best-of-N Weighted
PRM Best-of-N Weighted
PRM Compute Optimal Oracle
PRM Compute Optimal Predicted

Figure 4: Comparing compute-optimal test-time
scaling against baselines with PRM search. By
scaling test-time compute optimally, we nearly out-
perform PRM best-of-N using up to 4× less test-
time compute (e.g. 32 versus 128 generations).
“Compute-optimal oracle” refers to using oracle
difficulty bins derived from the groundtruth correct-
ness, and “compute-optimal predicted” refers to us-
ing the PRM’s predictions to generate difficulty bins.

Which problems does search improve? To un-
derstand how to scale search adaptively per prob-
lem, we conduct a difficulty bin analysis. Specif-
ically, we compare beam-search (M = 4) against
best-of-N. In Figure 3 (right), we find that, de-
spite performing similarly in aggregate, the two
methods exhibit very different behavior across
difficulty levels. For example, on easy ques-
tions (levels 1/2), the stronger optimizer of the
two, beam search, degrades in performance as the
budget increases, suggesting possible exploita-
tion of the PRM signal. In contrast, on the harder
questions (levels 3/4), beam search outperforms
best-of-N. Finally, on the most difficult questions
(level 5), no method makes meaningful progress.
These findings match intuition: we might expect
that on the easy or medium difficulty questions,
the verifier will make mostly correct assessments
of correctness. Therefore, by optimizing further,
we may be only further amplifying any spurious
features learned by the verifier, causing perfor-
mance degradation. On more difficult questions, the base model is less likely to sample the correct
answer, so using search can help steer the model.

Compute-optimal search. Given the above, it is clear that question difficulty is a useful statistic
for predicting the best search strategy at each budget. Additionally, the selected best search strategy
varies as a function of difficulty. We visualize this “compute-optimal” scaling trend, as represented
by the best performing search strategy, between best-of-N and beam search (M = 4), at each difficulty
level in Figure 4. Interestingly, we see that with low budgets, using both the oracle and predicted
difficulty, compute-optimal scaling can nearly outperform best-of-N using up to 4× less test-
time compute (e.g. 16 versus 64 generations). While at higher budgets, some of these benefits
diminish with the use of predicted difficulty, but the oracle bins still see improvements from optimal
scaling. This result demonstrates that there are clear performance gains to be obtained by adaptively
allocating test-time compute during search using predicted difficulty as an input statistic.

Takeaways for compute-optimal scaling of verifiers

We find that the efficacy of any given verifier search method depends critically on both the compute
budget and the question at hand. Specifically, beam-search is more effective on harder questions and at
lower compute budgets, whereas best-of-N is more effective on easier questions and at higher budgets.
Moreover, by selecting the best search setting for a given question difficulty and test-time compute
budget, we can nearly outperform best-of-N using up to 4× less test-time compute.

6 REFINING THE PROPOSAL DISTRIBUTION

Now we study how the proposal distribution can be used for test-time scaling (Section 2). Con-
cretely, we enable to improve its own distribution at test-time, by revising answers iteratively.
Simply prompting existing LLMs to correct themselves tends to be largely ineffective on reason-
ing (Huang et al., 2023). Therefore, we finetune LLMs to iteratively revise their answers.

6.1 TRAINING AND USING REVISION MODELS

Our procedure for finetuning revision models is similar to Qu et al. (2024b), though we introduce
some crucial differences. For finetuning, we need trajectories consisting of a sequence of incorrect
answers followed by a correct answer, that we can then run SFT on. To do this, we sampled 64
responses in parallel and post-hoc constructed multi-turn rollouts from these independent samples.
These rollouts consist of up to four incorrect attempts in context followed by a correct revision. We
include more details on our revision model finetuning procedure in Appendix L.

Using revisions at inference-time. Given a finetuned model, we can then sample a sequence of
revisions from the model at test time. While our revision model is only trained with up to four pre-
vious answers in-context, we can sample longer chains by truncating the context to the most recent

7



Published as a conference paper at ICLR 2025

Question

 

        

    

    

 

 

Parallel Best-of-N Sequential Revisions

Combining Sequential / Parallel

Verifier 
selects 
the best 
answer

Verifier selects 
the best answer

Verifier selects the best 
answer within each chain

Verifier 
selects the 
best answer 
across chains

Question

Question

Q:  If 4 daps = 7 
yaps, and 5 
yaps = 3 baps, 
how many daps 
equal 42 baps?

LM

A: So 7/4 yap/dap …

A: We have 4 dap…

A: If 7/4 yaps/dap ...

…

A: If 7/4 ...A: So …A: We …

Using Revision Model + Verifier at 
Inference Time

                 
                      =  Apply Verifier           =  Selected by verifier              =  Rejected by verifier

Key:

LM
Q:  If 4 daps = 7 
yaps, and 5 
yaps = 3 baps, 
how many daps 
equal 42 baps?

Parallel Sampling

Sequential Revisions

LM proposes a sequence of revisions, each 
conditioned on previous revisions

LM proposes answers 
independently, in 
parallel

Figure 5: Parallel sampling (e.g., Best-of-N) versus sequential revisions. Left: Parallel sampling generates
N answers independently, whereas sequential revisions generate each one in sequence conditioned on previous
attempts. Right: In both the sequential and parallel cases, we can use the verifier to determine the best-of-N
answers. We can also split our budget between parallel and sequential sampling. In this case, we first use the
verifier to select the best answer within each sequential chain and then select the best answer across chains.

four revisions. In Figure 9(left), we see longer chains gradually improve pass@k demonstrating that
we are able to effectively teach the model to learn from mistakes in previous answers.

That said, there is a distribution shift at inference time: the model was trained on only sequences with
incorrect answers in context, but at test-time the model may sample correct answers. Thus, the model
may turn a correct answer into an incorrect one. Similar to Qu et al. (2024b), around 38% of correct
answers get converted to incorrect with our model. Thus, we employ either sequential majority
voting or verifier-guided selection to select the correct answer from the sequence of revisions (see
Figure 5). Querying the verifier adds a 2x compute overhead, and we account for this in our analysis.

Comparisons. To test the efficacy of modifying the proposal distribution via revisions, we set up a
comparison between the performance of sampling N revisions in sequence and sampling N attempts
at a question in parallel. We see in Figure 9 (right), that with both the verifier-based and majority-
based selection mechanisms, sequential sampling outperforms parallel sampling.

6.2 ANALYSIS RESULTS: TEST-TIME SCALING WITH REVISIONS

2
1

2
3

2
5

2
7

Generation Budget

20

25

30

35

40

45

M
AT

H
 T

es
t A

cc
ur

ac
y 

(%
)

Compute Optimal Revisions

Majority
Best-of-N Weighted
Compute Optimal Oracle
Compute Optimal Predicted
Parallel

Figure 6: Compute-optimal scaling with our revi-
sion model. By optimally scaling test-time compute,
we outperform best-of-N with 4× less compute (i.e.,
128 samples versus 512). “Compute Optimal Ora-
cle” refers to difficulty derived from ground truth cor-
rectness and “Compute Optimal Predicted” refers
to using the PRM to estimate difficulty.

We see that sampling sequentially outperforms in
parallel. We might expect however, that these
approaches have different properties. Intuitively,
sampling in parallel acts as a global search pro-
cess that could, in principle, provide coverage
over many different approaches for solving a
problem. Sequential sampling, on the other hand,
may work more as a local refinement process.
This motivates striking a balance between these
two approaches by allocating some of our budget
to parallel sampling (e.g.

√
N ) and the rest to se-

quential (e.g.
√
N ). We will now show the exis-

tence of a compute-optimal ratio between sequen-
tial and parallel sampling, and understand their
pros and cons based on the difficulty of a prompt.

Trading off sequential and parallel compute.
To understand how to allocate sequential and par-
allel compute, we perform a sweep over different
configurations. We see, in Figure 7 (left), that in-
deed, at a given budget, there exists an ideal sequential to parallel ratio. We also see in Figure 7
(right) that this ideal ratio varies depending on question difficulty. Easy questions benefit more from
revisions, whereas on difficult questions it is optimal to strike a balance between sequential and
parallel computation. This finding supports the hypothesis that sequential revisions (i.e., varying the
proposal distribution) and parallel sampling (i.e., search with verifiers) are complementary axes for

8



Published as a conference paper at ICLR 2025

2
7

2
5

2
3

2
1

2
1

2
3

2
5

2
7

Sequential/Parallel Ratio

15

20

25

30

35

40

45

M
AT

H
 T

es
t A

cc
ur

ac
y 

(%
)

Varying Sequential/Parallel with Verifier

1 2 3 4 5

Test Questions Binned by Increasing Difficulty Level

0

20

40

60

80

M
AT

H
 T

es
t A

cc
ur

ac
y 

(%
)

Revisions@128, Varying the Sequential to Parallel Ratio

10
0

10
1

10
2

N
um

be
r o

f G
en

er
at

io
ns

10
2

10
1

10
0

10
1

10
2

S
eq

ue
nt

ia
l t

o 
P

ar
al

le
l R

at
io

Figure 7: Left: Varying the ratio of the generation budget allocated sequential revisions to versus parallel
samples. Each line represents a fixed generation budget as the ratio is changed. We use the verifier for answer
selection. We see that while increased sequential revisions tends to outperform more parallel compute, at higher
generation budgets there is an ideal ratio that strikes a balance between the two extremes. Right: Varying
the sequential to parallel ratio for a generation budget of 128 across difficulty bins. Using verifier-based
selection, we see that the easier questions attain the best performance with full sequential compute. On the
harder questions, there is an ideal ratio of sequential to parallel test-time compute.

scaling test-time compute, which may be more effective on a per-prompt basis. We include examples
of our model’s generations in Appendix Q. Additional results are in Appendix D.

Compute-optimal revisions. Given our finding that the efficacy of sequential and parallel sampling
depends on difficulty, we can select the ideal ratio of sequential to parallel compute per difficulty
bin (we describe the specific ratios in Appendix O). In Figure 6, we plot results using our compute-
optimal scaling when employing both oracle and predicted difficulty. In both cases, we substantially
improve test-time compute scaling by optimally scaling the proposal distribution. In particular, we
see that at higher generation budgets, parallel sampling plateaus, whereas compute-optimal scaling
continues to improve. For both oracle and predicted difficulty, we see that compute-optimal scaling
can outperform best-of-N using up to 4× less test-time compute (e.g. 64 samples versus 256).
Overall, these results demonstrate the potential for improved test-time compute scaling by adjusting
the proposal distribution on a per-prompt basis.

Takeaways for compute-optimal scaling by refining the proposal distribution with revisions

We find that there exists a tradeoff between sequential (e.g. revisions) and parallel (e.g. standard best-
of-N) test-time computation, and the ideal ratio of sequential to parallel test-time compute depends on
both the compute budget and the specific question at hand. Specifically, easier questions benefit from
purely sequential test-time compute, whereas harder questions often perform best with an ideal ratio of
sequential to parallel compute. By selecting the best setting for a given question difficulty and compute
budget, we can outperform the parallel best-of-N baseline using up to 4× less test-time compute.

7 EXCHANGING PRETRAINING AND TEST-TIME COMPUTE

We saw that utilizing additional test-time compute can enable us to represent more complex distri-
butions than the one predicted by the base LLM, thereby increasing performance. We now posit
that this increased flexibility of representing distributions means that we can expect additional test-
time compute to make up for the lack of a higher-capacity model or training for more FLOPs during
pretraining. In this section, we study to what extent this is possible. We pose the following question:

Question: Exchanging pretraining and test-time compute

Suppose a model was pre-trained with X FLOPs. Assume that we plan to run Y FLOPs of inference
with this model. If we want to improve performance by increasing the total FLOPs budget by a factor
of M (i.e., M(X+Y ) total FLOPs across both pretraining and inference), should we spend our FLOPs
on increased pretraining compute or on additional test-time compute?

Increasing pretraining FLOPS introduces the additional design decision of whether to allocate com-
pute to training with more data or more parameters (Hoffmann et al., 2022). We focus on the setting
in which model parameters are scaled up and training data amount is fixed, matching the canonical
approach from the LLaMA series of models (Touvron et al., 2023).

9



Published as a conference paper at ICLR 2025

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

Proportional to Inference FLOPs

20

40

60

80

100

M
AT

H
 D

iff
ic

ul
ty

 L
ev

el
 A

cc
ur

ac
y 

(%
)

Revisions

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

Proportional to Inference FLOPs

20

40

60

80

M
AT

H
 D

iff
ic

ul
ty

 L
ev

el
 A

cc
ur

ac
y 

(%
)

PRM Search
1

2

3

4

5

D
iff

ic
ul

ty
 L

ev
el

Pretraining Compute Test-time Compute R >> 1 R ~= 1 R << 1

Comparing Test-time and Pretraining Compute

Figure 8: The tradeoff between pretraining and test-time compute in a FLOPs-matched evaluation. Each
line represents the performance of scaling test-time compute with our compute-optimal policy in each oracle
difficulty bin for revisions (left) and search (right). The stars represent the greedy pass@1 performance of a base
model pretrained with ∼ 14 times more parameters. We plot test-time compute budget on the x-axis and stars
at three different locations along the x-axis, each corresponding to the FLOPs equivalent point of comparison
between scaling parameters and scaling test-time compute for three different inference compute loads (e.g.
R = Dinference

Dpretrain
). If the star is below the line, this implies that it is more effective to use test-time compute than to

scale model parameters, and if the star is above the line this implies that scaling parameters is more effective.
We see that on the easy questions or in settings with a lower inference load (e.g. R << 1), test-time compute
can generally outperform scaling model parameters. However, on the harder questions or in settings with a
higher inference load (e.g. R >> 1), pretraining is a more effective way to improve performance.

Exchanging FLOPs. We use the common formula for pretraining FLOPs X = 6NDpretrain (Hoff-
mann et al., 2022), and for inference FLOPs, we use Y = 4NDinference (Sardana & Frankle, 2023),
which multiplies the standard 2NDinference by two to account for the overhead of calling the verifier.
Here N represents model parameters, Dpretrain is the total tokens used for pretraining, and Dinference
the total tokens generated at inference. If we multiply N by a factor of M , then both the pretraining
and inference FLOPs (due to the cost of greedy decoding with the larger model) increase by a factor
of M , giving a total of M(X + Y ) FLOPs.

To match the FLOPs between scaling parameters and scaling test-time compute, we multiply the
smaller model’s inference compute by M+ 3

2 (Dpre/Dinf) (M−1)1. Notably, this multiplier depends
on the ratio Dpre/Dinf. We refer to the inverse of this ratio as R = Dinf/Dpre. Depending on the
specific production setting, we should expect very different values of R. In particular, in large scale
production settings, we may expect more inference tokens than pretraining tokens, in which case we
have R >> 1. On the other hand, in many self-improvement setups, we would likely generate fewer
inference tokens than pretraining tokens, giving R << 1. Therefore, since the scale of test-time
compute depends on this ratio, we expect differing conclusions depending on the specific setting.

In Figure 8, we use this approach to exchanging test-time and pretraining compute to compare our
compute-optimal scaling against scaling up model parameters by a factor of ∼ 14. We conduct
comparisons for 3 values of R: 0.08 (R << 1), 0.40 (R ∼ 1), and 11 (R >> 1), with each ratio
corresponding to an inference budget. Observe that if we only expect to see difficult questions (e.g.
bins 4/5) or have a larger Dinference (i.e., larger R value), then it is often more effective to allocate
compute towards pretraining (e.g. the star is above the line). If instead, we expect mostly easy or in-
termediate difficulty questions (e.g. bins 1-3 and sometimes 4) or have lower inference requirements
(as is the case in self-improvement pipelines), then scaling test-time compute is preferred.

Takeaways for exchanging pretraining and test-time compute

Test-time and pretraining compute are not 1-to-1 “exchangeable”. In settings with a small inference
requirement or on questions of moderate difficulty, test-time compute can substitute for pretraining.
However, on challenging questions or under higher inference loads, pretraining is likely more effective.

Conclusions. Please see Appendix A for a detailed discussion of limitations and future work.

1We do not account for finetuning FLOPs, since it is negligible compared to pretraining FLOPs. Even if
we accounted for finetuning FLOPs, it would not change the overall conclusions of our analysis. We conduct
additional analysis in Appendix K to better understand the effect of finetuning on our analysis.

10



Published as a conference paper at ICLR 2025

8 REPRODUCIBILITY STATEMENT

Our work does not propose any new method and instead conducts analysis using methods proposed
in prior works (Wang et al., 2023; Kumar et al., 2024; Welleck et al., 2022; Yao et al., 2023; Qu
et al., 2024b) on the popular MATH benchmark (Hendrycks et al., 2021) using the PaLM 2-S* (Anil
et al., 2023) model. We include extensive details about differences between our work and these
prior works that we build on in Sections 5 6 and Appendices C, L, F, G, M, N, J, O including all
relevant fine-tuning hyper-parameters used. We also conduct numerous ablations in Sections 5, 6
and Appendix D, E, G, H, N, P, K, and include a handful of examples outputs from our models in
Appendix R and Q. We believe that all of these details included in the paper contribute to our work’s
reproducibility. The base LLM that we used for our analysis, PaLM 2-S*, can be accessed for both
finetuning and inference on the Google Cloud Vertex API (it is referred to as Codey on the API).

Reproductions and subsequent build-ups. Since the paper submission deadline, two subsequent
works from Beeching et al. and Liu et al. (2025) have independently reproduced our main findings
using open LLMs (e.g. LLaMA and Qwen models) and using other math benchmarks (e.g. AIME-
2024). These results provide additional evidence to support the title and main clam made in this
paper that scaling test-time compute can outperform scaling model parameters.

We also remark that more recently, OpenAI o1/o3 models (OpenAI, 2024b) and DeepSeek
R1 (DeepSeek-AI, 2025) models have demonstrated that training models to output extended chains
of thought (similar in spirit to the iterative revision approach we study), can be a highly effective
way to enable test time scaling. While we do not analyze this exact approach to test-time scaling
in this work, since this approach came out after this paper, these results only further strengthen our
main claim about the efficacy of test-time scaling.

ACKNOWLEDGEMENTS

We thank Yi Su, Rishabh Agarwal, Yinlam Chow, Aleksandra Faust, Vincent Zhuang, George
Tucker, Hao Liu, Jiayi Pan, Ethan Dyer, Behnam Neyshabur, Xavier Garcia, Yamini Bansal, Lam-
pros Lamprou, Yuxiao Qu, and Amrith Setlur for their feedback on an earlier version of the paper
and discussions. We attribute and thank Rishabh Agarwal, Vincent Zhuang, Yi Su, and Avi Singh
for ideas and discussions. We thank Slav Petrov for leadership support.

REFERENCES

Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. An introduction to
mcmc for machine learning. 2003.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, Eric Chu, Jonathan H. Clark,
Laurent El Shafey, Yanping Huang, Kathy Meier-Hellstern, Gaurav Mishra, Erica Moreira, Mark
Omernick, Kevin Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang,
Gustavo Hernandez Abrego, Junwhan Ahn, Jacob Austin, Paul Barham, Jan Botha, James Brad-
bury, Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng, Colin Cherry, Christo-
pher A. Choquette-Choo, Aakanksha Chowdhery, Clément Crepy, Shachi Dave, Mostafa De-
hghani, Sunipa Dev, Jacob Devlin, Mark Dı́az, Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu
Feng, Vlad Fienber, Markus Freitag, Xavier Garcia, Sebastian Gehrmann, Lucas Gonzalez, Guy
Gur-Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jeffrey Hui, Jeremy
Hurwitz, Michael Isard, Abe Ittycheriah, Matthew Jagielski, Wenhao Jia, Kathleen Kenealy,
Maxim Krikun, Sneha Kudugunta, Chang Lan, Katherine Lee, Benjamin Lee, Eric Li, Music Li,
Wei Li, YaGuang Li, Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu, Frederick Liu, Mar-
cello Maggioni, Aroma Mahendru, Joshua Maynez, Vedant Misra, Maysam Moussalem, Zachary
Nado, John Nham, Eric Ni, Andrew Nystrom, Alicia Parrish, Marie Pellat, Martin Polacek, Alex
Polozov, Reiner Pope, Siyuan Qiao, Emily Reif, Bryan Richter, Parker Riley, Alex Castro Ros,
Aurko Roy, Brennan Saeta, Rajkumar Samuel, Renee Shelby, Ambrose Slone, Daniel Smilkov,
David R. So, Daniel Sohn, Simon Tokumine, Dasha Valter, Vijay Vasudevan, Kiran Vodrahalli,
Xuezhi Wang, Pidong Wang, Zirui Wang, Tao Wang, John Wieting, Yuhuai Wu, Kelvin Xu, Yun-
han Xu, Linting Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven Zheng, Ce Zheng, Weikang
Zhou, Denny Zhou, Slav Petrov, and Yonghui Wu. Palm 2 technical report, 2023.

11



Published as a conference paper at ICLR 2025

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Ols-
son, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-
Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse,
Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mer-
cado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna
Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Con-
erly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario
Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai:
Harmlessness from ai feedback, 2022.

Edward Beeching, Lewis Tunstall, and Sasha Rush. Scaling test-time compute with
open models. URL https://huggingface.co/spaces/HuggingFaceH4/
blogpost-scaling-test-time-compute.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervision
without process, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate, 2023.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and
Jun Wang. Alphazero-like tree-search can guide large language model decoding and training,
2024.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models, 2023. URL https://arxiv.org/
abs/2211.10435.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens, 2024. URL
https://arxiv.org/abs/2310.02226.

Michael Hassid, Tal Remez, Jonas Gehring, Roy Schwartz, and Yossi Adi. The larger the better?
improved llm code-generation via budget reallocation, 2024. URL https://arxiv.org/
abs/2404.00725.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet, 2023.

Andy L. Jones. Scaling scaling laws with board games, 2021. URL https://arxiv.org/
abs/2104.03113.

Jikun Kang, Xin Zhe Li, Xi Chen, Amirreza Kazemi, Qianyi Sun, Boxing Chen, Dong Li, Xu He,
Quan He, Feng Wen, Jianye Hao, and Jun Yao. Mindstar: Enhancing math reasoning in pre-
trained llms at inference time, 2024. URL https://arxiv.org/abs/2405.16265.

12

https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2310.02226
https://arxiv.org/abs/2404.00725
https://arxiv.org/abs/2404.00725
https://arxiv.org/abs/2104.03113
https://arxiv.org/abs/2104.03113
https://arxiv.org/abs/2405.16265


Published as a conference paper at ICLR 2025

Levente Kocsis and Csaba Szepesv’ari. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate
Baumli, Shariq Iqbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang, Kay McKinney, Disha
Shrivastava, Cosmin Paduraru, George Tucker, Doina Precup, Feryal Behbahani, and Aleksan-
dra Faust. Training language models to self-correct via reinforcement learning, 2024. URL
https://arxiv.org/abs/2409.12917.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with lan-
guage models, 2022.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
large language models better reasoners with step-aware verifier, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023.

Runze Liu, Junqi Gao, Jian Zhao, Kaiyan Zhang, Xiu Li, Biqing Qi, Wanli Ouyang, and Bowen
Zhou. Can 1b llm surpass 405b llm? rethinking compute-optimal test-time scaling, 2025. URL
https://arxiv.org/abs/2502.06703.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback, 2023.

Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
Lezama. Is self-repair a silver bullet for code generation?, 2024. URL https://arxiv.
org/abs/2306.09896.

OpenAI. Gpt-4 technical report, 2024a.

OpenAI. Openai o1 system card, 2024b. URL https://arxiv.org/abs/2412.16720.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
16000+ real-world apis, 2023. URL https://arxiv.org/abs/2307.16789.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and
Ji-Rong Wen. Tool learning with large language models: A survey, 2024a. URL https://
arxiv.org/abs/2405.17935.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
language model agents how to self-improve. arXiv preprint arXiv:2407.18219, 2024b.

Jon Saad-Falcon, Adrian Gamarra Lafuente, Shlok Natarajan, Nahum Maru, Hristo Todorov, Etash
Guha, E. Kelly Buchanan, Mayee Chen, Neel Guha, Christopher Ré, and Azalia Mirhoseini.
Archon: An architecture search framework for inference-time techniques, 2024. URL https:
//arxiv.org/abs/2409.15254.

Nikhil Sardana and Jonathan Frankle. Beyond chinchilla-optimal: Accounting for inference in
language model scaling laws, 2023.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan
Leike. Self-critiquing models for assisting human evaluators, 2022.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. Rl on
incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold. arXiv preprint
arXiv:2406.14532, 2024.

13

https://arxiv.org/abs/2409.12917
https://arxiv.org/abs/2502.06703
https://arxiv.org/abs/2306.09896
https://arxiv.org/abs/2306.09896
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2405.17935
https://arxiv.org/abs/2405.17935
https://arxiv.org/abs/2409.15254
https://arxiv.org/abs/2409.15254


Published as a conference paper at ICLR 2025

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

Avi Singh, John D. Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Pe-
ter J. Liu, James Harrison, Jaehoon Lee, Kelvin Xu, Aaron Parisi, Abhishek Kumar, Alex Alemi,
Alex Rizkowsky, Azade Nova, Ben Adlam, Bernd Bohnet, Gamaleldin Elsayed, Hanie Sedghi,
Igor Mordatch, Isabelle Simpson, Izzeddin Gur, Jasper Snoek, Jeffrey Pennington, Jiri Hron,
Kathleen Kenealy, Kevin Swersky, Kshiteej Mahajan, Laura Culp, Lechao Xiao, Maxwell L.
Bileschi, Noah Constant, Roman Novak, Rosanne Liu, Tris Warkentin, Yundi Qian, Yamini
Bansal, Ethan Dyer, Behnam Neyshabur, Jascha Sohl-Dickstein, and Noah Fiedel. Beyond human
data: Scaling self-training for problem-solving with language models, 2024.

Kaya Stechly, Matthew Marquez, and Subbarao Kambhampati. Gpt-4 doesn’t know it’s wrong: An
analysis of iterative prompting for reasoning problems, 2023.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. Second edition,
2018.

Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of con-
text, 2024.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Haitao Mi, and Dong Yu. Toward self-
improvement of llms via imagination, searching, and criticizing, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022.

Karthik Valmeekam, Matthew Marquez, and Subbarao Kambhampati. Can large language models
really improve by self-critiquing their own plans?, 2023.

Pablo Villalobos and David Atkinson. Trading off compute in train-
ing and inference, 2023. URL https://epochai.org/blog/
trading-off-compute-in-training-and-inference. Accessed: 2024-07-03.

Junlin Wang, Siddhartha Jain, Dejiao Zhang, Baishakhi Ray, Varun Kumar, and Ben Athiwaratkun.
Reasoning in token economies: Budget-aware evaluation of llm reasoning strategies, 2024a. URL
https://arxiv.org/abs/2406.06461.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations, 2023.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah D. Goodman.
Hypothesis search: Inductive reasoning with language models, 2024b. URL https://arxiv.
org/abs/2309.05660.

14

https://arxiv.org/abs/2307.09288
https://epochai.org/blog/trading-off-compute-in-training-and-inference
https://epochai.org/blog/trading-off-compute-in-training-and-inference
https://arxiv.org/abs/2406.06461
https://arxiv.org/abs/2309.05660
https://arxiv.org/abs/2309.05660


Published as a conference paper at ICLR 2025

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. Generating sequences by learning to self-correct, 2022. URL https://arxiv.org/
abs/2211.00053.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. An empirical analysis
of compute-optimal inference for problem-solving with language models, 2024. URL https:
//arxiv.org/abs/2408.00724.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models, 2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
reasoning, 2022.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D. Goodman.
Quiet-star: Language models can teach themselves to think before speaking, 2024. URL https:
//arxiv.org/abs/2403.09629.

15

https://arxiv.org/abs/2211.00053
https://arxiv.org/abs/2211.00053
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2403.09629
https://arxiv.org/abs/2403.09629


Published as a conference paper at ICLR 2025

Appendices
A DISCUSSION AND FUTURE WORK

In this work, we conducted a thorough analysis of the efficacy of different techniques that aim to
either improve search against a verifier or to refine an LLM’s proposal distribution, for scaling test-
time compute for math reasoning. In general, we found that the efficacy of a given approach heavily
correlates with the difficulty of the problem from the perspective of the base LLM’s capabilities.
This motivated us to introduce the notion of “compute-optimal” scaling of test-time computation,
which prescribes an adaptive, prompt-dependent strategy to improve performance under a given
test-time compute budget. By applying such a compute-optimal scaling strategy, we find that we
can improve the efficiency of test-time compute scaling by a factor of 2 − 4×. When comparing
benefits obtained from additional test-time compute against benefits from additional pre-training
compute in a FLOPs-matched setting, we show for the first time that using test-time computation
with seemingly simple methods (i.e., revisions and search) can already scale well on certain types
of prompts, providing gains over spending those FLOPs in pretraining.

Limitations. That said, there are also limitations associated with our study that future work can aim
to address. Firstly, while we obtained strong results with beam-search, our lookahead search gener-
ally underperformed. It is possible that our lookahead search algorithm could be further optimized
by training a PRM verifier with online MCTS training. Future work should explore the degree much
PRM search can be improved in this way. Secondly, computing our notion of difficulty requires
applying a non-trivial amount of test-time compute. Future work should consider alternative ways
of efficiently estimating prompt difficulty. Finally, it is unclear to what extent our findings gener-
alize beyond math and easily verifiable domains more broadly. Furthermore, many limitations of
test-time compute are largely unknown; it is possible that in some domains test-time compute may
be limited in ways that pretraining is not. While answering this question is out of scope for the
present work, we believe it is an important topic for future research.

Future-work. We believe there are many future research directions that can build on our findings.
We describe a few of these directions here. While we focused on improving the test-time compute
scaling of two primary mechanisms independently (the verifier and the proposal distribution), future
work should investigate how test-time compute scaling can be further improved by combining these
approaches or via fundamentally different mechanisms than those explored in this paper. Moreover,
our work focused purely on test-time compute scaling. In the future, we envision that the outputs
of applying additional test-time compute can be distilled back into the base LLM, enabling an it-
erative self-improvement loop that operates on open-ended natural language, which we believe is
an exciting direction for future work to explore. Moreover, future work should conduct additional
scaling-law analysis with respect to test-time compute: 1) how does the scaling of test-time compute
improve as pretraining is scaled; and 2) if we were to finetune models on much larger datasets (e.g.
of millions of question answer pairs) how would test-time compute scaling improve? In this setting,
how would the cost of fine-tuning affect the balance betweeen scaling up model size vs test-time
inference? These are questions that future work can study building on framework built in our work.

B RELATED WORK

Language model reasoning. Language model performance on challenging mathematical reasoning
tasks has rapidly improved in recent years (Lewkowycz et al., 2022; Team, 2024; OpenAI, 2024a;
Shao et al., 2024; Lightman et al., 2023). These improvements can be attributed to three primary
factors: 1) running continued pretraining on large corpora of math focused data (Lewkowycz et al.,
2022; Team, 2024; Shao et al., 2024; Lightman et al., 2023); 2) improving the LLM proposal dis-
tribution by either applying targeted optimization on specific reasoning tasks by finetuning with
RL (Singh et al., 2024; Zelikman et al., 2022; Shao et al., 2024; Yuan et al., 2023) enabling models
to critique and revise their answers iteratively (Bai et al., 2022; Madaan et al., 2023; Du et al., 2023;
Saunders et al., 2022); 3) enabling LLMs to benefit from additional test-time computation by fine-
tuning verifiers (Lightman et al., 2023; Cobbe et al., 2021; Uesato et al., 2022; Wang et al., 2023;
Yao et al., 2023; Feng et al., 2024; Chen et al., 2024; Tian et al., 2024; Kang et al., 2024). Our
work builds on these second and third lines of research by analyzing the extent to which test-time
compute scaling can be improved by 1) refining an LLM’s proposal distribution and 2) conducting
search against verifiers.

16



Published as a conference paper at ICLR 2025

Analyzing test-time compute scaling. The tradeoff between train-time and test-time compute using
Monte-Carlo tree search applied to the board game Hex was previously studied by Jones (2021). We
instead focus our analysis on full-scale language model math reasoning problems. A survey work
by Villalobos & Atkinson (2023) analyzed the tradeoff between training and inference across a
number of domains. Similarly, work by Hassid et al. (2024) explores the trade-off between scaling
test-time compute with smaller models and using larger models without additional test-time compute
on code completion tasks. However, in each of these prior works, much of the analysis is focused
on test-time scaling in settings where the ground-truth answer is known. In contrast, our analysis
focuses on the setting when the ground-truth answer is not known. Additionally, a number of works
in the RL literature have proposed methods, such as MCTS (Kocsis & Szepesv’ari, 2006), which
aim to navigate the tradeoff between test-time and training-time compute so as to enable a form of
iterative self-play. The findings in our work can be used to help develop similar algorithms that can
operate on open-ended natural language.

Augmenting LLMs with test-time compute. Beyond verifiers and revisions, a number of ad-
ditional works have proposed alternative methods for enabling LMs to use test-time compute for
reasoning. Namely, Wang et al. (2024b) conducts a hierarchical hypothesis search to enable induc-
tive reasoning capabilities. A number of related works have proposed augmenting language models
with tools at test-time, which can greatly improve their performance on downstream tasks (Gao
et al., 2023; Qin et al., 2023; Qu et al., 2024a). Several works have proposed methods for learn-
ing thought tokens in an unsupervised manner (Zelikman et al., 2024; Goyal et al., 2024), enabling
models to more effectively utilize the additional test-time compute that comes with sampling longer
sequences. Finally, Saad-Falcon et al. (2024) explore applying architecture-search based techniques
to effectively compose several different test-time scaling techniques. While we focus our analysis on
two primary mechanisms by which test-time compute can be scaled in this work (e.g. verifiers and
revisions), many of the methods by which we conduct our analysis (e.g. compute optimal scaling
according to question difficulty) could, in principle, also be applied to any of these other methods of
scaling test-time compute, and we believe that this is an interesting direction for future research.

C SEARCH ALGORITHM DETAILS

Below we include additional details for each of our search algorithms in Section 5.

Best-of-N weighted. We sample N answers independently from the base LLM and then select the
best answer according to the PRM’s final answer judgment.

Beam search. Beam search optimizes the PRM by searching over its per-step predictions. Our
implementation is similar to BFS-V (Yao et al., 2023; Feng et al., 2024). Concretely, we consider a
fixed number of beams N and a beam width M . We then run the following steps:

1. sample N initial predictions for the first step in the solution
2. score the generated steps according to the PRM’s predicted step-wise reward-to-go estimate

(which also corresponds to the total reward from the prefix since the reward is sparse in this
setting)

3. filter for only the top N
M highest scoring steps

4. now from each candidate, sample M proposals from the next step, resulting in a total of
N/M ×M candidate prefixes again. Then repeat steps 2-4 again.

We run this algorithm until the end of a solution or the maximum number of rounds of beam expan-
sion are attained (40 in our case). We conclude the search with N final answer candidates, to which
we apply best-of-N weighted selection described above to make our final answer prediction.

Lookahead search. Lookahead search modifies how beam search evaluates individual steps. It
uses lookahead rollouts to improve the accuracy of the PRM’s value estimation in each step of the
search process. Specifically, at each step in the beam search, rather than using the PRM score at the
current step to select the top candidates, lookahead search performs a simulation, rolling out up to
k steps further while stopping early if the end of solution is reached. To minimize variance in the
simulation rollout, we perform rollouts using temperature 0. The PRM’s prediction at the end of this
rollout is then used to score the current step in the beam search. That is, in other words, we can view
beam search as a special case of lookahead search with k = 0. Given an accurate PRM, increasing
k should improve the accuracy of the per-step value estimates at the cost of additional compute.

17



Published as a conference paper at ICLR 2025

0 10 20 30 40 50 60

Number of Generations

17

18

19

20

21

22

23

24

25

26

M
AT

H
 T

es
t A

cc
ur

ac
y 

(%
)

Revision Model Pass@1 At Each Step

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

Number of Generations

20

25

30

35

40

M
AT

H
 T

es
t A

cc
ur

ac
y 

(%
)

Revision Model Parallel Verses Sequential

Sequential Best-of-N Weighted
Parallel Best-of-N Weighted
Sequential Majority
Parallel Majority

Figure 9: Left: Our revision model’s pass@1 at each revision step. Pass@1 gradually improves
after each revision step, even improving beyond the 4 revision steps that it was trained for. We
estimate pass@1 at each step by averaging over the performance of 4 revision trajectories of length
64 for each question in the test-set. Right: Sequential vs parallel sampling from the revision model.
Comparing performance when generating N initial answers in parallel from our revision model,
versus generating N revisions sequentially, with the model. To account for the cost of querying the
verifier relative to majority voting, we shift the curves which involve a verifier over by one point.
When using both the verifier and majority voting to select the answer, we see that generating answers
sequentially with the revision model narrowly outperforms generating them in parallel.

Also note that this version of lookahead search is a special case of MCTS (Sutton & Barto, 2018),
wherein the stochastic elements of MCTS, designed to facilitate exploration, are removed since the
PRM is already trained and is frozen. These stochastic elements are largely useful for learning the
value function (which we’ve already learned with our PRM), but less useful at test-time when we
want to exploit rather than explore. Therefore, lookahead search is largely representative of how
MCTS-style methods would be applied at test-time.

D ADDITIONAL REVISION RESULTS

In Figure 9 left, we plot the pass@1 for our revision model at each revision step. We see that pass@1
gradually improves after each step. In Figure 9 right, we compare performance when generating N
initial answers in parallel from our revision model, versus generating N revisions sequentially, with
the model. When using both the verifier and majority voting to select the answer, we see that
generating answers sequentially with the revision model narrowly outperforms generating them in
parallel.

We plot additional results for majority voting selection using our PaLM 2-S* revision model in
Figure 10. With majority selection, we see largely similar trends to those found in Figure 7 for
verifier selection.

E DIFFICULTY BINS

Oracle difficulty bins. We compute our oracle difficulty bins by obtaining the ground-truth
pass@1 correctness rate for each question, and then using this statistic to bin questions into quan-
tiles representing 5 distinct difficulty bins. There are in total 500 questions in the test-set. Difficulty
levels 1, 2, and 3 all have 100 questions in them. Difficulty levels 4 and 5 have 105 and 95 questions
respectively. This imbalance in the last two bins is merely due to a boundary condition/ties in the
quantile computation, causing one bin to inherit slightly more questions than the other.

Predicted difficulty bins. We compute difficulty bins without oracle ground-truth correctness in-
formation by averaging the PRM final-answer score over 2048 samples on each question, so as to
obtain a value estimate corresponding to the question. Similar to the oracle case, we then bin the
value for each question in the test-set into five quintiles (using the same procedure as the oracle
difficulty bins). We refer to this as “predicted difficulty”. Each of the bins has 100 questions in this

18



Published as a conference paper at ICLR 2025

2
7

2
5

2
3

2
1

2
1

2
3

2
5

2
7

Sequential/Parallel Ratio

20

25

30

35

40

M
AT

H
 T

es
t A

cc
ur

ac
y 

(%
)

Varying Sequential/Parallel with Majority

1 2 3 4 5

Test Questions Binned by Increasing Difficulty Level

0

20

40

60

80

M
AT

H
 T

es
t A

cc
ur

ac
y 

(%
)

Revisions Majority@128, Varying the Sequential to Parallel Ratio

10
0

10
1

10
2

N
um

be
r o

f G
en

er
at

io
ns

10
2

10
1

10
0

10
1

10
2

S
eq

ue
nt

ia
l t

o 
P

ar
al

le
l R

at
io

Figure 10: Varying the ratio of generation budget allocated to sequential versus parallel samples,
using majority voting to select the answer, rather than the verifier. Left: Each line represents a fixed
generation budget as the ratio is changed. We see that similar to the verifier case, in the majority
case, there exists an ideal ratio of sequential to parallel test-time compute at a given budget. Right:
Analyzing performance across difficulty bins, we see that the easier questions are mostly invariant to
the ratio of sequential to parallel, whereas on the harder questions there is an ideal ratio of sequential
to parallel test-time compute.

1 2 3 4 5

Test Questions Binned with Unsupervised Difficulty Bins

0

10

20

30

40

50

60

70

80

M
AT

H
 T

es
t A

cc
ur

ac
y 

(%
)

Revisions Best-of-128 Weighted, Varying the Sequential to Parallel Ratio

10
2

10
1

10
0

10
1

10
2

S
eq

ue
nt

ia
l t

o 
P

ar
al

le
l R

at
io

1 2 3 4 5

Test Questions Binned with Unsupervised Difficulty Bins

0

10

20

30

40

50

60

70

80

M
AT

H
 T

es
t A

cc
ur

ac
y 

(%
)

Revisions Majority@128, Varying the Sequential to Parallel Ratio

10
2

10
1

10
0

10
1

10
2

S
eq

ue
nt

ia
l t

o 
P

ar
al

le
l R

at
io

Figure 11: Using our PaLM 2-S* PRM to compute difficulty bins without ground truth correctness
information for revisions. On the left we plot verifier selection and on the right we plot majority
selection. We see largely similar performance trends with these bins as we do with the ground truth
trends in Figures 7 and 10.

case. Technically this procedure is extremely costly because it requires generating many samples.
While we do not account for this cost in our analysis, in a practical production setting, this cost
would be problematic. A more efficient approach would be to finetune a model to predict correct-
ness directly, given the question. We do not explore this in our work, but leave such exploration of
cheaper methods of estimating difficulty to future work.

In Figure 12 we plot PRM-search results using our predicted (non-oracle) difficulty bins, and in
Figure 11 we plot the corresponding revision results. We see that in both settings these predicted
bins demonstrate similar trends to the oracle bins.

F PRM TRAINING DETAILS

Originally PRM training (Uesato et al., 2022; Lightman et al., 2023) used human crowd-worker
labels. While Lightman et al. (2023) released their PRM training data (i.e., the PRM800k dataset),
we found this data to be largely ineffective for us. We found that it was easy to exploit a PRM trained
on this dataset via even naı̈ve strategies such as best-of-N sampling. We hypothesize that this is likely
a result of the distribution shift between the GPT-4 generated samples in their dataset and our PaLM
2 models. Rather than proceeding with the expensive process of collecting crowd-worker PRM
labels for our PaLM 2 models, we instead apply the approach of Wang et al. (2023) to supervise

19



Published as a conference paper at ICLR 2025

1 2 3 4 5

Test Questions Binned with Unsupervised Difficulty Bins

0

10

20

30

40

50

60

70

80

M
AT

H
 T

es
t A

cc
ur

ac
y 

(%
)

Comparing Beam Search and Best-of-N with Unsupervised Difficulty Bins

Beam Search
Best-of-N Weighted
Majority

Figure 12: Using our PaLM 2-S* PRM to compute difficulty bins without ground truth correctness
information for PRM search. We see largely similar performance trends with these bins as we do
with the ground truth ones in Figure 3.

PRMs without human labels, using estimates of per-step correctness obtained from running Monte
Carlo rollouts from each step in the solution. Our PRM’s per-step predictions therefore correspond to
value estimates of reward-to-go for the base model’s sampling policy, similar to recent work (Wang
et al., 2023; Setlur et al., 2024). We also compare to an ORM baseline (Appendix H) but found that
our PRM consistently outperforms the ORM. Hence, all of the search experiments in this section
use a PRM model.

We finetune our PRM as a binary classifier, where the model predicts a value between 0 and 1 at
each step in the solution. We train the model with soft values obtained from the monte-carlo rollouts,
using a binary cross entropy loss function (e.g. −(ylog(ŷ)+(1−y)log(1− ŷ)) where y corresponds
to the soft ground-truth value and ŷ the model’s predicted value). We finetune the model base model
using the AdamW optimizer, with lr 3e-5, batch size 128, dropout 0.05, and Adam betas (0.9, 0.95).
We conduct early stopping, selecting the checkpoint with the lowest validation loss on a random
held-out validation set, consisting of 10% of the questions in the original PRM800k training split.

We finetune the PRM on 16 samples per question from the corresponding few-shot prompted base
model. At each step, we use 16 monte-carlo rollouts, using the same base model and prompt, to
estimate the step-level value. We filter out all samples which fail to output a valid, parsable final
answer from the training data, as we found these to hurt PRM performance in initial experiments.

When generating the samples, the base model is prompted to output answers in newline separated
step-by-step format, as done in Lightman et al. (2023). We then separate each of the answers into
steps using a simple newline splitting procedure. We include details about our prompt in Appendix J.

G PRM AGGREGATION

At test time, process-based verifiers can be used to score each individual step in a set of solutions
sampled from the base model. In order to select the best-of-N answers with the PRM, we need
a function that can aggregate across all the per-step scores for each answer to determine the best
candidate for the correct answer. To do this, we first aggregate each individual answer’s per-step
scores to obtain a final score for the full answer (step-wise aggregation). We then aggregate across
answers to determine the best answer (inter-answer aggregation). Concretely, we handle step-wise
and inter-answer aggregation as follows:

• Step-wise aggregation. Rather than aggregating the per-step scores by taking the product
or minimum (Wang et al., 2023; Lightman et al., 2023), we instead use the PRM’s predic-
tion at the last step as the full-answer score. We found this to perform the best out of all
aggregation methods we studied (see below).

• Inter-answer aggregation. We follow Li et al. (2023) and apply “best-of-N weighted”
selection rather than standard best-of-N. Best-of-N weighted selection marginalizes the

20



Published as a conference paper at ICLR 2025

2
1

2
3

2
5

2
7

2
9

2
11

Generation Budget

10

15

20

25

30

35

40

M
AT

H
 T

es
t A

cc
ur

ac
y 

(%
)

Best-of-N Verses Best-of-N Weighted

PRM:
ORM:
Majority
Best-of-N Weighted
Best-of-N

Figure 13: We compare best-of-N and best-of-N weighted for our ORM and PRM verifiers finetuned
from PaLM 2-S*. We use the PaLM 2-S* base LM to sample outputs, using a few-shot prompt. To
account for the cost of querying the verifier relative to majority voting, we shift the curves which
involve a verifier over by one point. We see that while best-of-N weighted shows superior perfor-
mance in both settings, the best-of-N performance with the PRM is still very competitive. On the
other hand, in the ORM best-of-N setting, we observe Goodharting at higher budgets.

verifier’s correctness scores across all solutions with the same final answer, selecting final
answer with the greatest total sum.

G.1 COMPARING STEP-WISE AGGREGATION STRATEGIES

We compare different methods of aggregating per-step PRM scores to produce a final score for
the full solution. Specifically we compare: 1) taking the minimum score across all steps as done
in Lightman et al. (2023) (e.g. “min”); 2) taking the product of all step correctness probabilities
(e.g. “prod”); and 3) taking just the last step prediction (e.g. “last”). We see in Figure 14 that
taking the last step outperforms the other two approaches. Prior works (Lightman et al., 2023; Wang
et al., 2023) found min to be the best aggregator. We believe that the discrepancy is due to the fact
that our verifier was trained with soft MC return labels, which surface very differently from binary
correctness labels, and therefore other aggregation strategies may not have the same effect.

Interestingly, when using the last step aggregation, we are effectively using the PRM like an ORM.
However, we see that the PRM outperforms the ORM, suggesting that in our case the per-step PRM
training may be largely useful as a form of representation learning, rather than purely as a tool at
inference time. Future work should further explore this line of reasoning.

G.2 COMPARING INTER-ANSWER AGGREGATION STRATEGIES

In Figure 13 we compare best-of-N against best-of-N weighted for both our ORM and PRM verifiers.
We find that while best-of-N weighted shows superior performance in both settings, the best-of-N
performance with the PRM is still very competitive. On the other hand, in the ORM best-of-N
setting, we observe Goodharting at higher budgets.

H COMPARING PRM AND ORM

We trained a PRM and ORM model using the PaLM 2-S* base LM. We see in Figure 15, that the
PRM outperforms the ORM, and the gap between the PRM and ORM grows with the number of
samples used. We use the last step prediction from the PRM to score the answers as described in
Appendix G.

21



Published as a conference paper at ICLR 2025

2
1

2
3

2
5

2
7

2
9

Generation Budget

10

15

20

25

30

35

40

M
AT

H
 T

es
t A

cc
ur

ac
y 

(%
)

Comparing PRM Aggregation Strategies

PRM min
PRM prod
PRM last
Base-LM Majority
ORM

Figure 14: We compare different methods of aggregating per-step PRM scores to produce a final
score for the full solution: “min” refers to taking the minimum score accross all steps, “prod” takes
the product of all step correctness probabilities, and “last” just uses the last step score. To account
for the cost of querying the verifier relative to majority voting, we shift the curves which involve a
verifier over by one point. We see that “PRM last” performs the best across all aggregation strategies.

2
1

2
3

2
5

2
7

2
9

2
11

Generation Budget

10

15

20

25

30

35

40

M
AT

H
 T

es
t A

cc
ur

ac
y 

(%
)

ORM Verses PRM

PRM best-of-N weighted
Base-LM Majority
ORM best-of-N weighted

Figure 15: We compare PRM and ORM models finetuned from PaLM 2-S* in a best-of-N evalu-
ation. We use the PaLM 2-S* base LM to sample outputs, using a few-shot prompt. To account
for the cost of querying the verifier relative to majority voting, we shift the curves which involve a
verifier over by one point. We see that the PRM greatly outperforms the ORM at a large number of
samples.

22



Published as a conference paper at ICLR 2025

1 2 3 4 5
Test Questions Binned by Increasing Difficulty Level

0

10

20

30

40

50

60

70

M
AT

H
 T

es
t A

cc
ur

ac
y 

(%
)

Comparing Beam Search and Best-of-N by Difficulty Level with PaLM 2-S

Beam Search
Best-of-N
Majority

1 2 3 4 5
Test Questions Binned by Increasing Difficulty Level

0

20

40

60

80

M
AT

H
 T

es
t A

cc
ur

ac
y 

(%
)

Comparing Beam Search and Best-of-N by Difficulty Level with PaLM 2-M

Beam Search
Best-of-N
Majority

Figure 16: Comparing beam search and best-of-N binned by difficulty level with PaLM 2-S (left) and
PaLM 2-M (right). The four bars in each difficulty bin correspond to increasing test-time compute
budgets (4, 16, 64, and 256 generations). We observe brodly similar trends to those in Figure 3 on
PaLM 2-S*, demonstrating that our findings likely transfer to other base LLMs.

I SEARCH USING PALM 2-S AND M

In Figure 16, we plot the performance of beam-search and best-of-N binned by difficulty levels
using PaLM 2-S and PaLM 2-M as the base models. We observe broadly similar trends to those in
Figure 3 on PaLM 2-S*, demonstrating that our findings likely transfer to other base LLMs.

J PROMPTING DETAILS

In order to enable the base model to output answers in a step-by-step format to which a PRM can
be applied, we use a 4-shot prompt consisting of randomly selected correct answer examples from
the PRM800k data released by Lightman et al. (2023). Specifically we use answers from the phase
1 training split. These answers correspond to GPT-4 generated correct answer examples, which in-
clude the correct step-by-step format. In initial experiments, we found that this prompting procedure
produces similar results to the prompt used in Lewkowycz et al. (2022). We use this prompt for gen-
erating training data for the PRM and the revision model. We also use this prompt when conducting
search against the PRM on the test-set. To grade the final answer predicted by this prompt, we use
the grading function released by Lightman et al. (2023).

K THE EFFECT OF VERIFIER QUALITY ON OUR CONCLUSIONS

We would like to understand whether our conclusions in Section 7, regarding whether scaling test-
time compute is favorable to scaling model parameters, are robust to the quality of the specific
finetuned PRM verifier that we used in our experiments. In particular, we want to determine whether
we would observe similar trends using less capable verifiers. To do this, we conduct a similar
analysis to that in Section 7, using four different settings that are specifically designed to emulate
the effect of having a lower quality verifier:

A) A “uniform random” verifier. Since weighted BoN with a random verifier converges to ma-
jority voting, we simulate a random verifier by using majority voting.

B) Our PRM verifier but with 20% i.i.d. label flip noise. In particular, if the verifier predicts a
correctness probability of p, we flip its prediction to (1− p) 20% of the time.

C) Our standard PRM verifier. This is identical to the standard PRM used in Section 7.
D) Majority voting using parallel samples from the revisions model with no PRM. This setting

is equivalent to using a “uniform random” verifier on top of of our finetuned revisions model.

Observe in Figure 17 that while majority voting (A) generally under-performs the larger pretrained
model, the noised verifier (B) can outperform pretraining on easy/medium questions in settings
with low inference requirements. We also note that majority voting with a revisions model (D)
can outperform scaling model parameters on easy and medium questions, without using a verifier

23



Published as a conference paper at ICLR 2025

2
1

2
3

2
5

2
7

Proportional to Inference FLOPs

0

20

40

60

80

M
AT

H
 D

iff
ic

ul
ty

 L
ev

el
 A

cc
ur

ac
y 

(%
)

A) Majority Voting

2
1

2
3

2
5

2
7

Proportional to Inference FLOPs

0

20

40

60

80

M
AT

H
 D

iff
ic

ul
ty

 L
ev

el
 A

cc
ur

ac
y 

(%
)

B) Noisy PRM BoN Weighted

2
1

2
3

2
5

2
7

Proportional to Inference FLOPs

20

40

60

80

M
AT

H
 D

iff
ic

ul
ty

 L
ev

el
 A

cc
ur

ac
y 

(%
)

C) Normal PRM BoN Weighted

2
1

2
3

2
5

2
7

Proportional to Inference FLOPs

0

20

40

60

80

100

120

140

M
AT

H
 D

iff
ic

ul
ty

 L
ev

el
 A

cc
ur

ac
y 

(%
)

D) Revision Model Majority Voting
1

2

3

4

5

D
iff

ic
ul

ty
 L

ev
el

Pretraining Compute Test-time Compute R >> 1 R ~= 1 R << 1

Comparing Test-time and Pretraining Compute with Less Capable Verifiers

Figure 17: We extend the analysis in Section 7 by comparing the test-time scaling of weaker veri-
fiers against the performance of a 14x larger pretrained model. We see that while majority voting
(A) generally under-performs the larger pretrained model, the noised verifier (B) can outperform
pertaining on easy/medium questions in settings with low inference requirements. Additionally,
majority voting with a revisions model (D) can outperform scaling model parameters on easy and
medium questions, without using a verifier.

suggesting that it is still possible to get decent test-time scaling that outperforms pretraining with a
less capable verifier (or no verifier, if the base model is finetuned in a certain way).

These findings demonstrate that even with a somewhat weaker verifier model, the main conclusions
from our FLOPs analysis in Section 7 can still hold. Moreover, we see that higher quality veri-
fiers tend to show better test-time scaling, suggesting that it may be possible for us to substantially
improve the test-time scaling of verifiers by finetuning the verifier on a much larger dataset of math-
ematical question answers pairs than the 12k that we used in this work. We believe this is an exciting
direction for future work to explore.

L REVISION MODEL FINETUNING DETAILS

Our procedure for finetuning revision models is similar to (Qu et al., 2024b), though we introduce
some crucial differences. For finetuning, we need trajectories consisting of a sequence of incorrect
answers followed by a correct answer, that we can then run SFT on. Ideally, we want the correct
answer to be correlated with the incorrect answers provided in context, so as to effectively teach
the model to implicitly identify mistakes in examples provided in-context, followed by correcting
those mistakes by making edits as opposed to ignoring the in-context examples altogether, and trying
again from scratch.

Generating revision data. The on-policy approach of Qu et al. (2024b) for obtaining several multi-
turn rollouts was shown to be effective, but it was not entirely feasible in our infrastructure due to
compute costs associated with running multi-turn rollouts. Therefore, we sampled 64 responses in
parallel at a higher temperature and post-hoc constructed multi-turn rollouts from these independent
samples. Specifically, following the recipe of (Kumar et al., 2024), we pair up each correct answer
with a sequence of incorrect answers from this set as context to construct multi-turn finetuning data.
We include up to four incorrect answers in context, where the specific number of solutions in context
is sampled randomly from a uniform distribution over categories 0 to 4. The correct answer is used
as the last answer in the trajectory (which we train the model to produce) and the incorrect answers
are included in context. If the sampled number is greater than 0, we then find the closest incorrect
answer according to a character-level edit distance metric to include as the last incorrect answer in
the trajectory. The goal here is to select an incorrect answer which is somewhat correlated with
the correct answer, to improve learning. Note that token edit distance is not a perfect measure of
correlation, but we found this heuristic to be sufficient to correlate incorrect in-context answers with
correct target answers to facilitate training a meaningful revision model, as opposed to randomly
pairing incorrect and correct responses with uncorrelated responses. Finally, in the case where there
are fewer than 4 incorrect answers sampled, we truncate the uniform distribution’s max to match the
number of incorrect samples. We use this procedure to generate trajectories for all questions in the
training data.

We then finetune the base language model on the correct answer solutions in these generated tra-
jectories. We use the AdamW optimizer with lr 1e-5, batch size 128, dropout 0.0, and Adam betas
(0.9, 0.95).

24



Published as a conference paper at ICLR 2025

We find that generally evaluating loss on an evaluation set consisting of trajectories generated as
described above, does not provide a good signal for early stopping. Rather, we find that checkpoints
much after the evaluation loss begins increasing are much more capable of revisions. This is likely
because after finetuning the revision model, the evaluation set represents off-policy data, which will
naturally be out-of-distribution compared to the trajectories that the model itself would generate on-
policy. We therefore select our revision model checkpoint slightly after the point where we observe
overfitting on the validation set.

M REVISION MODEL SELECTION CRITERIA

As described in Section 6.1, in order to effectively use our revision model we need to deploy a
criteria for selecting the best answer both within a revision trajectory and between multiple parallel
trajectories. We use two approaches: 1) ORM verifier; and 2) majority voting.

For the ORM verifier, we train an ORM on the revision model’s outputs according to the procedure in
Appendix N. At inference time we then use this verifier to select the best answer. Since we have two
axes across which to aggregate (within each revision trajectories and between multiple trajectories),
we deploy a hierarchical strategy, first selecting the best answer within each revision trajectory and
then aggregating these selected answers across trajectories. To select the best answer within each
trajectory, we perform best-of-N weighted aggregation and then choose the highest scoring solution
with the maximum best-of-N weighted answer. Then, to select the final answer across all revision
chains, we perform another round of best-of-N weighted selection using the best answer from each
revision chain. The answer after this second round of best-of-N weighted represents our final answer
prediction.

For majority voting we found hierarchical aggregation to create problems when the length of the
trajectory or the number of trajectories was too small. The problem being that without enough
samples, majority voting is unable to effectively select the best option. Therefore, for majority
voting, we simply take all answers, across all trajectories, at once and take their majority as the final-
answer. We found this to produce much smoother scaling behavior than the hierarchical approach.

N REVISION MODEL VERIFIER TRAINING

We found that the PRM we finetuned on the PaLM 2-S* base model outputs was not as effective
when applied to the PaLM 2-S* revision model’s outputs (see Figure 18(a)), likely due to distribution
shift with the revision model. We therefore, trained a separate ORM verifier to use with our PaLM
2-S* revision model. We could have trained a PRM as well, but opted for an ORM due to the high
cost of generating per-step PRM labels.

We modified the standard ORM slightly for the revision setting, by finetuning the ORM with previ-
ous revision in context, such that the verifier has access to the same context as the revision model,
allowing the verifier see the revision model’s previous answer attempts when scoring the current
answer. All other experiment details are identical to those used for training the PRM.

Empirically, we find that including the revision history in context improves performance slightly (see
Figure 18(b)). Additionally, even without the revisions in context, we see that sequential revisions
still slightly outperforms parallel, demonstrating improvements from sequential sampling are not
just due to the verifier’s context.

O COMPUTE OPTIMAL REVISIONS HYPERPARAMETERS

In Table 1 we list the sequential/parallel ratios that we select between at each generation budget
when estimating compute optimal scaling in Figure 6.

P RESTEM REVISION MODEL EXPERIMENTS

We experimented with further optimizing our PaLM 2-S* revision model by training the model with
a simplified RL algorithm: ReSTEM (Singh et al., 2024). Specifically, we generated 64 revision

25



Published as a conference paper at ICLR 2025

2
0

2
1

2
2

2
3

2
4

2
5

2
6

Number of Generations

15

20

25

30

35

40

45

M
AT

H
 T

es
t A

cc
ur

ac
y 

(%
)

Revision Model Verifier Verses Base-LM PRM

Sequential + Revision ORM
Sequential + Base LM PRM
Parallel

2
0

2
1

2
2

2
3

2
4

2
5

2
6

Number of Generations

20

25

30

35

40

M
AT

H
 T

es
t A

cc
ur

ac
y 

(%
)

Revision Model Verifier With Verse Without History

Sequential + Verifier With History
Sequential + Verifier Without History
Parallel

Figure 18: Left: we compare the ORM we trained on the revision model’s outputs against the PRM
we trained on the PaLM 2-S* base model’s outputs. We see that when applied to outputs from
the revision model, the ORM adapted to the revision model outperforms the PRM, likely due to
distribution shift with the revision model. Right: we ablate the effect of including previous revisions
in the revision model verifier’s context. We see that including revisions in-context helps the verifier
slightly, but both settings still outperform the parallel baseline.

N Sequential:Parallel Ratios
1 1:1
2 1:2, 2:1
4 1:4, 1:1, 4:1
8 1:8, 1:2, 2:1, 8:1

16 1:16, 1:4, 1:1, 4:1, 16:1
32 1:32, 1:8, 1:2, 2:1, 8:1, 32:1
64 1:64, 1:16, 1:4, 1:1, 4:1, 16:1, 64:1

128 1:128, 1:32, 1:8, 1:2, 2:1, 8:1, 32:1, 128:1
256 1:256, 1:16, 1:1, 16:1, 256:1

Table 1: We list the set of sequential to parallel ratios that we consider at each generation budget N.
These are the ratios we select between when defining compute optimal scaling in Figure 6.

26



Published as a conference paper at ICLR 2025

2
5

2
3

2
1

2
1

2
3

2
5

Sequential/Parallel Ratio

20

22

25

28

30

32

35

38

40

M
AT

H
 T

es
t A

cc
ur

ac
y 

(%
)

Varying Sequential/Parallel

10
0

10
1

10
2

N
um

be
r o

f G
en

er
at

io
ns

Figure 19: Performance of our ReSTEM optimized revision model as the sequential to parallel ratio
is varied. We use majority voting to select the answer. We see that this optimized revision model
demonstrates substantial performance degradations with additional sequential revisions.

trajectories of maximum length 5 for each question on the MATH training set. We stopped the
revision model at the first correct answer in each trajectory. Using this generated data, we then
finetuned the base LM on the correct answer data. To help the model learn the task, we explicitly
balanced the distribution of trajectory lengths.

In Figure 19, we plot the performance of this new revision model as we vary the sequential to
parallel ratio. We see that additional sequential revisions substantially hurts performance with this
new model. We hypothesize that this degradation is due to the fact that the online data obtained from
running ReSTEM exacerbates spurious correlations in revision data, causing the optimized model to
fail to learn the revision task. We believe that using a more offline data collection strategy, as done
in Qu et al. (2024b), may be more effective, and leave further exploration to future work.

Q REVISION MODEL EXAMPLE OUTPUTS

In Figures 20, 21, 22, 23, 24, 25, and 26, we include select examples of our revision model’s outputs.

R PRM BEAM SEARCH EXAMPLE OUTPUTS

In Figures 27, 28, 29, 30, 31, and 32, we include select examples of PRM beam search. We include
the PRM score, between 0 and 1, for each step in the examples.

27



Published as a conference paper at ICLR 2025

Figure 20: Revision model example 1. The model calculates the sum at the end incorrectly on the
first two attempts, but on the third attempt it succeeds and gets the answer correct.

28



Published as a conference paper at ICLR 2025

Figure 21: Revision model example 2. On the first attempt the model takes the incorrect approach,
on the second attempt it gets closer but then makes a mistake towards the end. On the final attempt
it gets to the correct answer.

29



Published as a conference paper at ICLR 2025

Figure 22: Revision model example 3. On the first attempt the model makes a mistake with the
formatting of the final answer; it corrects this on the second attempt.

30



Published as a conference paper at ICLR 2025

Figure 23: Revision model example 4. On the first few attempts the model fails the base 10 to base
8 conversion. On the final attempt it makes the correct calculation.

31



Published as a conference paper at ICLR 2025

Figure 24: Revision model example 5. On the first two attempts the model makes an error when
converting euclidean to polar coordinates. On the final attempt it does not make these mistakes.

32



Published as a conference paper at ICLR 2025

Figure 25: Revision model example 6. On the first two attempts the model makes a mistake when
summing the proper divisors of 284. On the third attempt, it evaluates this sum correctly.

33



Published as a conference paper at ICLR 2025

Figure 26: Revision model example 7. On the first attempt the model evaluates 1
3 + 2 incorrectly.

On the second attempt it corrects this error.

Figure 27: PRM beam search example 1.

34



Published as a conference paper at ICLR 2025

Figure 28: PRM beam search example 2.

Figure 29: PRM beam search example 3.

Figure 30: PRM beam search example 4.

Figure 31: PRM beam search example 5.

Figure 32: PRM beam search example 6.

35


	Introduction
	Unified Perspective on Test-Time Compute: Proposer & Verifier
	How to Scale Test-Time Computation Optimally
	Compute-Optimal Test-Time Scaling Strategy
	Question Difficulty is a Good Approximation for the Optimal Strategy

	Experimental Setup
	Scaling Test-Time Compute via Verifiers
	Training Verifiers Amenable to Search
	Search Methods Against a PRM
	Analysis Results: Test-Time Scaling for Search with Verifiers

	Refining the Proposal Distribution
	Training and Using Revision Models
	Analysis Results: Test-Time Scaling with Revisions

	Exchanging Pretraining and Test-Time Compute
	Reproducibility Statement
	Discussion and Future Work
	Related Work
	Search Algorithm Details
	Additional Revision Results
	Difficulty Bins
	PRM Training Details
	PRM Aggregation
	Comparing Step-wise Aggregation Strategies
	Comparing Inter-answer Aggregation Strategies

	Comparing PRM and ORM
	Search Using PaLM 2-S and M
	Prompting Details
	The Effect of Verifier Quality On Our Conclusions
	Revision Model Finetuning Details
	Revision Model Selection Criteria
	Revision Model Verifier Training
	Compute Optimal Revisions Hyperparameters
	ReSTEM Revision Model Experiments
	Revision Model Example Outputs
	PRM Beam Search Example Outputs

