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1 Overview

In this supplementary material, we provide additional experimental results and qualitative visual-
izations. Specifically, we demonstrate the impacts of using different off-the-shelf models in Sec. 2,
including 2D detectors and depth estimators. We show that our proposed PCT method achieves
consistent improvements with all configurations. Additional qualitative results are visualized in
Sec. 3. We present both successful predictions and failure cases. Our results suggest that these failure
cases can often come from two aspects, low recall of the 2D detectors and the rotation errors in 3D
box prediction.

2 Additional experiments

In this section, we firstly show the additional results on “Pedestrian” and “Cyclist” categories.Then,
we also conduct complexity analysis to verify the lightweight property of our model. At last, we
would like to demonstrate the impacts of using different 2D detectors and depth estimators on
the performance of 3D detection, which is the first two steps of the coordinate-based methods as
mentioned in Sec. 3 of the main submission. Following the main submission, we conduct the
experiments on the KITTI [6, 7, 5] dataset.

Results on “Pedestrian” and “Cyclist” Non-rigid structures and various shape make it more
challenging for monocular 3D detection to accurately detect “Pedestrian” and “Cyclist”. Most
previous methods [12, 1, 8] fail to demonstrate these two categories results, however, we report
results on these two categories in Table 1 to show the generalization of our PCT. Following [3], we
demonstrate AP11 3D object detection results on KITTI validation set at IoU = 0.5. As illustrated in
Table 1, our method still outperforms the base method PatchNet, benefiting from the more accurate
localization and complementary global context information. Besides, we also achieves a better
performance compared with state-of-the-art pixel-based methods [3, 11].
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Table 3: 3D detection performance on the KITTI validation set. We explore two 2D detectors, one
is from RTM3D [8] and the other is from DDMP-3D [11]. PatchNet [9] is used as baseline, and ∗
denotes our reproduced version. We demonstrate that different 2D detectors will lead to drastically
different 3D detection results, and the performance of 2D detectors is not positively related to the
final 3D detection accuracy.

Methods RTM3D* [AP3D/APBEV] DDMP-3D* [AP3D/APBEV]
Mod. Easy Hard Mod. Easy Hard

PatchNet* [9] 26.31/34.14 36.40/46.80 21.07/28.04 22.16/32.63 33.84/45.64 20.17/27.28
PatchNet* + PCT 27.53/34.65 38.39/47.16 24.44/28.47 25.90/33.70 37.00/46.45 23.57/27.96

Table 4: 3D detection performance on the KITTI validation set. We explore two depth estimators,
DORN and PSMNet. We adopt two baselines, Pseudo-LiDAR [12] and PatchNet [9], ∗ denotes our
reproduced version. We demonstrate that a better depth estimator will lead to better 3D detection
performance. In addition, our proposed PCT is able to achieve consistent improvements.

Methods DORN [AP3D/APBEV] PSMNet [AP3D/APBEV]
Mod. Easy Hard Mod. Easy Hard

Pseudo-LiDAR* [12] 23.04/31.06 32.27/42.45 19.67/25.67 42.01/52.63 58.27/70.91 34.99/44.61
PatchNet* [9] 26.31/34.14 36.40/46.80 21.07/28.04 47.30/56.59 68.88/74.87 39.13/47.80

Pseudo-LiDAR* + PCT 24.43/32.50 34.34/45.35 20.18/26.91 45.31/54.59 61.90/72.96 37.61/45.79
PatchNet* + PCT 27.53/34.65 38.39/47.16 24.44/28.47 48.27/57.11 70.73/80.65 39.97/48.14

Table 1: 3D object detection performance for “Pedes-
trian”/“Cyclist” on KITTI validation set at IoU = 0.5. * denotes
that the method is reproduced by ourselves.

Method Cyclist / Pedestrian
Mod. Easy Hard

D4LCN [3] 4.41 / 11.23 5.85 / 12.95 4.14 / 11.05
DDMP-3D [11] 6.47 / 12.11 4.18 / 14.42 6.27 / 12.05
PatchNet *[12] 11.60 / 12.17 13.76 / 14.55 11.37 / 12.00

PCT 12.28 / 15.31 15.98 / 17.19 12.19 / 13.12

Table 2: Comparison of dif-
ferent model parameters. Our
PCT only introduces marginal
parameters based on PatchNet.

Method Params
DDMP-3D [11] 285.50M

CaDDN [10] 191.24M
PatchNet 48.39M

PatchNet + PCT 51.80M

Complexity analysis In this part, we analyze the complexity of our proposed method. As shown
in Table 2, our proposed PCT only introduces 3.41M extra parameters, which is marginal compared
to the base method PatchNet with 48.39M parameters. This verifies that our proposed PCT is
lightweight, but can achieve better performance than PatchNet.

Besides, we also compare ours to the model sizes of recent pixel-based methods, such as CaDDN [10]
and DDMP-3D [11]. From the table, we can see that our final model (PatchNet + PCT) is far smaller
than pixel-based methods (5x lighter) but achieves competitive performance, which demonstrates that
coordinate-based methods are promising and effective.

Impact of different 2D detectors. Recall in Sec. 6 of the main paper, we point out that different 2D
detectors will directly influence the performance of coordinate-based methods. Here, we still adopt
PatchNet [9] as the baseline, but take 2D detectors from RTM3D [8] (AP2D: 83.69/90.66/67.53) and
DDMP-3D [11] (AP2D: 89.47/90.73/80.60) to generate the regions of interest. The rest steps remain
the same to highlight the impact of using different 2D detectors.

As reported in Table 3, different 2D detectors will lead to a great performance gap. For instance,
our method (last row) can gain 1.63/1.39/0.87 on 3D detection AP (AP3D), switching from the
2D detector in DDMP-3D to the one in RTM3D. Interestingly, we find that the accuracy of the 3D
detector is not positively related to the accuracy of the 2D detector. Hence, how to effectively design
the coordinate-based monocular 3D detection algorithm considering the 2D detector in a unified
framework should be explored further.
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Figure 1: The statistic analysis and comparison on different Localization boosting stage when T = 3.
The second row shows the BEV view and ground truth (black) at corresponding steps.

Impact of different depth estimators. We also explore the generalization of our method with
respect to different depth estimators. Following depth-assisted methods [12, 4], we choose a stereo-
based depth estimation method, PSMNet [2], to extract more accurate depth maps.

As illustrated in Table 4, we can see great performance improvement from using a better depth esti-
mator. This supports our observation that coordinated-based methods mainly suffer from inaccurate
localization. Most importantly, our proposed method PCT can still show obvious improvement even
for a strong baseline.

3 Additional qualitative results

We firstly show the BEV prediction at each step in Figure 1, it can be seen that the predicted box
gradually close to the ground truth box (shown in black), which conforms to the experiment results.

Figure 2 and Figure 3 shows more qualitative results on the KITTI dataset and Waymo open dataset.
The 3D ground-truth boxes, and our method based on PatchNet [9] are drew in green and red,
respectively. As clearly observed in Figure 2, our method can produce high-quality 3D bounding
boxes in various scenarios with different lighting conditions and occlusions, and in various locations
such as cities, residential districts and roads. Additionally, Figure 3 show the excellent results on
large scale dataset, we demonstrate different time of Day in various scenarios: Day, Night, Dust and
Dawn. Different weather conditions under daytimes are also shown, including sun, rain and fog.

Besides, we also illustrate some failure cases in different scenes on KITTI dataset to analyze the
limitations. As shown in Figure 4 (a), the low recall rate of the 2D detector leads to the performance
drop of 3D bounding boxes prediction. For example, the cars are occluded too heavily to be detected
for a 2D detector in the second row of Figure 4 (a), thus the corresponding 3D prediction will
not be performed. Meanwhile, the rotation deviations in Figure 4 (b) also indicate the appearance
misperception. In the case of the last two rows in Figure 4 (b), the occlusion of cars leads to a great
deviation on car rotation prediction. Hence, we believe that off-the-shelf 2D detectors and appearance
information are important factors to consider in future work when designing a 3D detector.
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Figure 2: More qualitative results on the KITTI validation dataset. The 3D ground-truth boxes and our
predictions are drew in green and red, respectively. We demonstrate the results in various scenarios
with different lighting conditions and occlusions, including cities, residential districts and roads.
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Figure 3: More qualitative results on the Waymo validation set with different time of day: Day, Night,
Dust, Dawn and different weather: sun, rain and fog. The ground-truth and our predictions are drew
in green and red, respectively. 5



(a) Bad case in our methods. Low recall rate of the 2D detector is shown.

(b) Bad case in our methods. Rotation errors is obvious in these cases.

Figure 4: Bad cases on the KITTI validation dataset. The 3D ground-truth boxes and our predictions
are drew in green and red, respectively. (a) We show the failure cases of the 2D detector in different
scenarios caused by occlusions, small sizes, etc., which directly influence the accuracy of the 3D
detector. (b) Large rotation errors are caused by appearance misperception.
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