
Under review as a conference paper at ICLR 2021

APPENDIX

In the appendix, we provide additional related work on gradient-based adversarial attack methods,
adversarial training methods and typical generative adversarial nets. Then we describe how to obtain
the original generator and provide theoretical analysis, as well as experimental details and additional
results. In the end, we visualize the examples generated by original GAN and AT-GAN.

A ADDITIONAL RELATED WORK

A.1 GRADIENT-BASED ATTACKS

Numerous adversarial attacks have been proposed in recent years (Carlini & Wagner, 2017; Liu et al.,
2017; Bhagoji et al., 2017; Li et al., 2019). In this part, we will introduce three typical adversarial
attack methods. Here the components of all adversarial examples are clipped in [0, 1].

Fast Gradient Sign Method (FGSM). FGSM (Goodfellow et al., 2015) adds perturbation in the
gradient direction of the training loss J on the input x to generate adversarial examples.

xadv = x+ ε · sign(∇xJ(θ, x, ytrue)),

where ytrue is the true label of a sample x, θ is the model parameter and ε specifies the `∞ distortion
between x and xadv .

Projected Gradient Descent (PGD). PGD adversary (Madry et al., 2018) is a multi-step variant of
FGSM, which applies FGSM for k iterations with a budget α.

xadvt+1 = clip(xadvt+αsign(∇xJ(θ, xadvt , ytrue)), xadvt − ε, xadvt + ε)

xadv0 = x, xadv = xadvk

Here clip(x′, p, q) forces its input x′ to reside in the range of [p, q].

Rand FGSM (R+FGSM). R+FGSM (Tramèr et al., 2018) first applies a small random perturbation
on the benign image with a parameter α (α < ε), then it uses FGSM to generate an adversarial
example based on the perturbed image.

xadv = x′ + (ε− α) · sign(∇x′J(θ, x′, ytrue)) where x′ = x+ α · sign(N (0, I)).

A.2 ADVERSARIAL TRAINING

There are many defense strategies, such as detecting adversarial perturbations (Metzen et al., 2017),
obfuscating gradients (Buckman et al., 2018; Guo et al., 2018) and eliminating perturbations (Shen
et al., 2017; Liao et al., 2018), among which adversarial training is the most effective method (Athalye
et al., 2018). We list several adversarial training methods as follows.

Adversarial training. Goodfellow et al. (2015) first introduce the method of adversarial training,
where the standard loss function f for a neural network is modified as:

J̃(θ, x, ytrue) = αJf (θ, x, ytrue) + (1− α)Jf (θ, xadv, ytrue).

Here ytrue is the true label of a sample x and θ is the model’s parameter. The modified objective is
to make the neural network more robust by penalizing it to count for adversarial samples. During
the training, the adversarial samples are calculated with respect to the current status of the network.
Taking FGSM for example, the loss function could be written as:

J̃(θ, x, ytrue) =αJf (θ, x, ytrue) + (1− α)Jf (θ, x+ εsign(∇xJ(θ, x, ytrue)), ytrue).

Ensemble adversarial training. Tramèr et al. (2018) propose an ensemble adversarial training
method, in which DNN is trained with adversarial examples transferred from a number of fixed
pre-trained models.

Iterative adversarial training. Madry et al. (2018) propose to train a DNN with adversarial examples
generated by iterative methods such as PGD.

13

Under review as a conference paper at ICLR 2021

A.3 GENERATIVE ADVERSARIAL NET

Generative Adversarial Net (GAN) (Goodfellow et al., 2014) consists of two neural networks, G and
D, trained in opposition to each other. The generator G is optimized to estimate the data distribution
and the discriminator D aims to distinguish fake samples from G and real samples from the training
data. The objective of D and G can be formalized as a min-max value function V (G,D):

min
G

max
D

V (G,D) = Ex∼px [logD(x)] + Ez∼pz [log(1−D(G(z)))].

Deep Convolutional Generative Adversarial Net (DCGAN) (Radford et al., 2016) is the convolutional
version of GAN, which implements GAN with convolutional networks and stabilizes the training
process. Auxiliary Classifier GAN (AC-GAN) (Odena et al., 2017) is another variant that extends
GAN with some conditions by an extra classifier C. The objective function of AC-GAN can be
formalized as follows:

min
G

max
D

min
C

V (G,D,C) =Ex∼px [logD(x)] + Ez∼pz [log(1−D(G(z, ys)))]

+ Ex∼px [log(1− C(x, ys))] + Ez∼pz [log(1− C(G(z, ys), ys))].

To make GAN more trainable in practice, Arjovsky et al. (2017) propose Wasserstein GAN (WGAN)
that uses Wassertein distance so that the loss function has more desirable properties. Gulrajani et al.
(2017) introduce WGAN with gradient penalty (WGAN_GP) that outperforms WGAN in practice.
Its objective function is formulated as:

min
G

max
D

V (D,G) = Ex∼px [D(x)]− Ez∼pz [D(G(z))]− λEx̂∼px̂ [(‖∇x̂D(x̂)‖2 − 1)2],

where px̂ is uniformly sampled along straight lines between pairs of points sampled from the data
distribution px and the generator distribution pg .

B TRAINING THE ORIGINAL GENERATOR

Figure 2 (a) illustrates the overall architecture of AC-WGAN_GP that we used as the normal GAN.
AC-WGAN_GP is the combination of AC-GAN (Odena et al., 2017) and WGAN_GP (Gulrajani
et al., 2017), composed by three neural networks: a generator G, a discriminator D and a classifier
f . The generator G takes a random noise z and a source label ys as the inputs and generates an
image G(z, ys). It aims to generate an image G(z, ys) that is indistinguishable to discriminator D
and makes the classifier f to output label ys. The loss function of G can be formulated as:

LG = Ez∼pz(z)[H(f(G(z, ys)), ys)]− Ez∼pz(z)[D(G(z, ys))].

Here H(a, b) is the entropy between a and b. The discriminator D takes the training data x or the
generated data G(z, ys) as the input and tries to distinguish them. The loss function of D with
gradient penalty for samples x̂ ∼ px̂ can be formulated as:

LD = −Ex∼pdata(x)[D(x)] + Ez∼pz(z)[D(G(z, ys))] + λEx̂∼px̂(x̂)[(‖∇x̂D(x̂)‖2 − 1)2].

The classifier f takes the training data x or the generated data G(z, ys) as the input and predicts the
corresponding label. The loss function is:

Lf =Ex∼pdata(x)[H(f(x), ytrue)] + Ez∼pz(z)[H(f(G(z, ys)), ys)].

Different from AC-WGAN_GP, styleGAN2-ada (Karras et al., 2020a) trains styleGAN2 (Karras
et al., 2020b) with adaptive discriminator augmentation. We obtain the network and weights from
Karras et al. (2020a).

C THEORETICAL ANALYSIS OF AT-GAN

In this section, we provide proofs for theorems in Section 3.3.
Theorem 1. Suppose maxz,y L2 < ε, we have KL(pa‖pg)→ 0 when ε→ 0.

14

Under review as a conference paper at ICLR 2021

Proof. We first consider that for a distribution p(x) in space X , we construct another distribution q(x)
by selecting points pε(x) in the ε-neighborhood of p(x) for any x ∈ X . Obviously, when pε(x) is
close enough to p(x), q(x) has almost the same distribution as p(x). Formally, we have the following
lemma.

Lemma 1. Given two distributions P and Q with probability density function p(x) and q(x) in
space X , if there exists a constant ε that satisfies ‖q(x) − p(x)‖ < ε for any x ∈ X , we could get
KL(P‖Q)→ 0 when ε→ 0.

Proof. For two distributions P and Q with probability density function p(x) and q(x), we could get
q(x) = p(x) + r(x) where ‖r(x)‖ < ε.

KL(P‖Q) =

∫
p(x) log

p(x)

q(x)
dx

=

∫
p(x) log p(x)dx−

∫
p(x) log q(x)dx

=

∫
(q(x)− r(x)) log p(x)dx−

∫
(q(x)− r(x)) log q(x)dx

=

∫
q(x) log p(x)dx−

∫
q(x) log q(x)dx−

∫
r(x) log p(x)dx+

∫
r(x) log q(x)dx

=

∫
r(x) log

q(x)

p(x)
dx−KL(Q‖P)

≤
∫
ε log(1 +

ε

p(x)
)dx

Obviously, when ε→ 0, we could get
∫
ε log(1 + ε

p(x))dx→ 0, which means DL(P‖Q)→ 0.

Now, we get back to Theorem 1. For two distributions pa and pg, maxy,z L2 < ε indicates ∀z ∼
pz, ‖pa(z, ·)− pg(z, ·)‖ < ε. According to Lemma 1, we have KL(pa‖pg)→ 0 when ε→ 0. This
concludes the proof.

Theorem 2. The global minimum of the virtual training of AC-WGAN_GP is achieved if and only
if pg = pdata.

Proof. To simplify the analysis, we choose a category y of AC-WGAN_GP and denote pg(x|y) and
pdata(x|y) the distribution that the generator learns and the distribution of real data respectively.
Then for each category, the loss function is equivalent to WGAN_GP. We refers to Samangouei et al.
(2018) to prove this property. The WGAN_GP min-max loss is given by:

min
G

max
D

V (D,G) = Ex∼pdata(x)[D(x)]− Ez∼pz(z)[D(G(z))]− λEx̂∼px̂(x̂)[(‖∇x̂D(x̂)‖2 − 1)2]

=

∫
x

pdata(x)D(x)dx−
∫
z

pz(z)D(G(z))dz − λ
∫
x̂

px̂(x̂)[(‖∇x̂D(x̂)‖2 − 1)2]dx̂

=

∫
x

[pdata(x)− pg(x)]D(x)dx− λ
∫
x̂

px̂(x̂)[(‖∇x̂D(x̂)‖2 − 1)2]dx̂

(5)

For a fixed G, the optimal discriminator D that maximizes V (D,G) should be:

D∗G(x) =

{
1 if pdata(x) ≥ pg(x)
0 otherwise (6)

According to equation 5 and equation 6, we could get:

V (D,G) =

∫
x

[pdata(x)− pg(x)]D(x)dx− λ
∫
x̂

px̂(x̂)[(‖∇x̂D(x̂)‖2 − 1)2]dx̂

=

∫
{x|pdata(x)≥pg(x)}

(pdata(x)− pg(x))dx− λ
∫
x̂

px̂(x̂)dx̂

=

∫
{x|pdata(x)≥pg(x)}

(pdata(x)− pg(x))dx− λ

(7)

15

Under review as a conference paper at ICLR 2021

Let X = {x|pdata(x) ≥ pg(x)}, in order to minimize equation 7, we set pdata(x) = pg(x) for any
x ∈ X . Then, since both pg and pdata integrate to 1, we could get:∫

X c

pg(x)dx =

∫
X c

pdata(x)dx.

However, this contradicts equation 6 where pdata(x) < pg(x) for x ∈ X c, unless µ(X c) = 0 where
µ is the Lebesgue measure.

Therefore, for each category we have pg(x|y) = pdata(x|y), which means pg(x) = pdata(x) for
AC-WGAN_GP.

D ADDITIONAL DETAILS ON EXPERIMENTS

In this section, we provide more details on experimental setup, report results on transferability, do
ablation study on hyper-parameters, investigate the generating capacity by human evaluation, and
show details for another implementation of AT-GAN on CIFAR-10 dataset. In the end, we illustrate
some non-constrained adversarial examples generated by AT-GAN on MNIST, Fashion-MNIST and
CelebA for the target attack.

D.1 MORE EXPERIMENTAL SETUP

We first provide more details on the experimental setup, including the model architectures and attack
hyper-parameters.

Model Architectures for AT-GAN. We first describe the neural network architectures used for
AT-GAN in experiments. The abbreviations for components in the network are described in Ta-
ble 4. The architecture of AC-WGAN_GP for MNIST and Fashion-MNIST is shown in Table 5
where the generator and discriminator are the same as in Chen et al. (2016), while the architecture
of AC_WGAN_GP for CelebA is the same as in Gulrajani et al. (2017) and the architecture of
styleGAN2-ada for CIFAR-10 is the same as in Karras et al. (2020a).

Hyper-parameters for Attacks. The hyper-parameters used in experiments for each attack method
are described in Table 6 for MNIST, Fashion-MNIST and CelebA datasets. For CIFAR-10 dataset,
we set ε = 0.03 for FGSM, ε = 0.03, α = 0.0075 and epochs= 20 for PGD, α = 3, β = 2 and
epochs= 1, 000 for AT-GAN.

Table 4: Abbreviations for network architectures.

Abbreviation Description

Conv(m, k × k) A convolutional layer with m filters and filter size k
DeConv(m, k × k) A transposed convolutional layer with m filters and filter size k

Dropout(α) A dropout layer with probability α
FC(m) A fully connected layer with m outputs

Sigmoid The sigmoid activation function
Relu The Rectified Linear Unit activation function

LeakyRelu(α) The Leaky version of a Rectified Linear Unit with parameter α
Maxpool(k,s) The maxpooling with filter size k and stride s

D.2 TRANSFERABILITY OF AT-GAN

Another important issue for adversarial examples is the transferability across different models. To
demonstrate the transferability of non-constrained adversarial examples, we use adversarial examples
generated by attacking Model A (MNIST and Fashion-MNIST) and CNN (CelebA), to evaluate the
attack success rates on Model C (MNIST and Fashion-MNIST) and VGG16 (CelebA). As shown in
Table 7, non-constrained adversarial examples generated by AT-GAN exhibit moderate transferability.

16

Under review as a conference paper at ICLR 2021

Table 5: Architecture of WGAN_GP with auxiliary classifier for MNIST and Fashion-MNIST.

Generator Discriminator Classifier

FC(1024) + Relu Conv(64, 4× 4) + LeakyRelu(0.2) Conv(32, 3× 3) + Relu
FC(7× 7× 128) + Relu Conv(128, 4× 4) + LeakyRelu(0.2) pooling(2, 2)

DeConv(64, 4× 4) + Sigmoid FC(1024) + LeakyRelu(0.2) Conv(64, 3× 3) + Relu
DeConv(1, 4× 4) + Sigmoid FC(1) + Sigmoid pooling(2, 2)

FC(1024)
Dropout(0.4)

FC(10) + Softmax

Table 6: Hyper-parameters of different attack methods on MNIST, Fashion-MNIST and CelebA.

Attack Datasets

MNIST Fashion-MNIST CelebA Norm

FGSM ε = 0.3 ε = 0.1 ε = 0.015 `∞
PGD ε = 0.3, α = 0.075, epochs = 20 ε = 0.1, α = 0.01, epochs = 20 ε = 0.015, α = 0.005, epochs = 20 `∞

R+FGSM ε = 0.3, α = 0.15 ε = 0.2, α = 0.1 ε = 0.015, α = 0.003 `∞
Song’s λ1 = 100, λ2 = 0, epochs = 200 λ1 = 100, λ2 = 0, epochs = 200 λ1 = 100, λ2 = 100, epochs = 200 N/A

AT-GAN α = 2, β = 1, epochs = 100 α = 2, β = 1, epochs = 100 α = 3, β = 2, epochs = 200 N/A

Table 7: Transferability of non-constrained adversarial examples and other search-based adversarial
examples on three datasets. For MNIST and Fashion-MNIST, we attack Model C with adversarial
examples generated on Model A. For CelebA dataset, we attack VGG16 using adversarial examples
generated on CNN. Numbers represent the attack success rate (%).

MNIST Fashion-MNIST CelebA

Nor. Adv. Ens. Iter. Adv. Nor. Adv. Ens. Iter. Adv. Nor. Adv. Ens. Iter. Adv.

FGSM 46.7 4.2 1.7 4.6 68.9 23.1 20.8 14.8 15.6 4.3 3.3 4.1
PGD 97.5 6.5 4.1 4.1 84.7 27.6 39.6 14.6 18.3 4.3 3.1 4.1

R+FGSM 82.3 6.7 4.8 4.1 21.2 32.1 17.5 26.3 11.0 4.0 3.3 3.8
Song’s 23.8 20.8 20.6 20.1 39.2 34.0 31.5 30.3 9.6 31.8 21.5 38.8

AT-GAN 65.3 24.6 27.9 17.2 58.0 22.7 32.0 15.2 63.7 15.4 16.5 17.6

D.3 ABLATION STUDY

In this subsection, we investigate the impact of using different ρ in the loss function. As ρ could be
constrained by both `0 and `∞ norm, we test various bounds, using Model A on MNIST dataset, for
ρ in `0 and `∞, respectively.

We first fix ‖ρ‖∞ = 0.5 and try various values for ‖ρ‖0, i.e. 0, 100, 200, 300, 400 (the maximum
possible value is 784 for 28*28 input). The attack success rates are in Table 8. We can observe that
different values of ‖ρ‖0 only have a little impact on the attack success rates, and the performances are
very close for ‖ρ‖0 = 0, 100, 200. Figure 5 further illustrates some generated adversarial examples,
among which we can see that there exist some slight differences on the examples. When ‖ρ‖0 = 0,
AT-GAN tends to change the foreground (body) of the digits. When we increase the value of ‖ρ‖0
(100 and 200), AT-GAN is more likely to add tiny noise to the background and the crafted examples
are more realistic to humans (for instance, smoother on digit 4). But if we continue to increase ‖ρ‖0
(300 or 400), AT-GAN tends to add more noise and the quality of the generated examples decays. To
have a good tradeoff on attack performance and generation quality, we set ‖ρ‖0 = 200.

Table 8: Attack success rate (ASR, %) of AT-GAN with various values for ‖ρ‖0 using Model A on
MNIST dataset.

‖ρ‖0 0 100 200 300 400

ASR 98.9 98.8 98.7 96.7 95.8

We then fix ‖ρ‖0 = 200 and test different values for ‖ρ‖∞, i.e. 0, 0.1, 0.2, 0.3, 0.4, 0.5 (the maximum
possible value is 1). The attack success rates are in Table 9. We can observe that different values of

17

Under review as a conference paper at ICLR 2021

Figure 5: The adversarial examples generated by AT-GAN for various values of ‖p‖0.

‖ρ‖∞ have very little impact on the attack performance. Figure 6 further illustrates some generated
adversarial examples, among which we can see that a little bit more noises are added for bigger
‖ρ‖∞ but the differences are very tiny when ‖ρ‖∞ = 0.2 to 0.5. So we simply set ‖ρ‖∞ = 0.5 in
experiments, but other values of ‖ρ‖∞ (0.2, 0.3, 0.4) also work.

Table 9: Attack success rate (ASR, %) of AT-GAN with various values for ‖ρ‖∞ using Model A on
MNIST dataset.

‖ρ‖∞ 0 0.1 0.2 0.3 0.4 0.5

ASR 98.9 99.2 98.9 98.9 98.9 98.7

Figure 6: The adversarial examples generated by AT-GAN for various values of ‖p‖∞.

D.4 HUMAN EVALUATION

To investigate the generating capacity of AT-GAN, we use the same input, and randomly pick 100
images for each category of MNIST generated by AT-GAN and the original generator, respectively.
We then conduct human evaluation to determine whether each example is realistic. The evaluation
results are in Table 10. We see that adversarial examples in some categories (e.g. 2, 4) are harder to
be semantically meaningful than other categories (e.g. 0, 1). On average, however, the generating
capability is close to that of the original generator.

Table 10: The evaluation results on the percentage of realistic images by human evaluation.

Category 0 1 2 3 4 5 6 7 8 9 Average

Original 100.0 100.0 93.0 94.0 98.0 96.0 99.0 100.0 98.0 100.0 97.8
AT-GAN 100.0 100.0 85.0 91.0 80.0 90.0 97.0 98.0 92.0 100.0 93.3

D.5 AT-GAN ON CIFAR-10 DATASET

To further demonstrate the flexibility of AT-GAN, we implement AT-GAN on CIFAR-10 dataset using
StyleGAN2-ada (Karras et al., 2020a), a recently proposed conditional GAN. The target classifier
is wide ResNet w32-10 (Zagoruyko & Komodakis, 2016) by normal training (Nor.) and Iterative
adversarial training (Iter.). The attack success rates are in Table 11. On normally trained models,
PGD achieves the attack success rate of 100% while AT-GAN achieves the attack success rate of
93.5%. However, the adversarially trained model exhibits little robustness against AT-GAN and
AT-GAN achieves attack success rate of 73.0%. In Figure 7, we illustrate some generated adversarial
examples on CIFAR-10 dataset.

Table 11: Attack success rate (%) of adversarial examples generated by FGSM, PGD and AT-GAN
against wide ResNet w32-10 by normal training (Nor.) and iterative adversarial training (Iter.).

Model FGSM PGD AT-GAN

Nor. 92.3 100.0 93.5
Iter. 49.2 54.6 73.0

18

Under review as a conference paper at ICLR 2021

D.6 AT-GAN ON TARGET ATTACK

Here we show some non-constrained adversarial examples generated by AT-GAN for the target attack.
The results are illustrated in Figure 8 for MNIST and Fashion-MNIST, and Figure 9 for CelebA.
Instead of adding perturbations to the original images, AT-GAN transfers the generative model (GAN)
so that the generated adversarial instances are not in the same shape of the initial examples (in
diagonal) generated by the original generator. Note that for CelebA, the target adversarial attack is
equivalent to the untarget adversarial attack as it is a binary classification task.

Figure 7: The adversarial examples generated by AT-GAN on CIFAR-10 dataset.

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Target Classification

So
ur
ce
 C
la
ss
ifi
ca
tio
n

(a) MNIST

T-shirt

Trouser

Pullover

Dress

Coat

Sandal

Shirt

Sneaker

Bag

Ankle boot

T-
sh

irt

Tr
ou

se
r

Pu
llo

ve
r

D
re

ss

C
oa

t

Sa
nd

al

Sh
irt

Sn
ea

ke
r

Ba
g

An
kl

e
bo

ot

So
ur

ce
 C

la
ss

ifi
ca

tio
n

Target Classification

(b) Fashion-MNIST

Figure 8: Adversarial examples generated by AT-GAN to various targets with the same random noise
input for each row. The images on the diagonal are generated by Goriginal which are not adversarial
examples and treated as the initial instances for AT-GAN.

Figure 9: Adversarial examples generated by AT-GAN on CelebA dataset for the target attack.

19

Under review as a conference paper at ICLR 2021

E VISUALIZATIONS FOR THE ORIGINAL GAN AND AT-GAN

Here we provide some instances generated by the original GAN and AT-GAN with the same input
noise and their difference on MNIST and Fashion-MNIST. The results are depicted in Figure 10
and 11. For different input noise, both the original GAN and AT-GAN output different instances.
For each category with the same input noise, the difference between original GAN and AT-GAN is
mainly related to the main content of image. For two different input noises, the differences between
the original GAN and AT-GAN are not the same with each other, indicating that AT-GAN learns
a distribution of adversarial examples different from the original GAN rather than just adds some
universal perturbation vectors on the original GAN.

Figure 10: The instances generated by the original GAN and AT-GAN with the same input on MNIST.
First row: the output of original GAN. Second row: the output of AT-GAN. Third row: The difference
between the above two rows.

Figure 11: The instances generated by the original GAN and AT-GAN with the same input on
Fashion-MNIST. First row: the output of original GAN. Second row: the output of AT-GAN. Third
row: The difference between the above two rows.

20

	Additional Related Work
	Gradient-based Attacks
	Adversarial Training
	Generative Adversarial Net

	Training the Original Generator
	Theoretical Analysis of AT-GAN
	Additional Details on Experiments
	More Experimental Setup
	Transferability of AT-GAN
	Ablation Study
	Human Evaluation
	AT-GAN on CIFAR-10 Dataset
	AT-GAN on Target Attack

	Visualizations for the Original GAN and AT-GAN

