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A PERFORMANCE OF THE CONSIDERED PERCEPTUAL METRICS

Image quality metrics are able to predict visual human perception up to some level. In Table 3 we
show results of the different image quality metrics used in this work (see sec. 2.4) when evaluated
on human rates databases. Although the metrics are not perfect, it is clear that they are a good
proxy of human perception. We show results on a traditional perceptual dataset using large images,
TID2013 (Ponomarenko et al., 2013), and a more recent dataset with smaller images (size 64× 64)
but more distortions as using neural networks based ones, such as super-resolution, BAPPS (Zhang
et al., 2018).

Table 3: Pearson and Spearman correlations with human opinion in TID2013, and agreement with human
judgement (in %) in BAPPS.

MSSSIM NLPD PIM LPIPS DISTS
TID2013
ρp (ρs)

0.78
(0.80)

0.84
(0.80)

0.62
(0.65)

0.74
(0.67)

0.86
(0.83)

BAPPS
(%) 61.7 61.5 64.5 69.2 69.0

B RELEVANCE OF FACTORS USING RANDOM FOREST REGRESSORS

A random forest regression was fit using multiple combinations of the probability-related factors
(see sec. 2.3) to predict the sensitivity of the different image quality metrics used in this work (see
sec. 2.4). A total of 55 combinations were introduced as inputs. Values of feature importance are
normalised so that they sum to 1 for each model for easy comparison. Fig. 5 shows the most relevant
ones selected by the random forest algorithm.

Figure 5: Top 6 feature importance from Random Forest regressors trained on polynomial combinations of the
probabilistic factors in order to predict perceptual sensitivity. A separate model was trained for each perceptual
distance. In the legend we include the Pearson (Spearman) correlation between the predictions and ground truth
for a held out test set 30% of the dataset.

C PARAMETER SELECTION FOR THE FUNCTIONAL FORMS

Here we show the details for the selection of the parameters in Sec. 4. For the one-factor model, we
tried different possibilities on the selected factor log(p(x̃)), details on the correlation of the different
possibilities with sensitivity of perceptual measures are given in Table 4 and Sec 3.4.

For the two-factors model, we took the ones obtained in Sec 4.1 (i.e. b (bias), log(p(x̃)), and
(log(p(x̃)))2), and factors of the standard deviation σx as suggested by the mutual information in
Sec. 3.2. The combinations of the standard deviation have been alone: σx, 1

σx
,σ2

x, and combined

with the probability of the noisy image: log(p(x̃))
σx

, σx

log(p(x̃)) , and log(p(x̃))σx.

There are 9 candidates but we want the most compact and interpretable model. Analysing all the
possible combinations is intractable so we are going to perform an ablation study: we are going
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Table 4: Pearson correlation obtained between the prediction of the model and the sensitivity for different
IQMs. All models are designed using versions of log(p(x̃)) as input factor. The models are simple models
with only one coefficient, S(x, x̃) = w0 + w1 (log(p(x̃)))γ , or polynomials of different degrees (d). The
model Frac* is a special polynomial with exponents: [0.3, 0.2, 0.1, 0, 1, 2, 3].

MSSIM NLPD PIM LPIPS DISTS Mean
One coefficient

γ = 1/10 0.71 0.64 0.66 0.69 0.72 0.68
γ = 1/5 0.71 0.64 0.66 0.69 0.72 0.68
γ = 1/3 0.71 0.64 0.66 0.69 0.72 0.68
γ = 1/2 0.71 0.63 0.66 0.69 0.72 0.68
γ = 2 0.69 0.63 0.64 0.68 0.71 0.67
γ = -1 0.72 0.65 0.66 0.71 0.73 0.69
γ = 1 0.7 0.63 0.65 0.68 0.72 0.68

Polynomials

d = 2 0.76 0.65 0.75 0.76 0.74 0.73
d = 3 0.76 0.65 0.75 0.75 0.74 0.73
d = 6 0.75 0.64 0.73 0.74 0.74 0.72
Frac* 0.76 0.65 0.76 0.76 0.74 0.73

to discard different candidates sequentially starting from the largest model (9 candidates). Besides,
we are going to use LASSO regression with different amounts of regularisation to get models with
different amounts of factors as comparison to the ablation study. Results in Table 5 are shown
in descending number of factors used. For each step, we remove the factor (or factors) that less
influence has in the correlation. Besides, we show the correlation given by LASSO models where
the regularization parameter has been adjusted in order to have the same number of factors. A model
with 6 factors (number 17) has the same correlation (0.81) as the one with all the factors (number 1).
The best trade-off between the number of factors and correlation is for models 25, 26, and 27, with
4 factors and a correlation of 0.79. We chose as our final functional model in Sec. 4.2 the model 25
as its factors involve less computations.
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Table 5: Linear models using different combinations of b (bias), log(p(x̃)) = p and σ(x) = s, where 1
indicates the factor is included in the model, and 0 it is ablated. Models with ∗ in the model number (# M) have
been computed using Lasso and a corresponding regularization parameter in order to have a particular number
of combinations (# C). For the perceptual metrics, the Pearson correlation between the predicted and ground
truth on a test set of CIFAR10 is reported.

b p p2 s s2 1
s

p
s

s
p

ps MSSIM NLPD PIM LPIPS DISTS Mean # C #M
1 1 1 1 1 1 1 1 1 0.85 0.78 0.81 0.81 0.78 0.806 9 1

8 combinations
1 1 1 0 1 1 1 1 1 0.85 0.78 0.8 0.8 0.78 0.802 8 2
1 1 1 1 0 1 1 1 1 0.85 0.78 0.81 0.81 0.78 0.806 8 3
1 1 1 1 1 0 1 1 1 0.85 0.78 0.81 0.81 0.78 0.806 8 4
1 1 1 1 1 1 0 1 1 0.85 0.78 0.81 0.81 0.78 0.806 8 5
1 1 1 1 1 1 1 0 1 0.85 0.78 0.8 0.8 0.78 0.802 8 6
1 1 1 1 1 1 1 1 0 0.85 0.78 0.8 0.8 0.78 0.802 8 7

7 combinations
0 1 1 1 1 1 1 1 0 0.83 0.75 0.77 0.77 0.77 0.778 7 8
1 0 1 1 1 1 1 1 0 0.82 0.78 0.77 0.78 0.77 0.784 7 9
1 1 0 1 1 1 1 1 0 0.82 0.78 0.76 0.77 0.76 0.778 7 10
1 1 1 0 1 1 1 1 0 0.84 0.78 0.8 0.8 0.78 0.8 7 11
1 1 1 1 0 1 1 1 0 0.85 0.78 0.8 0.8 0.78 0.802 7 12
1 1 1 1 1 0 1 1 0 0.85 0.78 0.8 0.8 0.78 0.802 7 13
1 1 1 1 1 1 0 1 0 0.85 0.78 0.8 0.8 0.78 0.802 7 14
1 1 1 1 1 1 1 0 0 0.84 0.78 0.8 0.8 0.78 0.8 7 15
0 1 1 1 1 1 1 0 1 0.84 0.79 0.78 0.8 0.78 0.798 7 16*

6 combinations
1 1 1 1 0 0 0 1 1 0.85 0.78 0.81 0.81 0.78 0.806 6 17
0 1 1 0 1 1 1 0 1 0.84 0.79 0.78 0.8 0.78 0.798 6 18*

5 combinations
1 0 1 1 0 0 0 1 1 0.84 0.78 0.78 0.79 0.77 0.792 5 19
1 1 0 1 0 0 0 1 1 0.84 0.78 0.78 0.79 0.77 0.792 5 20
1 1 1 0 0 0 0 1 1 0.84 0.78 0.8 0.8 0.78 0.8 5 21
1 1 1 1 0 0 0 0 1 0.84 0.78 0.8 0.8 0.78 0.8 5 22
1 1 1 1 0 0 0 1 0 0.84 0.78 0.8 0.8 0.78 0.8 5 23
0 1 1 0 0 1 1 0 1 0.83 0.79 0.78 0.8 0.78 0.796 5 24*

4 combinations
1 1 1 1 0 0 0 0 0 0.83 0.78 0.77 0.78 0.77 0.786 4 25
1 1 1 0 0 0 0 1 0 0.83 0.78 0.78 0.78 0.77 0.788 4 26
1 1 1 0 0 0 0 0 1 0.83 0.78 0.77 0.78 0.77 0.786 4 27
1 1 0 0 0 0 0 1 1 0.8 0.78 0.72 0.74 0.76 0.76 4 28
1 0 1 0 0 0 0 1 1 0.79 0.77 0.7 0.73 0.75 0.748 4 29
0 1 1 1 0 0 0 1 0 0.76 0.65 0.75 0.76 0.74 0.732 4 30
1 0 1 1 0 0 0 1 0 0.79 0.77 0.7 0.72 0.75 0.746 4 31
1 1 0 1 0 0 0 1 0 0.8 0.77 0.71 0.74 0.75 0.754 4 32
0 1 1 0 0 0 1 0 1 0.83 0.79 0.78 0.76 0.77 0.786 4 33*

3 combinations
1 1 1 0 0 0 0 0 0 0.76 0.65 0.75 0.76 0.74 0.732 3 34
1 1 0 0 0 0 0 1 0 0.79 0.77 0.69 0.72 0.75 0.744 3 35
1 1 0 0 0 0 0 0 1 0.78 0.77 0.68 0.71 0.75 0.738 3 36
1 1 0 1 0 0 0 0 0 0.79 0.77 0.69 0.71 0.75 0.742 3 37
1 0 1 0 0 0 0 0 1 0.78 0.77 0.68 0.7 0.74 0.734 3 38
1 0 1 0 0 0 0 1 0 0.78 0.77 0.68 0.71 0.74 0.736 3 39
1 0 1 1 0 0 0 0 0 0.78 0.77 0.68 0.71 0.74 0.736 3 40
1 0 0 0 0 0 0 1 1 0.73 0.75 0.62 0.65 0.7 0.69 3 41
1 0 0 1 0 0 0 1 0 0.74 0.75 0.62 0.65 0.7 0.692 3 42
1 0 0 1 0 0 0 0 1 0.73 0.75 0.61 0.64 0.7 0.686 3 43
0 0 1 0 0 0 1 0 1 0.8 0.78 0.73 0.72 0.75 0.756 3 44*

2 combinations
1 1 0 0 0 0 0 0 0 0.7 0.63 0.65 0.68 0.72 0.676 2 45
1 0 1 0 0 0 0 0 0 0.69 0.63 0.64 0.68 0.71 0.67 2 46
1 0 0 1 0 0 0 0 0 0.43 0.52 0.29 0.28 0.3 0.364 2 47
1 0 0 0 0 0 0 1 0 0.34 0.43 0.21 0.2 0.2 0.276 2 48
1 0 0 0 0 0 0 0 1 0.51 0.59 0.36 0.36 0.38 0.44 2 49
0 0 1 0 0 0 1 0 0 0.71 0.76 0.68 0.71 0.74 0.72 2 50*
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Table 6: Coefficients for the Eq. 3 for each metric, and each weight normalised by w0 in order to compare
between metrics.

Coefs MSSIM NLPD PIM LPIPS DISTS Mean
w0 29.5 65 15400 198 161
w1 4.9× 10−3 9.5× 10−3 2.62 3.33× 10−2 2.58× 10−2

w2 2.05× 10−7 3.62× 10−7 1.11× 10−4 1.41× 10−6 1.05× 10−6

w0/w0 1 1 1 1 1 1
w1/w0 1.66× 10−4 1.46× 10−4 1.70× 10−4 1.68× 10−4 1.60× 10−4 1.62× 10−4

w2/w0 6.94× 10−9 5.57× 10−9 7.21× 10−9 7.12× 10−9 6.52−×10−9 6.67× 10−9

Table 7: Coefficients for the Eq. 4 for each metric, and each weight normalised by w0 in order to compare
between metrics.

Coefs MSSIM NLPD PIM LPIPS DISTS Mean
w0 28 58 15100 194 156
w1 4.69× 10−3 8.19× 10−3 2.57 3.26× 10−2 2.49× 10−2

w2 1.96× 10−7 3.09× 10−7 1.09× 10−4 1.37× 10−6 1.00× 10−6

w3 −0.597 −3.74 −141 −1.93 −2.54
w0/w0 1 1 1 1 1 1
w1/w0 1.68× 10−4 1.41× 10−4 1.70× 10−4 1.68× 10−4 1.60× 10−4 1.61× 10−4

w2/w0 7.00× 10−9 5.33× 10−9 7.22× 10−9 7.06× 10−9 6.41× 10−9 6.6× 10−9

w3/w0 −0.021 −0.064 −0.0093 −0.0010 −0.016 −0.024

D COEFFICIENTS OF THE FUNCTIONAL FORMS

In Sec. 4 we propose Eqs. 3 and 4 as estimators of the perceptual sensitivity for 1- and 2-factor
models respectively. In Tables 6 and 7 we give the actual weights obtained in the experiments for
each distance.

Each metric has a different interpretation of the sensitivity units, therefore the weights (coefficients)
of the proposed equations are different for each measure. However, note that the proportion of the
coefficients for each probability factor are very similar. Actually by normalizing the coefficients by
the bias (b) the normalized coefficients are very similar (see Tables 6 and 7).

By simply taking the mean of each normalized coefficient for the six metrics we get the last column
which is a set of coefficients that can be use to predict the sensitivity for each metric (up to the
normalizing factor which does not affecto to the correlatiobn). The Pearson correlations using the
models with the Mean coefficients are shown in Table 8. These simple and general models get very
good correlation with the sensitivity of all the metrics simultaneously.

As a summary, if one takes one of the models in eqs. 3 or 3, using the coefficients in the mean
column in Tables 6 or 7 respectively, can get a good estimation of the sensitivity of a perceptual
measure.

Table 8: Pearson correlations obtained using a single set of coefficients (”Mean” column in Tables 6 and 7)
for the 1F and 2F models. Pearson for coefficients fitted for each particular metric are given for comparison
(correlations are the same as in Table 4 row d = 2) for 1F, and Table 5 first row 4 combinations.

MSSIM NLPD PIM LPIPS DISTS
Mean coefficients 1F 0.75 0.64 0.73 0.75 0.74
Specific coefficients 1F 0.76 0.65 0.75 0.76 0.74
Mean coefficients 2F 0.82 0.76 0.75 0.76 0.77
Specific coefficients 2F 0.83 0.78 0.77 0.78 0.77
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E PIXELCNN++ SMOOTHNESS

While in the original PixelCNN++ paper authors talk about PDF as the magnitude estimated by the
model Salimans et al. (2017), there are some parts of the model that perform a kind of quantisation.
one can wonder if this quantisation can affect the experiments. In Fig. 6 we show the probability
of an image with an increasing level of standard deviation for the noise, we kept the noise pattern
constant (i.e. fixed seed) but we modify the magnitude of the noise. While at extremely low levels
the effect of the quantisation is noticeable, at very low and low level of noise the estimations vary
softly. As a reference we show the level of noise analysed in this work, it is really far from the
quantisation region.

Figure 6: Probability estimations and the corresponding rmse between the original and the distorted
image using uniform noise. We use a fixed image and the same noise pattern but we increase the
magnitude of the noise, the red line marks the level of noise used in our experiments. Left: full
plot, the red line is the noise we add throughout the paper. Middle: details at extremely low level of
noise (quantisation effect is visible). Right: details at very low level of noise (quantisation effect is
negligible).

F PERCEPTUAL TESTS ON THE MODEL

Here we show the stimuli used for both perceptual tests performed using the proposed models and
the schematic for the perceptual experiments.

Figure 7: Stimuli for the perceptual tests of the proposed model. (left) Gratings are generated
at wavelengths that can be accurately shown in a 32 × 32 spatial size, generated at contrasts of
[0.2, 0.4, 0.7]. (right) Shows one example of editing an image from the CIFAR10 dataset to vary
contrast of [0.2, 0.4, 0.7] and luminance values in [60, 140].
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Figure 8: Schematic describing the perceptual experiments 1 and 2.
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