
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FREE HUNCH: DENOISER COVARIANCE ESTIMATION
FOR DIFFUSION MODELS WITHOUT EXTRA COSTS

Anonymous authors
Paper under double-blind review

ABSTRACT

The covariance for clean data given a noisy observation is an important quan-
tity in many training-free guided generation methods for diffusion models. Cur-
rent methods require heavy test-time computation, altering the standard diffusion
training process or denoiser architecture, or making heavy approximations. We
propose a new framework that sidesteps these issues by using covariance informa-
tion that is available for free from training data and the curvature of the generative
trajectory, which is linked to the covariance through the second-order Tweedie’s
formula. We integrate these sources of information using (i) a novel method to
transfer covariance estimates across noise levels and (ii) low-rank updates in a
given noise level. We validate the method on linear inverse problems, where it
outperforms recent baselines, especially with fewer diffusion steps.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) have emerged as
a robust class of generative models in machine learning, adept of producing high-quality samples
across diverse domains. These models function by progressively denoising data through an iterative
process, learning to reverse a predefined forward diffusion process that systematically adds noise.
Conditional generation extends the capabilities of diffusion models by allowing them to generate
samples based on specific input conditions or attributes. This conditioning enables more controlled
and targeted generation, making diffusion models applicable to a wide range of tasks such as text-
to-image synthesis or linear inverse problems such as deblurring, inpainting, or super-resolution.

A strand of recent research has concentrated on applying pretrained diffusion models to accommo-
date user-defined conditions, enhancing the flexibility and control of a single model to an arbitrary
number of tasks. These methods guide the sampler towards regions whose denoisings p(x0 |xt)
are compatible with the condition or constraint, which requires efficient denoising mean E[x0 |xt]
and covariance Cov[x0 |xt] estimates (Ho et al., 2022; Song et al., 2023a;b; Boys et al., 2023; Peng
et al., 2024). While estimating the mean is straightforward through the denoiser, accurately deter-
mining the covariance has proven more challenging. Consequently, efficient approaches have been
proposed with heavy approximations (Chung et al., 2023; Song et al., 2023a).

In this paper, we propose a new method for denoiser covariance estimation, which we refer to as Free
Hunch (FH). The name stems from the core insight that much of the required guiding covariance

ORIGINAL MEASUREMENT DPS ΠGDM FH (OURS)

Figure 1: Comparison of different conditional diffusion methods for deblurring, with a low number
of solver steps (15 Heun iterations). DPS (Chung et al., 2023) and ΠGDM (Song et al., 2023a)
work well with many steps, but accurate covariance estimates matter more for small step counts.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) (b)

0.03
0.21

0.39 0.
57

(c)

← Σ0 | t(xt)

(d)

Figure 2: (a) A distribution p(x0) represented by a pretrained diffusion model, and a Gaussian likeli-
hood p(y |x0). (b) The (exact) posterior p(x0 |y) ∼ p(x0)p(y |x0). (c) Generated samples from a
model with a heuristic diagonal denoiser covariance Σ0 | t(xt), and a generative ODE trajectory with
approximated p(x0 |xt) shapes represented as ellipses along the trajectory. (d) Generated samples
with our denoiser covariance.

information is, in fact, freely available from the training data and the generative process itself. FH
significantly improves accuracy over baselines, it is directly applicable to all standard diffusion mod-
els and does not require significant additional compute. This is achieved by integrating two sources
of information into a unified framework: (i) the covariance of the data distribution and (ii) the im-
plicit covariance information available in the denoiser evaluations along the generative trajectory
itself. We apply the method to linear inverse problems, where we show mathematically that ac-
curate covariance estimates are crucial for unbiased conditional generation, and achieve significant
improvements over recent methods (see Fig. 1). In summary, our contributions are:

• Methodological: We propose a novel, efficient method for estimating denoiser covariances in
diffusion models. It (i) does not require additional training, (ii) avoids the need for expensive score
Jacobian computations, (iii) adapts to the specific input and noise level, and (iv) is applicable to
all standard diffusion models.

• Analytical: We give a theoretical analysis of why accurate covariance estimation is crucial for
reconstruction guidance in linear inverse problems.

• Practical: Our improved covariance estimates result in significant improvements over baselines
in linear inverse problems, especially with small diffusion step counts.

2 BACKGROUND

Diffusion models are a powerful framework for generative modelling. Given a data distribution
p(x0), we consider the following sequence of marginal distributions:

p(xt) =

∫
N (xt |x0, σ(t)2I)p(x0) dx0, (1)

and corresponding reverse processes (Song et al., 2021; Karras et al., 2022)

Reverse SDE: dxt = −2σ̇(t)σ(t)∇xt log p(xt) dt+
√

2σ̇(t)σ(t) dωt, (2)
PF-ODE: dxt = −σ̇(t)σ(t)∇xt log p(xt) dt. (3)

Here, the σ̇(t) = d
dtσ(t) and ωt is a Brownian motion. The score ∇xt log p(xt) can be learned

through score matching methods (Hyvärinen & Dayan, 2005; Vincent, 2011; Song et al., 2021).
Starting at a sample xt ∼ N (xt |x0, σ

2
maxI) at a sufficiently high σmax and integrating either differ-

ential equation backwards in time, we recover the data distribution p(x0) if the score is accurate.

In conditional generation, we need to define the conditional score

∇xt log p(xt |y) = ∇xt log p(xt) +∇xt log p(y |xt), (4)

which decomposes into an unconditional score and the conditional adjustment through Bayes’ rule.
If we train a classifier to estimate the condition y given the noisy images xt, we get classifier guid-
ance (Song et al., 2021; Dhariwal & Nichol, 2021). Using additional training compute for each con-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ditioning task, however, may be prohibitive in some applications. A more modular way to do con-
ditional generation is to define a constraint p(y |x0) only on the clean data points x0, and estimate

∇xt log p(y |xt) = ∇xt log

∫
p(y |x0)︸ ︷︷ ︸

constraint

p(x0 |xt)︸ ︷︷ ︸
denoise

dx0 = ∇xt logEp(x0 |xt)
[
p(y |x0)

]
. (5)

That is, we need to integrate over all possible denoisings of xt and their constraints. We want
to avoid costly repeated sampling x0 |xt from the reverse and seek practical approximations to
p(x0 |xt). A common approach is a Gaussian approximation

p(x0 |xt) ≈ N (x0 |µ,Σ), (6)

which is appealing since the so-called Tweedie’s formula (Efron, 2011) links the score function
∇xt log p(xt) to exact moments of the posterior p(x0 |xt) = p(x0)p(xt |x0)

p(xt)
,

E[x0 |xt] = xt + σ2
t∇xt log p(xt), (7)

Cov[x0 |xt] = σ2
t

(
σ2
t ∇2

xt log p(xt)︸ ︷︷ ︸
Hessian

+I
)
. (8)

The correct mean (Eq. (7)) of the denoiser is directly implied by the score function, as long as our es-
timate of the score is accurate. Estimating the Tweedie covariance through the full Hessian in Eq. (8)
is very expensive for high-dimensional data, however, and multiple methods have been proposed.

2.1 RELATED WORK

Denoiser covariance estimation in diffusion models Previous attempts to improve denoiser co-
variance estimation in diffusion models can be broadly categorized into four categories:

1. Heuristic methods: Many methods (Ho et al., 2022; Song et al., 2023a;b) use a heuristic scaled
identity covariance or can be seen as a special case where the covariance is zero (Chung et al.,
2023). The methods are simple to implement but may result in biases in the conditional distribu-
tions.

2. Training-based methods: These involve training neural networks to directly output covariance
estimates (Nichol & Dhariwal, 2021; Meng et al., 2021; Bao et al., 2022a; Peng et al., 2024).
While potentially powerful, these approaches are not directly applicable to many existing diffu-
sion models.

3. Gradient-based methods: These techniques estimate covariances by computing gradients of
the denoiser (Finzi et al., 2023; Boys et al., 2023; Rozet et al., 2024). However, getting the full
covariance is computationally expensive and memory-intensive, making it challenging to apply
to high-dimensional data without additional approximations.

4. Post-hoc constant variance methods: These approaches optimize constant variances for each
time step based on pre-trained diffusion model scores (Bao et al., 2022b; Peng et al., 2024).
While they do not require training or significant extra compute, they are limited in their ability to
adapt to different inputs.

Diffusion models for inverse problems and training-free conditional generation Recent reviews
can be found in Daras et al. (2024); Luo et al. (2024). Many works explicitly train conditional
diffusion models for different tasks (Li et al., 2022; Saharia et al., 2022; Whang et al., 2022).

Many other methods adapt pre-trained diffusion models for inverse problems at inference time. DPS
(Chung et al., 2022), ΠGDM (Song et al., 2023a), TMPD (Boys et al., 2023) and Peng et al. (2024);
Song et al. (2023b); Ho et al. (2022) use backpropagation to explicitly approximate Eq. (5). We focus
our analysis and experiments on this set of methods since all of them can be framed in a common
framework with different covariance approximations, making comparisons more straightforward.
Other methods adjust the generative process such that xt is pushed to make the residual y−Axt in
linear inverse problems smaller (Song et al., 2021; Jalal et al., 2021; Choi et al., 2021). DDS (Chung
et al., 2024) and DiffPIR (Zhu et al., 2023) frame finding the guidance direction by optimizing for
an x0 that is close to the measurement as well as the denoiser output. DDNM (Wang et al., 2023)
projects the denoised x0 to the null-space of the measurement operator during the sampling process.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Peng et al. (2024) show that DDNM and DiffPIR can be framed in a similar framework. Rout et al.
(2024) propose to use a second-order correction to reconstruction guidance to mitigate biases in
first-order Tweedie. Kawar et al. (2021; 2022) decompose the linear measurement operator with
SVD to create specialized conditional samplers. Methods based on variational inference optimize
for x0 that match with the observations while having high diffusion model likelihood (Mardani et al.,
2024; Feng et al., 2023). Ben-Hamu et al. (2024); Wang et al. (2024) optimize the noise latent xT
such that it matches with the observation. The methods by Wu et al. (2024); Dou & Song (2024);
Trippe et al. (2023) frame conditional generation and inverse problems with a Bayesian filtering
perspective, giving asymptotic guarantees with increasing compute.

Other applications of Hessians and denoiser covariances Linhart et al. (2024) show that a
Gaussian approximation to p(x0 |xt) can be used for compositional generation, that is, given two
diffusion models p1(x0) and p2(x0), the problem of sampling from p1(x0)p2(x0). Higher-order
solvers for the probability flow ODE (Dockhorn et al., 2022) utilize the Hessian ∇2

xt log p(xt) for
efficient sampling. Sanchez et al. (2022) use the Hessian for causal discovery in high-dimensional
systems. Lu et al. (2022) train a diffusion model to explicitly match the higher-order gradients of
the score function and show that it improves model likelihoods. Song & Lai (2024) point out that
the Hessian is equivalent to the Fisher information with respect to xt, which they use to measure the
informativeness of each step in conditional generation. Recently, Anonymous (2024) proposed an
efficient method for computing the Hessian by utilizing the training data.

3 METHODS

x

t

sam
plin

g ste
p

BFGS

µ0 | t(x)

Σ0 | t(x)

µ0 | t+∆t(x)

Σ0 | t+∆t(x)
µ0 | t+∆t(x+ ∆x)

Σ0 | t+∆t(x+ ∆x)

p(x, t) ≈
N (x |m(x, t),C(x, t))

Directly measurable during sampling
Online estimate available
Obtained with Gaussian approx.
Obtained with low-rank update

1.

2.3.

Figure 3: Sketch of our method during sampling.

We present our framework for incorporating
prior data covariance information with curva-
ture information observed during sampling. We
define µ0 | t(xt) and Σ0 | t(xt) as our approxi-
mations of E[x0 |xt] and Cov[x0 |xt] at time t
and location x. As we move from point (x, t)
to (x + ∆x, t + ∆t) in the diffusion process,
the denoiser covariance changes but remains
similar for small steps. We develop methods
to transfer this information across time steps
(Sec. 3.1), incorporate additional curvature in-
formation (Sec. 3.2), and combine these up-
dates (Sec. 3.3). For high-dimensional data,
we propose an efficient algorithm using diago-
nal and low-rank structures (Sec. 3.4). We dis-
cuss covariance initialization (Sec. 3.5) and in-
troduce reconstruction guidance with a linear-Gaussian observation model (Sec. 3.6). Finally, we
analyze why diagonal denoiser covariance overestimates guidance for correlated data at large diffu-
sion times and demonstrate this issue with image data, showing that the problem is resolved with
correct covariance estimation (Sec. 3.7).

Notation In the following, we interchangeably use p(x, t) in place of p(xt) where we want to
emphasise the possibility to change either x or t, but not the other. However, in contexts where we
talk about the posterior, we use p(xt) and p(x0 |xt) to emphasise the difference between the two
random variables x0 and xt.

3.1 TIME UPDATE

Our goal is to obtain the evolution of the denoiser momentsµ0 | t+∆t(xt) and Σ0 | t+∆t(xt) (Eqs. (7)
and (8)). The evolution of the moments under the diffusion process is characterised by the Fokker–
Planck equation, and in practise intractable. We approximate the evolution with a second-order
Taylor expansion of log p(xt) around point xt, which leads to a Gaussian form for p(xt):

p(x′t) ≈ N
(
x′t |m(xt, t),C(xt, t)

)
, (9)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where (temporarily dropping out the subscript from xt for clarity)

m(x, t) = x−∇2
x log p(x, t)−1∇x log p(x, t), (10)

C(x, t) = −[∇2
x log p(x, t)]−1. (11)

The evolution of the Gaussian (Eq. (9)) under the linear forward SDE (Eq. (1)) has a closed form
(Särkkä & Solin, 2019). With the forward process induced by Eq. (1), this results in

m(x, t+ ∆t) = m(x, t), (12)

C(x, t+ ∆t) = C(x, t) + ∆σ2I, (13)

where ∆σ2 = σ2(t+ ∆t)− σ2(t). That is, the forward keeps the mean intact while increasing the
covariance. Using the above equations we can derive Tweedie moment updates:

µ0 | t+∆t(xt) = xt + σ(t+ ∆t)2

(
σ(t+ ∆t)2I − ∆σ2

σ(t)2
Σ0 | t(xt)

)−1(
µ0 | t(xt)− xt

)
, (14)

Σ0 | t+∆t(xt) =
(
Σ0 | t(xt)

−1 + ∆σ−2I
)−1

. (15)

where ∆σ−2 = σ(t + ∆t)−2 − σ(t)−2. The complete derivations can be found in App. A. As ∆t
approaches zero, the Gaussian approximation becomes increasingly accurate. This is because the
solution to the Fokker–Planck equation (which simplifies to the heat equation for variance-exploding
diffusion) is a convolution with a small Gaussian N (x |0, σ(t)2I). The integral

∫
p(xt)N (xt −

xs |0, σ(t)2I) dxs is dominated by values near xt, as the Gaussian rapidly diminishes further away.

3.2 SPACE UPDATE FOR ADDING NEW LOW-RANK INFORMATION DURING SAMPLING

We take inspiration from quasi-Newton methods (e.g., BFGS, see Luenberger et al., 1984) in
optimization, where repeated gradient evaluations at different points are used for low-rank updates
to the Hessian of the function to optimize. The diffusion sampling process is similar: we gather
gradient evaluations ∇xt log p(xt) at different locations, and could use them to update the Hessian
∇2

xt log p(xt). The Hessian is then connected to the denoiser covariance via Eq. (8). Here, we
derive an even more convenient method to update Σ0 | t(x) directly.

To use update rules like BFGS, Σ0 | t(x) should be the Jacobian of some function. Thankfully, we
notice that Cov[x0 |xt] is proportional to the Jacobian of expectation E[x0 |xt]:

E[x0 |xt]σ(t)2 =
(
∇xt log p(xt)σ(t)2 + x

)
σ(t)2, (Eq. (7)) (16)

∇xt

(
E[x0 |xt]σ(t)2

)
=
(
∇2

xt log p(xt)σ(t)2 + I
)
σ(t)2 = Cov[x0 |xt]. (Eq. (8)) (17)

We can then directly formulate the finite difference update condition equation for our estimate
Σ0 | t(x):

σ(t)2
(
µ0 | t(x+ ∆x)− µ0 | t(x)

)
≈ [Σ0 | t(x+ ∆x)]∆x. (18)

This allows us to use a BFGS-like update procedure for the covariance and inverse covariance

Σ0 | t(x+ ∆x) = Σ0 | t(x)−
Σ0 | t(x)∆x∆x>Σ0 | t(x)

∆x>Σ0 | t(x)∆x
+

∆e∆e>

∆e>∆x
, (19)

Σ0 | t(x+ ∆x)−1 = (I − γ∆x∆e>)Σ0 | t(x)−1(I − γ∆e∆x>) + γ∆x∆x>, (20)

where

∆e = σ(t)2
(
µ0 | t(x+ ∆x)− µ0 | t(x)

)
and γ =

1

∆e>∆x
. (21)

While other update rules exist, BFGS has the advantage that it preserves the positive-definiteness of
the covariance matrix. We provide further discussion in App. I.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: Time update
Input: Σ0 | t(x), σ(t+ ∆t), σ(t),µ0 | t(x)

1 ∆(σ−2) = σ(t+ ∆t)−2 − σ(t)−2

Σ0 | t+∆t(x)−1 = Σ0 | t(x)−1 + ∆(σ−2)I

2 Σ0 | t+∆t(x) = (Σ0 | t+∆t(x)−1)−1

3 µ0 | t+∆t(x) = Eq. (14)
4 return Σ0 | t+∆t(x),µ0 | t+∆t(x)

Algorithm 2: Space update
Input: Σ0 | t(xt),µ0 | t(x+ ∆x),
µ0 | t(x), σ(t),∆x

1 ∆e = Eq. (21)
2 γ = Eq. (21)
3 Σ0 | t(x+ ∆x) = Eq. (19)
4 return Σ0 | t(x+ ∆x)

3.3 COMBINING THE UPDATES FOR PRACTICAL SAMPLERS

Note that the update step requiresµ0 | t(x) evaluated at two x locations but with the same t. Usually,
we only have µ0 | t(x) at different t during sampling, however. The solution is that we can combine
the time updates with the space updates in any diffusion model sampler as follows: Let’s say we have
two consecutive score evaluations∇x log p(x, t) and∇x log p(x+∆x, t+∆t). We first update the
denoiser mean and covariance with the time update to get estimates of Σ0 | t+∆t(x) andµ0 | t+∆t(x).
Then we can update Σ0 | t+∆t(x) with the BFGS update since we have µ0 | t+∆t(x) from the time
update and µ0 | t+∆t(x + ∆x) from the second score function evaluation and Eq. (7). This is
visualized in Fig. 3, and the algorithms for updating the covariance are given in Alg. 1 and Alg. 2.

3.4 PRACTICAL IMPLEMENTATION FOR HIGH-DIMENSIONAL DATA

While the method described so far works well for low-dimensional data, storing entire covariance
matrices in memory is difficult for high-dimensional data. Luckily, this is not necessary since we
only perform low-rank updates to the covariance matrix. In practice, we keep track of the following
representation of the denoiser covariance:

Σ0 | t(x) = D +UU> − V V >, (22)

where D is diagonal and U ,V are low-rank N × k matrices. This structure comes from the
two outer products in the the BFGS update (positive and negative). The vectors ∆e√

∆e>∆x
and

Σ0 | t(x)∆x√
∆x>Σ0 | t(x)∆x

become new columns inU and V respectively. In App. B, we show that inverting

this matrix structure yields another matrix of the same form: Σ0 | t(x)−1 = D′+U ′U ′>−V ′V ′>.
Using two applications of the Woodbury identity, this computation only requires inverting k × k
matrices rather than N × N ones, enabling efficient calculation of both Σ0 | t(x + ∆x)−1 and the
time update inverse.

3.5 INITIALISATION OF THE COVARIANCE

Having established methods for representing and updating denoiser covariances, we address
initialization. While one might consider the limit t → ∞ where p(xt) → N (xt |0, σ(t)2I) and
∇2

xt log p(xt)→ − I
σ(t)2 , this is suboptimal: although the Hessian approaches identity at high t, the

denoiser covariance approaches the data covariance. We estimate this from the data and initialise the
covariance to it. For high-dimensional data, we approximate this covariance as diagonal in the DCT
basis: Σt(xt) = ΓDCTDΓ>DCT. This is justified by natural images being approximately diagonal in
frequency bases (Hyvärinen et al., 2009). While alternatives like PCA could be used, we found the
DCT-based method sufficient. We provide additional discussion on the DCT basis in App. I.

3.6 GUIDANCE WITH A LINEAR-GAUSSIAN OBSERVATION MODEL

If the observation model p(y |x0) is linear-Gaussian, the reconstruction guidance becomes

∇xt log p(y |xt) ≈ ∇xt log

∫
N (y |Ax0, σ

2
yI)N (x0 |µ0 | t(xt),Σ0 | t(xt)) dx0

= (y −Aµ0 | t(xt))
>(AΣ0 | t(xt)A

> + σ2
yI)−1A∇xtµ0 | t(xt), (23)

where A is the linear measurement operator (e.g., blurring). µ0 | t(xt) is obtained using Tweedie’s
formula, and Σ0 | t(xt) = Σ0 | t is assumed constant with respect to xt when taking the derivative.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The linear-Gaussian setting is valuable as it both represents many real-world problems (deblurring,
inpainting) and provides analytic insights into Σ0 | t choices. We will show that simplistic denoiser
covariance approximations lead to severe overestimation of the guidance scale in Eq. (23).

3.7 ISSUES WITH DIAGONAL DENOISER COVARIANCE

In this section, we will focus on DPS (Chung et al., 2023) and ΠGDM (Song et al., 2023a) for the
linear inverse problem case. Both can be cast as using the same formula with Σ0 | t = r2

t I and
different post-processing steps on the resulting∇xt log p(y |xt) approximation:

1. In DPS, r2
t = 0. The resulting∇xt log p(y |xt) is scaled with

ξσ2
y

‖y−Ax0‖ (ξ is a hyperparameter).

2. In ΠGDM, r2
t = σ(t)2

1+σ(t)2 . The resulting∇xt log p(y |xt) is further scaled with r2
t .

Importantly, in the case where the resulting E[x0 |xt,y] = xt+σ(t)2∇xt log p(xt |y) approxima-
tion is outside the data range [−1, 1], the modified score in both DPS and ΠGDM is clipped to keep
the denoiser mean within this range. Other choices include r2

t = σ(t)2 (Ho et al., 2022).

The mismatch between simplistic covariance and the denoiser Jacobian Notice that according
to Eq. (8), ∇xtµ0 | t(xt) ≈ Cov[x0 |xt]

σ(t)2 , where Cov[x0 |xt] is the real denoiser covariance. For real
data like images, this denoiser covariance is highly non-diagonal due to pixel correlations. This
creates tension with the inverse (AΣ0 | tA

> + σ2
yI)−1 in Eq. (23), which assumes diagonal Σ0 | t.

A toy model For the denoising taskA = I , consider images with perfectly correlated pixels (same
color), giving Cov[x0] = J where J is all ones. As t → ∞, Cov[x0 |xt] → Cov[x0]. Assume
that the observation y and the denoiser mean µ0 | t(xt) are similarly vectors of ones ~1 scaled by a
constant, and thus y − µ0 | t(xt) = a~1. Note that ∇xtµ0 | t(xt) = J

σ(t)2 . Now, the guidance terms

with r2
t = σ(t)2

1+σ(t)2 read:

∇xt log p(y |xt) = a~1>
1

1 + σ2
y

J

σ(t)2
=

aN

(1 + σ2
y)σ(t)2

~1>, (24)

Here N is the data dimensionality. Two key issues emerge: (1) the per-pixel guidance term scales
with the total pixel count, and (2) for typical values (a ≈ 1, σ2

y � 1), the guidance becomes
implausibly large. For a 1000×1000 image, σ(t)2∇xt log p(y |xt) ≈ N~1, yielding values around
106 per pixel—far beyond the [−1, 1] data range. This issue is even worse in DPS where r2

t = 0.
For ΠGDM, clipping the denoiser mean to [−1, 1] prevents trajectory blow-up but loses information
and introduces biases. The scaling factors in DPS also reduce but do not eliminate the problem.

10
−1 10

0
10

1

10
0

10
1

10
2

10
3

10
4

Noise schedule, σ(t)

‖µ̃
0
|t

(x
t
)‖

Σt = 0

Σt = σ(t)2

1+σ(t)2
I

Σt = ΓDCTDΓ>DCT

Figure 4: Norm of µ0 | t(x) +

σ(t)2∇xt log p(y |xt) for different co-
variance estimation methods on ImageNet
256×256. Values >1 indicate overestima-
tion since the data is normalized to [−1, 1].

Solution with the correct covariance In contrast,
the same issue does not occur if we use the correct
denoiser covariance in the formula:

∇xt log p(y |xt) ≈ (y−µ0 | t(xt))
>(Cov[x0 |xt]

+ σ2
yI)−1Cov[x0 |xt]

σ2
t

. (25)

Clearly, if σy → 0, the covariances cancel out. Thus,
the scale of the calculated guidance does not cause
issues. In App. C, we repeat this analysis without
assuming σy = 0.

Fig. 4 showcases the issue in practice for a Gaus-
sian blur operator A in ImagetNet 256×256 and
a denoiser from Dhariwal & Nichol (2021). In
comparison, the problem is less severe for a more
sophisticated DCT-diagonal covariance approxima-
tion. However, even the DCT-diagonal method does
cause the adjusted denoiser mean to diverge at high noise levels.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

JS Div: 0.278

(a) DPS

JS Div: 0.232

(b) ΠGDM

JS Div: 0.256

(c) ΠGDM
(no r2t scaling)

JS Div: 0.171

(d) FH (Ours)

JS Div: 0.142

(e) Optimal cov

Figure 5: Different methods for posterior inference in the example in Fig. 2 and Jensen–Shannon
divergences to the true posterior.

Approximating ∇xtµ0 | t(xt) Given that the problem stems from the mismatch between
∇xtµ0 | t(xt) and our covariance approximation, a solution needs to harmonize these two terms.
Thus, we propose to further approximate ∇x0µ0 | t(xt) by our denoiser covariance estimate
when the scale of the guidance by calculating the full Jacobian is too large. In practice, we first
calculate the adjusted denoiser covariance estimate µ0 | t(xt), and fall back to approximating

∇x0
µ0 | t(xt) ≈

Σ0 | t(xt)

σ(t)2 in case our initial approximation ‖σ(t)2∇xt log p(y |xt)‖ > 1 (which
would push the trajectory in a direction that is outside the data range [−1, 1]).

Full algorithm. In App. D, we show full algorithms for linear inverse problems with our covariance
estimation method, one with the Euler ODE solver and another that works with any solver.

4 EXPERIMENTS

We validate our method using synthetic Gaussian mixture model data and compare it against base-
lines on linear imaging inverse problems. Our experiments demonstrate that our more sophisti-
cated covariance approximations reduce bias and improve results, particularly at lower diffusion
step counts. We use a linear schedule σ(t) = t, as advocated by Karras et al. (2022), and follow
their settings for our image diffusion models otherwise as well. For the image experiments, we used
σmax = 80 and σmax = 20 for the synthetic data. We use a simple Euler sampler for the synthetic
data experiments and a 2nd order Heun method (Karras et al., 2022) for the image experiments.

4.1 SYNTHETIC DATA EXPERIMENTS

Toy data We first showcase the performance of different methods on a toy problem using a mixture
of Gaussians distribution, which admits a closed-form formula for the score (see App. M). The
results in Fig. 5 show that our method clearly outperforms DPS and ΠGDM, approaching the method
using optimal covariance obtained by backpropagation and Eq. (8). Note that the example favours
DPS, since we tuned the guidance hyperparameter for this particular task.

The effect of dimensionality and correlation In Sec. 3.7, we noticed that the guidance scale is
overestimated the larger the dimensionality is. A practical consequence is that the variance of the
generative distribution can be underestimated. In App. E, we directly showcase this with synthetic
data and show that it does not happen with our method.

Approximation error in the covariance In App. G, we analyse the error in the covariance approx-
imation for a low-dimensional example, and empirically show that the error approaches zero with a
large amount of steps and a stochastic sampler.

4.2 IMAGE DATA AND LINEAR INVERSE PROBLEMS

We experiment on ImageNet 256×256 (Deng et al., 2009) with an unconditional denoiser from
Dhariwal & Nichol (2021). We evaluate the models on four linear inverse problems: Gaussian
deblurring, motion deblurring, random inpainting, and super-resolution. We evaluate our models
with peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM, Wang et al.,
2004) and learned perceptual image patch similarity (LPIPS, Zhang et al., 2018) on the ImageNet
test set. We use the same set of 1000 randomly selected images for all models.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.6 0.8 1 1.2 1.4

0.4

0.5

0.6

Optimal
guidance
without
scaling

Guidance strength

←
L

PI
PS

Identity base covariance
FH (DCT-diagonal covariance)

Figure 6: LPIPS w.r.t. guidance strength for
the ImageNet validation set and the Gaussian
blurring task. With a better covariance ap-
proximation, the usefulness of adjusting the
approximated guidance ∇xt with post-hoc
tricks becomes smaller.

We solve the inverse in Eq. (23) using conjugate
gradient, following Peng et al. (2024). Our custom
PyTorch implementation uses GPU acceleration and
adjusts solver tolerance based on noise levels. This
optimization removes the solver bottleneck without
noticeable performance loss. Details are in App. J.

Proposed models We introduce four new methods.
The first, ‘Identity’, is initialized with identity
covariance. ‘Identity+Online’ also uses the space
updates. ‘FH’ is initialized with data covari-
ance projected to a DCT-diagonal basis. Finally,
‘FH+Online’ enhances ‘FH’ with online updates.

Baselines We compare against several methods
using Eq. (23) for linear imaging inverse prob-
lems: DPS (Chung et al., 2023), ΠGDM (Song
et al., 2023a), TMPD (Boys et al., 2023), and two
methods from Peng et al. (2024) - Peng (Convert)
and Peng (Analytic). TMPD uses vector-Jacobian
product ~1>∇xtx0(st)σ(t)2 for denoiser covari-
ance. Convert employs neural network-output pixel-
space diagonal covariance, while Analytic deter-
mines optimal constant pixel-diagonal covariances
per timestep through moment matching. These
methods were selected as they represent reconstruction guidance with different covariances, en-
abling analysis of our covariance approximation approach. For DPS, we optimized guidance scale
via ImageNet validation set sweeps. Non-identity covariance models used SciPy’s conjugate gradi-
ent method for solving Eq. (23). For TMPD, we adjusted tolerance at higher noise levels to reduce
generation time (see App. J).

Scaling the guidance term We investigated how covariance approximation affects the need for
post-hoc changes to the estimated gradient∇xt log p(y |xt), as shown in Fig. 6. For deblurring, the
cruder identity initialization required scaling slightly below 1, indicating an initial overestimation of
the guidance scale. The more sophisticated DCT-diagonal covariance (FH) showed no systematic
over- or underestimation, with optimal scaling at 1. We determined optimal guidance strength for
identity covariance through a small sweep of 100 ImageNet validation samples at different solver
step counts. No scaling was applied for DCT-diagonal covariance. Additional analysis with PSNR
and SSIM is provided in App. K.

Baseline comparisons Our experiments focus on the low ODE sampling step regime to ensure
practical applicability. Results in Table 1 show that adding online updates during sampling improves
performance, with even greater gains when using DCT-diagonal covariance instead of the identity
base covariance. On low step counts, our FH models consistently outperform baselines across
all metrics, particularly on LPIPS scores. Visual comparisons in Fig. 7 and Fig. 9 confirm the
effective fine detail preservation of FH at 15 and 30 steps. Extended results with 50 and 100 steps,
the Euler solver and the FFHQ dataset (Karras et al., 2019) in App. H, including comparisons to
non-reconstruction guidance methods DDNM+ (Wang et al., 2023) and DiffPIR (Zhu et al., 2023),
show FH and FH+Online almost always outperforming others at low step counts and typically
achieving the best LPIPS scores even at higher step counts.

5 CONCLUSIONS

We introduced Free Hunch (FH), a framework for denoiser covariance estimation in diffusion mod-
els that leverages training data and trajectory curvature. FH provides accurate covariance estimates
without additional training, architectural changes or ODE/SDE solver modifications. Our theoret-
ical analysis showed that incorrect denoiser covariances significantly bias linear inverse problem
solutions. Experiments on ImageNet demonstrated strong performance in linear inverse problems,
especially at low step counts, with excellent LPIPS scores and fine detail preservation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

While FH introduces some additional complexity compared to simpler approaches, its efficiency
and adaptability make it promising for various conditional generation tasks. Limitations of our
work include the focus of the theoretical and experimental analysis on linear inverse problems, and
future work could investigate nonlinear inverse problems and other types of conditional generation.
Another open question is whether we can derive error bounds on the accuracy of the estimated
covariance matrix in the entire process, or within individual ‘time updates’ or ‘space updates’. While
our DCT-diagonal base covariance works well for image data, the application to other data domains
is another open question. A low-rank estimate of the covariance matrix with a PCA decomposition
seems like a generally applicable approach, but this remains to be validated in practice.

Table 1: Comparison of image restoration methods for 15- and 30-step Heun iterations for deblurring
(Gaussian), inpainting (random), deblurring (motion), and super-resolution (4×) tasks. Our method
(FH) excels overall, especially in the descriptive LPIPS metric. The best scores in a given category
are bolded, and the second best are underlined, with close-by scores sometimes sharing a joint first
or second position.

Method Deblur (Gaussian) Inpainting (Random) Deblur (Motion) Super res. (4×)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

15
st

ep
s

DPS 19.94 0.444 0.572 20.68 0.494 0.574 17.02 0.354 0.646 19.85 0.460 0.590
ΠGDM 20.30 0.475 0.574 19.87 0.468 0.598 19.21 0.429 0.602 20.17 0.474 0.582
TMPD 23.08 0.597 0.420 18.99 0.481 0.539 20.80 0.491 0.514 21.88 0.545 0.476
Peng (Convert) 22.53 0.563 0.490 22.23 0.579 0.489 20.46 0.475 0.556 21.92 0.541 0.517
Peng (Analytic) 22.53 0.563 0.490 22.14 0.574 0.494 20.46 0.475 0.556 21.92 0.541 0.517

Identity 22.91 0.594 0.384 18.83 0.397 0.590 20.06 0.393 0.506 22.65 0.589 0.412
Identity+online 23.08 0.606 0.385 18.86 0.397 0.590 20.31 0.418 0.492 22.76 0.597 0.414
FH 23.39 0.624 0.372 24.73 0.701 0.327 21.69 0.534 0.446 23.30 0.624 0.390
FH+online 23.54 0.634 0.378 25.25 0.728 0.317 21.84 0.549 0.441 23.39 0.632 0.394

30
st

ep
s

DPS 21.76 0.527 0.463 24.84 0.678 0.387 18.22 0.389 0.582 23.00 0.593 0.440
ΠGDM 22.27 0.559 0.468 21.24 0.518 0.517 21.16 0.508 0.503 22.11 0.553 0.478
TMPD 23.16 0.602 0.415 18.85 0.481 0.537 20.91 0.500 0.507 21.94 0.549 0.472
Peng (Convert) 23.61 0.627 0.405 23.74 0.648 0.403 21.99 0.553 0.463 23.22 0.608 0.430
Peng (Analytic) 23.61 0.626 0.405 23.59 0.640 0.411 21.99 0.552 0.463 23.21 0.608 0.430

Identity 23.15 0.602 0.374 18.75 0.402 0.578 20.14 0.406 0.494 22.82 0.588 0.405
Identity+online 23.38 0.621 0.359 20.07 0.443 0.529 20.47 0.420 0.467 23.38 0.622 0.383
FH 23.55 0.630 0.353 26.00 0.757 0.256 21.80 0.538 0.411 23.38 0.623 0.372
FH+online 23.62 0.635 0.358 26.18 0.767 0.268 21.88 0.547 0.410 23.44 0.628 0.375

Condition Forward DPS ΠGDM TMPD Peng (Convert) FH (Ours) FH +Online (Ours)

G
au

ss
ia

n
B

lu
r

M
ot

io
n

B
lu

r
In

pa
in

tin
g

Su
pe

rr
es

.

Figure 7: Qualitative examples using the 15-step Heun sampler for image restoration methods for
deblurring (Gaussian), inpainting (random), deblurring (motion), and super-resolution (4×) tasks.
Quantitative metrics in Table 1. Our method manages to restore the corrupted (‘Forward’) to match
well with the original (‘Condition’).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anonymous. Gradient-free analytical fisher information of diffused distributions. 2024.

Fan Bao, Chongxuan Li, Jiacheng Sun, Jun Zhu, and Bo Zhang. Estimating the optimal covariance
with imperfect mean in diffusion probabilistic models. In International Conference on Machine
Learning, pp. 1555–1584. PMLR, 2022a.

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-DPM: An analytic estimate of the opti-
mal reverse variance in diffusion probabilistic models. In International Conference on Learning
Representations (ICLR), 2022b.

Heli Ben-Hamu, Omri Puny, Itai Gat, Brian Karrer, Uriel Singer, and Yaron Lipman. D-Flow:
Differentiating through flows for controlled generation. In Forty-first International Conference
on Machine Learning, 2024.

Benjamin Boys, Mark Girolami, Jakiw Pidstrigach, Sebastian Reich, Alan Mosca, and O Deniz
Akyildiz. Tweedie moment projected diffusions for inverse problems. arXiv preprint
arXiv:2310.06721, 2023.

Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sungroh Yoon. Ilvr: Con-
ditioning method for denoising diffusion probabilistic models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 14367–14376, 2021.

Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models
for inverse problems using manifold constraints. In Advances in Neural Information Processing
Systems 35 (NeurIPS), pp. 25683–25696. Curran Associates, Inc., 2022.

Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul
Ye. Diffusion posterior sampling for general noisy inverse problems. In The Eleventh Interna-
tional Conference on Learning Representations (ICLR), 2023.

Hyungjin Chung, Suhyeon Lee, and Jong Chul Ye. Decomposed diffusion sampler for accelerating
large-scale inverse problems. In The Twelfth International Conference on Learning Representa-
tions (ICLR), 2024.

Giannis Daras, Hyungjin Chung, Chieh-Hsin Lai, Yuki Mitsufuji, Peyman Milanfar, Alexan-
dros G. Dimakis, Chul Ye, and Mauricio Delbracio. A survey on diffusion models for in-
verse problems. 2024. URL https://giannisdaras.github.io/publications/
diffusion_survey.pdf.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 248–255. IEEE, 2009.

John E Dennis, Jr and Jorge J Moré. Quasi-newton methods, motivation and theory. SIAM review,
19(1):46–89, 1977.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In Ad-
vances in Neural Information Processing Systems 34 (NeurIPS), pp. 8780–8794. Curran Asso-
ciates, Inc., 2021.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Genie: Higher-order denoising diffusion solvers.
In Advances in Neural Information Processing Systems 35 (NeurIPS), pp. 30150–30166. Curran
Associates, Inc., 2022.

Zehao Dou and Yang Song. Diffusion posterior sampling for linear inverse problem solving: A fil-
tering perspective. In The Twelfth International Conference on Learning Representations (ICLR),
2024.

Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical Associa-
tion, 106(496):1602–1614, 2011.

11

https://giannisdaras.github.io/publications/diffusion_survey.pdf
https://giannisdaras.github.io/publications/diffusion_survey.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Berthy T Feng, Jamie Smith, Michael Rubinstein, Huiwen Chang, Katherine L Bouman, and
William T Freeman. Score-based diffusion models as principled priors for inverse imaging. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10520–10531,
2023.

Marc Anton Finzi, Anudhyan Boral, Andrew Gordon Wilson, Fei Sha, and Leonardo Zepeda-Núñez.
User-defined event sampling and uncertainty quantification in diffusion models for physical dy-
namical systems. In International Conference on Machine Learning, pp. 10136–10152. PMLR,
2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems 33 (NeurIPS), pp. 6840–6851. Curran Associates, Inc.,
2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. In Advances in Neural Information Processing Systems 35
(NeurIPS), pp. 8633–8646. Curran Associates, Inc., 2022.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score match-
ing. Journal of Machine Learning Research, 6(4), 2005.

Aapo Hyvärinen, Jarmo Hurri, and Patrick O Hoyer. Natural Image Statistics: A Probabilistic
Approach to Early Computational Vision, volume 39. Springer Science & Business Media, 2009.

Ajil Jalal, Marius Arvinte, Giannis Daras, Eric Price, Alexandros G Dimakis, and Jon Tamir. Ro-
bust compressed sensing mri with deep generative priors. In Advances in Neural Information
Processing Systems 34 (NeurIPS), pp. 14938–14954. Curran Associates, Inc., 2021.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401–4410, 2019.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Advances in Neural Information Processing Systems 35 (NeurIPS),
pp. 26565–26577. Curran Associates, Inc., 2022.

Bahjat Kawar, Gregory Vaksman, and Michael Elad. Snips: Solving noisy inverse problems stochas-
tically. In Advances in Neural Information Processing Systems 34 (NeurIPS), pp. 21757–21769.
Curran Associates, Inc., 2021.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. In Advances in Neural Information Processing Systems 35 (NeurIPS), pp. 23593–23606.
Curran Associates, Inc., 2022.

Haoying Li, Yifan Yang, Meng Chang, Shiqi Chen, Huajun Feng, Zhihai Xu, Qi Li, and Yueting
Chen. SRDiff: Single image super-resolution with diffusion probabilistic models. Neurocomput-
ing, 479:47–59, 2022.

Julia Linhart, Gabriel Victorino Cardoso, Alexandre Gramfort, Sylvain Le Corff, and Pedro LC
Rodrigues. Diffusion posterior sampling for simulation-based inference in tall data settings. arXiv
preprint arXiv:2404.07593, 2024.

Cheng Lu, Kaiwen Zheng, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Maximum likelihood
training for score-based diffusion odes by high order denoising score matching. In International
Conference on Machine Learning, pp. 14429–14460. PMLR, 2022.

David G Luenberger, Yinyu Ye, et al. Linear and Nonlinear Programming, volume 2. Springer,
1984.

Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund, and Thomas B Schön. Taming diffu-
sion models for image restoration: A review. arXiv preprint arXiv:2409.10353, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Morteza Mardani, Jiaming Song, Jan Kautz, and Arash Vahdat. A variational perspective on solving
inverse problems with diffusion models. In The Twelfth International Conference on Learning
Representations (ICLR), 2024.

Chenlin Meng, Yang Song, Wenzhe Li, and Stefano Ermon. Estimating high order gradients of
the data distribution by denoising. In Advances in Neural Information Processing Systems 34
(NeurIPS), pp. 25359–25369. Curran Associates, Inc., 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

Xinyu Peng, Ziyang Zheng, Wenrui Dai, Nuoqian Xiao, Chenglin Li, Junni Zou, and Hongkai
Xiong. Improving diffusion models for inverse problems using optimal posterior covariance. In
Forty-first International Conference on Machine Learning, 2024.

Litu Rout, Yujia Chen, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai, and Wen-
Sheng Chu. Beyond first-order tweedie: Solving inverse problems using latent diffusion. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 9472–9481, 2024.

François Rozet, Gérôme Andry, François Lanusse, and Gilles Louppe. Learning diffusion priors
from observations by expectation maximization. arXiv preprint arXiv:2405.13712, 2024.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad
Norouzi. Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(4):4713–4726, 2022.

Pedro Sanchez, Xiao Liu, Alison Q O’Neil, and Sotirios A Tsaftaris. Diffusion models for causal
discovery via topological ordering. In International Conference on Learning Representations,
2022.

Simo Särkkä and Arno Solin. Applied Stochastic Differential Equations, volume 10. Cambridge
University Press, 2019.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
models for inverse problems. In International Conference on Learning Representations (ICLR),
2023a.

Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz, Yongxin
Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable generation.
In International Conference on Machine Learning, pp. 32483–32498. PMLR, 2023b.

Kaiyu Song and Hanjiang Lai. Fisher information improved training-free conditional diffusion
model. arXiv preprint arXiv:2404.18252, 2024.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations (ICLR), 2021.

Brian L Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina Barzilay, and
Tommi S Jaakkola. Diffusion probabilistic modeling of protein backbones in 3D for the motif-
scaffolding problem. In The Eleventh International Conference on Learning Representations
(ICLR), 2023.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural Compu-
tation, 23(7):1661–1674, 2011.

Gregory K Wallace. The jpeg still picture compression standard. Communications of the ACM, 34
(4):30–44, 1991.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hengkang Wang, Xu Zhang, Taihui Li, Yuxiang Wan, Tiancong Chen, and Ju Sun. Dmplug: A plug-
in method for solving inverse problems with diffusion models. arXiv preprint arXiv:2405.16749,
2024.

Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion
null-space model. In The Eleventh International Conference on Learning Representations (ICLR),
2023.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):
600–612, 2004.

Jay Whang, Mauricio Delbracio, Hossein Talebi, Chitwan Saharia, Alexandros G Dimakis, and Pey-
man Milanfar. Deblurring via stochastic refinement. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 16293–16303, 2022.

Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei, and John P Cunningham. Practical and
asymptotically exact conditional sampling in diffusion models. In Advances in Neural Informa-
tion Processing Systems 36 (NeurIPS). Curran Associates, Inc., 2024.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 586–595, 2018.

Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu Timofte, and Luc
Van Gool. Denoising diffusion models for plug-and-play image restoration. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1219–1229,
2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDICES

A FULL DERIVATIONS FOR THE TIME UPDATE

For this section, we denote p(xt) = log p(x, t) to explicitly separate the time variable from the
spatial variable. This notation is useful for the derivations below, but in other parts of the paper we
use the xt to separate it from x0.

Recall the mean and covariance of the Gaussian approximation at location x and time t:
m(x, t) = x−∇2

x log p(x, t)−1∇x log p(x, t), (26)

C(x, t) = −∇2
x log p(x, t)−1. (27)

The evolution of the Gaussian has a closed form (Särkkä & Solin, 2019). In the variance-exploding
case this results in

m(x, t+ ∆t) = m(x, t), (28)

C(x, t+ ∆t) = C(x, t) + ∆σ2I, (29)

where ∆σ2 = σ2(t+ ∆t)− σ2(t). That is, the forward keeps the mean intact while increasing the
covariance. Using the above equations we can derive:

∇2
x log p(x, t+ ∆t) =

(
∇2

x log p(x, t)−1 −∆σ2I
)−1

(30)

∇x log p(x, t+ ∆t) = ∇2
x log p(x, t+ ∆t)∇2

x log p(x, t)−1∇x log p(x, t) (31)
When connected with Equation (7) and Equation (8), we can now derive the denoiser mean and
covariance updates.
µ0 | t+∆t(x) = x+ σ2(t+ ∆t)∇x log p(x, t+ ∆t)

= x+ σ2(t+ ∆t) (∇2 log p(x, t)−1 −∆σ2I)−1︸ ︷︷ ︸
Hessian projection

∇2 log p(x, t)−1∇x log p(x, t)︸ ︷︷ ︸
Hessian-score product

(32)

µ0 | t+∆t(x) = x+ σ(t+ ∆t)2

((
σ(t)2 + ∆σ2

)
I − ∆σ2

σ(t)2
Σ0 | t(x)

)−1(
µ0 | t(x)− x

)
,

= x+ σ(t+ ∆t)2

(
σ(t+ ∆t)2I − ∆σ2

σ(t)2
Σ0 | t(x)

)−1(
µ0 | t(x)− x

)
, (33)

Σ0 | t+∆t(x) =
(
Σ0 | t(x)−1 + ∆σ−2I

)−1

. (34)

This result is not entirely obvious, and next we will provide a detailed derivation.

Deriving the denoiser covariance update With the locally Gaussian approximation on p(x, t),
we can represent the time evolution of the p(x, t) covariance as the following

C(x, t) = C0 + σ(t)2I, (35)
where C0 is the hypothetical covariance when extrapolating the Gaussian time evolution to t = 0.
Then, moving back to the xt notation,we have the following connections (Eq. (11))

∇2
xt log p(xt) = −(C0 + σ(t)2I)−1, (36)

∇2
xt log p(xt)

−1 = −(C0 + σ(t)2I). (37)
On the other hand, the denoiser covariance is

Cov[x0 |xt] = (∇2
xt log p(xt)σ(t)2 + I)σ(t)2. (38)

The inverse of the denoiser covariance is then (Sherman–Morrison–Woodbury formula):
Cov[x0 |xt]−1 = (∇2

xt log p(xt)σ(t)2 + I)−1σ(t)−2 (39)

= (I − (I +∇2
xt log p(xt)

−1σ(t)−2)−1)σ(t)−2 (Woodbury) (40)

=
(
I −

(
I − (C0 + σ(t)2I)σ(t)−2

)−1
)
σ(t)−2 (37) (41)

= (I +C−1
0 σ(t)2)σ(t)−2 (42)

= C−1
0 + σ(t)−2I. (43)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

So the inverse of the denoiser covariance is simply a constant term plus an identity scaled with
σ(t)−2. This means that

Cov[x0 |xt+∆t]
−1 − Cov[x0 |xt]−1 = (C−1

0 + Iσ(t+ ∆t)−2)− (C−1
0 + Iσ(t)−2) (44)

Cov[x0 |xt+∆t]
−1 = Cov[x0 |xt]−1 + Iσ(t+ ∆t)−2 − Iσ(t)−2 (45)

= Cov[x0 |xt]−1 + ∆σ(t)−2I. (46)

And thus

Cov[x0 |xt+∆t] = (Cov[x0 |xt]−1 + ∆σ(t)−2I)−1. (47)

Deriving the denoiser mean update We want to calculate the expression for the updated mean
µ0 | t+∆t(xt). This mean can be written as:

µ0 | t+∆t(xt) = xt + σ(t+ ∆t)2 ·
(
∇2

xt log p(xt)−∆σ2I
)−1∇2

xt log p(xt)∇xt log p(xt). (48)

We aim to simplify the term inside the parentheses. Starting from the observation:(
∇2

xt log p(xt)−∆σ2I
)−1∇2

xt log p(xt) =
(
I −∆σ2∇2

xt log p(xt)
)−1

(49)

and using Eq. (7) and Eq. (8), we can express ∇2
xt log p(xt) and ∇xt log p(xt) as functions of

Σ0 | t(xt) and σ(t), yielding:

µ0 | t+∆t(xt) = xt + σ(t+ ∆t)2 ·
((
σ(t)2 + ∆σ2

)
I − ∆σ2

σ(t)2
Σ0 | t(xt)

)−1 (
µ0 | t(xt)− xt

)
.

(50)
This is the final simplified expression for µ0 | t+∆t(xt).

B INVERTING THE EFFICIENT MATRIX REPRESENTATION

Let’s say we have a positive-definite matrix in represented in the format C = D +UU> − V V >,
where D is a diagonal matrix and U and V are N × k1 and N × k2 matrices, respectively. N is
the data dimensionality and k � N . To invert it, we use the Woodbury identity twice, first for
A = D +UU>, and second forA− V V >. The first application of the identity is:

A−1 = (D +UU>)−1 = D−1 −D−1U (I +U>D−1U)−1︸ ︷︷ ︸
=K

U>D−1 (51)

= D−1 −D−1Usqrt(K)︸ ︷︷ ︸
=V ′

sqrt(K)>U>D−1 (52)

= D−1 − V ′V ′> (53)

that is, when we invert A = D +UU>, we get something in the form D−1 − V ′V ′>. Note that
I −U>D−1U is a k1 × k1 matrix, instea of an N ×N matrix and as such is much more efficient
to invert than the full N ×N matrix when k1 � N . Now, invert C = A− V V >:

C−1 = (A− V V >)−1 = A−1 +A−1V (I − V >A−1V)−1︸ ︷︷ ︸
=L

V >A−1 (54)

= A−1 +A−1V sqrt(L)︸ ︷︷ ︸
=U ′

sqrt(K)>V >A−1 (55)

= A−1 +U ′U ′ = D−1 +U ′U ′> − V ′V ′>. (56)

Note that V >A−1V is again efficient to compute due to the low-rank structure ofA−1:

V >A−1V = V >
(
D−1 − V ′V ′>

)
V (57)

= V >D−1V − V >V ′V ′>V (58)

= V >D−1V︸ ︷︷ ︸
k2×k2

− (V >V ′)︸ ︷︷ ︸
k2×k2

(V ′>V)︸ ︷︷ ︸
k2×k2

. (59)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

This leads to a well-behaved k2 × k2 matrix, and the inverse (I − V >A−1V)−1 is also efficient to
compute.

The matrix square root and complex numbers Note that in addition to the k1 × k1 and k2 × k2

inverses, the method requires matrix square root. One might imagine that (I + U>D−1U)−1 is
guaranteed to be positive-definite due to the original matrix being such, but this is not necessarily the
case. (I + U>U)−1 would be, but the diagonal term D−1 can push the eigenvalues of the matrix
to negative. This means that we can not use the Cholesky decomposition for the matrix square root
operations, but instead we use the Schur decomposition as implemented in the scipy library. A side-
effect is also that we have to use complex numbers to representD,U , and V in our implementation.
This is not an issue, since in the calculation of the covariance D + UU> − V V >, the imaginary
components cancel out and we get a real matrix.

C EXTENDED ANALYSIS OF THE TOY EXAMPLE

As a recap, in the toy model, A = I and all the pixels are perfectly correlated with Cov[x0] = J ,
where J is a matrix full of ones. The observation y and the denoiser mean µ0 | t(xt) are also vectors
of ones ~1 scaled by a constant, so that y − µ0 | t(xt) = a~1.

ΠGDM guidance without postprocessing

(y − µ0 | t(xt))
>(I

σ(t)2

1 + σ(t)2
+ σ2

yI)−1∇xtµ0 | t(xt)

≈ (y − µ0 | t(xt))
>(I + σ2

yI)−1Cov[x0 |xt]
σ(t)2

(60)

=
a

1 + σ2
y

~1>
J

σ(t)2
=

aN

(1 + σ2
y)σ(t)2

~1>. (61)

DPS guidance without postprocessing

(y − µ0 | t(xt))
>(I0 + σ2

yI)−1∇xtµ0 | t(xt)

≈ (y − µ0 | t(xt))
>σ−2

y

Cov[x0 |xt]
σ(t)2

(62)

=
a

σ2
y

~1>
J

σ(t)2
=

aN

σ2
yσ(t)2

~1>. (63)

Here N is the data dimensionality.

For ΠGDM, the gradient is scaled by σ(t)2

1+σ(t)2 , but this does not change the result in high noise
levels. Instead, the clipping of the denoiser mean to [−1, 1] regularises the guidance such that the
generation trajectory does not blow up. For DPS, the additional scaling results in

σ(t)2∇xtp(y |xt) ≈
ξσ2
y

‖y −Ax0‖
N

σ2
y

~1 =
ξN

‖~1‖
~1 =

ξN√
N
~1 = ξ

√
N~1 (64)

which is less severe than ΠGDM, but still requires additional clipping unless the scale ξ is set to
very low values.

Solution with the correct covariance In the main text, we showed that the issue does not show up
in the case σy = 0. This resulted in:

∇xt log p(y |xt) = (y − x0(xt))
>Cov[x0 |xt]−1Cov[x0 |xt]

σ2
t

=
(y − x0(xt))

>

σ2
t

(65)

The corresponding x0 estimate is:

xt + σ2
t

(
∇xt log p(xt) +

(y − x0(xt))

σ2
t

)
= E[x0 |xt] + y − E[x0 |xt] = y (66)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

that is, the updated score points to the direction of the observation for all time steps t. For the case
t→∞ and Cov[x0 |xt] ≈ J and not assuming σy = 0, we can derive with the Sherman–Morrison
formula that

(Cov[x0 |xt] + σ2
yI)−1 = (J + σ2

yI)−1 =
1

σ2
y

I − 1

σ4
y +Nσ2

y

J . (67)

To simplify formulas, let us again assume that y − x0(xt) = a~1

∇xt log p(y |xt) ≈a~1>
(

1

σ2
y

I − 1

σ4
y +Nσ2

y

J

)
J

σ2
t

(68)

=a

(
1

σ2
y

− N

σ4
y +Nσ2

y

)
~1>

J

σ2
t

(69)

=a
1

σ2
y +N

~1>
J

σ2
t

(70)

=a
1

σ2
y +N

N

σ2
t

~1>. (71)

Here, again, since the inverse term is inversely dependent on N , the dependence of the last term on
N is cancelled. In the case σ2

y = 0, we recover the exact same result as previously. With non-zero
observation noise, the strength of the guidance becomes slightly smaller, reflecting the uncertainty
about the underlying pure x0 value we have measured.

D FULL GUIDANCE ALGORITHMS FOR THE LINEAR-GAUSSIAN
OBSERVATION MODEL

The algorithm Alg. 3 details an implementation of the method with the Euler ODE solver. The
algorithm Alg. 4 is a more easily applicable implementation with any type of solver, including
higher-order methods like the Heun method. In it, we instantiate a class at the beginning of sampling,
and whenever a call to the denoiser / score model is made, it is passed to the class to calculate
∇xt log p(xt) and update the covariance information. For image data, we only perform the space
updates in 1 < σ(t) < 5, as detailed in App. J.

E ADDITIONAL TOY EXPERIMENT WITH CORRELATED DATA

To examine the effect mentioned in Sec. 3.7, we constructed data p(x0) = N (x0 |0, (1−ρ)I+ρJ),
where J is a matrix of ones and ρ = 0.999. We used an observation with noise σy = 0.2 and varied
the dimension. We plot the variance of the generated samples in Fig. 8. As expected, both ΠGDM
and DPS become overly confident as dimensionality increases. In contrast, our method, which
explicitly accounts for data covariance, maintains correct uncertainty calibration across dimension
counts. Note that the DPS results are obtained after tuning the guidance scale for this particular
problem, making the comparisons somewhat favourable towards DPS.

F ADDITIONAL QUALITATIVE RESULTS

Figure 9 shows the qualitative comparison with 30 Heun solver steps.

G QUANTIFYING THE ERROR IN THE COVARIANCE ESTIMATION

We study the case where we directly estimate the error in the denoiser covariance estimates for low-
dimensional toy data, where this is directly feasible. We consider a 2D Gaussian mixture model with
an likelihood function and posterior as shown in Fig. 10.

We generate samples with four different methods, and compare the covariances true to the true
covariance with the Frobenius norm. The methods are:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 3: Free Hunch for Linear Inverse Problems (Euler solver, with diffusion parameters
from (Karras et al., 2022))
Input: Linear operatorA, observation y, noise σy
Input: Initial covariance Σdata, score model sθ
Input: Schedule params: σmin = tmin = 0.002, σmax = tmax = 80, ρ = 7, steps N

/* Define time discretization */

1 ti = (t
1
ρ
max + i

N−1 t
1
ρ

min − t
1
ρ
max)ρ for i < N , tN = 0 (Karras et al., 2022)

2 Initialize xt ∼ N (0, σ2
maxI)

3 Initialize Σ0 | t(xt) = Σdata

4 Initialize µtransferred
0 | ti = null

5 Initialize ∆x = null
6 for i = 1, . . . , N − 1 do
7 σcurr = ti, σnext = ti+1

8 ∆t = ti+1 − ti
/* New score and denoising mean evaluation */

9 ∇xt log p(xt) = sθ(xt, ti)
10 µ0 | t(xt) = xt + σ2

curr∇xt log p(xt)
/* Space update for covariance */

11 if µtransferred
0 | ti 6=null And ∆x 6= null then

12 ∆e = σ2
curr(µ0 | t(xt)− µtransferred

0 | ti)

13 γ = 1
∆e>∆x

14 Σ0 | t(xtnext) = Σ0 | t(xt)−
Σ0 | t(xt)∆x∆x>Σ0 | t(xt)

∆x>Σ0 | t(xt)∆x
+ ∆e∆e>

∆e>∆x

15 end
/* Reconstruction guidance */

16 ∇xt log p(y|xt) = (y −Aµ0 | t(xt))
>(AΣ0 | t(xt)A

> + σ2
yI)−1A∇xtµ0 | t(xt)

/* Fall back to approximation if guidance too large */
17 if ‖σ2

curr∇xt log p(y |xt)‖ > 1 then
18 ∇xt log p(y|xt) = (y −Aµ0 | t(xt))

>(AΣ0 | t(xt)A
> + σ2

yI)−1A
Σ0 | t(xt)

σ2
curr

19 end
/* Update sample with Euler step */

20 ∆x = −σcurr(∇xt log p(xt) +∇xt log p(y|xt))∆t
21 xt = xt + ∆x

/* Time update for mean */
22 ∆σ2 = σ2

next − σ2
curr

23 µtransferred
0 | ti+1

= xt + σ2
next(σ

2
nextI − ∆σ2

σ2
curr

Σ0 | t(xt))
−1(µ0 | t(xt)− xt)

/* Time update for covariance (moving to noise level σnext) */
24 ∆(σ−2) = σ−2

next − σ−2
curr

25 Σ0 | t(xt)
−1 = Σ0 | t(xt)

−1 + ∆(σ−2)I

26 Σ0 | t(xt) = (Σ0 | t(xt)
−1)−1

27 end
28 return xt

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 4: Free Hunch Guidance Class, applicable with any solver

1 class FreeHunchGuidance:
/* Initialize with measurement model and data covariance */

2 constructor(A, y, σy , Σdata):
3 StoreA, y, σy , Σ0 | t = Σdata

4 Initialize µprev = null, xprev = null, σprev = null

/* Process new denoiser evaluation and return guidance, to be
used for updating ∇xt log p(xt) to ∇xt log p(xt) +∇xt log p(y |xt)
before using it in the solver. */

5 function process denoiser(µnew, xnew, σnew):
6 if µprev 6= null then

/* Time update from previous step */
7 ∆(σ−2) = σ−2

new − σ−2
prev

8 ∆σ2 = σ2
new − σ2

prev

9 Σ−1
0 | t = Σ−1

0 | t + ∆(σ−2)I

10 Σ0 | t = (Σ−1
0 | t)

−1

/* Transfer previous mu to new noise level */

11 µtransferred = xprev + σ2
new(σ2

nextI − ∆σ2

σ2
prev

Σ0 | t)
−1(µprev − xprev)

/* Space update */
12 ∆x = xnew − xprev

13 ∆e = σ2
new(µnew − µtransferred)

14 γ = 1
∆e>∆x

15 Σ0 | t = Σ0 | t −
Σ0 | t∆x∆x>Σ0 | t

∆x>Σ0 | t∆x
+ ∆e∆e>

∆e>∆x

16 end
/* Calculate reconstruction guidance */

17 ∇x log p(y|xnew) = (y −Aµnew)>(AΣ0 | tA
> + σ2

yI)−1A∇xµnew

/* Fall back to approximation if guidance too large */
18 if ‖σ2

new∇x log p(y |xnew)‖ > 1 then
19 ∇x log p(y|xnew) = (y −Aµnew)>(AΣ0 | tA

> + σ2
yI)−1A

Σ0 | t
t2new

20 end
/* Update state variables */

21 µprev = µnew
22 xprev = xnew
23 σprev = σnew

24 return ∇x log p(y|xnew)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

Data dimensionality

St
an

da
rd

de
vi

at
io

n
True p(x0 |xt)
ΠGDM
FH (Us)
DPS

Figure 8: The standard deviation of posterior samples from different methods for the toy
data discussed in App. E, showcasing the overconfidence problem caused by overestimated
∇xt log p(y |xt).

Condition Forward DPS ΠGDM TMPD Peng (Convert) FH (Ours) FH +Online (Ours)

G
au

ss
ia

n
B

lu
r

M
ot

io
n

B
lu

r
In

pa
in

tin
g

Su
pe

rr
es

.

Figure 9: Qualitative results from 30-step Heun sampler.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 10: The posterior distribution of the toy data discussed in App. G and the prior distribution.

1. Cov[x0 |xt] ≈ σ(t)2

1+σ(t)2 I , similarly to ΠGDM.

2. Cov[x0 |xt] approximated with our method by initialising at the data covariance, but not
performing space updates.

3. Cov[x0 |xt] approximated with our method by initialising at the data covariance, and per-
forming space updates.

4. Cov[x0 |xt] approximated with our method and with space updates, but estimating the
BFGS updates by calculating∇xt log p(xt+∆x) and∇xt log p(xt) explicitly, requiring 2
denoiser calls per step, but without error from the time updates affecting the BFGS updates.
This method is also discussed in App. J.

For these experiments, we used the Euler–Maruyama sampler. The results are shown in Fig. 11.
The ΠGDM covariance approximation is the furthest from the true value. Initialising at the data
covariance helps, and adding the space updates decreases the error further. However, there is a clear
gap in the standard method and using two score evaluations per step. We believe that this is due to
the errors from the time updates affecting the BFGS updates.

We also perform an ablation comparing a deterministic Euler sampler and the stochastic Euler–
Maryama sampler with the fourth method, and varying diffusion step count. The results are shown
in Fig. 12. Whereas for the deterministic sampler, the covariance estimate does not significantly im-
prove after a certain point, for the stochastic sampler, the error approaches zero across the sampling
steps with more steps. This is because the reason the inherent curvature in the ODE path does not
signifcantly change after increasing the step count above a certain limit. With a stochastic sampler,
the generative path explores a slightly different direction at each step, and the BFSG updates get
information from the curvature in all directions.

H ADDITIONAL RESULTS ON IMAGE MODELS

Here we list full additional results from:

1. ImageNet 256×256 results with Euler solver for 15, 30, 50, and 100 steps, in Table 2.
2. ImageNet 256×256 results with Heun solver for 15, 30, 50, and 100 steps, in Table 3.
3. FFHQ 256×256 results with the Euler solver, in Table 4. The denoiser network was ob-

tained from (Chung et al., 2023).

For each task, we use 1000 samples from the ImageNet test set / FFHQ test set. We also evaluate
DDNM+(Wang et al., 2023) and DiffPIR(Zhu et al., 2023) for a more thorough to different types

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 0.2 0.4 0.6 0.8 1

10
−4

10
−3

10
−2

10
−1

10
0

Sampling progress

A
ve

ra
ge

Fr
ob

en
iu

s
N

or
m

E
rr

or

Cov(x0 |xt) = σ(t)2

1+σ(t)2
I

Time updates only
With space updates
Space updates without transferring score evals across time

Figure 11: The Frobenius norm of the difference between the true covariance and the estimated
covariance for different methods for different sampling steps (0 corresponds to the maximum noise
level and 1 corresponds to zero noise level). As pointed out in App. J, using the time updates to
transfer scores for use with the BFGS updates can cause inaccuracies with low-dimensional data,
making the curve slightly rough, although still below the one with only time updates.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

Sampling progress (1 − diffusion time)

A
ve

ra
ge

Fr
ob

en
iu

s
N

or
m

E
rr

or

Covariance Approximation Error (Euler–Maryama)

25 steps
50 steps
100 steps
200 steps
400 steps

0 0.2 0.4 0.6 0.8 1

0

5 · 10−2

0.1

0.15

0.2

Sampling progress (1 − diffusion time)

A
ve

ra
ge

Fr
ob

en
iu

s
N

or
m

E
rr

or

Covariance Approximation Error (Euler)

25 steps
50 steps
100 steps
200 steps
400 steps

Figure 12: The Frobenius norm of the difference between the true covariance and the estimated
covariance for different methods, with varying step count.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

of methods, although these can not directly be interpreted as reconstruction guidance with specific
covariances. For DiffPIR, we use the implementation of (Peng et al., 2024), where they note that the
definition of the DiffPIR step as involving an optimization process has an analytical solution.

Notes on hyperparameters For DPS, Identity, Identity+Online updates, and DiffPIR, we tuned hy-
perparameters for each task using Gaussian blur as a baseline. We separately tuned the hyperparame-
ters for the Euler and Heun solvers, and for each step count. While the optimal hyperparameters were
similar for DiffPIR, Identity and Identity+Online updates, for DPS, the optimal values depended on
the solver type and step count. We used 100 samples from the ImageNet validation set for tuning,
and used these parameters for all experiments. The results are shown in Fig. 13,Fig. 14,Fig. 15 and
Fig. 16.

I MOTIVATIONS FOR THE DCT BASIS AND THE BFGS UPDATE

The reason that we chose the DCT over, e.g., the DFT basis is that it is purely real-valued, does not
assume periodic boundaries, and in practice needs less coefficients to efficiently represent natural
images. This is also one of the reasons for its use in the JPEG compression standard (Wallace, 1991).
The BFGS update has the attractive property of preserving positive-semidefiniteness (as opposed to,
e.g., the symmetric rank-1 update). This combines well with performing the updates in the denoiser
covariance, which is positive-definite (as opposed to the Hessian). Compared to Davidon-Fletcher-
Powell (DFP), the difference is that the BFGS update minimizes a weighted Frobenius norm for the
size of the update in inverse covariance (Dennis & Moré, 1977), instead of the covariance directly.
In the update formula in Eq. (23), if we use A=I and the obseration noise is low, the inverse term is
simply the inverse covariance. Thus, it could stabilise the updates across iterations, but this is more
speculative, and DFP could work in practice as well.

J IMPLEMENTATION DETAILS

The solver We noticed that in large noise levels, it does not matter if the inversion in Eq. (23) is not
exact, and we can set the tolerance quite high. We then defined a schedule for the tolerance such that
it becomes lower towards the end. A lower tolerance towards the end of sampling is not an issue,
since the covariance becomes closer to a diagonal, and the required matrix inverse becomes easier
to calculate. In practice, we use the following schedule:

σmax = 80

σmin = 1

rtolmax = 1

rtolmin = 1e− 14

p = 0.1

σclipped = max(min(σ, σmax), σmin)

log factor =

(
log10(σclipped)− log10(σmin)

log10(σmax)− log10(σmin)

)p
(72)

log rtol = log factor · (log10(rtolmax)− log10(rtolmin)) + log10(rtolmin) (73)

rtol = 10log rtol, (74)

where rtolmax and rtolmin control the maximum and minimum relative tolerances of the solver, and
σmax and σmin control the noise levels outside of which the tolerances are rtolmax and rtolmin, respec-
tively.

Note that scheduling the solver in this way does not improve image quality. Instead, it improves
inference speed considerably, to the point where the solver is not a bottleneck anymore. Instead of
using a standard off-the-shelf conjugate gradient implementation, we implemented one ourselves in
PyTorch to utilize the speedup from the GPU.

Also for TMPD, we created a schedule for the conjugate gradient since a constant low tolerance
slowed down the computation quite a bit. For TMPD, we use a standard scipy implementation that

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 2: Results with the Euler solver. Our model performs especially well at small step sizes and
remains competitive at larger step counts as well. DDNM+ is designed to enforce consistency with
the measurement in cases where the measurement operator has a clearly defined nullspace, such as
inpainting and super-resolution, potentially affecting the good PSNR and SSIM results there. In
contrast, DDNM+ struggles with our Gaussian blur kernels. Motion blur results are not presented,
as the code of DDNM+ assumes separable kernels.

Method Deblur (Gaussian) Inpainting (Random) Deblur (Motion) Super res. (4×)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

15
st

ep
s

DPS 19.94 0.444 0.572 20.68 0.494 0.574 17.02 0.354 0.646 19.85 0.460 0.590
ΠGDM 20.29 0.474 0.574 19.87 0.468 0.598 19.21 0.429 0.602 20.17 0.474 0.582
TMPD 22.56 0.572 0.486 17.70 0.447 0.589 20.40 0.481 0.567 21.15 0.517 0.541
Peng Convert 22.53 0.563 0.490 22.23 0.579 0.489 20.46 0.475 0.556 21.92 0.541 0.517
Peng Analytic 22.52 0.563 0.490 22.14 0.574 0.494 20.46 0.475 0.556 21.92 0.541 0.517
DDNM+ 7.21 0.029 0.822 23.95 0.667 0.352 – – – 24.30 0.669 0.398
DiffPIR 22.77 0.575 0.403 16.10 0.284 0.661 19.75 0.381 0.527 21.76 0.540 0.436

Identity 22.91 0.594 0.384 18.83 0.397 0.590 20.06 0.393 0.506 22.65 0.589 0.412
Identity+online 23.08 0.606 0.385 18.86 0.397 0.590 20.31 0.418 0.492 22.76 0.597 0.414
FH 23.41 0.625 0.373 24.76 0.702 0.327 21.69 0.534 0.447 23.39 0.632 0.390
FH+online 23.57 0.635 0.378 25.29 0.731 0.315 21.83 0.548 0.442 23.31 0.624 0.393

30
st

ep
s

DPS 21.76 0.527 0.463 24.84 0.678 0.386 18.22 0.389 0.582 23.00 0.593 0.440
ΠGDM 22.27 0.559 0.468 21.24 0.518 0.517 21.15 0.508 0.503 22.11 0.552 0.479
TMPD 22.92 0.591 0.451 18.27 0.465 0.563 20.71 0.495 0.538 21.59 0.536 0.507
Peng Convert 23.61 0.627 0.405 23.74 0.648 0.403 21.99 0.553 0.463 23.21 0.608 0.430
Peng Analytic 23.61 0.627 0.405 23.59 0.640 0.410 21.99 0.552 0.463 23.22 0.608 0.430
DDNM+ 7.51 0.033 0.814 26.66 0.769 0.272 – – – 24.09 0.657 0.418
DiffPIR 22.34 0.552 0.404 15.94 0.262 0.667 19.38 0.368 0.523 21.25 0.512 0.443

Identity 23.15 0.602 0.374 18.75 0.402 0.578 20.14 0.406 0.494 22.82 0.588 0.405
Identity+online 23.38 0.621 0.359 20.07 0.443 0.529 20.47 0.420 0.467 23.38 0.622 0.383
FH 23.56 0.630 0.353 26.00 0.758 0.255 21.79 0.537 0.410 23.38 0.624 0.371
FH+online 23.66 0.636 0.359 26.17 0.766 0.268 21.89 0.548 0.409 23.46 0.629 0.375

50
st

ep
s

DPS 22.66 0.579 0.411 26.31 0.761 0.297 19.05 0.428 0.537 23.79 0.642 0.375
ΠGDM 22.64 0.577 0.434 21.67 0.536 0.484 21.56 0.526 0.468 22.48 0.571 0.442
TMPD 23.09 0.600 0.434 18.50 0.472 0.551 20.83 0.500 0.524 21.76 0.543 0.492
Peng Convert 23.81 0.638 0.377 24.75 0.698 0.346 22.30 0.567 0.430 23.44 0.622 0.400
Peng Analytic 23.81 0.638 0.378 24.47 0.683 0.360 22.30 0.567 0.430 23.44 0.622 0.400
DDNM+ 7.83 0.038 0.806 27.15 0.771 0.301 – – – 24.05 0.655 0.424
DiffPIR 22.10 0.539 0.407 15.82 0.251 0.670 19.17 0.358 0.525 21.00 0.498 0.448

Identity 23.18 0.602 0.360 19.64 0.436 0.536 19.92 0.373 0.497 23.11 0.600 0.385
Identity+online 23.47 0.620 0.370 19.46 0.409 0.552 20.74 0.453 0.453 23.20 0.607 0.399
FH 23.43 0.622 0.348 25.94 0.760 0.238 21.56 0.523 0.406 23.21 0.614 0.366
FH+online 23.59 0.631 0.353 26.08 0.770 0.252 21.71 0.534 0.406 23.33 0.620 0.369

10
0

st
ep

s

DPS 23.36 0.615 0.379 26.61 0.800 0.229 20.05 0.473 0.492 23.36 0.622 0.366
ΠGDM 22.76 0.585 0.408 21.97 0.551 0.459 21.71 0.533 0.440 22.63 0.580 0.416
TMPD 23.18 0.604 0.423 18.67 0.477 0.543 20.90 0.502 0.514 21.88 0.548 0.480
Peng Convert 23.74 0.638 0.358 24.89 0.706 0.332 22.36 0.570 0.407 23.46 0.625 0.379
Peng Analytic 23.73 0.637 0.358 24.67 0.694 0.345 22.36 0.570 0.407 23.46 0.625 0.379
DDNM+ 8.77 0.054 0.786 28.28 0.809 0.278 – – – 23.55 0.630 0.450
DiffPIR 21.88 0.527 0.410 15.69 0.241 0.672 18.95 0.345 0.529 20.78 0.485 0.451

Identity 23.11 0.596 0.361 19.66 0.439 0.528 19.72 0.358 0.501 23.04 0.594 0.384
Identity+online 23.43 0.616 0.373 19.65 0.420 0.538 20.77 0.459 0.447 23.08 0.599 0.403
FH 23.24 0.613 0.346 25.71 0.755 0.233 21.35 0.510 0.407 23.03 0.604 0.364
FH+online 23.32 0.616 0.356 25.73 0.764 0.243 21.37 0.509 0.417 23.17 0.609 0.370

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 3: Results with the Heun solver. Our model performs especially well at small step sizes and
remains competitive at larger step counts as well. DDNM+ is designed to enforce consistency with
the measurement in cases where the measurement operator has a clearly defined nullspace, such as
inpainting and super-resolution, potentially affecting the good PSNR and SSIM results there. In
contrast, DDNM+ struggles with our Gaussian blur kernels. Motion blur results are not presented,
as the code of DDNM+ assumes separable kernels.

Method Deblur (Gaussian) Inpainting (Random) Deblur (Motion) Super res. (4×)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

15
st

ep
s

DPS 19.94 0.444 0.572 20.68 0.494 0.574 17.02 0.354 0.646 19.85 0.460 0.590
ΠGDM 20.30 0.475 0.574 19.87 0.468 0.598 19.21 0.429 0.602 20.17 0.474 0.582
TMPD 23.08 0.597 0.420 18.99 0.481 0.539 20.80 0.491 0.514 21.88 0.545 0.476
Peng Convert 22.53 0.563 0.490 22.23 0.579 0.489 20.46 0.475 0.556 21.92 0.541 0.517
Peng Analytic 22.53 0.563 0.490 22.14 0.574 0.494 20.46 0.475 0.556 21.92 0.541 0.517
DDNM+ 7.21 0.029 0.822 23.95 0.667 0.352 – – – 24.30 0.669 0.398
DiffPIR 22.77 0.575 0.403 16.10 0.284 0.661 19.75 0.381 0.527 21.76 0.540 0.436

Identity 22.91 0.594 0.384 18.83 0.397 0.590 20.06 0.393 0.506 22.65 0.589 0.412
Identity+online 23.08 0.606 0.385 18.86 0.397 0.590 20.31 0.418 0.492 22.76 0.597 0.414
FH 23.39 0.624 0.372 24.73 0.701 0.327 21.69 0.534 0.446 23.30 0.624 0.390
FH+online 23.54 0.634 0.378 25.25 0.728 0.317 21.84 0.549 0.441 23.39 0.632 0.394

30
st

ep
s

DPS 21.76 0.527 0.463 24.84 0.678 0.387 18.22 0.389 0.582 23.00 0.593 0.440
ΠGDM 22.27 0.559 0.468 21.24 0.518 0.517 21.16 0.508 0.503 22.11 0.553 0.478
TMPD 23.16 0.602 0.415 18.85 0.481 0.537 20.91 0.500 0.507 21.94 0.549 0.472
Peng Convert 23.61 0.627 0.405 23.74 0.648 0.403 21.99 0.553 0.463 23.22 0.608 0.430
Peng Analytic 23.61 0.626 0.405 23.59 0.640 0.411 21.99 0.552 0.463 23.21 0.608 0.430
DDNM+ 7.51 0.033 0.814 26.66 0.769 0.272 – – – 24.09 0.657 0.418
DiffPIR 22.34 0.552 0.404 15.94 0.262 0.667 19.38 0.368 0.523 21.25 0.512 0.443

Identity 23.15 0.602 0.374 18.75 0.402 0.578 20.14 0.406 0.494 22.82 0.588 0.405
Identity+online 23.38 0.621 0.359 20.07 0.443 0.529 20.47 0.420 0.467 23.38 0.622 0.383
FH 23.55 0.630 0.353 26.00 0.757 0.256 21.80 0.538 0.411 23.38 0.623 0.372
FH+online 23.62 0.635 0.358 26.18 0.767 0.268 21.88 0.547 0.410 23.44 0.628 0.375

50
st

ep
s

DPS 22.66 0.578 0.412 26.31 0.761 0.296 19.05 0.428 0.537 23.80 0.642 0.375
ΠGDM 22.64 0.577 0.435 21.67 0.536 0.484 21.56 0.526 0.468 22.48 0.571 0.442
TMPD 23.20 0.605 0.414 18.83 0.482 0.536 20.93 0.502 0.504 21.96 0.550 0.471
Peng Convert 23.81 0.638 0.377 24.75 0.698 0.346 22.30 0.567 0.429 23.44 0.622 0.400
Peng Analytic 23.80 0.638 0.378 24.47 0.683 0.360 22.30 0.567 0.430 23.44 0.622 0.400
DDNM+ 7.83 0.038 0.806 27.15 0.771 0.301 – – – 24.05 0.655 0.424
DiffPIR 22.10 0.539 0.407 15.82 0.251 0.670 19.17 0.358 0.525 21.00 0.498 0.448

Identity 23.18 0.602 0.360 19.64 0.436 0.536 19.92 0.373 0.497 23.11 0.600 0.385
Identity+online 23.47 0.620 0.370 19.46 0.409 0.552 20.74 0.453 0.453 23.20 0.607 0.399
FH 23.44 0.623 0.348 25.95 0.760 0.237 21.58 0.523 0.406 23.22 0.614 0.367
FH+online 23.60 0.631 0.353 26.10 0.772 0.250 21.73 0.535 0.406 23.31 0.619 0.369

10
0

st
ep

s

DPS 23.36 0.615 0.378 26.61 0.800 0.228 20.05 0.473 0.492 23.36 0.622 0.366
ΠGDM 22.76 0.585 0.408 21.97 0.551 0.459 21.71 0.533 0.440 22.63 0.580 0.416
TMPD 23.22 0.606 0.412 18.83 0.482 0.536 20.95 0.502 0.504 21.98 0.551 0.469
Peng Convert 23.74 0.638 0.358 24.89 0.706 0.332 22.36 0.570 0.407 23.46 0.625 0.379
Peng Analytic 23.73 0.637 0.358 24.67 0.694 0.345 22.36 0.570 0.407 23.46 0.625 0.379
DDNM+ 8.77 0.054 0.786 28.28 0.809 0.278 – – – 23.55 0.630 0.450
DiffPIR 21.88 0.527 0.410 15.69 0.241 0.672 18.95 0.345 0.529 20.78 0.485 0.451

Identity 23.11 0.596 0.361 19.66 0.439 0.528 19.72 0.358 0.501 23.04 0.594 0.384
Identity+online 23.43 0.616 0.373 19.65 0.420 0.538 20.77 0.458 0.447 23.08 0.599 0.403
FH 23.25 0.613 0.346 25.71 0.755 0.233 21.35 0.509 0.408 23.02 0.604 0.364
FH+online 23.35 0.616 0.357 25.75 0.765 0.242 21.40 0.512 0.414 23.15 0.608 0.371

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 4: Results for the FFHQ 256 × 256 dataset, with the Euler solver. The results are largely the
same as with ImageNet, in that FH+Online outperforms other models clearly on low step counts,
but the advantage becomes smaller with large step counts. FH does remain competitive on all the
metrics, especially LPIPS, even with 100 steps.

Method Deblur (Gaussian) Inpainting (Random) Deblur (Motion) Super res. (4×)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

15
st

ep
s

DPS 22.30 0.581 0.461 23.51 0.652 0.439 18.20 0.447 0.593 22.36 0.611 0.459
πGDM 22.75 0.614 0.478 22.09 0.609 0.479 21.30 0.558 0.516 22.60 0.614 0.482
TMPD 25.72 0.724 0.364 18.37 0.541 0.567 22.51 0.617 0.470 23.77 0.665 0.417
Peng Convert 25.47 0.699 0.391 25.07 0.719 0.370 22.78 0.607 0.464 24.85 0.683 0.410
Peng Analytic25.47 0.698 0.391 24.97 0.715 0.374 22.78 0.607 0.465 24.84 0.683 0.410
DDNM+ 7.32 0.027 0.850 26.00 0.754 0.306 – – – 27.29 0.781 0.325
DiffPIR 25.59 0.707 0.317 16.54 0.296 0.701 21.92 0.511 0.441 24.03 0.666 0.352

Identity 26.16 0.734 0.292 19.83 0.448 0.579 22.70 0.534 0.414 25.55 0.722 0.320
Identity+online26.34 0.744 0.294 19.86 0.447 0.580 22.97 0.567 0.394 25.67 0.728 0.325
FH 26.63 0.753 0.289 28.27 0.806 0.268 24.67 0.685 0.349 26.30 0.746 0.308
FH+online 26.81 0.762 0.287 28.63 0.823 0.258 24.80 0.695 0.340 26.39 0.753 0.305

30
st

ep
s

DPS 24.68 0.674 0.330 28.40 0.808 0.280 20.03 0.513 0.464 26.22 0.738 0.316
πGDM 25.24 0.704 0.342 23.86 0.662 0.382 23.87 0.658 0.367 25.01 0.698 0.350
TMPD 26.19 0.740 0.326 19.06 0.558 0.537 23.05 0.639 0.415 24.38 0.685 0.376
Peng Convert 26.89 0.762 0.290 26.86 0.773 0.300 24.86 0.698 0.332 26.30 0.744 0.314
Peng Analytic 26.88 0.762 0.290 26.68 0.767 0.306 24.85 0.698 0.333 26.30 0.744 0.314
DDNM+ 7.63 0.030 0.841 29.10 0.833 0.245 – – – 26.92 0.768 0.343
DiffPIR 25.12 0.687 0.319 16.42 0.271 0.706 21.62 0.506 0.431 23.46 0.640 0.359

Identity 26.26 0.735 0.287 19.87 0.480 0.541 22.75 0.558 0.396 25.53 0.714 0.318
Identity+online26.57 0.749 0.275 21.67 0.518 0.486 23.24 0.560 0.379 26.31 0.742 0.304
FH 26.81 0.757 0.267 29.19 0.834 0.208 24.64 0.680 0.314 26.32 0.743 0.289
FH+online 26.88 0.760 0.268 29.35 0.843 0.212 24.75 0.687 0.309 26.38 0.747 0.288

50
st

ep
s

DPS 25.68 0.714 0.294 29.65 0.849 0.226 21.04 0.559 0.409 26.71 0.756 0.279
πGDM 25.46 0.708 0.320 24.20 0.670 0.361 24.12 0.663 0.345 25.22 0.702 0.328
TMPD 26.32 0.744 0.311 19.34 0.564 0.526 23.19 0.643 0.398 24.58 0.691 0.361
Peng Convert 26.92 0.762 0.271 27.88 0.803 0.263 25.00 0.700 0.314 26.37 0.745 0.296
Peng Analytic 26.91 0.762 0.272 27.55 0.793 0.274 25.00 0.700 0.314 26.37 0.745 0.296
DDNM+ 7.96 0.035 0.832 29.48 0.834 0.273 – – – 26.81 0.765 0.350
DiffPIR 24.87 0.674 0.323 16.30 0.258 0.709 21.42 0.494 0.434 23.20 0.625 0.363

Identity 26.30 0.733 0.277 21.14 0.523 0.484 22.61 0.510 0.412 25.93 0.723 0.303
Identity+online26.55 0.746 0.285 20.99 0.492 0.504 23.46 0.606 0.357 25.99 0.728 0.316
FH 26.57 0.746 0.264 29.03 0.831 0.199 24.35 0.662 0.316 26.07 0.730 0.287
FH+online 26.73 0.753 0.265 29.26 0.842 0.202 24.49 0.670 0.313 26.22 0.737 0.287

10
0

st
ep

s DPS 26.34 0.738 0.275 29.70 0.860 0.187 22.18 0.603 0.371 25.77 0.707 0.305
πGDM 25.46 0.706 0.307 24.40 0.675 0.349 24.16 0.660 0.334 25.26 0.701 0.315
TMPD 26.38 0.745 0.302 19.54 0.568 0.517 23.28 0.644 0.387 24.71 0.693 0.352
Peng Convert 26.73 0.755 0.261 27.91 0.804 0.257 24.94 0.695 0.306 26.28 0.740 0.286
Peng Analytic 26.72 0.755 0.262 27.64 0.795 0.267 24.94 0.694 0.307 26.28 0.740 0.286
DDNM+ 8.92 0.051 0.809 30.63 0.861 0.256 – – – 26.06 0.740 0.375
DiffPIR 24.65 0.663 0.326 16.19 0.247 0.712 21.23 0.481 0.439 22.97 0.613 0.369

Identity 26.16 0.725 0.278 21.24 0.528 0.473 22.41 0.493 0.419 18.34 0.484 0.587
Identity+online26.46 0.741 0.289 21.32 0.516 0.478 23.45 0.610 0.354 25.78 0.720 0.322
FH 26.28 0.735 0.264 28.77 0.824 0.200 24.09 0.647 0.322 25.81 0.718 0.289
FH+online 26.48 0.739 0.268 28.98 0.837 0.199 24.13 0.646 0.327 26.03 0.726 0.289

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 13: LPIPS and SSIM metrics across different solver steps and conditioning scales for DPS.
The optimal LPIPS values are used in the experiments.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 14: LPIPS and SSIM metrics across different solver steps and λ values for DiffPIR. The
optimal LPIPS values are used in the experiments.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 15: LPIPS and SSIM metrics across different solver steps and conditioning scales for our
method with the identity base covariance. The optimal LPIPS values are used in the experiments.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure 16: LPIPS and SSIM metrics across different solver steps and conditioning scales for our
method with the identity base covariance and online updates. The optimal LPIPS values are used in
the experiments.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

is parameterized that is parameterized in terms of

σmax = 80

σmin = 1

tolmax = 1

tolmin = 1e− 14

p = 0.05

σclipped = max(min(σ, σmax), σmin)

log factor =

(
log10(σclipped)− log10(σmin)

log10(σmax)− log10(σmin)

)p
(75)

log rtol = log factor · (log10(rtolmax)− log10(rtolmin)) + log10(rtolmin) (76)

rtol = 10log rtol (77)

We tried to choose the schedule such that this does not degrade the performance noticeably, but also
allows us to run experiments in reasonable time.

Range for the BFGS updates In practice, we do the space/BFGS updates for a range of σ(t)
values for image data, in particular 1 ≤ σ(t) ≤ 5. A motivation for this choice is that we noticed the
finite differences to not be numerically accurate at high noise levels, where the time updates ∆t and
the space updates ∆x are large. For low noise levels, it is also unnecessary, given that the covariance
approaches σ(t)2I in any case. How to apply the space updates in the optimal way is an interesting
direction for future research.

The solver We noticed that in large noise levels, it does not matter if the inversion in Eq. (23) is not
exact, and we can set the tolerance quite high. We then defined a schedule for the tolerance such that
it becomes lower towards the end. A lower tolerance towards the end of sampling is not an issue,
since the covariance becomes closer to a diagonal, and the required matrix inverse becomes easier
to calculate.

Details on the low-dimensional experiments In the Gaussian mixture experiments, we did not
apply the time updates for µt(x), but instead evaluate µ0 | t+∆t(x) explicitly before applying the
BFGS update. The reason is that on low-dimensional data, some of the prior samples are close to
the actual data distribution. In that region, the time evolution is complex enough from the start that
the denoiser mean time update coupled with the BFGS update in the next step sometimes causes
numerical instability. To avoid additional score function evaluations, we could devise a schedule for
when to apply the space updates.

Measurement operators. We obtained the measurement operator definitions from (Peng et al.,
2024), which in turn are based on the operators in (Chung et al., 2023). We use a noise level
σy = 0.1 for all measurement models (data scaled to [-1,1]).

K ADDITIONAL RESULTS ON OPTIMAL GUIDANCE STRENGTH

Figure 17 shows the PSNR, SSIM and LPIPS scores for the Gaussian deblurring task on Ima-
geNet 256×256 with different post-hoc guidance scales on the initially calculated guidance term
∇xt log p(y |xt).

L COMPUTATIONAL REQUIREMENTS

The sweep to obtain the results in Table 1 was done with multiple NVIDIA V100 GPUs in a few
hours, and can be obtained with a single V100s in less than a day of compute. For some of the
methods, the matrix inversion in Eq. (23) can slow down generation considerably, although this is
not as significant an overhead with our tolerance-optimized conjugate gradient implementation.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

0.6 0.8 1 1.2 1.4

18

20

22

Guidance strength

PS
N

R

0.6 0.8 1 1.2 1.4

0.3

0.4

0.5

Guidance strength

SS
IM

0.6 0.8 1 1.2 1.4

0.4

0.5

0.6

Guidance strength

L
PI

PS

Figure 17: Different metrics with respect to guidance strength for 100 images from the Imagenet
validation set, using an identity base covariance (blue) and a DCT-diagonal covariance (orange).
With a better covariance approximation, the usefulness of adjusting the resulting guidance with
post-hoc tricks becomes smaller.

M OPTIMAL ∇xt log p(xt |y) FOR GAUSSIAN MIXTURE DATA AND
GAUSSIAN OBSERVATION

In this section, we derive the optimal gradient∇xt log p(xt |y) for a situation with Gaussian mixture
data and a Gaussian observation model. This is useful for performing toy experiments without
having to retrain the model. Note that we can get the unconditional score from the end result by
setting the observation noise Σy to infinity.

Model Definition We begin with the following components:

1. Prior Distribution: The prior on x0 is a Gaussian mixture model:

p(x0) =
∑
i

wiN (x0 |µi,Σi), (78)

where wi are the mixture weights, µi are the mean vectors, and Sigmai are the covariance
matrices for each mixture component.

2. Likelihood: The observation model is Gaussian:
p(y |x0) = N (y |x0,Σy) (79)

where Σy is the observation noise covariance.
3. Transition Model: The transition from x0 to xt is modeled as:

p(xt |x0) = N (xt |x0, σ(t)2I) (80)
where σ2I is isotropic Gaussian noise with variance σ(t)2.

M.1 POSTERIOR DISTRIBUTION

Given these components, the posterior distribution p(x0 |xt,y) is also a Gaussian mixture:

p(x0 |xt,y) =
∑
i

w′iN (x0 |µ′i, Σ′i), (81)

where
Σ′−1
i = (σ(t)2I)−1 + Σ−1

y + Σ−1
i (82)

µ′i = Σ′i((σ(t)2I)−1xt + Σ−1
y y + Σ−1

i µi) (83)

w′i ∝ wiN (xt |µi, σ(t)2I + Σi)N (y |µi,Σy + Σi). (84)

M.2 CONDITIONAL EXPECTATION

The conditional expectation of x0 given xt and y is:

E[x0 |xt,y] =
∑
i

w′iµ
′
i (85)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

M.3 DERIVATION OF THE GRADIENT

Now, let’s derive the gradient∇xt log p(xt |y):

1. We start with:

∇xt log p(xt |y) = ∇xt log

∫
p(xt |x0)p(x0 |y) dx0 (86)

2. Applying the chain rule and moving the gradient inside the integral:

∇xt log p(xt |y) =

∫
∇xtp(xt |x0)p(x0 |y)dx0∫
p(xt |x0)p(x0 |y)dx0

(87)

3. Given p(xt |x0) = N (xt |x0, σ(t)2I), we have:

∇xtp(xt |x0) = − 1

σ(t)2
(xt − x0)p(xt |x0) (88)

4. Substituting this back:

∇xt log p(xt |y) = − 1

σ(t)2

∫
(xt − x0)p(xt |x0)p(x0 |y) dx0∫

p(xt |x0)p(x0 |y) dx0
(89)

= − 1

σ(t)2
(xt −

∫
x0p(xt |x0)p(x0 |y) dx0∫
p(xt |x0)p(x0 |y) dx0

) (90)

= − 1

σ(t)2
(xt − E[x0 |xt,y]) (91)

M.4 FINAL FORM OF THE GRADIENT

Therefore, the final form of the gradient is:

∇xt log p(xt |y) = − 1

σ2
(xt − E[x0 |xt,y]) (92)

M.5 DETAILED FORMULA FOR E[x0 |xt,y]

Let’s expand the formula for E[x0 |xt,y]:

1. We start with the posterior distribution:

p(x0 |xt,y) =
∑
i

w′iN (x0 |µ′i,Σ′i) (93)

2. The expectation of this mixture is the weighted sum of the means:

E[x0 |xt,y] =
∑
i

w′iµ
′
i (94)

3. Expanding µ′i:
µ′i = Σ′i((σ(t)2I)−1xt + Σ−1

y y + Σ−1
i µi) (95)

4. Substituting this into the expectation formula:

E[x0 |xt,y] =
∑
i

w′iΣ
′
i((σ(t)2I)−1xt + Σ−1

y y + Σ−1
i µi) (96)

5. Rearranging:

E[x0 |xt,y] = (
∑
i

w′iΣ
′
i(σ(t)2I)−1)xt + (

∑
i

w′iΣ
′
iΣ
−1
y)y +

∑
i

w′iΣ
′
iΣ
−1
i µi (97)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Let’s define:

A =
∑
i

w′iΣ
′
i(σ(t)2I)−1, (98)

B =
∑
i

w′iΣ
′
iΣ
−1
y , (99)

c =
∑
i

w′iΣ
′
iΣ
−1
i µi. (100)

Then we can write the final formula as:

E[x0 |xt,y] = Axt +By + c (101)

where:

w′i ∝ wiN (xt |µi, σ(t)2I + Σi)N (y |µi,Σy + Σi), (102)

Σ′i = ((σ(t)2I)−1 + Σ−1
y + Σ−1

i)−1. (103)

This formula shows that E[x0 |xt,y] is a linear combination of xt and y, plus a constant term. The
matrices A and B determine how much the expectation depends on xt and y respectively, while c
represents a constant offset based on the prior distribution.

35

	Introduction
	Background
	Related Work

	Methods
	Time Update
	Space Update for Adding New Low-rank Information During Sampling
	Combining the Updates for Practical Samplers
	Practical Implementation for High-dimensional Data
	Initialisation of the Covariance
	Guidance with a Linear-Gaussian Observation Model
	Issues with Diagonal Denoiser Covariance

	Experiments
	Synthetic Data Experiments
	Image Data and Linear Inverse Problems

	Conclusions
	Full Derivations for the Time Update
	Inverting the Efficient Matrix Representation
	Extended Analysis of the Toy Example
	Full Guidance Algorithms for the Linear-Gaussian Observation Model
	Additional Toy Experiment with Correlated Data
	Additional Qualitative Results
	Quantifying the Error in the Covariance Estimation
	Additional Results on Image Models
	Motivations for the DCT basis and the BFGS update
	Implementation Details
	Additional Results on Optimal Guidance Strength
	Computational Requirements
	Optimal xt logp(xt|y) for Gaussian Mixture Data and Gaussian Observation
	Posterior Distribution
	Conditional Expectation
	Derivation of the Gradient
	Final Form of the Gradient
	Detailed Formula for E[x0|xt,y]

