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Abstract1

This extended abstract describes a framework for analyzing the expressiveness,2

learning, and (structural) generalization of hypergraph neural networks (Hyper-3

GNNs). Specifically, we focus on how HyperGNNs can learn from finite datasets4

and generalize structurally to graph reasoning problems of arbitrary input sizes.5

Our first contribution is a fine-grained analysis of the expressiveness of Hyper-6

GNNs, that is, the set of functions that they can realize. Our result is a hierarchy7

of problems they can solve, defined in terms of various hyperparameters such as8

depths and edge arities. Next, we analyze the learning properties of these neural9

networks, especially focusing on how they can be trained on a finite set of small10

graphs and generalize to larger graphs, which we term structural generalization.11

Our theoretical results are further supported by the empirical results.12

1 Introduction13

Reasoning over graph-structured data is an important task in many applications, including molecule14

analysis, social network modeling, and knowledge graph reasoning [1–3]. While we have seen15

great success of various relational neural networks, such as Graph Neural Networks [GNNs; 4] and16

Neural Logical Machines [NLM; 5] in a variety of applications [6–8], we do not yet have a full17

understanding of how different design parameters, such as the depth of the neural network, affects18

the expressiveness of these models, or how effectively these models generalize from limited data.19

This paper analyzes the expressiveness and generalization of relational neural networks applied to20

hypergraphs, which are graphs with edges connecting more than two nodes. Literature has shown21

that even when the inputs and outputs of models have only unary and binary relations, allowing22

intermediate hyperedge representations increases the expressiveness [9, 10]. In this paper, we further23

formally show the “if and only if” conditions for the expressive power with respect to the edge24

arity. That is, k-ary hyper-graph neural networks are sufficient and necessary for realizing FOC-k, a25

fragment of first-order logic with counting quantification which involves at most k variables. This26

is a helpful result because now we can determine whether a specific hypergraph neural network27

can solve a problem by understanding what form of logic formula can represent the solution to this28

problem. Next, we formally described the relationship between expressiveness and non-constant-29

depth networks. We state a conjecture about the “depth hierarchy,” and connect the potential proof of30

this conjecture to the distributed computing literature.31

Furthermore, we prove, under certain assumptions, it is possible to train a hypergraph neural networks32

on a finite set of small graphs, and it will generalize to arbitrarily large graphs. This ability results33

from the weight-sharing nature of hypergraph neural networks. We hope our work can serve as a34

foundation for designing hypergraph neural networks: to solve a specific problem, what arity do you35

need? What depth do you need? Will my model have structural generalization (i.e., to larger graphs)?36

Our theoretical results are further supported by experiments, for empirical demonstrations.37

2 Hypergraph Reasoning Problems and Hypergraph Neural Networks38

A hypergraph representation G is a tuple (V,X), where V is a set of entities (nodes), and X is39

a set of hypergraph representation functions. Specifically, X = {X0, X1, X2, · · · , Xk}, where40

Xj : (v1, v2, · · · , vj) → S is a function mapping every tuple of j nodes to a value. We call j the41

arity of the hyperedge and k is the max arity of input hyperedges. The range S can be any set of42
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discrete labels that describes relation type, or a scalar number (e.g., the length of an edge), or a vector.43

We will use the arity 0 representation X0(∅)→ S to represent any global properties of the graph.44

A graph reasoning function f is a mapping from a hypergraph representation G = (V,X) to another45

hyperedge representation function Y on V . As concrete examples, asking whether a graph is fully46

connected is a graph classification problem, where the output Y = {Y0} and Y0(∅)→ S ′ = {0, 1} is47

a global label; finding the set of disconnected subgraphs of size k is a k-ary hyperedge classification48

problem, where the output Y = {Yk} is a label for each k-ary hyperedges.49

There are two main motivations and constructions of a neural network applied to graph reasoning50

problems: message-passing-based and first-order-logic-inspired. Both approaches construct the51

computation graph layer by layer. The input is the features of nodes and hyperedges, while the output52

is the per-node or per-edge prediction of desired properties, depending on the task.53

In a nutshell, within each layer, message-passing-based hypergraph neural networks, Higher-54

Order GNNs [11], perform message passing between each hyperedge and its neighbours. Specif-55

ically, we say the j-th neighbour set of a hyperedge u = (x1, x2, · · · , xi) of arity i is Nj(u) =56

{(x1, x2, · · · , xj−1, r, xj+1, · · · , xi)}, where r ∈ V . Then, the all neighbours of node u is the union57

of all Nj’s, where j = 1, 2, · · · , i.58

On the other hand, first-order-logic-inspired hypergraph neural networks consider building neural59

networks that can emulate first logic formulas. Neural Logic Machines [NLM; 5] are defined in60

terms of a set of input hyperedges; each hyperedge of arity k is represented by a vector of (possibly61

real) values obtained by applying all of the k-ary predicates in the domain to the tuple of vertices it62

connects. Each layer in an NLM learns to apply a linear transformation with nonlinear activation and63

quantification operators (analogous to the for all ∀ and exists ∃ quantifiers in first-order logic), on these64

values. It is easy to prove, by construction, that given a sufficient number of layers and maximum65

arity, NLMs can learn to realize any first-order-logic formula. For readers who are not familiar with66

HO-GNNs [11] and NLMs [5], we include a mathematical summary of their computation graph in67

Appendix B. Our analysis starts from the following theorem.68

Theorem 2.1. HO-GNNs [11] are equivalent to NLMs in terms of expressiveness. Specifically, a B-69

ary HO-GNN is equivalent to an NLM applied to B + 1-ary hyperedges. Proofs are in Appendix B.3.70

Given Theorem 2.1, we can focus on just one single type of hypergraph neural network. Specifically,71

we will focus on Neural Logic Machines [NLM; 5] because its architecture naturally aligns with72

first-order logic formula structures, which will aid some of our analysis. An NLM is characterized73

by hyperparameters D (depth), and B maximum arity. We are going to assume that B is a constant,74

but D can be dependent on the size of the input graph. We will use NLM[D, B] to denote an NLM75

family with depth D and max arity B. Other parameters such as the width of neural networks affects76

the precise details of what functions can be realized, as it does in a regular neural network, but does77

not affect the analyses in this extended abstract. Furthermore, we will be focusing on neural networks78

with bounded precision, and briefly discuss how our results generalize to unbounded precision cases.79

80

3 Expressiveness of Relational Neural Networks81

We start from a formal definition of hypergraph neural network expressiveness.82

Definition 3.1 (Expressiveness). We say a model familyM1 is at least expressive asM2, written83

asM1 <M2, if for all M2 ∈M2, there exists M1 ∈M1 such that M1 can realize M2. A model84

familyM1 is more expressive thanM2, written asM1 � M2, ifM1 < M2 and ∃M1 ∈ M1,85

∀M2 ∈M2, M2 can not realize M1.86

Arity Hierarchy We first aim to quantify how the maximum arity B of the network’s representation87

affects its expressiveness and find that, in short, even if the inputs and outputs of neural networks are88

of low arity, the higher the maximum arity for intermediate layers, the more expressive the NLM is.89

Corollary 3.1 (Arity Hierarchy). For any maximum arity B, there exists a depth D∗ such that:90

∀D ≥ D∗, NLM[D, B + 1] is more expressive than NLM[D, B]. This theorem applies to both91

fixed-precision* and unbounded-precision networks.92

Proof sketch: Our proof slightly extends the proof of Morris et al. [11]. First, the set of graphs distin-93

guishable by NLM[D, B] is bounded by graphs distinguishable by a D-round order-B Weisfeiler-94

Leman test [12]. If models in NLM[D, B] cannot generate different outputs for two distinct95

*Fixed precision: the results of intermediate layers (tensors) are constant-sized (e.g., W bits per entry).
Practical GNNs are all fixed-precision because real number types in modern computers have finite precision.
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hypergraphs G1 and G2, but there exists M ∈ NLM[D,B + 1] that can generate different outputs96

for G1 and G2, then we can construct a graph classification function f that NLM[D, B + 1] (with97

some fixed precision) can realize but NLM[D, B] (even with unbounded precision) cannot.† The full98

proof is described in Appendix C.1.99

It is also important to quantify the minimum arity for realizing certain graph reasoning functions.100

Corollary 3.2 (FOL realization bounds). Let FOCB denote a fragment of first order logic with at101

most B variables, extended with counting quantifiers of the form ∃≥nφ, which state that there are at102

least n nodes satisfying formula φ [13].103

• (Upper Bound) Any function f in FOCB can be realized by NLM[D, B] for some D.104

• (Lower Bound) There exists a function f ∈ FOCB such that for all D, f cannot be realized by105

NLM[D,B − 1].106

Proof: The upper bound part of the claim has been proved by Barceló et al. [14] for B = 2. The107

results generalize easily to arbitrary B because the counting quantifiers can be realized by sum108

aggregation. The lower bound part can be proved by applying Section 5 of [13], in which they show109

that FOCB is equivalent to a (B − 1)-dimensional WL test in distinguishing non-isomorphic graphs.110

Given that NLM[D, B − 1] is equivalent to the (B − 2)-dimensional WL test of graph isomorphism,111

there must be an FOLB formula that distinguishes two non-isomorphic graphs that NLM[D, B − 1]112

cannot. Hence, FOLB cannot be realized by NLM[·, B − 1].113

Depth Hierarchy We now study the dependence of the expressiveness of NLMs on depth D. Neural114

networks are generally defined to have a fixed depth, but allowing them to have a depth that is115

dependent on the number of nodes n = |V | in the graph, in many cases, can substantially increase116

their expressive power [15, see also Theorem 3.4 and Appendix C for examples]. In the following, we117

define a depth hierarchy by analogy to the time hierarchy in computational complexity theory [16],118

and we extend our notation to let NLM[O(f(n)), B] denote the class of adaptive-depth NLMs in119

which the growth-rate of depth D is bounded by O(f(n)).120

Conjecture 3.3 (Depth hierarchy). For any maximum arity B, for any two functions f and g, if121

g(n) = o(f(n)/ log n), that is, f grows logarithmically more quickly than g, then fixed-precision122

NLM[O(f(n)), B] is more expressive than fixed-precision NLM[O(g(n)), B].123

There is a closely related result for the congested clique model in distributed computing, where [17]124

proved that CLIQUE(g(n)) ( CLIQUE(f(n)) if g(n) = o(f(n)). This result does not have the125

log n gap because the congested clique model allows log n bits to transmit between nodes at each126

iteration, while fixed-precision NLM allows only a constant number of bits. The reason why the result127

on congested clique can not be applied to fixed-precision NLMs is that congested clique assumes128

unbounded precision representation for each individual node.129

However, Conjecture 3.3 is not true for NLMs with unbounded precision, because there is an upper130

bound depth O(nB−1) for a model’s expressiveness power.‡ That is, an unbounded-precision NLM131

can not achieve stronger expressiveness by increasing its depth beyond O(nB−1).132

It is important to point out that, to realize a specific graph reasoning function, NLMs with different133

maximum arity B may require different depth D. Fürer [18] provides a general construction for134

problems that higher-dimensional NLMs can solve in asymptotically smaller depth than lower-135

dimensional NLMs. In the following we give a concrete example for computing S-T Connectivity-k,136

which asks whether there is a path of nodes from S and T in a graph, with length ≤ k.137

Theorem 3.4 (S-T Connectivity-k with Different Max Arity). For any function f(k), if f(k) = o(k),138

NLM[O(f(k)), 2] cannot realize S-T Connectivity-k. That is, S-T Connectivity-k requires depth139

at least O(k) for a relational neural network with an maximum arity of B = 2. However, S-T140

Connectivity-k can be realized by NLM[O(log k), 3].141

Proof sketch. For any integer k, we can construct a graph with two chains of length k, so that if we142

mark two of the four ends as S or T , any NLM[k− 1, 2] cannot tell whether S and T are on the same143

chain. The full proof is described in Appendix C.3.144

There are many important graph reasoning tasks that do not have known depth lower bounds,145

including all-pair connectivity and shortest distance [19, 20]. In Appendix C.3, we discuss the146

concrete complexity bounds for a series of graph reasoning problems.147

†Note that the arity hierarchy is applied to fixed-precision and unbounded-precision separately. For example,
NLM[D, B] with unbounded precision is incomparable with NLM[D, B + 1] with fixed precision.

‡See appendix C.2 for a formal statement and the proof.

3



On the Expressiveness and Generalization of Hypergraph Neural Networks

4 Learning and Generalization in Relational Neural Networks148

Given our understanding of what functions can be realized by NLMs, we move on to the problems of149

learning them: Can we effectively learn a NLMs to solve a desired task given a sufficient number of150

input-output examples? In this paper, we show that applying enumerative training with examples151

up to some fixed graph size can ensure that the trained neural network will generalize to all graphs152

larger than those appearing in the training set.153

A critical determinant of the generalization ability for NLMs is the aggregation function. Specifically,154

Xu et al. [21] have shown that using sum as the aggregation function provides maximum expressive-155

ness for graph neural networks. However, sum aggregation cannot be implemented in fixed-precision156

models, because as the graph size n increases, the range of the sum aggregation also increases.157

Definition 4.1 (Fixed-precision aggregation function). An aggregation function is fixed precision158

if it maps from any finite set of inputs with values drawn from finite domains to a fixed finite set159

of possible output values; that is, the cardinality of the range of the function cannot grow with the160

number of elements in the input set. Two useful fixed-precision aggregation functions are max, which161

computes the dimension-wise maximum over the set of input values, and fixed-precision mean, which162

approximates the dimension-wise mean to a fixed decimal place.163

In order to focus on structural generalization in this section, we consider an enumerative training164

paradigm. When the input hypergraph representation domain S is a finite set, we can enumerate the165

set G≤N of all possible input hypergraph representations of size bounded by N . We first enumerate166

all graph sizes n ≤ N ; for each n, we enumerate all possible values assigned to the hyperedges167

in the input. Given training size N , we enumerate all inputs in G≤N , associate with each one the168

corresponding ground-truth output representation, and train the model with these input-output pairs.169

This has much stronger data requirements than the standard sampling-based training mechanisms in170

machine learning. In practice, this can be approximated well when the input domain S is small and171

the input data distribution is approximately uniformly distributed. The enumerative learning setting172

is studied by the language identification in the limit community [22], in which it is called complete173

presentation. This is an interesting learning setting because even if the domain for each individual174

hyperedge representation is finite, as the graph size can go arbitrarily large, the number of possible175

inputs is enumerable but unbounded.176

Theorem 4.1 (Fixed-precision generalization under complete presentation). For any hypergraph177

reasoning function f , if it can be realized by a fixed-precision relational neural network modelM,178

then there exists an integer N , such that if we train the model with complete presentation on all input179

hypergraph representations with size smaller than N , G≤N , then for all M ∈M,180 ∑
G∈G≤N

1[M(G) 6= f(G)] = 0 =⇒ ∀G ∈ G∞ :M(G) = f(G).

That is, as long as M fits all training examples, it will generalize to all possible hypergraphs in G∞.181

Proof. The key observation is that for any fixed vector representation length W , there are only a finite182

number of distinctive models in a fixed-precision NLM family, independent of the graph size n. Let183

Wb be the number of bits in each intermediate representation of a fixed-precision NLM. There are184

at most (2Wb)2
Wb different mappings from inputs to outputs. Hence, if N is sufficiently large to185

enumerate all input hypergraphs, we can always identify the correct model in the hypothesis space.186

Our results are related to the algorithmic alignment approach [23, 24]. In contrast to their Probably187

Approximately Correct (PAC) Learning bounds for sample efficiency, our expressiveness results188

directly quantifies whether a hypergraph neural network can be trained to realize a specific function.189

5 Conclusion190

In this extended abstract, we have shown the substantial increase of expressive power due to higher-191

arity relations and increasing depth, and have characterized very powerful structural generalization192

from training on small graphs to performance on larger ones. We further discuss the relationship193

between these results and existing results in Appendix A. All theoretical results are further supported194

by the empirical results, discussed in Appendix D. Although many questions remain open about the195

overall generalization capacity of these models in continuous and noisy domains, we believe this196

work has shed some light on their utility and potential for application in a variety of problems.197
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Appendix274

The appendix is organized as the following. In Appendix A, we discuss the related work. In275

Appendix B, we provide a formalization of two types of hypergraph neural networks discussed in276

the main paper, and proved their equivalence. In Appendix C, we prove the theorems for the arity277

hierarchy and provide concrete examples for expressiveness analyses. Finally, in Appendix D, we278

include additional experiment results to empirically illustrate the application of theorems discussed279

in the paper.280

A Related Work281

Solving problems on graphs of arbitrary size is studied in many fields. NLMs can be viewed as circuit282

families with constrained architecture. In distributed computation, the congested clique model can be283

viewed as 2-arity NLMs, where nodes have identities as extra information. Common graph problems284

including sub-structure detection[25, 26] and connectivity[19] are studied for lower bounds in terms285

of depth, width and communication. This has been connected to GNNs for deriving expressiveness286

bounds [27].287

Studies have been conducted on the expressiveness of GNNs and their variants. Xu et al. [21] provide288

an illuminating characterization of GNN expressiveness in terms of the WL graph isomorphism test.289

Azizian and Lelarge [9] analyze the expressiveness of higher-order Folklore GNNs by connecting them290

with high-dimensional WL-tests. We have the similar results in the arity hierarchy. Barceló et al. [14]291

reviewed GNNs from the logical perspective and rigorously refined their logical expressiveness with292

respect to fragments of first-order logic. Dong et al. [5] proposed Neural Logical Machines (NLMs)293

to reason about higher-order relations, and showed that increasing order inreases expressiveness. It is294

also possible to gain expressiveness using unbounded computation time, as shown by the work of295

Dehghani et al. [15] on dynamic halting in transformers.296

It is interesting that GNNs may generalize to larger graphs. Xu et al. [23, 24] have studied the297

notion of algorithmic alignment to quantify such structural generalization. Dong et al. [5] provided298

empirical results showing that NLMs generalize to much larger graphs on certain tasks. Buffelli299

et al. [28] introduced a regularization technique to improve GNNs’ generalization to larger graphs300

and demonstrated its effectiveness empirically. In Xu et al. [23], they analyzed and compared the301

sample complexity of Graph Neural Networks. This is different from our notion of expressiveness302

for realizing functions. In Xu et al. [24], they showed emperically on some problems (e.g., Max-303

Degree, Shortest Path, and n-body problem) that algorithm alignment helps GNNs to extrapolate,304

and theoretically proved the improvement by algorithm alignment on the Max-Degree problem. In305

this extended abstract, instead of focusing on computing specific graph problems, we analyzed how306

GNNs can extrapolate to larger graphs in a general case, based on the assumption of fixed precision307

computation.308

B Hypergraph Neural Networks309

We now introduce two important hypergraph neural network implementations that can be trained to310

solve graph reasoning problems: Higher-order Graph Neural Networks [HO-GNN; 11] and Neural311

Logic Machines [NLM; 5]. The are equivalent to each other in terms of expressiveness. Showing312

this equivalence allows us to focus the rest of the paper on analyzing a single model type, with the313

understanding that the conclusions generalize to a broader class of hypergraph neural networks.314

B.1 Higher-order Graph Neural Networks315

Higher-order Graph Neural Networks [HO-GNNs; 11] are Graph Neural Networks (GNNs) that316

apply to hypergraphs. A GNN is usually defined based on two message passing operations.317

• Edge update: the feature of each edge is updated by features of its ends.318

• Note update: the feature of each node is updated by features of all edges adjacent to it.319

However, computing only node-wise and edge-wise features does not handle higher-order relations,320

such as triangles in the graph. In order to obtain more expressive power, GNNs have be extend to321

hypergraphs of higher arity [11]. Specifically, HO-GNNs on B-ary hypergraph maintains features322
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Figure 1: The overall architecture of our Neural Logic Machines (NLMs). It follows the computation
graph of NLM [5] and can be applied to hypergraphs.

for all B-tuple of nodes, and the neighborhood is extended to B-tuples accordingly: the feature of323

tuple (v1, v2, · · · , vB) is updated by the |V | element multiset (contain |V | elements for each u ∈ V )324

of B-tuples of features325

(Hi[u, v2, · · · , vB ], Hi−1[v1, u, v2, · · · , vB ], · · ·Hi−1[v1, · · · , vB−1, u]) (B.1)

where Hi−1[v] is the feature of tuple v from the previous iteration.326

We now introduce the formal definition of the high-dimensional message passing. We denote v327

as a B-tuple of nodes (v1, v2, · · · , vB), and generalize the neighborhood to a higher dimension by328

defining the neighborhood of v as all node tuples that differ from v at one position.329

Neighbors(v, u) = ((u, v2, · · · , vB), (v1, u, v3, · · · , vB), · · · , (v1, · · · , vB−1, u)) (B.2)
N(v) = {Neighbors(v, u)|u ∈ V } (B.3)

Then message passing scheme naturally generalizes to high-dimensional features using the high-330

dimensional neighborhood.331

Receivedi[v] =
∑
u

(
NN1

(
Hi−1[v]; CONCATv′∈neighbors(v,u)Hi−1[v

′]
))

(B.4)

B.2 Neural Logic Machines332

A NLM is a multi-layer neural network that operates on hypergraph representations, in which333

the hypergraph representation functions are represented as tensors. The input is a hypergraph334

representation (V,X). There are then several computational layers, each of which produces a335

hypergraph representation with nodes V and a new set of representation functions. Specifically, a336

B-ary NLM produces hypergraph representation functions with arities from 0 up to a maximum337

hyperedge arity of B. We let Ti,j denote the tensor representation for the output at layer i and arity338

j. Each entry in the tensor is a mapping from a set of node indices (v1, v2, · · · , vj) to a vector in a339

latent space RW . Thus, Ti,j is a tensor of j+1 dimensions, with the first j dimensions corresponding340

to j-tuple of nodes, and the last feature dimension. For convenience, we write h0,· for the input341

hypergraph representation and hD,· for the output of the NLM.342

Fig. 1a shows the overall architecture of NLMs. It has D ×B computation blocks, namely relational343

reasoning layers (RRLs). Each block RRLi,j , illustrated in Fig. 1b, takes the output from neighboring344

arities in the previous layer, Ti−1,j−1, Ti−1,j and Ti−1,j+1, and produces Ti,j . Below we show the345

computation of each primitive operation in an RRL.346

The expand operation takes tensor Ti−1,j−1 (arity j − 1) and produces a new tensor TEi−1,j−1 of arity347

j. The reduce operation takes tensor Ti−1,j+1 (arity j + 1) and produces a new tensor TRi−1,j+1 of348

arity j + 1. Mathematically,349

TEi−1,j−1[v1, v2, · · · , vj ] = Ti−1,j−1[v1, v2, · · · , vj−1];
TRi−1,j+1[v1, v2, · · · , vj ] = Aggvj+1

{Ti−1,j+1[v1, v2, · · · , vj , vj+1]} .
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Here, Agg is called the aggregation function of a NLM. For example, a sum aggregation function350

takes the summation along the dimension j + 1 of the tensor, and a max aggregation function takes351

the max along that dimension.352

The concat (concatenate) operation
⊕

is applied at the “vector representation” dimension. The353

permute operation generates a new tensor of the same arity, but it fuses the representations of354

hyperedges that share the same set of entities but in different order, such as (v1, v2) and (v2, v1).355

Mathematically, for tensor X of arity j, if Y = permute(X) then356

Y [v1, v2, · · · , vj ] = Concat
σ∈Sj

{
X[vσ1

, vσ2
, · · · , vσj

]
}
,

where σ ∈ Sj iterates over all permuations of {1, 2, · · · j}. NNj is a multi-layer perceptron (MLP)357

applied to each entry in the tensor produced after permutation, with nonlinearity σ (e.g., ReLU).358

It is important to note that we intentionally name the MLPs NNj instead of NNi,j . In generalized rela-359

tional neural networks, for a given arity j, all MLPs across all layers i are shared. It is straightforward360

to see that this “weight-shared” model can realize a “non-weight-shared” NLM that uses different361

weights for MLPs at different layers when the number of layers is a constant. With a sufficiently362

large length of the representation vector, we can simulate the computation of applying different363

transformations by constructing block matrix weights. (A more formal proof is in Appendix B) The364

advantage of this weight sharing is that the network can be easily extended to a “recurrent” model.365

For example, we can apply the NLM for a number of layers that is a function of n, where n is the the366

number of nodes in the input graph. Thus, we will use the term layers and iterations interchangeably.367

Handling high-arity features and using deeper models usually increase the computational cost. In368

appendix B.5, we show that the time and space complexity of NLM [D,B] is O(DnB).369

Note that even when hyperparameters such as the maximum arity and the number of iterations370

are fixed, a NLM is still a model familyM: the weights for MLPs will be trained on some data.371

Furthermore, each model M ∈M is a NLM with a specific set of MLP weights.372

B.3 Expressiveness Equivalence of Relational Neural Networks373

Since we are going to study both constant-depth and adaptive-depth graph neural networks, we first374

prove the following lemma (for general multi-layer neural networks), which helps us simplify the375

analysis.376

Lemma B.1. A neural network with representation width W that has D different layers377

NN1, · · · ,NND can be realized by a neural network that applies a single layer NN′ for D iter-378

ations with width (D + 1)(W + 1).379

Proof. The representation for NN′ can be partitioned into D + 1 segments each of length W + 1.380

Each segment consist of a “flag” element and a W -element representation, which are all 0 initially,381

except for the first segment, where the flag is set to 1, and the representation is the input.382

NN′ has the weights for all NN1, · · · ,NND, where weights NNi are used to compute the representa-383

tion in segment i+ 1 from the representation in segment i. Additionally, at each iteration, segment384

i + 1 can only be computed if the flag in segment i is 1, in which case the flag of segment i + 1385

is set to 1. Clearly, after D iterations, the output of NNk should be the representation in segment386

D + 1.387

Due to Lemma B.1, we consider the neural networks that recurrently apply the same layer because388

a) they are as expressive as those using layers of different weights, b) it is easier to analyze a single389

neural network layer than D layers, and c) they naturally generalize to neural networks that runs for390

adaptive number of iterations (e.g. GNNs that run O(log n) iterations where n is the size of the input391

graph).392

We first describe a framework for quantifying if two hypergraph neural network models are equally393

expressive on regression tasks (which is more general than classification problems). The frame-394

work view the expressiveness from the perspective of computation. Specifically, we will prove the395

expressiveness equivalence between models by showing that their computation can be aligned.396
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In complexity, we usually show a problem is at least as hard as the other one by showing a reduction397

from the other problem to the problem. Similarly, on the expressiveness of NLMs, we can construct398

reduction from model family A to model family B to show that B can realize all computation that A399

does, or even more. Formally, we have the following definition.400

Definition B.1 (Expressiveness reduction). For two model families A and B, we say A can be401

reduced to B if and only if there is a function r : A → B such that for each model instance A ∈ A,402

r(A) ∈ B and A have the same outputs on all inputs. In this case, we say B is at least as expressive403

as A.404

Definition B.2 (Expressiveness equivalence). For two model families A and B, if A and B can be405

reduced to each other, thenA and B are equally expressive. Note that this definition of expressiveness406

equivalence generalizes to both classification and regression tasks.407

Equivalence between HO-GNNs and NLMs. We will prove the equivalence between HO-GNNs408

and NLMs by making reductions in both directions.409

Lemma B.2. A B-ary HO-GNN with depth D can be realized by a NLM with maximum arity B+1410

and depth 2D.411

Proof. We prove lemma B.2 by showing that one layer of GNNs on B-ary hypergraphs can be412

realized by two NLM with maximum arity B + 1.413

Firstly, a GNN layer maintain features of B-tuples, which are stored in correspondingly in an NLM414

layer at dimension B. Then we will realize the message passing scheme using the NLM features of415

dimension B and B + 1 in two steps.416

Recall the message passing scheme generalized to high dimensions (to distinguish, we use H for417

HO-GNN features and T for NLM features.)418

Receivedi(v) =
∑
u

(
NN1

(
Hi−1,B [v]; CONCATv′∈neighbors(v,u)Hi−1[v

′]
))

(B.5)

At the first step, the Expand operation first raise the dimension to B + 1 by expanding a non-related419

variable u to the end, and the Permute operation can then swap u with each of the elements (or no420

swap). Particularly, Ti,B [v1, v2, · · · , vB ] will be expand to421

Ti+1,B+1[u, v2, v3, · · · , vB , v1], Ti+1,B+1[v1, u, v3, · · · , vB , v2], · · · ,
Ti+1,B+1[v1, v2, · · · , vB−1, u, vB ],and Ti+1,B+1[v1, v2, · · · , vB−1, vB , u]

Hence, Ti+1,B+1[v1, v2, v3, · · · , vB , u] receives the features from422

Ti,B [v1, v2, · · · , vB ], Ti,B [u, v2, v3, · · · , vB ], Ti,B [v1, u, v3, · · · , vB ], · · · , Ti,B [v1, v2, · · · , vB−1, u]

These features matches the input of NN1 in equation B.5, and in this layer NN1 can be applied to423

compute things inside the summation.424

Then at the second step, the last element is reduced to get what tuple v should receive, so v can be425

updated. Since each HO-GNN layer can be realized by such two NLM layers, each B-ary HO-GNN426

with depth D can be realized by a NLM of maximum arity (B + 1) and depth 2D.427

To complete the proof we need to find a reduction from NLMs of maximum arity B + 1 to B-ary428

HO-GNNs. The key observation here is that the features of (B + 1)-tuples in NLMs can only be429

expanded from sub-tuples, and the expansion and reduction involving (B+1)-tuples can be simulated430

by the message passing process.431

Lemma B.3. The features of (B + 1)-tuples feature Ti,B+1[v1, v2, · · · , vB+1] can be computed432

from the following tuples433

(Ti,B [v2, v3, · · · , vB+1], Ti,B [v1, v3, · · · , vB+1], · · · , Ti,B [v1, v2, · · · , vB ]) .

434
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Proof. Lemma B.3 is true because (B + 1)-dimensional representations can either be computed435

from themselves at the previous iteration, or expanded from B-dimensional representations. Since436

representations at all previous iterations j < i can be contained in Ti,B , it is sufficient to compute437

Ti,B+1[v1, v2, · · · , vB+1] from all its B-ary sub-tuples.438

Then let’s construct the HO-GNN for given NLM to show the existence of the reduction.439

Lemma B.4. A NLM of maximum arity B + 1 and depth D can be realized by a B-ary HO-GNN440

with no more than D iterations.441

Proof. We can realize the Expand and Reduce operation with only the B-dimensional features using442

the broadcast message passing scheme. Note that Expand and Reduce between B-dimensional443

features and (B + 1)-dimensional features in the NLM is a special case where claim B.3 is applied.444

Let’s start with Expand and Reduce operations between features of dimension B or lower. For the445

b-dimensional feature in the NLM, we keep nbnB−b§ copies of it and store them the representation of446

every B-tuple who has a sub-tuple¶ that is a permutation of the b-tuple. That is, for each B-tuple in447

the B-ary HO-GNN, for its every sub-tuple of length b, we store b! representations corresponding to448

every permutation of the b-tuple in the NLM. Keeping representation for all sub-tuple permutations449

make it possible to realize the Permute operation. Also, it is easy to notice that Expand operation is450

realized already, as all features with dimension lower than B are naturally expanded to B dimension451

by filling in all possible combinations of the rest elements. Finally, the Reduce operation can be452

realized using a broadcast casting message passing on certain position of the tuple.453

Now let’s move to the special case – the Expand and Reduce operation between features of dimensions454

B and B+1. Claim B.3 suggests how the (B+1)-dimensional features are stored in B-dimensional455

representations in GNNs, and we now show how the Reduce can be realized by message passing.456

We first bring in claim B.3 to the HO-GNN message passing, where we have Receivedi[v] to be457

∑
u

(
NN1

(
Ti−1,B [v2, v3, · · · , vB , u], Ti−1,B [v1, v3, · · · , vB , u], · · · , T(i−1),B [v1, v2, · · · , vB ]

))
Note that the last term Ti−1,B [v1, v2, · · · , vB ] is contained in Hi−1(v) in equation B.5, and other458

terms are contained in Hi−1(v
′) for v′ ∈ neighbors(v, u). Hence, equation B.5 is sufficient to459

simulate the Reduce operation.460

Theorem B.5. B-ary HO-GNNs are equally expressive as NLMs with maximum arity B + 1.461

Proof. This is a direct conclusion by combining Lemma B.2 and Lemma B.4.462

B.4 Expressiveness of hypergraph convolution and attention463

There exist other variants of hypergraph neural networks. In particular, hypergraph convolution[29–464

31], attention[32] and message passing[33] focus on updating node features instead of tuple features465

through hyperedges . These approaches can be viewed as instances of hypergraph neural networks,466

and they have smaller time complexity because they do not model all high-arity tuples. However,467

they are less expressive than the standard hypergraph neural networks with equal max arity.468

These approaches can be formulated to two steps at each iteration. At the first step, each hyperedge is469

updated by the features of nodes it connects.470

hi,e = AGGv∈efi−1,v (B.6)

At the second step, each node is updated by the features of hyperedges connecting it.471

fi,v = AGGv∈ehi,e (B.7)

§nk = n× (n− 1)× · · · × (n− k + 1).
¶The sub-tuple does not have to be consecutive, but instead can be a any subset of the tuple that keeps the

element order.
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where fi,v is the feature of node v at iteration i, and hi,v is the aggregated message passing through472

hyperedge e at iteration i+ 1.473

It is not hard to see that B.6 can be realized by B iterations of NLM layers with Expand operations474

where B is the max arity of hyperedges. This can be done by expanding each node feature to every475

high arity features that contain the node, and aggregate them at the tuple corresponding to each476

hyperedge. Then, B.7 can also be realized by B iterations of NLM layers with Reduce operations, as477

the tuple feature will finally be reduced to a single node contained in the tuple.478

This approach has lower complexity compared to the GNNs we study applied on hyperedges, because479

it only requires communication between nodes and hyperedges connecting to them, which takes480

O(|V | · |E|) time at each iteration. Compared to them, NLMs takes O(|V |B) time because NLMs481

keep features of every tuple with max arity B, and allow communication from tuples to tuples instead482

of between tuples and single nodes. An example is provided below that this approach can not solve483

while NLMs can.484

Consider a graph with 6 nodes and 6 edges forming two triangles (1, 2, 3) and (4, 5, 6). Because of485

the symmetry, the representation of each node should be identical throughout hypergraph message486

passing rounds. Hence, it is impossible for these models to conclude that (1, 2, 3) is a triangle but487

(4, 2, 3) is not, based only on the node representations, because they are identical. In contrast, NLMs488

with max arity 3 can solve them (as standard triangle detection problem in Table 1).489

B.5 The Time and Space Complexity of NLMs490

Handling high-arity features and using deeper models usually increase the computational cost in491

terms of time and space. As an instance that use the architecture of RelNN, NLMs with depth D492

and max arity B takes O(DnB) time when applying to graphs with size n. This is because both493

Expand and Reduce operation have linear time complexity with respect to the input size (which is494

O(nB) at each iteration). If we need to record the computational history (which is typically the case495

when training the network using back propagation), the space complexity is the same as the time496

complexity.497

GNNs applied to (B − 1)-ary hyperedges and depth D are equally expressive as RelNNs with depth498

O(D) and max arityB. Though up to (B−1)-ary features are kept in their architecture, the broadcast499

message passing scheme scale up the complexity by a factor of O(n), so they also have time and500

space complexity O(DnB). Here the length of feature tensors W is treated as a constant.501

C Arity and Depth Hierarchy: Proofs and Analysis502

C.1 Proof of Theorem 3.1: Arity Hierarchy.503

[11] have connected high-dimensional GNNs with high-dimensional WL tests. Specifically, they504

showed that the B-ary HO-GNNs are equally expressive as B-dimensional WL test on graph505

isomorphism test problem. In Theorem B.5 we proved that B-ary HO-GNNs are equivalent to NLM506

of maximum arity B + 1 in terms of expressiveness. Hence, NLM of maximum arity B + 1 can507

distinguish if two non-isomorphic graphs if and only if B-dimensional WL test can distinguish them.508

However, Cai et al. [13] provided an construction that can generate a pair of non-isomorphic graphs509

for every B, which can not be distinguished by (B−1)-dimensional WL test but can be distinguished510

by B-dimensional WL test. Let G1
B and G2

B be such a pair of graph.511

Since NLM of maximum arity B + 1 is equally expressive as B-ary HO-GNNs, there must be such a512

NLM that classify G1
B and G2

B into different label. However, such NLM can not be realized by any513

NLM of maximum arity B because they are proven to have identical outputs on G1
B and G2

B .514

In the other direction, NLMs of maximum arity B + 1 can directly realize NLMs of maximum arity515

B, which completes the proof.516

C.2 Upper Depth Bound for Unbounded-Precision NLM.517

The idea for proving an upper bound on depth is to connect NLMs to WL-test, and use the O(nB)518

upper bound on number of iterations for B-dimensional test [34], and FOC formula is the key519

connection.520
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For any fixed n, B-dimensional WL test divide all graphs of size n, G=n, into a set of equivalence521

classes {C1, C2, · · · , Cm}, where two graphs belong to the same class if they can not be distinguished522

by the WL test. We have shown that NLMs of maximum arity (B + 1) must have the same input for523

all graphs in the same equivalence class. Thus, any NLM of maximum arity B + 1 can be view as a524

labeling over C1, · · · , Cm.525

Stated by Cai et al. [13], B-dimensional WL test are as powerful as FOCB+1 in differentiating graphs526

graphs. Combined with the O(nB) upper bound of WL test iterations, for each Ci, there must be an527

FOCB+1 formula of quantifier depth O(nB) that exactly recognize Ci over G=n.528

Finally, with unbounded precision, for any f(n), NLM of maximum arity B + 1 and depth f(n) can529

compute all FOCB+1 formulas with quantifier depth f(n). Note that there are finite number of such530

formula because the supscript of counting quantifiers is bounded by n.531

For any graph in some class Ci, the class can be determined by evaluating these FOC formulas, and532

then the label is determined. Therefore, any NLM of maximum arity B + 1 can be realized by a533

NLM of maximum arity B + 1 and depth O(nB).534

C.3 Graph Problems535

B = 4 4-Clique Detection NLM[O(1), 4] 4-Clique Count NLM[O(1), 4]

B = 3

Triangle Detection NLM[O(1),3] All-Pair Distance NLM[O(logn), 3]?

Bipartiteness NLM[O(logn), 3]?

All-Pair Connectivity NLM[O(logn), 3]?

All-Pair Connectivity-k NLM[O(log k), 3]?

B = 2

FOC2 Realization NLM[·, 2] [14] S-T Distance NLM[O(n), 2]
3/4-Link Detection NLM[O(1), 2] Max Degree NLM[O(1), 2]
S-T Connectivity NLM[O(n), 2] Max Flow NLM[O(n3), 2]?

S-T Connectivity-k NLM[O(k), 2]

B = 1 Node Color Majority: NLM[O(1), 1] Count Red Nodes: NLM[O(1), 1]

Classification Tasks Regression Tasks

Table 1: The minimum depth and arity of NLMs for solving graph classification and regression tasks.
The ? symbol indicates that these are conjectured lower bounds.

We list a number of examples for graph classification and regression tasks, and we provide the536

definitions and the current best known NLMs for learning these tasks from data. For some of the537

problems, we will also show why they can not be solved by a simpler problems, or indicate them as538

open problems.539

Node Color Majority. Each node is assigned a color c ∈ C where C is a finite set of all colors. The540

model needs to predict which color the most nodes have.541

Using a single layer with sum aggregation, the model can count the number of nodes of color c for542

each c ∈ C on its global representation.543

Count Red Nodes. Each node is assigned a color of red or blue. The model needs to count the544

number of red nodes.545

Similarly, using a single layer with sum aggregation, the model can count the number of red nodes on546

its global representation.547

3-Link Detection. Given an unweighted, undirected graph, the model needs to detect whether there548

is a triple of nodes (a, b, c) such that a 6= c and (a, b) and (b, c) are edges.549

This is equivalent to check whether there exists a node with degree at least 2. We can use a Reduction550

operation with sum aggregation to compute the degree for each node, and then use a Reduction551

operation with max aggregation to check whether the maximum degree of nodes is greater than or552

equal to 2.553

Note that this can not be done with 1 layer, because the edge information is necessary for the problem,554

and they require at least 2 layers to be passed to the global representation.555
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4-Link Detection. Given an unweighted undirected graph, the model needs to detect whether there556

is a 4-tuple of nodes (a, b, c, d) such that a 6= c, b 6= d and (a, b), (b, c), (c, d) are edges (note that a557

triangle is also a 4-link).558

This problem is equivalent to check whether there is an edge between two nodes with degrees ≥ 2.559

We can first reduce the edge information to compute the degree for each node, and then expand it560

back to 2-dimensional representations, so we can check for each edge if the degrees of its ends are561

≥ 2. Then the results are reduced to the global representation with existential quantifier (realized by562

max aggregation) in 2 layers.563

Triangle Detection. Given a unweighted undirected graph, the model is asked to determine whether564

there is a triangle in the graph i.e. a tuple (a, b, c) so that (a, b), (b, c), (c, a) are all edges.565

This problem can be solved by NLM [4,3]: we first expand the edge to 3-dimensional representations,566

and determine for each 3-tuple if they form a triangle. The results of 3-tuples require 3 layers to be567

passed to the global representation.568

We can prove that Triangle Detection indeed requires breadth at least 3. Let k-regular graphs be569

graphs where each node has degree k. Consider two k-regular graphs both with n nodes, so that570

exactly one of them contains a triangle||. However, NLMs of breadth 2 has been proven not to be571

stronger than WL test on distinguish graphs, and thus can not distinguish these two graphs (WL test572

can not distinguish any two k-regular graphs with equal size).573

4-Clique Detection and Counting. Given an undirected graph, check existence of, or count the574

number of tuples (a, b, c, d) so that there are edges between every pair of nodes in the tuple.575

This problem can be easily solved by a NLM with breadth 4 that first expand the edge information to576

the 4-dimensional representations, and for each tuple determine whether its is a 4-clique. Then the577

information of all 4-tuples are reduced 4 times to the global representation (sum aggregation can be578

used for counting those).579

Though we did not find explicit counter-example construction on detecting 4-cliques with NLMs of580

breadth 3, we suggest that this problem can not be solved with NLMs with 3 or lower breadth.581

Connectivity. The connectivity problems are defined on unweighted undirected graphs. S-T con-582

nectivity problems provides two nodes S and T (labeled with specific colors), and the model needs583

to predict if they are connected by some edges. All pair connectivity problem require the model to584

answer for every pair of nodes. Connectivity-k problems have an additional requirement that the585

distance between the pair of nodes can not exceed k.586

S-T connectivity-k can be solved by a NLM of breadth 2 with k iterations. Assume S is colored with587

color c, at every iteration, every node with color c will spread the color to its neighbors. Then, after k588

iterations, it is sufficient to check whether T has the color c.589

With NLMs of breadth 3, we can use O(log k) matrix multiplications to solve connectivity-k between590

every pair of nodes. Since the matrix multiplication can naturally be realized by NLMs of breadth 3591

with two layers. All-pair connectivity problems can all be solved with O(log k) layers.592

Theorem C.1 (S-T connectivity-k with NLM). S-T connectivity-k can not be solved by a NLM of593

maximum arity within o(k) iterations.594

Proof. We construct two graphs each has 2k nodes u1, · · · , uk, v1, · · · , vk. In both graph, there are595

edges (ui, ui+1) and (vi, vi+1) for 1 ≤ i ≤ k − 1 i.e. there are two links of length k. We then set596

S = u1, T = un and S = u1, T = vn the the two graphs.597

We will analysis GNNs as NLMs are proved to be equivalent to them by scaling the depth by a598

constant factor. Now consider the node refinement process where each node x is refined by the599

multiset of labels of x’s neighbots and the multiiset of labels of x’s non-neighbors.600

Let C(i)
j (x) be the label of x in graph j after i iterations, at the beginning, WLOG, we have601

C
(0)
1 (u1) = 1, C

(0)
1 (un) = 2C

(0)
1 (u1) = 1, C

(0)
1 (vn) = 2

||Such construction is common. One example is k = 2, n = 6, and the graph may consist of two separated
triangles or one hexagon
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and all other nodes are labeled as 0.602

Then we can prove by induction: after i ≤ k
2 − 1 iterations, for 1 ≤ t ≤ i+ 1 we have603

C
(ut)
1 = C

(i)
2 (ut), C

(vt)
1 = C

(i)
2 (vt)

604

C
(uk−t+1)
1 = C

(i)
2 (vk−t+1), C

(vk−t+1)
1 = C

(i)
2 (uk−t+1)

and for i+ 2 ≤ t ≤ k − i− 1 we have605

C
(ut)
1 = C

(i)
2 (ut), C

(vt)
1 = C

(i)
2 (vt)

This is true because before k
2 iterations are run, the multiset of all node labels are identical for the606

two graphs (say S(i)). Hence each node x is actually refined by its neighbors and S(i) where S(i)607

is the same for all nodes. Hence, before running k
2 iterations when the message between S and T608

finally meets in the first graph, GNN can not distinguish the two graphs, and thus can not solve the609

connectivity with distance k − 1.610

Max Degree. The max degree problem gives a graph and ask the model to output the maximum611

degree of its nodes.612

Like we mentioned in 3-link detection, one layer for computing the degree for each node, and another613

layer for taking the max operation over nodes should be sufficient.614

Max Flow. The Max Flow problem gives a directional graph with capacities on edges, and indicate615

two nodes S and T . The models is then asked to compute the amount of max-flow from S to T .616

Notice that the Breadth First Search (BFS) component in Dinic’s algorithm[35] can be implemented617

on NLMs as they does not require node identities (all new-visited nodes can augment to their non-618

visited neighbors in parallel). Since the BFS runs for O(n) iteration, and the Dinic’s algorithm runs619

BFS O(n2) times, the max-flow can be solved by NLMs with in O(n3) iterations.620

Distance. Given a graph with weighted edges, compute the length of the shortest between specified621

node pair (S-T Distance) or all node pairs (All-pair Distance).622

Similar to Connectivity problems, but Distance problems now additionally record the minimum623

distance from S (for S-T) or between every node pairs (for All-pair), which can be updated using min624

operator (using Min-plus matrix multiplication for All-pair case).625

D Experiments626

We now study how our theoretical results on model expressiveness and learning apply to relational627

neural networks trained with gradient descent on practically meaningful problems. We begin by628

describing two synthetic benchmarks: graph substructure detection and relational reasoning.629

In the graph substructure detection dataset, there are several tasks of predicting whether there input630

graph containd a sub-graph with specific structure. The tasks are: 3-link (length-3 path), 4-link,631

triangle, and 4-clique. These are important graph properties with many potential applications.632

The relational reasoning dataset is composed of two family-relationship prediction tasks and two633

connectivity-prediction tasks. They are all binary edge classification tasks. In the family-relationship634

prediction task, the input contains the mother and father relationships, and the task is to predict the635

grandparent and uncle relationships between all pairs of entities. In the connectivity-prediction tasks,636

the input is the edges in an undirected graph and the task is to predict, for all pairs of nodes, whether637

they are connected with a path of length ≤ 4 (connectivity-4) and whether they are connected with a638

path of arbitrary length (connectivity). The data generation for all datasets is included in Appendix D.639

D.1 Experiment Setup640

For all problems, we have 800 training samples, 100 validation samples, and 300 test samples for641

each different n we are testing the models on.642

We then provide the details on how we synthesize the data. For most of the problems, we generate643

the graph by randomly selecting from all potential edges i.e. the Erdős–Rényi model. We sample the644
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number of edges around n, 2n, n log n and n2/2. For all problems, with 50% probability the graph645

will first be divided into 2, 3, 4 or 5 parts with equal number of components, where we use the first646

generated component to fill the edges for rest of the components. Some random edges are added647

afterwards. This make the data contain more isomorphic sub-graphs, which we found challenging648

empirically.649

Substructure Detection. To generate a graph that does not contain a certain substructure, we650

randomly add edges when reaching a maximal graph not containing the substructure or reaching the651

edge limit. For generating a graph that does contain the certain substructure, we first generate one652

that does not contain, and then randomly replace present edges with missing edges until we detect653

the substructure in the graph. This aim to change the label from “No” to “Yes” while minimizing654

the change to the overall graph properties, and we found that data generated using edge replacing is655

much more difficult for neural networks compared to random generated graphs from scratch.656

Family Tree. We generate the family trees using the algorithm modified from [5]. We add people657

to the family one by one. When a person is added, with probability p we will try to find a single658

woman and a single man, get them married and let the new children be their child, and otherwise the659

new person is introduced as a non-related person. Every new person is marked as single and set the660

gender with a coin flip.661

We adjust p based on the ratio of single population: p = 0.7 when more than 40% of the population662

are single, and p = 0.3 when less than 20% of the population are single, and p = 0.5 otherwise.663

Connectivity. For connectivity problems, we use the similar generation method as the substructure664

detection. We sample the query pairs so that the labels are balanced.665

D.2 Model Implementation Details666

For all models, we use a hidden dimension 128 except for 3-dimensional HO-GNN and 4-dimensional667

NLM where we use hidden dimension 64.668

All model have 4 layers that each has its own parameters, except for connectivity where we use669

the recurrent models that apply the second layer k times, where k is sampled from integers in670

[2 log n, 3 log n]. The depths are proven to be sufficient for solving these problems (unless the model671

itself can not solve).672

All models are trained for 100 epochs using adam optimizer with learning rate 3× 10−4 decaying at673

epoch 50 and 80.674

We have varied the depth, the hidden dimension, and the activation function of different models.675

We select sufficient hidden dimension and depth for every model and problem (i.e., we stop when676

increasing depth or hidden dimension doesn’t increase the accuracy). We tried linear, ReLU, and677

Sigmoid activation functions, and ReLU performed the best overall combinations of models and678

tasks.679

D.3 Results680

Our main results on all datasets are shown in Table 2 and Table 3. We empirically compare relational681

neural networks with different maximum arity B, different model architecture (GNN and NLM), and682

different aggregation functions (max and sum). All models use sigmoidal activation for all MLPs.683

For each task on both datasets we train on a set of small graphs (n = 10) and test the trained model684

on both small graphs and large graphs (n = 10 and n = 30). We summarize the findings below.685

Expressiveness. We have seen a theoretical equal expressiveness between GNNs and NLMs applied686

to hypergraphs. That is, a GNN applied to B-ary hyperedges is equivalent to a (B + 1)-ary NLM.687

Table 2 and 3 further suggest their similar performance on tasks when trained with gradient descent.688

Formally, triangle detection requires NLMs with at least B = 3 to solve. Thus, we see that all689

NLMs with arity B = 2 fail on this task, but models with B = 3 perform well. Formally, 4-clique690

is realizable by NLMs with maximum arity B = 4, but we failed to reliably train models to reach691

perfect accuracy on this problem. It is not yet clear what the cause of this behavior is.692

Structural generalization. We discussed the structural generalization properties of NLMs in Sec-693

tion 4, in a learning setting based on fixed-precision networks and enumerative training. This setting694
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3-link 4-link triangle 4-clique
Model Agg. n = 10 n = 30 n = 10 n = 30 n = 10 n = 30 n = 10 n = 30

1-ary GNN Max 70.0±0.0 82.7±0.0 92.0±0.0 91.7±0.0 73.7±3.2 50.2±1.8 55.3±4.0 46.2±1.3

Sum 100.0±0.0 89.4±0.4 100.0±0.0 86.1±1.2 77.7±8.5 48.6±1.6 53.7±0.6 55.2±0.8

2-ary NLM Max 65.3±0.6 54.0±0.6 93.0±0.0 95.7±0.0 51.0±1.7 49.2±0.4 55.0±0.0 45.7±0.0

Sum 100.0±0.0 88.3±0.0 100.0±0.0 67.4±16.4 82.0±2.6 48.3±0.0 53.0±0.0 54.4±1.5

2-ary GNN Max 78.7±0.6 76.0±17.3 97.7±4.0 98.6±2.5 100.0±0.0 100.0±0.0 55.0±0.0 45.7±0.0

Sum 100.0±0.0 51.2±7.9 100.0±0.0 45.7±7.6 100.0±0.0 49.2±1.0 61.0±5.6 54.3±0.0

3-ary NLM Max 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 59.0±6.9 45.9±0.4

Sum 100.0±0.0 87.6±11.0 100.0±0.0 65.4±14.3 100.0±0.0 80.6±8.8 73.7±13.8 53.3±8.8

3-ary GNN Max 79.0±0.0 86.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 84.0±0.0 93.3±0.0

Sum 100.0±0.0 84.1±18.6 100.0±0.0 61.1±15.0 100.0±0.0 95.1±7.3 80.5±0.7 66.2±19.6

4-ary NLM Max 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 82.0±1.7 93.1±0.2

Sum 100.0±0.0 59.1±5.3 100.0±0.0 67.7±24.1 100.0±0.0 82.1±12.8 84.0±0.0 67.0±18.9

Table 2: Overall accuracy on relational reasoning problems. All models are trained on n = 10, and
tested on n = 30. The standard error of all values are computed based on three random seeds.

grand parent uncle connectivity-4** connectivity
Model Agg. n = 20 n = 80 n = 20 n = 80 n = 10 n = 80 n = 10 n = 80

1-ary GNN Max 84.0±0.3 64.8±0.0 93.6±0.3 66.1±0.0 72.6±3.6 67.5±0.5 85.6±0.3 75.1±1.9

Sum 84.7±0.1 64.4±0.0 94.3±0.2 66.2±0.0 79.6±0.1 68.3±0.1 87.1±0.3 75.0±0.2

2-ary NLM Max 82.3±0.5 65.6±0.1 93.1±0.0 66.6±0.0 91.2±0.2 51.0±0.6 88.9±2.6 67.1±4.8

Sum 82.9±0.1 64.6±0.1 93.4±0.0 66.7±0.2 96.0±0.4 68.3±0.5 84.0±0.0 71.9±0.0

2-ary GNN Max 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 84.0±0.0 71.9±0.0

Sum 100.0±0.0 35.7±0.0 100.0±0.0 33.9±0.0 100.0±0.0 51.3±5.3 84.0±0.0 71.9±0.0

3-ary NLM Max 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.1

Sum 100.0±0.0 35.7±0.0 100.0±0.0 50.8±29.4 100.0±0.0 77.8±11.8 100.0±0.0 88.2±8.0

3-ary NLMHE
Max 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 N/A N/A N/A N/A
Sum 100.0±0.0 35.7±0.0 100.0±0.0 33.8±29.4 N/A N/A N/A N/A

Table 3: Overall accuracy on relational reasoning problems. Models for family-relationship predic-
tion are trained on n = 20, while models for connectivity problems are trained on n = 10. All model
are tested on n = 80. The standard error of all values are computed based on three random seeds.
The 3-ary NLMs marked with “HE” have hyperedges in inputs, where each family is represented by
a 3-ary hyperedge instead of two parent-child edges, and the results are similar to binary edges.

can be approximated by training NLMs with max aggregation and sigmoidal activation on sufficient695

data.696

We run a case study on the problem connectivity-4 about how the generalization performance changes697

when the test graph size gradually becomes larger. Figure 2 show how these models generalize698

to gradually larger graphs with size increasing from 10 to 80. From the curves we can see that699

only models with sufficient expressiveness can get 100% accuracy on the same size graphs, and700

among them the models using max aggregation generalize to larger graphs with no performance701

drop. 2-ary GNN and 3-ary NLM that use max aggregation have sufficient expressiveness and better702

generalization property. They achieve 100% accuracy on the original graph size and generalize703

perfectly to larger graphs.704
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Figure 2: How the performance of models drop when generalizing to larger graphs on the problem
connectivity-4 (trained on graphs with size 10).
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