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A EXPERIMENT SETUP

A.1 DATASETS

We use two benchmark datasets in the experiments, FashionMNIST (FMNIST) and CIFAR10, both
consisting of 10 classes of data. The samples are divided into a training set with 70% data, and a testing set
with 30% data. The data samples are distributed to 50 clients. To make the data distribution heterogeneous,
we assign different classes of data to the clients. For FMNIST, each client has the data from 4 classes,
and for CIFAR10, each client only has the data from 2 classes.

Table 4: Detailed information about datasets

DATASET ALL SAMPLES  TRAINING SET TEST SET SAMPLES PER CLIENT CLASSES PER CLIENT

FMNIST 70000 49000 21000 1400 4
CIFAR10 60000 42000 18000 1200 2

A.2 MODEL AND HYPER-PARAMETERS

The model for both datasets is a 5-layer CNN model, consisting of two convolutional layers, each followed
by a 2 x 2 max pooling layers, and two fully connected layers with 1024 neurons, and finally a softmax
layer as classifier. The first four layers are considered as the feature extractor for FedRep, FedBabu,
FedPAC, FedCR, FedReCo.

For the hyper-parameters in different algorithms, we set the same learning rates as 0.01, and batch size
as 48. In the local training, the standard gradient clipping is used with a maximum norm 10. For FedReCo,
we use the same learning rate for feature extractor and prediction head as 0.01, and 0.001 for the global
feature extractor. The \ in the regularization term is 0.01. For Ditto, the A is set as 0.01. For FedPAC,
the A is set to 1. For FedCR, the 3 is set as 0.001.

A.3 DIFFERENTIAL PRIVACY

Here we describe how we add Gaussian noise to FedReCo and FedAvg algorithms for privacy. We aim to
use local differential privacy to protect the information from client to the server, to reduce the risk that the
server infers the local data in clients. Let us first, give a formal definition of (¢,0)-local differential privacy.

Definition 1. Let .4 be a randomized algorithm that takes a client’s private data as input. Let im(.A)
denote the image of .A. The algorithm A is said to provide (¢,0)-local differential privacy if, for all pairs
of clients’ possible private data = and 2’ and all subsets S of im(.A):

Pr[A(z) € S]<e xPr[A(z") € S]+0

In the experiments we apply the standard Gaussian mechanism to add \(0,02) noise to each element
of the transmitted vector, where

o= \/2111(1.25/5)%

and @ is the sensitivity of the function to be added the noise. In the training of neural network, the sensitivity
is the maximum norm of the gradients|Abadi et al.|(2016) and is given by gradient clipping. In the local
training, the gradients are clipped with a maximum norm, which is used as sensitivity in differential privacy.

FedReCo. Each client needs to transmit stochastic gradient V H; (u;,uo) to the server in one communi-
cation round. The clients add Gaussian noise to the stochastic gradient and send it to server. The server
then aggregates the perturbed stochastic gradients, and also clips it within maximum norm to update the
global feature extractor ug. The update of uy is

M

1 ~
O (VH G ) o))
=1

t+1_ ¢ .
ug - =ug—"noClip

where ¢! is the Gaussian noise, maximum norm (for clipping) is 10 for all the clients and server.
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FedAvg. In FedAvg, at each communication round, one client receives the global model wt from the server
and performs multiple local SGD steps to update the local model w;. Then it sends the model difference
Al =w! fwa to the server. The model difference can be seen as a gradient to update the global model
in (generalized) FedAvg. Now the client adds the Gaussian noise to the model difference and sends it
to the server. Then the server aggregates the model difference and clips it to maximum norm to update
the model. The update of global model is

M

1
MZ(Af‘Fgf)

i=1

t+1

Wt =w' —Clip

where gf is the Gaussian noise, maximum norm is 10 for all the clients and server.

B PROOF OF FEDRECO CONVERGENCE

B.1 PROOF OUTLINE OF THEOREM[]

In this section we give a proof of the Theorem[I} Some detailed proofs of technical lemmas can be found
in the following sections.

The proof starts from the smoothness of the cost function F'(U?,V* uf). There are three groups of parame-
ters to be updated, thus we break the cost function as three parts and use the smoothness bound respectively.

FU VA uft) —F(U V! ug) =
F(Ut+17vt+1 t+1) F(Ut+1 Vt+1 )+F(Ut+1 Vt+1 ) F(Ut,thrl,ug)
Dy Ds
FUL VT ub)— ULV ) (10

D3

In the following we first bound the D1,D2, D3 respectively.
Lemma 1. When ny < <++—, the expectation of D1 is bounded by

)||2+ A LHun(%U%{
16M

Lemma 2. Let 2= QL?H + ’\;LQ o 0? =202+ A% When n,, < ﬁ, the expectation of Dy satisfies

ED; <——HVUOF(UH1

| M e
EDy < 12 == IVa F(ufof )| +5 n2K2Lla§
i=1
Lemma 3. When n, < ﬁ, the expectation of D3 satisfies

M
1 VK,
EDs< —S -

=1

3
IV i o)+ 5 KO Ly, 0

With the three lemmas, we can write

o K Ny K
E]EHV’U«OF(UH_l )2+ Z “E|| W, F (0] ug) [P+ Z “E(| Vo, filufo) ||

AL 2 3 3
SE[F(ULULUB)fF(UE“,vf“,ug“)]+# MK Liod+ SR Ly, o (11

Note that the metric we use to measure the convergence is I} = ||V, F(U?, uf)||*> and
rg_MZM |V, F (0t ub)||2. Now the left-hand side (LHS) ofincludes |V F(U )| 2

and LSV [V, Fi(ul, t“ ub)||?, which are different from our measurements. Thus we prove the
following lemmas to close the gap
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Lemma 4. When 1, the expectation of |V, F (U ub)||? is bounded by

1
= 8L1 K.’

E[[ Vo F(U" up) 1

Hyy u uu

6
<5l QKQMZHVWE L) P SN LRI04 2 Y, FU )

Lemma 5. When n, < f the expectation of ||V, F;(ut vt ub)||? is bounded by

BV, Fi(uf o} ub)|1?

24 12
< T L K2V fiul ) P L, Ko+ 2 Vo, o )|

Using the two lemmas, we can get

Mo Ky 1 an 1
ZIIVuOF( up) >+ 16 ZIIFU up) 1?4+ ZIIV Si(ud of)|?

3 1
<PV PO )||2+<10)\277077uL2wK3+877u ) MZH%E ] &
i=1

3
(OLf nuKuang 8771) v) Zvaifz ||2

3 3
+%/\2L%qun0nuK Ul—|—20L nuKuang 2

‘When )\277077uK UL% < % and nuKuanvL?g < 152 , after a calculation, we have

Mo 2, 77uK 1 2, 771;K 1 2
I uF F a 7 Vidt
BV (U i) P4 M§j|| kot ) |2+ §j\|v BACRN]

o nu
<5 BV FU™ ) [P+ Z “E |V B 07 )|

1 LK, 3 3
=N RNV, fi(ul ol |24+ —= A2 L2 2K20% L, nKu Ko,
+MZZ:; 4 ||v 'Lf (uwvz)H +20 Hyo 10Ty +20 R/, Ty £y

)\SL 2 2
<E[P(uf o} ) — F(uf ™ 0t )]+ == 07

3 3 3 3
+<2n5K5L1+20A Lig,, o K ) (Qnin,Lm?OLf nuKun2K2> (12)

uu

where the second inequality is from (11] . Now the LHS of (12) includes T} , T T%.

Let 770:&7 nu:#Ku’ Ty = f . Then we can obtain
T Vo F(U1h) |2 V., Fi( 2 Vo fi 2
IV PO )P+ o MZH Pt P+ g7 MZH )|
E[F(utvt ué)—F(uZH,fo,ugﬂ)]_’_ X oy §ﬁ+§ o2
= " 16M Ly, 2L, 2Ly,

3772 L%I Lf
_r A uv
20 ( [PNE 1+L1L2 o

15



Under review as a conference paper at ICLR 2024

2 2
{TU

P 2
Define ¥; = 16;4 T+ gzll +3 7= and ¥ = 5 (/\2 LL;’“g% o2+ LL fL“g o ) Applying telescopic
cancellation through t=0to t=T"—1, we have

1 1 1

ot r I T

TZ<4LH 1+16L 2+8wa 3
_ [P @0008)~ F(uT )
< T

F(ud 09 ul) — Finin
< T

+n¥y —1—7)222

+n¥y +7]2Eg

We need to make 7 satisfy the conditions in all the above proofs, thus

2 1 5Ly, Ly 5Ly, Ly
77 < mln . . 3 f’U
= A8 \l2aery v\ 12r

Define AF = F(uf v0,u8) — Fiyin. Let

1

’[’I:
122212 12
;+8+\/ 5LHulzu1u Jr\/5L L JrV T Jrzaj 5

Then we can get

1 /1 1 1
“NE r r r
th:; <4LHu AT 2+8Lfv 3)

CAFOS (AFNS) AF (A 12000, (1205,
- VT T3 T |2 5Ly, L 5L, Ly

Ignoring absolute constants, we have

T-1 i
1 1, 1, 1 ,\_xz %3 1
TZ]E<4LH r1+16L r2+8L F) \/T+E+O T (13)

B.2 PROOF oF LEMMA[I]

Proof. The expectation of D1 is
ED :]EF(Ut+1 Vt+1 t+1)7 (Ut+1,vt+1,u6)
MZH t+1 t+1 Hi(U§+1,U6)

M

A Ly,
<EWZ(<VuOH< (L) )+ B - )

Moy Moy A, || A ek
——]Eno<zmvuoﬂ(u§“mo)z Voo Hi(u ™ u o)>+“OE mzvuofﬂ(uﬁ“%)
i=1

2M 4
i=1 =1
M 2 2
A ALHun
— Z2Mv o Hilui" ) 4 — QMZV"O (™ up)
i=1

where the inequality is from the smoothness of function H; with respect to ug, the last equality is from
the unbiasedness of stochastic gradient.
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Then for the second term, we have

_ t+1 utt utt
=E 2MZVuOH ub) 2MZVUOH ZMZVWH ub)
\ 2 2
_ t+1 t4+1 t4+1
=E MZVUUH i 0 MZVMOH 0) M;VUOH i )
M 2
L 1y 41t
R TR ER | U ES s
)\2 2 2
OH t+1
wo H,

<o | A

where the second and third equalities are from the unbiasedness of stochastic gradients, the inequality

is from the Assumption
Thus the ED; can be bounded by

(14)

ED; <—1o (1—ALZ”O> ;&VUOHI( i) LL{%]‘%U?{
When the learning rate 1) satisfies
WO_E,
we can obtain
o A t+1 t i N Ly, 50k
EDi<—3 ;mvuom(ui )|+

2+ )\3LHunga%{

n
L AR
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B.3 PROOF OF LEMMA2|

Proof. The expectation of D- is
ED, =EF (U, V™ uf)—F(U" V"™ up)

7

M
1
g Pl ) =Rl )
\ M
—E37 Zfl tH’ EH )= filuj, Hl mzHi(U?l’US)—Hi(uf,ug)
i=1

L
<EMZ Vo Lol o)™ — )+ =0 ut =

M
ST Hiut )+ =)+ e
VPN R L
M
1 A L; ALm,
=EMZ<vuifi< o)+ VasEutaya ot )+ (e 2 ) gt
=1
M
1 oitl utti— qu ALHU t+1 2
*EMZ u. Fi vvuo)vi t>+ +T (g —ug|
G;

where the inequality is from the smoothness of function f; and H;.
For the first term of RHS, we have

K,—1
EGi:_Enu<vu F; (U“Ut+17 0)7 Z 6M1F(uf k7vf+17u0)>

==K B[V, Fi(ui v up)|?
K,—1

3 B Vil ),V B 0 ) = 9, Bl )
k=0

<- nuK B[V, Fy(uf0f ™ up) |

+Z |V, B 0 )24 o IV Fig ™ 0 ) = Vi B 0™

=, Byt )P4 S 9 Fi 0t ) - Bt
k=0

2

where the inequality is from the fact that < z,y >< ”“;”2 + Hyz\l .

For the second term in (]E) we can obtain

E|| Vo, B (g 0] T ) = Vo, F (a0 )|

A A
=E(|V,, fZ( U; ,1t+1) Vulfl(t Hl )+ VulH( U, a(t)) 2Vu1H(u

<2B|V, filuy " 0 ) = Vo filub o up) 1* X IEIIH( ;" ) = Vo, Hi(ufuf)

A2[2
tk o tk
SQL?u”Ui _UEHQ"‘T“% —uf?

A2L2
=(2Li+ o
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where the first inequality is from the fact that ||z +yl|* <2||z[|* +2[|y||*, the second inequality is from
the Lipschitz property of gradients.

We then plug the above inequality back to (I6), and get

K,—1

IEG-<—77“ t+1 )ty 2 e 912 )‘2L%Iu tk__t)2 1

i< = Pl )P Y (203,455 et - an
k=1

For the second term in RHS of (T3)), we can get
Ku—1
= k
Elfuf ™ —ul|?=EnZ|| Y Vi, Fi(ug® vl ub)|?
k=0

<EK,12 ZHVMFZ )P

unuvauﬂ U ) = Vo, Fy(uf® ol b)) |12+ Ko vam ot )P

(18)
where the equality is from the unbiasedness of stochastic gradient.
For the first term of RHS of (I8), we have
E[[Va, Fi(u " i )|
A A
=E|Vfi(u;* v f“) Vhil i+ VH< uy® Wi ) — SV Hi (o )|
A
2BV iy ™ 0 ) =V i TP+ IIVH( it f”ﬂto)*§VHi(uzt-’k,vf+17u(t))ll2
)\2
§2aﬁ+50§, (19)

where the first inequality is from ||z+y||? < 2|z +2||y||?, the second inequality is from the Assumption

For the second term of RHS of (T8), we have
IV, Fol ™ 0 )|

<2V, Fy(uy® it ) = Vi, B (uf 0! )P 42]| Vi, 0 ) P
2
+2||V F( t t+1

7 2

_QHVML t.k t+1) vuifz( i t+1)+ vuiH( fk’ t)—*v H(’LL )

A
S2<2L?H+2L%zu)|lu?’“ g |42 Vi Fi (v ) (20)

Plug (T9) and (20) back to (I8), we can obatin
B ™ i)

A
<RI (202 o ) FURREI Pkt ™ )+ 22 (225, + 5 )ZW w2

2D
Then plug (I7) and @I)) into (T3], we can get
M
1 Ky 2Ls, +ALp,
I ) L Tt
9 Ny  2Lg,+ALp, o & tk 12
Z 217 + L e (O ISR (T |
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K2

The term Zf:“g Yjul® —ut||2 represents the “client drift” in the local SGD steps. We follow [Karimireddy

et al| (2020) to bound it via Lemma|6| Let L2 = 2L2 —1— L2 o7 =200+ Az ”H . When 7, < ﬁ,
by a simple calculation, then we can finally obtain
uK
ED: —MZ e | ) P K2
O

B.4 PROOF OF LEMMA [3]

The proof of Lemma 3]is very similar to Lemma 2} thus we omit some details here. Through a similar
procedure to get (22), we can get
M

1 N Ky
ED, < Z —Lp, 2 K2 )| Vo, fi(ub )|
M 2
K,—1
L3 ek LR Koy
v I3 2K % 23
T §< +L} 3 )gollv il"+ == @3)

Note that the update of v; is only related to the function fZ (uz,v,), not about H; (u;,u). Thus the formula
here is more clean compared to (22). The term 31" Pl 0 [0l —uf||2 is also the “client drift” in the local

updates of v;. We use Lemma|z|to bound it. When n,, < #, by a simple calculation, we can obtain
1A N K,
& 2 2K 2

=1

B.5 LEMMAS FOR CLIENT DRIFT

The following two lemmas bound the client drift in u; and v;, respectively. The proofs of two lemmas
directly use the Lemma 22 in Pillutla et al. (2022).

Lemma 6. Let 02 =202 + 291 When N < 7 Iéu o the client drift of u; is bounded by
K,—1
E Z oy = |* <8KG (Ko = 1) | Vo, F (k0] ) [P+ 4( K — DKot (24)
Lemma 7. When n,, < m the client drift of v; is bounded by
K,—
E Y of* —ofl* <8KZ (K, = 1)V, filul o) |P +4(K, 1) K nior (25)

B.6 PROOF OF LEMMA M

Proof.
E|| Vi F (U ug)|I?
2B Voo F(U* ) = Vi (U )| +2E ]| Vo (U )|
M
A
2B 2 (Vo Hiu ) — Voo i 168) [P+ 2B Vo, F (U )

i=1
22 M . . N 2

< a7 2BV Hiuh ) =V B g P+ 2BV, PO )
)\2

HuuZE”’ut-‘rl U] 4+2E ||V F (U ud) |12 6
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The first term in RHS of above inequality is exactly (21)) in the above proof. Plug (21)) into (26), we can get
B[V uo (U )|

)\QLQ M K,—1
<o S Kot + 2V (b i) P+ 202K Y
i=1 k=0

+2E[| Vo F(U ug) 1

Again we use the Lemma|6|to bound the client drift. When 7,, < ﬁ, plugging the Lemma@into the
above inequality, and by a calculation to simplify the coefficient, we can finally get

E[[ Vo F(U" ug)

Hyq 'l

6 3
<L 2K2M121||vulm Ll )P+ SN I 2V, F U i) P
O

The proof of Lemmal7] follows the same procedure of the proof of Lemma 6] thus omitted here.

C FEDRECO WITH PARTIAL VARIANCE REDUCTION

C.1 PARTIAL VARIANCE REDUCTION

At each round, we calculate the stochastic gradients for regularization function H;(u;,ug). To reduce the
effect of variance of the stochastic gradients, we can use variance reduction techniques in the process
of training. However, due to the ineffectiveness of variance reduction in the complicated non-convex
functions, especially in neural network training, we wish to remain the randomness brought by the
stochastic gradients of function f;(u;,v;). Thus we propose a partial variance reduction method for the
stochastic regularization term.

Specially, at the end of ¢-th round, the client 1 calculates a full gradient of H; (uf,uffl) with respect to wu;:
=V, Hi(ug,u o 1)
and a full gradient with respect to uo: VUO H;(ul,uy ). Then the client remains g and sends the full

gradient V., H; (ufj,uf{l) to the server. The server aggregates the full gradient from all the clients and
updates the ug. Thus wug is updated via full gradient descent, not SGD. At the next round, the server
broadcast ug to all the clients. The v; is updated as the same local SGD manner. But the u; is updated as

~ A/~ ~
u§7k+1 = u?k T vul fz (varl 7“?k) + 5 (vut Hi (u?kaufé) _VuLHz(uiau61)+gzt):|

where G2* =V, Hy (ul* ub) =V, Hi (uf ul 1) +g! is an approximated full gradient of V.., H; (u’* uf).
The detailed algorithm is shown in Algorithm 2]
Without partial variance reduction, the variance of stochastic gradient @WH i(uﬁ’k,ué) is
IV, Hi (™ ) =V Hi (" ) |2 < oy
When we use the partial variance reduction as above, the variance is
V7, H (g ) = Vo Hiuaf ™) -5 =V Hi ™ ) |

(Vi Hiul* ) = Vo, Hiul i) ) = (VHs )~ ) |2

<[V, Hi(uy t)*@uﬂ'(u? ug P

=V i ) =V Hi (™ )+ Vo, Hiy ) = Vo Hi (™)1

<2L2 tk: t||2+2L%—] t t—1||2

Up—Ug
where the first 1nequality is from the fact E|z — Ez||?> < E||z||?, and the last inequality if from the
smoothness properties The variance is bounded by the difference of u; and ug between two iterations.
Note that Z Pl -t f ok —u} is the client drift in each client due to data heterogeneity We can incorporate
it in the client dnft term. Smce we update the variables alternatively, the variance is also bounded by
[|ub —ub~t||2. We can use telescopic cancellation to handle it.

17 17

uu
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Algorithm 2 FedReCo with partial variance reduction

Input: Step size 1,1, .10, penalty parameter A

Initialize: Initialize u8 for server, initialize u; and v; for i-th client
1: fort=0,1,...,.7—1do
2:  Server:

3:  Broadcast ) to all clients
4:  Receive full gradient VuoH ( i1 ub) from all the clients
M

5: I{pd&ltte u(t)+1' (t)+1 - UO oz Zi:l Vo Hi (u)z&l ,’LLB)

6:  client i:

7:  Receive uf) from master node, let u?o = uﬁ

8 for k=0,1,..K,—1do

9: Randomly select one (batch of) sample, calculate stochastic gradients V,, fi(vf’k,uf)
10 Update vt kel t’k — 1V, fi(vf’k,ug)
11:  end for

12: Leto!tl=¢hf

13:  for k=0.1,....K,—1do

14: Randomly select one (batch of) sample, calculate stochastic gradients Vul fi(v t+1,uf’k) and
VWH ( L 0)

15: Update u/* ! =5k —p, {@uifi(vfﬂmf’k) (VuH( Ul ulb) =V, Hy(ufu )+gt)}

16:  end for

17: Letultt=qy05

18:  Calculate full gradient g! ™ =V, H;(u! ! ub) and V,,, H; (ul ™t ub)

19:  Send full gradient V., H;(u! " ub) to the server

20: end for

C.2 CONVERGENCE ANALYSIS

Theorem 2 (Convergence of FedReCo-PVR). Suppose that Assumptions [I] and 2] hold.  Let
L2= 4L?cu +2)\°LY; . When learning rates satisfy 1o = ﬁ Ny = ﬁ o= ﬁ and 1 is chosen
on the parameters \,Lg, ,L1,Ly, L

uu?

Ly, . .0 ,0u,00, then ignoring absolute constants, we have:

T-1

1 1 22 Z 3
— E Ft I} T O 27
T t=0 <8LHU, - 16L/ 2t 8Lf1) ) \/T Tz - (T> D

where

502 3 o2 \2 L2 3 L2
21:7&_’_7 JU , 22: - Hu,u,l O_i_i_i /fu; 0-12)
64 Ly, L2 " 20 L{L3,

are positive constants depending on Lipschitz constants and stochastic variance.

We can see in the 1 and X, there is no 0%, compared to the FedReCo algorithm without variance

reduction. We remove the impact of additional noise brought by regularization term theoretically. However,
we have observed that PVR almost brings no improvement in the practical training of neural network
models. And FedReCo algorithm is robust enough to the additional noise.

D PROOF OF FEDRECO-PVR

D.1 PROOF OUTLINE OF THEOREM[2]

We provide a proof outline of Theorem 2] here and omit some proofs of technical lemmas.

Similarly, we can break the difference of cost function F as @ Then we can obtain the lemmas to bound
D1,D5. Note that D5 is the same as FedReCo without partial variance reduction.

The ug is now update by full gradient descent, not SGD. Thus we have the following Lemma for D;.
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Lemma 8. The expectation of D, satisfies

M 2
AL, Mo LA t+1 )t
ED; < 1o (1—4 —§;qui<ui up) (28)
When 19 < 7=, the expectation is
BDy <~ V., FU ) P )

Lemma9. Let Lll2 :4L?u +2)\2L%Iu. When n,, < the expectation of Dy is

1
6L, K.’

» 5
EDz@Z 7 P )4 SR Ko+ SR I TR, ™ GO)

With the two lemmas and Lemma 3] in previous sections, we can write

o nu
5 Vo (U ) >+ Z ||V, Fy(ufvf ™ ug) |

1 MnK
v Dy t,t\(2
ST SRR

5
<E[F (uj vy up) —F (ui o ug™)] +

2nuK2L’10 +

3 5 /
SRRy 2 NI,
(D)

Note that the metric we use to measure the convergence is ||V, F(U',uf)||* and 77 ||V, Fi (uf,0f ub) |12,
thus we have the following lemma to measure the difference.

Lemma 10. The expectation of ||V, F (Ut ub)||? is bounded by
E|| Vo F(U" ug)|?

9 1
< *)\2L2 2K2 . E t tJrl t 2 7}\2[/2 K2 2

+3 /\4U2K2L4 sy — gy 1||2+2||Vu0F(Ut+1 olI” (32)

Hy

Using the Lemma[T0]and Lemma 5]in previous sections, we can get

Mo Ky 1 mK 1
SV F (U )|+ MZHM )P+ Zuv@,fl ol

64

F t+1 2
<9, PO P+ !

1 1
Nt Ly, Ki+nuK“>Mlem<u£,v§+%ua>||2
=1

1
< K I +877v ”>MZV Siui )|

+ 4)\2L2 o Ko+ — 5 L K Koo+

G 4)\4 mano KoLy, luo—uft|? (33)

0 6
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When A1on, Ko L3, <& and K Ko L3, <35 5 we have

12°

Mo Nuky 1 mK 1
SIVuo U )P+ MZnFu uf)|[*+ ZHVU,L Billk

o nu
<5 BV FU™ ) [+ Z “E |V B0 )|

M
1 n K, 70
a1 BNV A -V PO )

3 5 _
+64>\2L Ko +20L2u,,77uKu77vK202+64/\477 KoLy, luo—ug |
To
[ (Ut’vtaué)_F(UtJrl»VtJrlvu](s)Jrl)]_ZHVUOF(UtJrlvuf))W
+(Peeri LHW+64A4n w3, I P
5 27172711 2712 2 3 2 3 2
+ S+ g )\ L% non?K2 o2+ S Kva,u—i-QOLf nK. K2 o (34)
Let o= 7= 1= 17, =1, ;- We can obtain
1
2 2 2
8L IEIIVqu( up)|*+ 60, MZIIVuIF ug v up) | +7*Z||Vv1f1 ug)|
E F(uivvi ,uo)—F(u?l,vf"'l,ufﬁ'l) Tlo o —
< [ ; ]—477Vqu(Ut“»UB)IIQJQmIIVqu(Ut,UB HI?
502 3 o2 A2 L2 3 L3
+ n +772 Y H“ulza-i—’—i /fu; O’g
2L} 2Lf 64 Ly, L} 20 Ly L%
E[F(ufofuf) —F i o hugth)] 1 _
= ; tagy IV U DI =1V FU p)IP)
502 302 2 L3, 3 Ly,
—__u .y v uu/ uv 35
+”(2L'1+2Lf“>+” (64LH L a0 mz 7 ©5)

Define >; = %— +
through t=0to t=T

I/ 1 1
=> r I I
Tt_O(SLHu 1+16L' 2+8Lfv 3>

[FUVOug)-FUT VT ug)] 1

2 L2 L2
30 A H bk
2T, and Xy = (@ n “L“,12 o243 30 T] L“g o ) Applying telescopic cancellation

L
—1, we have

< 7 1, 7 (VP O )P = [V FOT i )IP)
+7)21+77222
F(UO,VO,ug)—Fmin UL 0)12 2
Vu, F(U", ) by 36

We need to make 7 satisfy the conditions in all the above proofs, thus

p<mind 2, L [SLmLi 5Ly, L,
= X160 \oxerz 0o\ 1203
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Define AF = F(uf v9,u8) — Finin. Let
1

’]7:
2 9N2L3, 120% 11
2+16+\/8LH:’L,1 T\ 5o VI T+ 8 TS

Then we can get

T-1

1 1 1 1

= T I I
T;<8LHu 1+16L’1 2+8Lfv 3

1
COPOYS @Fns) 1| o ey, 1205V U
- \/T T% T 2 5LHuL1 5Lva1 4LHu
@37

Ignoring absolute constants, we have

1231 1 1 2w (/1

= It I Iy ) S=L+=2+0( = 38

Tg(sLHu 1+16L’1 2+8Lfv 3 N\/T+T%+ T %)
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