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ABSTRACT

The covariance for clean data given a noisy observation is an important quan-
tity in many training-free guided generation methods for diffusion models. Cur-
rent methods require heavy test-time computation, altering the standard diffusion
training process or denoiser architecture, or making heavy approximations. We
propose a new framework that sidesteps these issues by using covariance informa-
tion that is available for free from training data and the curvature of the generative
trajectory, which is linked to the covariance through the second-order Tweedie’s
formula. We integrate these sources of information using (i) a novel method to
transfer covariance estimates across noise levels and (ii) low-rank updates in a
given noise level. We validate the method on linear inverse problems, where it
outperforms recent baselines, especially with fewer diffusion steps.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) have emerged as
a robust class of generative models in machine learning, adept of producing high-quality samples
across diverse domains. These models function by progressively denoising data through an iterative
process, learning to reverse a predefined forward diffusion process that systematically adds noise.
Conditional generation extends the capabilities of diffusion models by allowing them to generate
samples based on specific input conditions or attributes. This conditioning enables more controlled
and targeted generation, making diffusion models applicable to a wide range of tasks such as text-
to-image synthesis or linear inverse problems such as deblurring, inpainting, or super-resolution.

A strand of recent research has concentrated on applying pretrained diffusion models to accommo-
date user-defined conditions, enhancing the flexibility and control of a single model to an arbitrary
number of tasks. These methods guide the sampler towards regions whose denoisings p(x0 |xt)
are compatible with the condition or constraint, which requires efficient denoising mean E[x0 |xt]
and covariance Cov[x0 |xt] estimates (Ho et al., 2022; Song et al., 2023a;b; Boys et al., 2023; Peng
et al., 2024). While estimating the mean is straightforward through the denoiser, accurately deter-
mining the covariance has proven more challenging. Consequently, efficient approaches have been
proposed with heavy approximations (Chung et al., 2023; Song et al., 2023a).

In this paper, we propose a new method for denoiser covariance estimation, which we refer to as Free
Hunch (FH). The name stems from the core insight that much of the required guiding covariance

ORIGINAL MEASUREMENT DPS ΠGDM FH (OURS)

Figure 1: Comparison of different conditional diffusion methods for deblurring, with a low number
of solver steps (15 Heun iterations). DPS (Chung et al., 2023) and ΠGDM (Song et al., 2023a)
work well with many steps, but accurate covariance estimates matter more for small step counts.
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Figure 2: (a) A distribution p(x0) represented by a pretrained diffusion model, and a Gaussian likeli-
hood p(y |x0). (b) The (exact) posterior p(x0 |y) ∼ p(x0)p(y |x0). (c) Generated samples from a
model with a heuristic diagonal denoiser covariance Σ0 | t(xt), and a generative ODE trajectory with
approximated p(x0 |xt) shapes represented as ellipses along the trajectory. (d) Generated samples
with our denoiser covariance.

information is, in fact, freely available from the training data and the generative process itself. FH
significantly improves accuracy over baselines, it is directly applicable to all standard diffusion mod-
els and does not require significant additional compute. This is achieved by integrating two sources
of information into a unified framework: (i) the covariance of the data distribution and (ii) the im-
plicit covariance information available in the denoiser evaluations along the generative trajectory
itself. We apply the method to linear inverse problems, where we show mathematically that ac-
curate covariance estimates are crucial for unbiased conditional generation, and achieve significant
improvements over recent methods (see Fig. 1). In summary, our contributions are:

• Methodological: We propose a novel, efficient method for estimating denoiser covariances in
diffusion models. It (i) does not require additional training, (ii) avoids the need for expensive score
Jacobian computations, (iii) adapts to the specific input and noise level, and (iv) is applicable to
all standard diffusion models.

• Analytical: We give a theoretical analysis of why accurate covariance estimation is crucial for
reconstruction guidance in linear inverse problems.

• Practical: Our improved covariance estimates result in significant improvements over baselines
in linear inverse problems, especially with small diffusion step counts.

2 BACKGROUND

Diffusion models are a powerful framework for generative modelling. Given a data distribution
p(x0), we consider the following sequence of marginal distributions:

p(xt) =

∫
N (xt |x0, σ(t)2I)p(x0) dx0, (1)

and corresponding reverse processes (Song et al., 2021; Karras et al., 2022)

Reverse SDE: dxt = −2σ̇(t)σ(t)∇xt log p(xt) dt+
√

2σ̇(t)σ(t) dωt, (2)
PF-ODE: dxt = −σ̇(t)σ(t)∇xt log p(xt) dt. (3)

Here, the σ̇(t) = d
dtσ(t) and ωt is a Brownian motion. The score ∇xt log p(xt) can be learned

through score matching methods (Hyvärinen & Dayan, 2005; Vincent, 2011; Song et al., 2021).
Starting at a sample xt ∼ N (xt |x0, σ

2
maxI) at a sufficiently high σmax and integrating either differ-

ential equation backwards in time, we recover the data distribution p(x0) if the score is accurate.

In conditional generation, we need to define the conditional score

∇xt log p(xt |y) = ∇xt log p(xt) +∇xt log p(y |xt), (4)

which decomposes into an unconditional score and the conditional adjustment through Bayes’ rule.
If we train a classifier to estimate the condition y given the noisy images xt, we get classifier guid-
ance (Song et al., 2021; Dhariwal & Nichol, 2021). Using additional training compute for each con-
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ditioning task, however, may be prohibitive in some applications. A more modular way to do con-
ditional generation is to define a constraint p(y |x0) only on the clean data points x0, and estimate

∇xt log p(y |xt) = ∇xt log

∫
p(y |x0)︸ ︷︷ ︸

constraint

p(x0 |xt)︸ ︷︷ ︸
denoise

dx0 = ∇xt logEp(x0 |xt)
[
p(y |x0)

]
. (5)

That is, we need to integrate over all possible denoisings of xt and their constraints. We want
to avoid costly repeated sampling x0 |xt from the reverse and seek practical approximations to
p(x0 |xt). A common approach is a Gaussian approximation

p(x0 |xt) ≈ N (x0 |µ,Σ), (6)

which is appealing since the so-called Tweedie’s formula (Efron, 2011) links the score function
∇xt log p(xt) to exact moments of the posterior p(x0 |xt) = p(x0)p(xt |x0)

p(xt)
,

E[x0 |xt] = xt + σ2
t∇xt log p(xt), (7)

Cov[x0 |xt] = σ2
t

(
σ2
t ∇2

xt log p(xt)︸ ︷︷ ︸
Hessian

+I
)
. (8)

The correct mean (Eq. (7)) of the denoiser is directly implied by the score function, as long as our es-
timate of the score is accurate. Estimating the Tweedie covariance through the full Hessian in Eq. (8)
is very expensive for high-dimensional data, however, and multiple methods have been proposed.

2.1 RELATED WORK

Denoiser covariance estimation in diffusion models Previous attempts to improve denoiser co-
variance estimation in diffusion models can be broadly categorized into four categories:

1. Heuristic methods: Many methods (Ho et al., 2022; Song et al., 2023a;b) use a heuristic scaled
identity covariance or can be seen as a special case where the covariance is zero (Chung et al.,
2023). The methods are simple to implement but may result in biases in the conditional distribu-
tions.

2. Training-based methods: These involve training neural networks to directly output covariance
estimates (Nichol & Dhariwal, 2021; Meng et al., 2021; Bao et al., 2022a; Peng et al., 2024).
While potentially powerful, these approaches are not directly applicable to many existing diffu-
sion models.

3. Gradient-based methods: These techniques estimate covariances by computing gradients of
the denoiser (Finzi et al., 2023; Boys et al., 2023; Rozet et al., 2024). However, getting the full
covariance is computationally expensive and memory-intensive, making it challenging to apply
to high-dimensional data without additional approximations.

4. Post-hoc constant variance methods: These approaches optimize constant variances for each
time step based on pre-trained diffusion model scores (Bao et al., 2022b; Peng et al., 2024).
While they do not require training or significant extra compute, they are limited in their ability to
adapt to different inputs.

Diffusion models for inverse problems and training-free conditional generation Recent reviews
can be found in Daras et al. (2024); Luo et al. (2024). Many works explicitly train conditional
diffusion models for different tasks (Li et al., 2022; Saharia et al., 2022; Whang et al., 2022).

Many other methods adapt pre-trained diffusion models for inverse problems at inference time. DPS
(Chung et al., 2022), ΠGDM (Song et al., 2023a), TMPD (Boys et al., 2023) and Peng et al. (2024);
Song et al. (2023b); Ho et al. (2022) use backpropagation to explicitly approximate Eq. (5). We focus
our analysis and experiments on this set of methods since all of them can be framed in a common
framework with different covariance approximations, making comparisons more straightforward.
Other methods adjust the generative process such that xt is pushed to make the residual y−Axt in
linear inverse problems smaller (Song et al., 2021; Jalal et al., 2021; Choi et al., 2021). DDS (Chung
et al., 2024) and DiffPIR (Zhu et al., 2023) frame finding the guidance direction by optimizing for
an x0 that is close to the measurement as well as the denoiser output. DDNM (Wang et al., 2023)
projects the denoised x0 to the null-space of the measurement operator during the sampling process.
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Peng et al. (2024) show that DDNM and DiffPIR can be framed in a similar framework. Rout et al.
(2024) propose to use a second-order correction to reconstruction guidance to mitigate biases in
first-order Tweedie. Kawar et al. (2021; 2022) decompose the linear measurement operator with
SVD to create specialized conditional samplers. Methods based on variational inference optimize
for x0 that match with the observations while having high diffusion model likelihood (Mardani et al.,
2024; Feng et al., 2023). Ben-Hamu et al. (2024); Wang et al. (2024) optimize the noise latent xT
such that it matches with the observation. The methods by Wu et al. (2024); Dou & Song (2024);
Trippe et al. (2023) frame conditional generation and inverse problems with a Bayesian filtering
perspective, giving asymptotic guarantees with increasing compute.

Other applications of Hessians and denoiser covariances Linhart et al. (2024) show that a
Gaussian approximation to p(x0 |xt) can be used for compositional generation, that is, given two
diffusion models p1(x0) and p2(x0), the problem of sampling from p1(x0)p2(x0). Higher-order
solvers for the probability flow ODE (Dockhorn et al., 2022) utilize the Hessian ∇2

xt log p(xt) for
efficient sampling. Sanchez et al. (2022) use the Hessian for causal discovery in high-dimensional
systems. Lu et al. (2022) train a diffusion model to explicitly match the higher-order gradients of
the score function and show that it improves model likelihoods. Song & Lai (2024) point out that
the Hessian is equivalent to the Fisher information with respect to xt, which they use to measure the
informativeness of each step in conditional generation. Recently, Anonymous (2024) proposed an
efficient method for computing the Hessian by utilizing the training data.

3 METHODS

x

t

sam
plin

g ste
p

BFGS

µ0 | t(x)

Σ0 | t(x)

µ0 | t+∆t(x)

Σ0 | t+∆t(x)
µ0 | t+∆t(x+ ∆x)

Σ0 | t+∆t(x+ ∆x)

p(x, t) ≈
N (x |m(x, t),C(x, t))

Directly measurable during sampling
Online estimate available
Obtained with Gaussian approx.
Obtained with low-rank update

1.

2.3.

Figure 3: Sketch of our method during sampling.

We present our framework for incorporating
prior data covariance information with curva-
ture information observed during sampling. We
define µ0 | t(xt) and Σ0 | t(xt) as our approxi-
mations of E[x0 |xt] and Cov[x0 |xt] at time t
and location x. As we move from point (x, t)
to (x + ∆x, t + ∆t) in the diffusion process,
the denoiser covariance changes but remains
similar for small steps. We develop methods
to transfer this information across time steps
(Sec. 3.1), incorporate additional curvature in-
formation (Sec. 3.2), and combine these up-
dates (Sec. 3.3). For high-dimensional data,
we propose an efficient algorithm using diago-
nal and low-rank structures (Sec. 3.4). We dis-
cuss covariance initialization (Sec. 3.5) and in-
troduce reconstruction guidance with a linear-Gaussian observation model (Sec. 3.6). Finally, we
analyze why diagonal denoiser covariance overestimates guidance for correlated data at large diffu-
sion times and demonstrate this issue with image data, showing that the problem is resolved with
correct covariance estimation (Sec. 3.7).

Notation In the following, we interchangeably use p(x, t) in place of p(xt) where we want to
emphasise the possibility to change either x or t, but not the other. However, in contexts where we
talk about the posterior, we use p(xt) and p(x0 |xt) to emphasise the difference between the two
random variables x0 and xt.

3.1 TIME UPDATE

Our goal is to obtain the evolution of the denoiser momentsµ0 | t+∆t(xt) and Σ0 | t+∆t(xt) (Eqs. (7)
and (8)). The evolution of the moments under the diffusion process is characterised by the Fokker–
Planck equation, and in practise intractable. We approximate the evolution with a second-order
Taylor expansion of log p(xt) around point xt, which leads to a Gaussian form for p(xt):

p(x′t) ≈ N
(
x′t |m(xt, t),C(xt, t)

)
, (9)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where (temporarily dropping out the subscript from xt for clarity)

m(x, t) = x−∇2
x log p(x, t)−1∇x log p(x, t), (10)

C(x, t) = −[∇2
x log p(x, t)]−1. (11)

The evolution of the Gaussian (Eq. (9)) under the linear forward SDE (Eq. (1)) has a closed form
(Särkkä & Solin, 2019). With the forward process induced by Eq. (1), this results in

m(x, t+ ∆t) = m(x, t), (12)

C(x, t+ ∆t) = C(x, t) + ∆σ2I, (13)

where ∆σ2 = σ2(t+ ∆t)− σ2(t). That is, the forward keeps the mean intact while increasing the
covariance. Using the above equations we can derive Tweedie moment updates:

µ0 | t+∆t(xt) = xt + σ(t+ ∆t)2

(
σ(t+ ∆t)2I − ∆σ2

σ(t)2
Σ0 | t(xt)

)−1(
µ0 | t(xt)− xt

)
, (14)

Σ0 | t+∆t(xt) =
(
Σ0 | t(xt)

−1 + ∆σ−2I
)−1

. (15)

where ∆σ−2 = σ(t + ∆t)−2 − σ(t)−2. The complete derivations can be found in App. A. As ∆t
approaches zero, the Gaussian approximation becomes increasingly accurate. This is because the
solution to the Fokker–Planck equation (which simplifies to the heat equation for variance-exploding
diffusion) is a convolution with a small Gaussian N (x |0, σ(t)2I). The integral

∫
p(xt)N (xt −

xs |0, σ(t)2I) dxs is dominated by values near xt, as the Gaussian rapidly diminishes further away.

3.2 SPACE UPDATE FOR ADDING NEW LOW-RANK INFORMATION DURING SAMPLING

We take inspiration from quasi-Newton methods (e.g., BFGS, see Luenberger et al., 1984) in
optimization, where repeated gradient evaluations at different points are used for low-rank updates
to the Hessian of the function to optimize. The diffusion sampling process is similar: we gather
gradient evaluations ∇xt log p(xt) at different locations, and could use them to update the Hessian
∇2

xt log p(xt). The Hessian is then connected to the denoiser covariance via Eq. (8). Here, we
derive an even more convenient method to update Σ0 | t(x) directly.

To use update rules like BFGS, Σ0 | t(x) should be the Jacobian of some function. Thankfully, we
notice that Cov[x0 |xt] is proportional to the Jacobian of expectation E[x0 |xt]:

E[x0 |xt]σ(t)2 =
(
∇xt log p(xt)σ(t)2 + x

)
σ(t)2, (Eq. (7)) (16)

∇xt

(
E[x0 |xt]σ(t)2

)
=
(
∇2

xt log p(xt)σ(t)2 + I
)
σ(t)2 = Cov[x0 |xt]. (Eq. (8)) (17)

We can then directly formulate the finite difference update condition equation for our estimate
Σ0 | t(x):

σ(t)2
(
µ0 | t(x+ ∆x)− µ0 | t(x)

)
≈ [Σ0 | t(x+ ∆x)]∆x. (18)

This allows us to use a BFGS-like update procedure for the covariance and inverse covariance

Σ0 | t(x+ ∆x) = Σ0 | t(x)−
Σ0 | t(x)∆x∆x>Σ0 | t(x)

∆x>Σ0 | t(x)∆x
+

∆e∆e>

∆e>∆x
, (19)

Σ0 | t(x+ ∆x)−1 = (I − γ∆x∆e>)Σ0 | t(x)−1(I − γ∆e∆x>) + γ∆x∆x>, (20)

where

∆e = σ(t)2
(
µ0 | t(x+ ∆x)− µ0 | t(x)

)
and γ =

1

∆e>∆x
. (21)

While other update rules exist, BFGS has the advantage that it preserves the positive-definiteness of
the covariance matrix. We provide further discussion in App. I.
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Algorithm 1: Time update
Input: Σ0 | t(x), σ(t+ ∆t), σ(t),µ0 | t(x)

1 ∆(σ−2) = σ(t+ ∆t)−2 − σ(t)−2

Σ0 | t+∆t(x)−1 = Σ0 | t(x)−1 + ∆(σ−2)I

2 Σ0 | t+∆t(x) = (Σ0 | t+∆t(x)−1)−1

3 µ0 | t+∆t(x) = Eq. (14)
4 return Σ0 | t+∆t(x),µ0 | t+∆t(x)

Algorithm 2: Space update
Input: Σ0 | t(xt),µ0 | t(x+ ∆x),
µ0 | t(x), σ(t),∆x

1 ∆e = Eq. (21)
2 γ = Eq. (21)
3 Σ0 | t(x+ ∆x) = Eq. (19)
4 return Σ0 | t(x+ ∆x)

3.3 COMBINING THE UPDATES FOR PRACTICAL SAMPLERS

Note that the update step requiresµ0 | t(x) evaluated at two x locations but with the same t. Usually,
we only have µ0 | t(x) at different t during sampling, however. The solution is that we can combine
the time updates with the space updates in any diffusion model sampler as follows: Let’s say we have
two consecutive score evaluations∇x log p(x, t) and∇x log p(x+∆x, t+∆t). We first update the
denoiser mean and covariance with the time update to get estimates of Σ0 | t+∆t(x) andµ0 | t+∆t(x).
Then we can update Σ0 | t+∆t(x) with the BFGS update since we have µ0 | t+∆t(x) from the time
update and µ0 | t+∆t(x + ∆x) from the second score function evaluation and Eq. (7). This is
visualized in Fig. 3, and the algorithms for updating the covariance are given in Alg. 1 and Alg. 2.

3.4 PRACTICAL IMPLEMENTATION FOR HIGH-DIMENSIONAL DATA

While the method described so far works well for low-dimensional data, storing entire covariance
matrices in memory is difficult for high-dimensional data. Luckily, this is not necessary since we
only perform low-rank updates to the covariance matrix. In practice, we keep track of the following
representation of the denoiser covariance:

Σ0 | t(x) = D +UU> − V V >, (22)

where D is diagonal and U ,V are low-rank N × k matrices. This structure comes from the
two outer products in the the BFGS update (positive and negative). The vectors ∆e√

∆e>∆x
and

Σ0 | t(x)∆x√
∆x>Σ0 | t(x)∆x

become new columns inU and V respectively. In App. B, we show that inverting

this matrix structure yields another matrix of the same form: Σ0 | t(x)−1 = D′+U ′U ′>−V ′V ′>.
Using two applications of the Woodbury identity, this computation only requires inverting k × k
matrices rather than N × N ones, enabling efficient calculation of both Σ0 | t(x + ∆x)−1 and the
time update inverse.

3.5 INITIALISATION OF THE COVARIANCE

Having established methods for representing and updating denoiser covariances, we address
initialization. While one might consider the limit t → ∞ where p(xt) → N (xt |0, σ(t)2I) and
∇2

xt log p(xt)→ − I
σ(t)2 , this is suboptimal: although the Hessian approaches identity at high t, the

denoiser covariance approaches the data covariance. We estimate this from the data and initialise the
covariance to it. For high-dimensional data, we approximate this covariance as diagonal in the DCT
basis: Σt(xt) = ΓDCTDΓ>DCT. This is justified by natural images being approximately diagonal in
frequency bases (Hyvärinen et al., 2009). While alternatives like PCA could be used, we found the
DCT-based method sufficient. We provide additional discussion on the DCT basis in App. I.

3.6 GUIDANCE WITH A LINEAR-GAUSSIAN OBSERVATION MODEL

If the observation model p(y |x0) is linear-Gaussian, the reconstruction guidance becomes

∇xt log p(y |xt) ≈ ∇xt log

∫
N (y |Ax0, σ

2
yI)N (x0 |µ0 | t(xt),Σ0 | t(xt)) dx0

= (y −Aµ0 | t(xt))
>(AΣ0 | t(xt)A

> + σ2
yI)−1A∇xtµ0 | t(xt), (23)

where A is the linear measurement operator (e.g., blurring). µ0 | t(xt) is obtained using Tweedie’s
formula, and Σ0 | t(xt) = Σ0 | t is assumed constant with respect to xt when taking the derivative.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The linear-Gaussian setting is valuable as it both represents many real-world problems (deblurring,
inpainting) and provides analytic insights into Σ0 | t choices. We will show that simplistic denoiser
covariance approximations lead to severe overestimation of the guidance scale in Eq. (23).

3.7 ISSUES WITH DIAGONAL DENOISER COVARIANCE

In this section, we will focus on DPS (Chung et al., 2023) and ΠGDM (Song et al., 2023a) for the
linear inverse problem case. Both can be cast as using the same formula with Σ0 | t = r2

t I and
different post-processing steps on the resulting∇xt log p(y |xt) approximation:

1. In DPS, r2
t = 0. The resulting∇xt log p(y |xt) is scaled with

ξσ2
y

‖y−Ax0‖ (ξ is a hyperparameter).

2. In ΠGDM, r2
t = σ(t)2

1+σ(t)2 . The resulting∇xt log p(y |xt) is further scaled with r2
t .

Importantly, in the case where the resulting E[x0 |xt,y] = xt+σ(t)2∇xt log p(xt |y) approxima-
tion is outside the data range [−1, 1], the modified score in both DPS and ΠGDM is clipped to keep
the denoiser mean within this range. Other choices include r2

t = σ(t)2 (Ho et al., 2022).

The mismatch between simplistic covariance and the denoiser Jacobian Notice that according
to Eq. (8), ∇xtµ0 | t(xt) ≈ Cov[x0 |xt]

σ(t)2 , where Cov[x0 |xt] is the real denoiser covariance. For real
data like images, this denoiser covariance is highly non-diagonal due to pixel correlations. This
creates tension with the inverse (AΣ0 | tA

> + σ2
yI)−1 in Eq. (23), which assumes diagonal Σ0 | t.

A toy model For the denoising taskA = I , consider images with perfectly correlated pixels (same
color), giving Cov[x0] = J where J is all ones. As t → ∞, Cov[x0 |xt] → Cov[x0]. Assume
that the observation y and the denoiser mean µ0 | t(xt) are similarly vectors of ones ~1 scaled by a
constant, and thus y − µ0 | t(xt) = a~1. Note that ∇xtµ0 | t(xt) = J

σ(t)2 . Now, the guidance terms

with r2
t = σ(t)2

1+σ(t)2 read:

∇xt log p(y |xt) = a~1>
1

1 + σ2
y

J

σ(t)2
=

aN

(1 + σ2
y)σ(t)2

~1>, (24)

Here N is the data dimensionality. Two key issues emerge: (1) the per-pixel guidance term scales
with the total pixel count, and (2) for typical values (a ≈ 1, σ2

y � 1), the guidance becomes
implausibly large. For a 1000×1000 image, σ(t)2∇xt log p(y |xt) ≈ N~1, yielding values around
106 per pixel—far beyond the [−1, 1] data range. This issue is even worse in DPS where r2

t = 0.
For ΠGDM, clipping the denoiser mean to [−1, 1] prevents trajectory blow-up but loses information
and introduces biases. The scaling factors in DPS also reduce but do not eliminate the problem.

10
−1 10
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10

1

10
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10
1

10
2

10
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10
4

Noise schedule, σ(t)

‖µ̃
0
|t

(x
t
)‖

Σt = 0

Σt = σ(t)2

1+σ(t)2
I

Σt = ΓDCTDΓ>DCT

Figure 4: Norm of µ0 | t(x) +

σ(t)2∇xt log p(y |xt) for different co-
variance estimation methods on ImageNet
256×256. Values >1 indicate overestima-
tion since the data is normalized to [−1, 1].

Solution with the correct covariance In contrast,
the same issue does not occur if we use the correct
denoiser covariance in the formula:

∇xt log p(y |xt) ≈ (y−µ0 | t(xt))
>(Cov[x0 |xt]

+ σ2
yI)−1Cov[x0 |xt]

σ2
t

. (25)

Clearly, if σy → 0, the covariances cancel out. Thus,
the scale of the calculated guidance does not cause
issues. In App. C, we repeat this analysis without
assuming σy = 0.

Fig. 4 showcases the issue in practice for a Gaus-
sian blur operator A in ImagetNet 256×256 and
a denoiser from Dhariwal & Nichol (2021). In
comparison, the problem is less severe for a more
sophisticated DCT-diagonal covariance approxima-
tion. However, even the DCT-diagonal method does
cause the adjusted denoiser mean to diverge at high noise levels.
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JS Div: 0.278

(a) DPS

JS Div: 0.232

(b) ΠGDM

JS Div: 0.256

(c) ΠGDM
(no r2t scaling)

JS Div: 0.171

(d) FH (Ours)

JS Div: 0.142

(e) Optimal cov

Figure 5: Different methods for posterior inference in the example in Fig. 2 and Jensen–Shannon
divergences to the true posterior.

Approximating ∇xtµ0 | t(xt) Given that the problem stems from the mismatch between
∇xtµ0 | t(xt) and our covariance approximation, a solution needs to harmonize these two terms.
Thus, we propose to further approximate ∇x0µ0 | t(xt) by our denoiser covariance estimate
when the scale of the guidance by calculating the full Jacobian is too large. In practice, we first
calculate the adjusted denoiser covariance estimate µ0 | t(xt), and fall back to approximating

∇x0
µ0 | t(xt) ≈

Σ0 | t(xt)

σ(t)2 in case our initial approximation ‖σ(t)2∇xt log p(y |xt)‖ > 1 (which
would push the trajectory in a direction that is outside the data range [−1, 1]).

Full algorithm. In App. D, we show full algorithms for linear inverse problems with our covariance
estimation method, one with the Euler ODE solver and another that works with any solver.

4 EXPERIMENTS

We validate our method using synthetic Gaussian mixture model data and compare it against base-
lines on linear imaging inverse problems. Our experiments demonstrate that our more sophisti-
cated covariance approximations reduce bias and improve results, particularly at lower diffusion
step counts. We use a linear schedule σ(t) = t, as advocated by Karras et al. (2022), and follow
their settings for our image diffusion models otherwise as well. For the image experiments, we used
σmax = 80 and σmax = 20 for the synthetic data. We use a simple Euler sampler for the synthetic
data experiments and a 2nd order Heun method (Karras et al., 2022) for the image experiments.

4.1 SYNTHETIC DATA EXPERIMENTS

Toy data We first showcase the performance of different methods on a toy problem using a mixture
of Gaussians distribution, which admits a closed-form formula for the score (see App. M). The
results in Fig. 5 show that our method clearly outperforms DPS and ΠGDM, approaching the method
using optimal covariance obtained by backpropagation and Eq. (8). Note that the example favours
DPS, since we tuned the guidance hyperparameter for this particular task.

The effect of dimensionality and correlation In Sec. 3.7, we noticed that the guidance scale is
overestimated the larger the dimensionality is. A practical consequence is that the variance of the
generative distribution can be underestimated. In App. E, we directly showcase this with synthetic
data and show that it does not happen with our method.

Approximation error in the covariance In App. G, we analyse the error in the covariance approx-
imation for a low-dimensional example, and empirically show that the error approaches zero with a
large amount of steps and a stochastic sampler.

4.2 IMAGE DATA AND LINEAR INVERSE PROBLEMS

We experiment on ImageNet 256×256 (Deng et al., 2009) with an unconditional denoiser from
Dhariwal & Nichol (2021). We evaluate the models on four linear inverse problems: Gaussian
deblurring, motion deblurring, random inpainting, and super-resolution. We evaluate our models
with peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM, Wang et al.,
2004) and learned perceptual image patch similarity (LPIPS, Zhang et al., 2018) on the ImageNet
test set. We use the same set of 1000 randomly selected images for all models.
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scaling
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←
L
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FH (DCT-diagonal covariance)

Figure 6: LPIPS w.r.t. guidance strength for
the ImageNet validation set and the Gaussian
blurring task. With a better covariance ap-
proximation, the usefulness of adjusting the
approximated guidance ∇xt with post-hoc
tricks becomes smaller.

We solve the inverse in Eq. (23) using conjugate
gradient, following Peng et al. (2024). Our custom
PyTorch implementation uses GPU acceleration and
adjusts solver tolerance based on noise levels. This
optimization removes the solver bottleneck without
noticeable performance loss. Details are in App. J.

Proposed models We introduce four new methods.
The first, ‘Identity’, is initialized with identity
covariance. ‘Identity+Online’ also uses the space
updates. ‘FH’ is initialized with data covari-
ance projected to a DCT-diagonal basis. Finally,
‘FH+Online’ enhances ‘FH’ with online updates.

Baselines We compare against several methods
using Eq. (23) for linear imaging inverse prob-
lems: DPS (Chung et al., 2023), ΠGDM (Song
et al., 2023a), TMPD (Boys et al., 2023), and two
methods from Peng et al. (2024) - Peng (Convert)
and Peng (Analytic). TMPD uses vector-Jacobian
product ~1>∇xtx0(st)σ(t)2 for denoiser covari-
ance. Convert employs neural network-output pixel-
space diagonal covariance, while Analytic deter-
mines optimal constant pixel-diagonal covariances
per timestep through moment matching. These
methods were selected as they represent reconstruction guidance with different covariances, en-
abling analysis of our covariance approximation approach. For DPS, we optimized guidance scale
via ImageNet validation set sweeps. Non-identity covariance models used SciPy’s conjugate gradi-
ent method for solving Eq. (23). For TMPD, we adjusted tolerance at higher noise levels to reduce
generation time (see App. J).

Scaling the guidance term We investigated how covariance approximation affects the need for
post-hoc changes to the estimated gradient∇xt log p(y |xt), as shown in Fig. 6. For deblurring, the
cruder identity initialization required scaling slightly below 1, indicating an initial overestimation of
the guidance scale. The more sophisticated DCT-diagonal covariance (FH) showed no systematic
over- or underestimation, with optimal scaling at 1. We determined optimal guidance strength for
identity covariance through a small sweep of 100 ImageNet validation samples at different solver
step counts. No scaling was applied for DCT-diagonal covariance. Additional analysis with PSNR
and SSIM is provided in App. K.

Baseline comparisons Our experiments focus on the low ODE sampling step regime to ensure
practical applicability. Results in Table 1 show that adding online updates during sampling improves
performance, with even greater gains when using DCT-diagonal covariance instead of the identity
base covariance. On low step counts, our FH models consistently outperform baselines across
all metrics, particularly on LPIPS scores. Visual comparisons in Fig. 7 and Fig. 9 confirm the
effective fine detail preservation of FH at 15 and 30 steps. Extended results with 50 and 100 steps,
the Euler solver and the FFHQ dataset (Karras et al., 2019) in App. H, including comparisons to
non-reconstruction guidance methods DDNM+ (Wang et al., 2023) and DiffPIR (Zhu et al., 2023),
show FH and FH+Online almost always outperforming others at low step counts and typically
achieving the best LPIPS scores even at higher step counts.

5 CONCLUSIONS

We introduced Free Hunch (FH), a framework for denoiser covariance estimation in diffusion mod-
els that leverages training data and trajectory curvature. FH provides accurate covariance estimates
without additional training, architectural changes or ODE/SDE solver modifications. Our theoret-
ical analysis showed that incorrect denoiser covariances significantly bias linear inverse problem
solutions. Experiments on ImageNet demonstrated strong performance in linear inverse problems,
especially at low step counts, with excellent LPIPS scores and fine detail preservation.
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While FH introduces some additional complexity compared to simpler approaches, its efficiency
and adaptability make it promising for various conditional generation tasks. Limitations of our
work include the focus of the theoretical and experimental analysis on linear inverse problems, and
future work could investigate nonlinear inverse problems and other types of conditional generation.
Another open question is whether we can derive error bounds on the accuracy of the estimated
covariance matrix in the entire process, or within individual ‘time updates’ or ‘space updates’. While
our DCT-diagonal base covariance works well for image data, the application to other data domains
is another open question. A low-rank estimate of the covariance matrix with a PCA decomposition
seems like a generally applicable approach, but this remains to be validated in practice.

Table 1: Comparison of image restoration methods for 15- and 30-step Heun iterations for deblurring
(Gaussian), inpainting (random), deblurring (motion), and super-resolution (4×) tasks. Our method
(FH) excels overall, especially in the descriptive LPIPS metric. The best scores in a given category
are bolded, and the second best are underlined, with close-by scores sometimes sharing a joint first
or second position.

Method Deblur (Gaussian) Inpainting (Random) Deblur (Motion) Super res. (4×)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

15
st

ep
s

DPS 19.94 0.444 0.572 20.68 0.494 0.574 17.02 0.354 0.646 19.85 0.460 0.590
ΠGDM 20.30 0.475 0.574 19.87 0.468 0.598 19.21 0.429 0.602 20.17 0.474 0.582
TMPD 23.08 0.597 0.420 18.99 0.481 0.539 20.80 0.491 0.514 21.88 0.545 0.476
Peng (Convert) 22.53 0.563 0.490 22.23 0.579 0.489 20.46 0.475 0.556 21.92 0.541 0.517
Peng (Analytic) 22.53 0.563 0.490 22.14 0.574 0.494 20.46 0.475 0.556 21.92 0.541 0.517

Identity 22.91 0.594 0.384 18.83 0.397 0.590 20.06 0.393 0.506 22.65 0.589 0.412
Identity+online 23.08 0.606 0.385 18.86 0.397 0.590 20.31 0.418 0.492 22.76 0.597 0.414
FH 23.39 0.624 0.372 24.73 0.701 0.327 21.69 0.534 0.446 23.30 0.624 0.390
FH+online 23.54 0.634 0.378 25.25 0.728 0.317 21.84 0.549 0.441 23.39 0.632 0.394

30
st

ep
s

DPS 21.76 0.527 0.463 24.84 0.678 0.387 18.22 0.389 0.582 23.00 0.593 0.440
ΠGDM 22.27 0.559 0.468 21.24 0.518 0.517 21.16 0.508 0.503 22.11 0.553 0.478
TMPD 23.16 0.602 0.415 18.85 0.481 0.537 20.91 0.500 0.507 21.94 0.549 0.472
Peng (Convert) 23.61 0.627 0.405 23.74 0.648 0.403 21.99 0.553 0.463 23.22 0.608 0.430
Peng (Analytic) 23.61 0.626 0.405 23.59 0.640 0.411 21.99 0.552 0.463 23.21 0.608 0.430

Identity 23.15 0.602 0.374 18.75 0.402 0.578 20.14 0.406 0.494 22.82 0.588 0.405
Identity+online 23.38 0.621 0.359 20.07 0.443 0.529 20.47 0.420 0.467 23.38 0.622 0.383
FH 23.55 0.630 0.353 26.00 0.757 0.256 21.80 0.538 0.411 23.38 0.623 0.372
FH+online 23.62 0.635 0.358 26.18 0.767 0.268 21.88 0.547 0.410 23.44 0.628 0.375

Condition Forward DPS ΠGDM TMPD Peng (Convert) FH (Ours) FH +Online (Ours)
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Figure 7: Qualitative examples using the 15-step Heun sampler for image restoration methods for
deblurring (Gaussian), inpainting (random), deblurring (motion), and super-resolution (4×) tasks.
Quantitative metrics in Table 1. Our method manages to restore the corrupted (‘Forward’) to match
well with the original (‘Condition’).
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François Rozet, Gérôme Andry, François Lanusse, and Gilles Louppe. Learning diffusion priors
from observations by expectation maximization. arXiv preprint arXiv:2405.13712, 2024.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad
Norouzi. Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(4):4713–4726, 2022.

Pedro Sanchez, Xiao Liu, Alison Q O’Neil, and Sotirios A Tsaftaris. Diffusion models for causal
discovery via topological ordering. In International Conference on Learning Representations,
2022.
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APPENDICES

A FULL DERIVATIONS FOR THE TIME UPDATE

For this section, we denote p(xt) = log p(x, t) to explicitly separate the time variable from the
spatial variable. This notation is useful for the derivations below, but in other parts of the paper we
use the xt to separate it from x0.

Recall the mean and covariance of the Gaussian approximation at location x and time t:
m(x, t) = x−∇2

x log p(x, t)−1∇x log p(x, t), (26)

C(x, t) = −∇2
x log p(x, t)−1. (27)

The evolution of the Gaussian has a closed form (Särkkä & Solin, 2019). In the variance-exploding
case this results in

m(x, t+ ∆t) = m(x, t), (28)

C(x, t+ ∆t) = C(x, t) + ∆σ2I, (29)

where ∆σ2 = σ2(t+ ∆t)− σ2(t). That is, the forward keeps the mean intact while increasing the
covariance. Using the above equations we can derive:

∇2
x log p(x, t+ ∆t) =

(
∇2

x log p(x, t)−1 −∆σ2I
)−1

(30)

∇x log p(x, t+ ∆t) = ∇2
x log p(x, t+ ∆t)∇2

x log p(x, t)−1∇x log p(x, t) (31)
When connected with Equation (7) and Equation (8), we can now derive the denoiser mean and
covariance updates.
µ0 | t+∆t(x) = x+ σ2(t+ ∆t)∇x log p(x, t+ ∆t)

= x+ σ2(t+ ∆t) (∇2 log p(x, t)−1 −∆σ2I)−1︸ ︷︷ ︸
Hessian projection

∇2 log p(x, t)−1∇x log p(x, t)︸ ︷︷ ︸
Hessian-score product

(32)

µ0 | t+∆t(x) = x+ σ(t+ ∆t)2

((
σ(t)2 + ∆σ2

)
I − ∆σ2

σ(t)2
Σ0 | t(x)

)−1(
µ0 | t(x)− x

)
,

= x+ σ(t+ ∆t)2

(
σ(t+ ∆t)2I − ∆σ2

σ(t)2
Σ0 | t(x)

)−1(
µ0 | t(x)− x

)
, (33)

Σ0 | t+∆t(x) =
(
Σ0 | t(x)−1 + ∆σ−2I

)−1

. (34)

This result is not entirely obvious, and next we will provide a detailed derivation.

Deriving the denoiser covariance update With the locally Gaussian approximation on p(x, t),
we can represent the time evolution of the p(x, t) covariance as the following

C(x, t) = C0 + σ(t)2I, (35)
where C0 is the hypothetical covariance when extrapolating the Gaussian time evolution to t = 0.
Then, moving back to the xt notation,we have the following connections (Eq. (11))

∇2
xt log p(xt) = −(C0 + σ(t)2I)−1, (36)

∇2
xt log p(xt)

−1 = −(C0 + σ(t)2I). (37)
On the other hand, the denoiser covariance is

Cov[x0 |xt] = (∇2
xt log p(xt)σ(t)2 + I)σ(t)2. (38)

The inverse of the denoiser covariance is then (Sherman–Morrison–Woodbury formula):
Cov[x0 |xt]−1 = (∇2

xt log p(xt)σ(t)2 + I)−1σ(t)−2 (39)

= (I − (I +∇2
xt log p(xt)

−1σ(t)−2)−1)σ(t)−2 (Woodbury) (40)

=
(
I −

(
I − (C0 + σ(t)2I)σ(t)−2

)−1
)
σ(t)−2 (37) (41)

= (I +C−1
0 σ(t)2)σ(t)−2 (42)

= C−1
0 + σ(t)−2I. (43)
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So the inverse of the denoiser covariance is simply a constant term plus an identity scaled with
σ(t)−2. This means that

Cov[x0 |xt+∆t]
−1 − Cov[x0 |xt]−1 = (C−1

0 + Iσ(t+ ∆t)−2)− (C−1
0 + Iσ(t)−2) (44)

Cov[x0 |xt+∆t]
−1 = Cov[x0 |xt]−1 + Iσ(t+ ∆t)−2 − Iσ(t)−2 (45)

= Cov[x0 |xt]−1 + ∆σ(t)−2I. (46)

And thus

Cov[x0 |xt+∆t] = (Cov[x0 |xt]−1 + ∆σ(t)−2I)−1. (47)

Deriving the denoiser mean update We want to calculate the expression for the updated mean
µ0 | t+∆t(xt). This mean can be written as:

µ0 | t+∆t(xt) = xt + σ(t+ ∆t)2 ·
(
∇2

xt log p(xt)−∆σ2I
)−1∇2

xt log p(xt)∇xt log p(xt). (48)

We aim to simplify the term inside the parentheses. Starting from the observation:(
∇2

xt log p(xt)−∆σ2I
)−1∇2

xt log p(xt) =
(
I −∆σ2∇2

xt log p(xt)
)−1

(49)

and using Eq. (7) and Eq. (8), we can express ∇2
xt log p(xt) and ∇xt log p(xt) as functions of

Σ0 | t(xt) and σ(t), yielding:

µ0 | t+∆t(xt) = xt + σ(t+ ∆t)2 ·
((
σ(t)2 + ∆σ2

)
I − ∆σ2

σ(t)2
Σ0 | t(xt)

)−1 (
µ0 | t(xt)− xt

)
.

(50)
This is the final simplified expression for µ0 | t+∆t(xt).

B INVERTING THE EFFICIENT MATRIX REPRESENTATION

Let’s say we have a positive-definite matrix in represented in the format C = D +UU> − V V >,
where D is a diagonal matrix and U and V are N × k1 and N × k2 matrices, respectively. N is
the data dimensionality and k � N . To invert it, we use the Woodbury identity twice, first for
A = D +UU>, and second forA− V V >. The first application of the identity is:

A−1 = (D +UU>)−1 = D−1 −D−1U (I +U>D−1U)−1︸ ︷︷ ︸
=K

U>D−1 (51)

= D−1 −D−1Usqrt(K)︸ ︷︷ ︸
=V ′

sqrt(K)>U>D−1 (52)

= D−1 − V ′V ′> (53)

that is, when we invert A = D +UU>, we get something in the form D−1 − V ′V ′>. Note that
I −U>D−1U is a k1 × k1 matrix, instea of an N ×N matrix and as such is much more efficient
to invert than the full N ×N matrix when k1 � N . Now, invert C = A− V V >:

C−1 = (A− V V >)−1 = A−1 +A−1V (I − V >A−1V )−1︸ ︷︷ ︸
=L

V >A−1 (54)

= A−1 +A−1V sqrt(L)︸ ︷︷ ︸
=U ′

sqrt(K)>V >A−1 (55)

= A−1 +U ′U ′ = D−1 +U ′U ′> − V ′V ′>. (56)

Note that V >A−1V is again efficient to compute due to the low-rank structure ofA−1:

V >A−1V = V >
(
D−1 − V ′V ′>

)
V (57)

= V >D−1V − V >V ′V ′>V (58)

= V >D−1V︸ ︷︷ ︸
k2×k2

− (V >V ′)︸ ︷︷ ︸
k2×k2

(V ′>V )︸ ︷︷ ︸
k2×k2

. (59)
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This leads to a well-behaved k2 × k2 matrix, and the inverse (I − V >A−1V )−1 is also efficient to
compute.

The matrix square root and complex numbers Note that in addition to the k1 × k1 and k2 × k2

inverses, the method requires matrix square root. One might imagine that (I + U>D−1U)−1 is
guaranteed to be positive-definite due to the original matrix being such, but this is not necessarily the
case. (I + U>U)−1 would be, but the diagonal term D−1 can push the eigenvalues of the matrix
to negative. This means that we can not use the Cholesky decomposition for the matrix square root
operations, but instead we use the Schur decomposition as implemented in the scipy library. A side-
effect is also that we have to use complex numbers to representD,U , and V in our implementation.
This is not an issue, since in the calculation of the covariance D + UU> − V V >, the imaginary
components cancel out and we get a real matrix.

C EXTENDED ANALYSIS OF THE TOY EXAMPLE

As a recap, in the toy model, A = I and all the pixels are perfectly correlated with Cov[x0] = J ,
where J is a matrix full of ones. The observation y and the denoiser mean µ0 | t(xt) are also vectors
of ones ~1 scaled by a constant, so that y − µ0 | t(xt) = a~1.

ΠGDM guidance without postprocessing

(y − µ0 | t(xt))
>(I

σ(t)2

1 + σ(t)2
+ σ2

yI)−1∇xtµ0 | t(xt)

≈ (y − µ0 | t(xt))
>(I + σ2

yI)−1Cov[x0 |xt]
σ(t)2

(60)

=
a

1 + σ2
y

~1>
J

σ(t)2
=

aN

(1 + σ2
y)σ(t)2

~1>. (61)

DPS guidance without postprocessing

(y − µ0 | t(xt))
>(I0 + σ2

yI)−1∇xtµ0 | t(xt)

≈ (y − µ0 | t(xt))
>σ−2

y

Cov[x0 |xt]
σ(t)2

(62)

=
a

σ2
y

~1>
J

σ(t)2
=

aN

σ2
yσ(t)2

~1>. (63)

Here N is the data dimensionality.

For ΠGDM, the gradient is scaled by σ(t)2

1+σ(t)2 , but this does not change the result in high noise
levels. Instead, the clipping of the denoiser mean to [−1, 1] regularises the guidance such that the
generation trajectory does not blow up. For DPS, the additional scaling results in

σ(t)2∇xtp(y |xt) ≈
ξσ2
y

‖y −Ax0‖
N

σ2
y

~1 =
ξN

‖~1‖
~1 =

ξN√
N
~1 = ξ

√
N~1 (64)

which is less severe than ΠGDM, but still requires additional clipping unless the scale ξ is set to
very low values.

Solution with the correct covariance In the main text, we showed that the issue does not show up
in the case σy = 0. This resulted in:

∇xt log p(y |xt) = (y − x0(xt))
>Cov[x0 |xt]−1Cov[x0 |xt]

σ2
t

=
(y − x0(xt))

>

σ2
t

(65)

The corresponding x0 estimate is:

xt + σ2
t

(
∇xt log p(xt) +

(y − x0(xt))

σ2
t

)
= E[x0 |xt] + y − E[x0 |xt] = y (66)
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that is, the updated score points to the direction of the observation for all time steps t. For the case
t→∞ and Cov[x0 |xt] ≈ J and not assuming σy = 0, we can derive with the Sherman–Morrison
formula that

(Cov[x0 |xt] + σ2
yI)−1 = (J + σ2

yI)−1 =
1

σ2
y

I − 1

σ4
y +Nσ2

y

J . (67)

To simplify formulas, let us again assume that y − x0(xt) = a~1

∇xt log p(y |xt) ≈a~1>
(

1

σ2
y

I − 1

σ4
y +Nσ2

y

J

)
J

σ2
t

(68)

=a

(
1

σ2
y

− N

σ4
y +Nσ2

y

)
~1>

J

σ2
t

(69)

=a
1

σ2
y +N

~1>
J

σ2
t

(70)

=a
1

σ2
y +N

N

σ2
t

~1>. (71)

Here, again, since the inverse term is inversely dependent on N , the dependence of the last term on
N is cancelled. In the case σ2

y = 0, we recover the exact same result as previously. With non-zero
observation noise, the strength of the guidance becomes slightly smaller, reflecting the uncertainty
about the underlying pure x0 value we have measured.

D FULL GUIDANCE ALGORITHMS FOR THE LINEAR-GAUSSIAN
OBSERVATION MODEL

The algorithm Alg. 3 details an implementation of the method with the Euler ODE solver. The
algorithm Alg. 4 is a more easily applicable implementation with any type of solver, including
higher-order methods like the Heun method. In it, we instantiate a class at the beginning of sampling,
and whenever a call to the denoiser / score model is made, it is passed to the class to calculate
∇xt log p(xt) and update the covariance information. For image data, we only perform the space
updates in 1 < σ(t) < 5, as detailed in App. J.

E ADDITIONAL TOY EXPERIMENT WITH CORRELATED DATA

To examine the effect mentioned in Sec. 3.7, we constructed data p(x0) = N (x0 |0, (1−ρ)I+ρJ),
where J is a matrix of ones and ρ = 0.999. We used an observation with noise σy = 0.2 and varied
the dimension. We plot the variance of the generated samples in Fig. 8. As expected, both ΠGDM
and DPS become overly confident as dimensionality increases. In contrast, our method, which
explicitly accounts for data covariance, maintains correct uncertainty calibration across dimension
counts. Note that the DPS results are obtained after tuning the guidance scale for this particular
problem, making the comparisons somewhat favourable towards DPS.

F ADDITIONAL QUALITATIVE RESULTS

Figure 9 shows the qualitative comparison with 30 Heun solver steps.

G QUANTIFYING THE ERROR IN THE COVARIANCE ESTIMATION

We study the case where we directly estimate the error in the denoiser covariance estimates for low-
dimensional toy data, where this is directly feasible. We consider a 2D Gaussian mixture model with
an likelihood function and posterior as shown in Fig. 10.

We generate samples with four different methods, and compare the covariances true to the true
covariance with the Frobenius norm. The methods are:
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Algorithm 3: Free Hunch for Linear Inverse Problems (Euler solver, with diffusion parameters
from (Karras et al., 2022))
Input: Linear operatorA, observation y, noise σy
Input: Initial covariance Σdata, score model sθ
Input: Schedule params: σmin = tmin = 0.002, σmax = tmax = 80, ρ = 7, steps N

/* Define time discretization */

1 ti = (t
1
ρ
max + i

N−1 t
1
ρ

min − t
1
ρ
max)ρ for i < N , tN = 0 (Karras et al., 2022)

2 Initialize xt ∼ N (0, σ2
maxI)

3 Initialize Σ0 | t(xt) = Σdata

4 Initialize µtransferred
0 | ti = null

5 Initialize ∆x = null
6 for i = 1, . . . , N − 1 do
7 σcurr = ti, σnext = ti+1

8 ∆t = ti+1 − ti
/* New score and denoising mean evaluation */

9 ∇xt log p(xt) = sθ(xt, ti)
10 µ0 | t(xt) = xt + σ2

curr∇xt log p(xt)
/* Space update for covariance */

11 if µtransferred
0 | ti 6=null And ∆x 6= null then

12 ∆e = σ2
curr(µ0 | t(xt)− µtransferred

0 | ti )

13 γ = 1
∆e>∆x

14 Σ0 | t(xtnext) = Σ0 | t(xt)−
Σ0 | t(xt)∆x∆x>Σ0 | t(xt)

∆x>Σ0 | t(xt)∆x
+ ∆e∆e>

∆e>∆x

15 end
/* Reconstruction guidance */

16 ∇xt log p(y|xt) = (y −Aµ0 | t(xt))
>(AΣ0 | t(xt)A

> + σ2
yI)−1A∇xtµ0 | t(xt)

/* Fall back to approximation if guidance too large */
17 if ‖σ2

curr∇xt log p(y |xt)‖ > 1 then
18 ∇xt log p(y|xt) = (y −Aµ0 | t(xt))

>(AΣ0 | t(xt)A
> + σ2

yI)−1A
Σ0 | t(xt)

σ2
curr

19 end
/* Update sample with Euler step */

20 ∆x = −σcurr(∇xt log p(xt) +∇xt log p(y|xt))∆t
21 xt = xt + ∆x

/* Time update for mean */
22 ∆σ2 = σ2

next − σ2
curr

23 µtransferred
0 | ti+1

= xt + σ2
next(σ

2
nextI − ∆σ2

σ2
curr

Σ0 | t(xt))
−1(µ0 | t(xt)− xt)

/* Time update for covariance (moving to noise level σnext) */
24 ∆(σ−2) = σ−2

next − σ−2
curr

25 Σ0 | t(xt)
−1 = Σ0 | t(xt)

−1 + ∆(σ−2)I

26 Σ0 | t(xt) = (Σ0 | t(xt)
−1)−1

27 end
28 return xt
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Algorithm 4: Free Hunch Guidance Class, applicable with any solver

1 class FreeHunchGuidance:
/* Initialize with measurement model and data covariance */

2 constructor(A, y, σy , Σdata):
3 StoreA, y, σy , Σ0 | t = Σdata

4 Initialize µprev = null, xprev = null, σprev = null

/* Process new denoiser evaluation and return guidance, to be
used for updating ∇xt log p(xt) to ∇xt log p(xt) +∇xt log p(y |xt)
before using it in the solver. */

5 function process denoiser(µnew, xnew, σnew):
6 if µprev 6= null then

/* Time update from previous step */
7 ∆(σ−2) = σ−2

new − σ−2
prev

8 ∆σ2 = σ2
new − σ2

prev

9 Σ−1
0 | t = Σ−1

0 | t + ∆(σ−2)I

10 Σ0 | t = (Σ−1
0 | t)

−1

/* Transfer previous mu to new noise level */

11 µtransferred = xprev + σ2
new(σ2

nextI − ∆σ2

σ2
prev

Σ0 | t)
−1(µprev − xprev)

/* Space update */
12 ∆x = xnew − xprev

13 ∆e = σ2
new(µnew − µtransferred)

14 γ = 1
∆e>∆x

15 Σ0 | t = Σ0 | t −
Σ0 | t∆x∆x>Σ0 | t

∆x>Σ0 | t∆x
+ ∆e∆e>

∆e>∆x

16 end
/* Calculate reconstruction guidance */

17 ∇x log p(y|xnew) = (y −Aµnew)>(AΣ0 | tA
> + σ2

yI)−1A∇xµnew

/* Fall back to approximation if guidance too large */
18 if ‖σ2

new∇x log p(y |xnew)‖ > 1 then
19 ∇x log p(y|xnew) = (y −Aµnew)>(AΣ0 | tA

> + σ2
yI)−1A

Σ0 | t
t2new

20 end
/* Update state variables */

21 µprev = µnew
22 xprev = xnew
23 σprev = σnew

24 return ∇x log p(y|xnew)
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Figure 8: The standard deviation of posterior samples from different methods for the toy
data discussed in App. E, showcasing the overconfidence problem caused by overestimated
∇xt log p(y |xt).
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Figure 9: Qualitative results from 30-step Heun sampler.
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Figure 10: The posterior distribution of the toy data discussed in App. G and the prior distribution.

1. Cov[x0 |xt] ≈ σ(t)2

1+σ(t)2 I , similarly to ΠGDM.

2. Cov[x0 |xt] approximated with our method by initialising at the data covariance, but not
performing space updates.

3. Cov[x0 |xt] approximated with our method by initialising at the data covariance, and per-
forming space updates.

4. Cov[x0 |xt] approximated with our method and with space updates, but estimating the
BFGS updates by calculating∇xt log p(xt+∆x) and∇xt log p(xt) explicitly, requiring 2
denoiser calls per step, but without error from the time updates affecting the BFGS updates.
This method is also discussed in App. J.

For these experiments, we used the Euler–Maruyama sampler. The results are shown in Fig. 11.
The ΠGDM covariance approximation is the furthest from the true value. Initialising at the data
covariance helps, and adding the space updates decreases the error further. However, there is a clear
gap in the standard method and using two score evaluations per step. We believe that this is due to
the errors from the time updates affecting the BFGS updates.

We also perform an ablation comparing a deterministic Euler sampler and the stochastic Euler–
Maryama sampler with the fourth method, and varying diffusion step count. The results are shown
in Fig. 12. Whereas for the deterministic sampler, the covariance estimate does not significantly im-
prove after a certain point, for the stochastic sampler, the error approaches zero across the sampling
steps with more steps. This is because the reason the inherent curvature in the ODE path does not
signifcantly change after increasing the step count above a certain limit. With a stochastic sampler,
the generative path explores a slightly different direction at each step, and the BFSG updates get
information from the curvature in all directions.

H ADDITIONAL RESULTS ON IMAGE MODELS

Here we list full additional results from:

1. ImageNet 256×256 results with Euler solver for 15, 30, 50, and 100 steps, in Table 2.
2. ImageNet 256×256 results with Heun solver for 15, 30, 50, and 100 steps, in Table 3.
3. FFHQ 256×256 results with the Euler solver, in Table 4. The denoiser network was ob-

tained from (Chung et al., 2023).

For each task, we use 1000 samples from the ImageNet test set / FFHQ test set. We also evaluate
DDNM+(Wang et al., 2023) and DiffPIR(Zhu et al., 2023) for a more thorough to different types
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Figure 11: The Frobenius norm of the difference between the true covariance and the estimated
covariance for different methods for different sampling steps (0 corresponds to the maximum noise
level and 1 corresponds to zero noise level). As pointed out in App. J, using the time updates to
transfer scores for use with the BFGS updates can cause inaccuracies with low-dimensional data,
making the curve slightly rough, although still below the one with only time updates.
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Figure 12: The Frobenius norm of the difference between the true covariance and the estimated
covariance for different methods, with varying step count.
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of methods, although these can not directly be interpreted as reconstruction guidance with specific
covariances. For DiffPIR, we use the implementation of (Peng et al., 2024), where they note that the
definition of the DiffPIR step as involving an optimization process has an analytical solution.

Notes on hyperparameters For DPS, Identity, Identity+Online updates, and DiffPIR, we tuned hy-
perparameters for each task using Gaussian blur as a baseline. We separately tuned the hyperparame-
ters for the Euler and Heun solvers, and for each step count. While the optimal hyperparameters were
similar for DiffPIR, Identity and Identity+Online updates, for DPS, the optimal values depended on
the solver type and step count. We used 100 samples from the ImageNet validation set for tuning,
and used these parameters for all experiments. The results are shown in Fig. 13,Fig. 14,Fig. 15 and
Fig. 16.

I MOTIVATIONS FOR THE DCT BASIS AND THE BFGS UPDATE

The reason that we chose the DCT over, e.g., the DFT basis is that it is purely real-valued, does not
assume periodic boundaries, and in practice needs less coefficients to efficiently represent natural
images. This is also one of the reasons for its use in the JPEG compression standard (Wallace, 1991).
The BFGS update has the attractive property of preserving positive-semidefiniteness (as opposed to,
e.g., the symmetric rank-1 update). This combines well with performing the updates in the denoiser
covariance, which is positive-definite (as opposed to the Hessian). Compared to Davidon-Fletcher-
Powell (DFP), the difference is that the BFGS update minimizes a weighted Frobenius norm for the
size of the update in inverse covariance (Dennis & Moré, 1977), instead of the covariance directly.
In the update formula in Eq. (23), if we use A=I and the obseration noise is low, the inverse term is
simply the inverse covariance. Thus, it could stabilise the updates across iterations, but this is more
speculative, and DFP could work in practice as well.

J IMPLEMENTATION DETAILS

The solver We noticed that in large noise levels, it does not matter if the inversion in Eq. (23) is not
exact, and we can set the tolerance quite high. We then defined a schedule for the tolerance such that
it becomes lower towards the end. A lower tolerance towards the end of sampling is not an issue,
since the covariance becomes closer to a diagonal, and the required matrix inverse becomes easier
to calculate. In practice, we use the following schedule:

σmax = 80

σmin = 1

rtolmax = 1

rtolmin = 1e− 14

p = 0.1

σclipped = max(min(σ, σmax), σmin)

log factor =

(
log10(σclipped)− log10(σmin)

log10(σmax)− log10(σmin)

)p
(72)

log rtol = log factor · (log10(rtolmax)− log10(rtolmin)) + log10(rtolmin) (73)

rtol = 10log rtol, (74)

where rtolmax and rtolmin control the maximum and minimum relative tolerances of the solver, and
σmax and σmin control the noise levels outside of which the tolerances are rtolmax and rtolmin, respec-
tively.

Note that scheduling the solver in this way does not improve image quality. Instead, it improves
inference speed considerably, to the point where the solver is not a bottleneck anymore. Instead of
using a standard off-the-shelf conjugate gradient implementation, we implemented one ourselves in
PyTorch to utilize the speedup from the GPU.

Also for TMPD, we created a schedule for the conjugate gradient since a constant low tolerance
slowed down the computation quite a bit. For TMPD, we use a standard scipy implementation that
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Table 2: Results with the Euler solver. Our model performs especially well at small step sizes and
remains competitive at larger step counts as well. DDNM+ is designed to enforce consistency with
the measurement in cases where the measurement operator has a clearly defined nullspace, such as
inpainting and super-resolution, potentially affecting the good PSNR and SSIM results there. In
contrast, DDNM+ struggles with our Gaussian blur kernels. Motion blur results are not presented,
as the code of DDNM+ assumes separable kernels.

Method Deblur (Gaussian) Inpainting (Random) Deblur (Motion) Super res. (4×)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

15
st

ep
s

DPS 19.94 0.444 0.572 20.68 0.494 0.574 17.02 0.354 0.646 19.85 0.460 0.590
ΠGDM 20.29 0.474 0.574 19.87 0.468 0.598 19.21 0.429 0.602 20.17 0.474 0.582
TMPD 22.56 0.572 0.486 17.70 0.447 0.589 20.40 0.481 0.567 21.15 0.517 0.541
Peng Convert 22.53 0.563 0.490 22.23 0.579 0.489 20.46 0.475 0.556 21.92 0.541 0.517
Peng Analytic 22.52 0.563 0.490 22.14 0.574 0.494 20.46 0.475 0.556 21.92 0.541 0.517
DDNM+ 7.21 0.029 0.822 23.95 0.667 0.352 – – – 24.30 0.669 0.398
DiffPIR 22.77 0.575 0.403 16.10 0.284 0.661 19.75 0.381 0.527 21.76 0.540 0.436

Identity 22.91 0.594 0.384 18.83 0.397 0.590 20.06 0.393 0.506 22.65 0.589 0.412
Identity+online 23.08 0.606 0.385 18.86 0.397 0.590 20.31 0.418 0.492 22.76 0.597 0.414
FH 23.41 0.625 0.373 24.76 0.702 0.327 21.69 0.534 0.447 23.39 0.632 0.390
FH+online 23.57 0.635 0.378 25.29 0.731 0.315 21.83 0.548 0.442 23.31 0.624 0.393

30
st

ep
s

DPS 21.76 0.527 0.463 24.84 0.678 0.386 18.22 0.389 0.582 23.00 0.593 0.440
ΠGDM 22.27 0.559 0.468 21.24 0.518 0.517 21.15 0.508 0.503 22.11 0.552 0.479
TMPD 22.92 0.591 0.451 18.27 0.465 0.563 20.71 0.495 0.538 21.59 0.536 0.507
Peng Convert 23.61 0.627 0.405 23.74 0.648 0.403 21.99 0.553 0.463 23.21 0.608 0.430
Peng Analytic 23.61 0.627 0.405 23.59 0.640 0.410 21.99 0.552 0.463 23.22 0.608 0.430
DDNM+ 7.51 0.033 0.814 26.66 0.769 0.272 – – – 24.09 0.657 0.418
DiffPIR 22.34 0.552 0.404 15.94 0.262 0.667 19.38 0.368 0.523 21.25 0.512 0.443

Identity 23.15 0.602 0.374 18.75 0.402 0.578 20.14 0.406 0.494 22.82 0.588 0.405
Identity+online 23.38 0.621 0.359 20.07 0.443 0.529 20.47 0.420 0.467 23.38 0.622 0.383
FH 23.56 0.630 0.353 26.00 0.758 0.255 21.79 0.537 0.410 23.38 0.624 0.371
FH+online 23.66 0.636 0.359 26.17 0.766 0.268 21.89 0.548 0.409 23.46 0.629 0.375

50
st

ep
s

DPS 22.66 0.579 0.411 26.31 0.761 0.297 19.05 0.428 0.537 23.79 0.642 0.375
ΠGDM 22.64 0.577 0.434 21.67 0.536 0.484 21.56 0.526 0.468 22.48 0.571 0.442
TMPD 23.09 0.600 0.434 18.50 0.472 0.551 20.83 0.500 0.524 21.76 0.543 0.492
Peng Convert 23.81 0.638 0.377 24.75 0.698 0.346 22.30 0.567 0.430 23.44 0.622 0.400
Peng Analytic 23.81 0.638 0.378 24.47 0.683 0.360 22.30 0.567 0.430 23.44 0.622 0.400
DDNM+ 7.83 0.038 0.806 27.15 0.771 0.301 – – – 24.05 0.655 0.424
DiffPIR 22.10 0.539 0.407 15.82 0.251 0.670 19.17 0.358 0.525 21.00 0.498 0.448

Identity 23.18 0.602 0.360 19.64 0.436 0.536 19.92 0.373 0.497 23.11 0.600 0.385
Identity+online 23.47 0.620 0.370 19.46 0.409 0.552 20.74 0.453 0.453 23.20 0.607 0.399
FH 23.43 0.622 0.348 25.94 0.760 0.238 21.56 0.523 0.406 23.21 0.614 0.366
FH+online 23.59 0.631 0.353 26.08 0.770 0.252 21.71 0.534 0.406 23.33 0.620 0.369

10
0

st
ep

s

DPS 23.36 0.615 0.379 26.61 0.800 0.229 20.05 0.473 0.492 23.36 0.622 0.366
ΠGDM 22.76 0.585 0.408 21.97 0.551 0.459 21.71 0.533 0.440 22.63 0.580 0.416
TMPD 23.18 0.604 0.423 18.67 0.477 0.543 20.90 0.502 0.514 21.88 0.548 0.480
Peng Convert 23.74 0.638 0.358 24.89 0.706 0.332 22.36 0.570 0.407 23.46 0.625 0.379
Peng Analytic 23.73 0.637 0.358 24.67 0.694 0.345 22.36 0.570 0.407 23.46 0.625 0.379
DDNM+ 8.77 0.054 0.786 28.28 0.809 0.278 – – – 23.55 0.630 0.450
DiffPIR 21.88 0.527 0.410 15.69 0.241 0.672 18.95 0.345 0.529 20.78 0.485 0.451

Identity 23.11 0.596 0.361 19.66 0.439 0.528 19.72 0.358 0.501 23.04 0.594 0.384
Identity+online 23.43 0.616 0.373 19.65 0.420 0.538 20.77 0.459 0.447 23.08 0.599 0.403
FH 23.24 0.613 0.346 25.71 0.755 0.233 21.35 0.510 0.407 23.03 0.604 0.364
FH+online 23.32 0.616 0.356 25.73 0.764 0.243 21.37 0.509 0.417 23.17 0.609 0.370
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Table 3: Results with the Heun solver. Our model performs especially well at small step sizes and
remains competitive at larger step counts as well. DDNM+ is designed to enforce consistency with
the measurement in cases where the measurement operator has a clearly defined nullspace, such as
inpainting and super-resolution, potentially affecting the good PSNR and SSIM results there. In
contrast, DDNM+ struggles with our Gaussian blur kernels. Motion blur results are not presented,
as the code of DDNM+ assumes separable kernels.

Method Deblur (Gaussian) Inpainting (Random) Deblur (Motion) Super res. (4×)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

15
st

ep
s

DPS 19.94 0.444 0.572 20.68 0.494 0.574 17.02 0.354 0.646 19.85 0.460 0.590
ΠGDM 20.30 0.475 0.574 19.87 0.468 0.598 19.21 0.429 0.602 20.17 0.474 0.582
TMPD 23.08 0.597 0.420 18.99 0.481 0.539 20.80 0.491 0.514 21.88 0.545 0.476
Peng Convert 22.53 0.563 0.490 22.23 0.579 0.489 20.46 0.475 0.556 21.92 0.541 0.517
Peng Analytic 22.53 0.563 0.490 22.14 0.574 0.494 20.46 0.475 0.556 21.92 0.541 0.517
DDNM+ 7.21 0.029 0.822 23.95 0.667 0.352 – – – 24.30 0.669 0.398
DiffPIR 22.77 0.575 0.403 16.10 0.284 0.661 19.75 0.381 0.527 21.76 0.540 0.436

Identity 22.91 0.594 0.384 18.83 0.397 0.590 20.06 0.393 0.506 22.65 0.589 0.412
Identity+online 23.08 0.606 0.385 18.86 0.397 0.590 20.31 0.418 0.492 22.76 0.597 0.414
FH 23.39 0.624 0.372 24.73 0.701 0.327 21.69 0.534 0.446 23.30 0.624 0.390
FH+online 23.54 0.634 0.378 25.25 0.728 0.317 21.84 0.549 0.441 23.39 0.632 0.394

30
st

ep
s

DPS 21.76 0.527 0.463 24.84 0.678 0.387 18.22 0.389 0.582 23.00 0.593 0.440
ΠGDM 22.27 0.559 0.468 21.24 0.518 0.517 21.16 0.508 0.503 22.11 0.553 0.478
TMPD 23.16 0.602 0.415 18.85 0.481 0.537 20.91 0.500 0.507 21.94 0.549 0.472
Peng Convert 23.61 0.627 0.405 23.74 0.648 0.403 21.99 0.553 0.463 23.22 0.608 0.430
Peng Analytic 23.61 0.626 0.405 23.59 0.640 0.411 21.99 0.552 0.463 23.21 0.608 0.430
DDNM+ 7.51 0.033 0.814 26.66 0.769 0.272 – – – 24.09 0.657 0.418
DiffPIR 22.34 0.552 0.404 15.94 0.262 0.667 19.38 0.368 0.523 21.25 0.512 0.443

Identity 23.15 0.602 0.374 18.75 0.402 0.578 20.14 0.406 0.494 22.82 0.588 0.405
Identity+online 23.38 0.621 0.359 20.07 0.443 0.529 20.47 0.420 0.467 23.38 0.622 0.383
FH 23.55 0.630 0.353 26.00 0.757 0.256 21.80 0.538 0.411 23.38 0.623 0.372
FH+online 23.62 0.635 0.358 26.18 0.767 0.268 21.88 0.547 0.410 23.44 0.628 0.375

50
st

ep
s

DPS 22.66 0.578 0.412 26.31 0.761 0.296 19.05 0.428 0.537 23.80 0.642 0.375
ΠGDM 22.64 0.577 0.435 21.67 0.536 0.484 21.56 0.526 0.468 22.48 0.571 0.442
TMPD 23.20 0.605 0.414 18.83 0.482 0.536 20.93 0.502 0.504 21.96 0.550 0.471
Peng Convert 23.81 0.638 0.377 24.75 0.698 0.346 22.30 0.567 0.429 23.44 0.622 0.400
Peng Analytic 23.80 0.638 0.378 24.47 0.683 0.360 22.30 0.567 0.430 23.44 0.622 0.400
DDNM+ 7.83 0.038 0.806 27.15 0.771 0.301 – – – 24.05 0.655 0.424
DiffPIR 22.10 0.539 0.407 15.82 0.251 0.670 19.17 0.358 0.525 21.00 0.498 0.448

Identity 23.18 0.602 0.360 19.64 0.436 0.536 19.92 0.373 0.497 23.11 0.600 0.385
Identity+online 23.47 0.620 0.370 19.46 0.409 0.552 20.74 0.453 0.453 23.20 0.607 0.399
FH 23.44 0.623 0.348 25.95 0.760 0.237 21.58 0.523 0.406 23.22 0.614 0.367
FH+online 23.60 0.631 0.353 26.10 0.772 0.250 21.73 0.535 0.406 23.31 0.619 0.369

10
0

st
ep

s

DPS 23.36 0.615 0.378 26.61 0.800 0.228 20.05 0.473 0.492 23.36 0.622 0.366
ΠGDM 22.76 0.585 0.408 21.97 0.551 0.459 21.71 0.533 0.440 22.63 0.580 0.416
TMPD 23.22 0.606 0.412 18.83 0.482 0.536 20.95 0.502 0.504 21.98 0.551 0.469
Peng Convert 23.74 0.638 0.358 24.89 0.706 0.332 22.36 0.570 0.407 23.46 0.625 0.379
Peng Analytic 23.73 0.637 0.358 24.67 0.694 0.345 22.36 0.570 0.407 23.46 0.625 0.379
DDNM+ 8.77 0.054 0.786 28.28 0.809 0.278 – – – 23.55 0.630 0.450
DiffPIR 21.88 0.527 0.410 15.69 0.241 0.672 18.95 0.345 0.529 20.78 0.485 0.451

Identity 23.11 0.596 0.361 19.66 0.439 0.528 19.72 0.358 0.501 23.04 0.594 0.384
Identity+online 23.43 0.616 0.373 19.65 0.420 0.538 20.77 0.458 0.447 23.08 0.599 0.403
FH 23.25 0.613 0.346 25.71 0.755 0.233 21.35 0.509 0.408 23.02 0.604 0.364
FH+online 23.35 0.616 0.357 25.75 0.765 0.242 21.40 0.512 0.414 23.15 0.608 0.371
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Table 4: Results for the FFHQ 256 × 256 dataset, with the Euler solver. The results are largely the
same as with ImageNet, in that FH+Online outperforms other models clearly on low step counts,
but the advantage becomes smaller with large step counts. FH does remain competitive on all the
metrics, especially LPIPS, even with 100 steps.

Method Deblur (Gaussian) Inpainting (Random) Deblur (Motion) Super res. (4×)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

15
st

ep
s

DPS 22.30 0.581 0.461 23.51 0.652 0.439 18.20 0.447 0.593 22.36 0.611 0.459
πGDM 22.75 0.614 0.478 22.09 0.609 0.479 21.30 0.558 0.516 22.60 0.614 0.482
TMPD 25.72 0.724 0.364 18.37 0.541 0.567 22.51 0.617 0.470 23.77 0.665 0.417
Peng Convert 25.47 0.699 0.391 25.07 0.719 0.370 22.78 0.607 0.464 24.85 0.683 0.410
Peng Analytic25.47 0.698 0.391 24.97 0.715 0.374 22.78 0.607 0.465 24.84 0.683 0.410
DDNM+ 7.32 0.027 0.850 26.00 0.754 0.306 – – – 27.29 0.781 0.325
DiffPIR 25.59 0.707 0.317 16.54 0.296 0.701 21.92 0.511 0.441 24.03 0.666 0.352

Identity 26.16 0.734 0.292 19.83 0.448 0.579 22.70 0.534 0.414 25.55 0.722 0.320
Identity+online26.34 0.744 0.294 19.86 0.447 0.580 22.97 0.567 0.394 25.67 0.728 0.325
FH 26.63 0.753 0.289 28.27 0.806 0.268 24.67 0.685 0.349 26.30 0.746 0.308
FH+online 26.81 0.762 0.287 28.63 0.823 0.258 24.80 0.695 0.340 26.39 0.753 0.305

30
st

ep
s

DPS 24.68 0.674 0.330 28.40 0.808 0.280 20.03 0.513 0.464 26.22 0.738 0.316
πGDM 25.24 0.704 0.342 23.86 0.662 0.382 23.87 0.658 0.367 25.01 0.698 0.350
TMPD 26.19 0.740 0.326 19.06 0.558 0.537 23.05 0.639 0.415 24.38 0.685 0.376
Peng Convert 26.89 0.762 0.290 26.86 0.773 0.300 24.86 0.698 0.332 26.30 0.744 0.314
Peng Analytic 26.88 0.762 0.290 26.68 0.767 0.306 24.85 0.698 0.333 26.30 0.744 0.314
DDNM+ 7.63 0.030 0.841 29.10 0.833 0.245 – – – 26.92 0.768 0.343
DiffPIR 25.12 0.687 0.319 16.42 0.271 0.706 21.62 0.506 0.431 23.46 0.640 0.359

Identity 26.26 0.735 0.287 19.87 0.480 0.541 22.75 0.558 0.396 25.53 0.714 0.318
Identity+online26.57 0.749 0.275 21.67 0.518 0.486 23.24 0.560 0.379 26.31 0.742 0.304
FH 26.81 0.757 0.267 29.19 0.834 0.208 24.64 0.680 0.314 26.32 0.743 0.289
FH+online 26.88 0.760 0.268 29.35 0.843 0.212 24.75 0.687 0.309 26.38 0.747 0.288

50
st

ep
s

DPS 25.68 0.714 0.294 29.65 0.849 0.226 21.04 0.559 0.409 26.71 0.756 0.279
πGDM 25.46 0.708 0.320 24.20 0.670 0.361 24.12 0.663 0.345 25.22 0.702 0.328
TMPD 26.32 0.744 0.311 19.34 0.564 0.526 23.19 0.643 0.398 24.58 0.691 0.361
Peng Convert 26.92 0.762 0.271 27.88 0.803 0.263 25.00 0.700 0.314 26.37 0.745 0.296
Peng Analytic 26.91 0.762 0.272 27.55 0.793 0.274 25.00 0.700 0.314 26.37 0.745 0.296
DDNM+ 7.96 0.035 0.832 29.48 0.834 0.273 – – – 26.81 0.765 0.350
DiffPIR 24.87 0.674 0.323 16.30 0.258 0.709 21.42 0.494 0.434 23.20 0.625 0.363

Identity 26.30 0.733 0.277 21.14 0.523 0.484 22.61 0.510 0.412 25.93 0.723 0.303
Identity+online26.55 0.746 0.285 20.99 0.492 0.504 23.46 0.606 0.357 25.99 0.728 0.316
FH 26.57 0.746 0.264 29.03 0.831 0.199 24.35 0.662 0.316 26.07 0.730 0.287
FH+online 26.73 0.753 0.265 29.26 0.842 0.202 24.49 0.670 0.313 26.22 0.737 0.287

10
0

st
ep

s DPS 26.34 0.738 0.275 29.70 0.860 0.187 22.18 0.603 0.371 25.77 0.707 0.305
πGDM 25.46 0.706 0.307 24.40 0.675 0.349 24.16 0.660 0.334 25.26 0.701 0.315
TMPD 26.38 0.745 0.302 19.54 0.568 0.517 23.28 0.644 0.387 24.71 0.693 0.352
Peng Convert 26.73 0.755 0.261 27.91 0.804 0.257 24.94 0.695 0.306 26.28 0.740 0.286
Peng Analytic 26.72 0.755 0.262 27.64 0.795 0.267 24.94 0.694 0.307 26.28 0.740 0.286
DDNM+ 8.92 0.051 0.809 30.63 0.861 0.256 – – – 26.06 0.740 0.375
DiffPIR 24.65 0.663 0.326 16.19 0.247 0.712 21.23 0.481 0.439 22.97 0.613 0.369

Identity 26.16 0.725 0.278 21.24 0.528 0.473 22.41 0.493 0.419 18.34 0.484 0.587
Identity+online26.46 0.741 0.289 21.32 0.516 0.478 23.45 0.610 0.354 25.78 0.720 0.322
FH 26.28 0.735 0.264 28.77 0.824 0.200 24.09 0.647 0.322 25.81 0.718 0.289
FH+online 26.48 0.739 0.268 28.98 0.837 0.199 24.13 0.646 0.327 26.03 0.726 0.289
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Figure 13: LPIPS and SSIM metrics across different solver steps and conditioning scales for DPS.
The optimal LPIPS values are used in the experiments.
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Figure 14: LPIPS and SSIM metrics across different solver steps and λ values for DiffPIR. The
optimal LPIPS values are used in the experiments.
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Figure 15: LPIPS and SSIM metrics across different solver steps and conditioning scales for our
method with the identity base covariance. The optimal LPIPS values are used in the experiments.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure 16: LPIPS and SSIM metrics across different solver steps and conditioning scales for our
method with the identity base covariance and online updates. The optimal LPIPS values are used in
the experiments.
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is parameterized that is parameterized in terms of

σmax = 80

σmin = 1

tolmax = 1

tolmin = 1e− 14

p = 0.05

σclipped = max(min(σ, σmax), σmin)

log factor =

(
log10(σclipped)− log10(σmin)

log10(σmax)− log10(σmin)

)p
(75)

log rtol = log factor · (log10(rtolmax)− log10(rtolmin)) + log10(rtolmin) (76)

rtol = 10log rtol (77)

We tried to choose the schedule such that this does not degrade the performance noticeably, but also
allows us to run experiments in reasonable time.

Range for the BFGS updates In practice, we do the space/BFGS updates for a range of σ(t)
values for image data, in particular 1 ≤ σ(t) ≤ 5. A motivation for this choice is that we noticed the
finite differences to not be numerically accurate at high noise levels, where the time updates ∆t and
the space updates ∆x are large. For low noise levels, it is also unnecessary, given that the covariance
approaches σ(t)2I in any case. How to apply the space updates in the optimal way is an interesting
direction for future research.

The solver We noticed that in large noise levels, it does not matter if the inversion in Eq. (23) is not
exact, and we can set the tolerance quite high. We then defined a schedule for the tolerance such that
it becomes lower towards the end. A lower tolerance towards the end of sampling is not an issue,
since the covariance becomes closer to a diagonal, and the required matrix inverse becomes easier
to calculate.

Details on the low-dimensional experiments In the Gaussian mixture experiments, we did not
apply the time updates for µt(x), but instead evaluate µ0 | t+∆t(x) explicitly before applying the
BFGS update. The reason is that on low-dimensional data, some of the prior samples are close to
the actual data distribution. In that region, the time evolution is complex enough from the start that
the denoiser mean time update coupled with the BFGS update in the next step sometimes causes
numerical instability. To avoid additional score function evaluations, we could devise a schedule for
when to apply the space updates.

Measurement operators. We obtained the measurement operator definitions from (Peng et al.,
2024), which in turn are based on the operators in (Chung et al., 2023). We use a noise level
σy = 0.1 for all measurement models (data scaled to [-1,1]).

K ADDITIONAL RESULTS ON OPTIMAL GUIDANCE STRENGTH

Figure 17 shows the PSNR, SSIM and LPIPS scores for the Gaussian deblurring task on Ima-
geNet 256×256 with different post-hoc guidance scales on the initially calculated guidance term
∇xt log p(y |xt).

L COMPUTATIONAL REQUIREMENTS

The sweep to obtain the results in Table 1 was done with multiple NVIDIA V100 GPUs in a few
hours, and can be obtained with a single V100s in less than a day of compute. For some of the
methods, the matrix inversion in Eq. (23) can slow down generation considerably, although this is
not as significant an overhead with our tolerance-optimized conjugate gradient implementation.
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Figure 17: Different metrics with respect to guidance strength for 100 images from the Imagenet
validation set, using an identity base covariance (blue) and a DCT-diagonal covariance (orange).
With a better covariance approximation, the usefulness of adjusting the resulting guidance with
post-hoc tricks becomes smaller.

M OPTIMAL ∇xt log p(xt |y) FOR GAUSSIAN MIXTURE DATA AND
GAUSSIAN OBSERVATION

In this section, we derive the optimal gradient∇xt log p(xt |y) for a situation with Gaussian mixture
data and a Gaussian observation model. This is useful for performing toy experiments without
having to retrain the model. Note that we can get the unconditional score from the end result by
setting the observation noise Σy to infinity.

Model Definition We begin with the following components:

1. Prior Distribution: The prior on x0 is a Gaussian mixture model:

p(x0) =
∑
i

wiN (x0 |µi,Σi), (78)

where wi are the mixture weights, µi are the mean vectors, and Sigmai are the covariance
matrices for each mixture component.

2. Likelihood: The observation model is Gaussian:
p(y |x0) = N (y |x0,Σy) (79)

where Σy is the observation noise covariance.
3. Transition Model: The transition from x0 to xt is modeled as:

p(xt |x0) = N (xt |x0, σ(t)2I) (80)
where σ2I is isotropic Gaussian noise with variance σ(t)2.

M.1 POSTERIOR DISTRIBUTION

Given these components, the posterior distribution p(x0 |xt,y) is also a Gaussian mixture:

p(x0 |xt,y) =
∑
i

w′iN (x0 |µ′i, Σ′i), (81)

where
Σ′−1
i = (σ(t)2I)−1 + Σ−1

y + Σ−1
i (82)

µ′i = Σ′i((σ(t)2I)−1xt + Σ−1
y y + Σ−1

i µi) (83)

w′i ∝ wiN (xt |µi, σ(t)2I + Σi)N (y |µi,Σy + Σi). (84)

M.2 CONDITIONAL EXPECTATION

The conditional expectation of x0 given xt and y is:

E[x0 |xt,y] =
∑
i

w′iµ
′
i (85)
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M.3 DERIVATION OF THE GRADIENT

Now, let’s derive the gradient∇xt log p(xt |y):

1. We start with:

∇xt log p(xt |y) = ∇xt log

∫
p(xt |x0)p(x0 |y) dx0 (86)

2. Applying the chain rule and moving the gradient inside the integral:

∇xt log p(xt |y) =

∫
∇xtp(xt |x0)p(x0 |y)dx0∫
p(xt |x0)p(x0 |y)dx0

(87)

3. Given p(xt |x0) = N (xt |x0, σ(t)2I), we have:

∇xtp(xt |x0) = − 1

σ(t)2
(xt − x0)p(xt |x0) (88)

4. Substituting this back:

∇xt log p(xt |y) = − 1

σ(t)2

∫
(xt − x0)p(xt |x0)p(x0 |y) dx0∫

p(xt |x0)p(x0 |y) dx0
(89)

= − 1

σ(t)2
(xt −

∫
x0p(xt |x0)p(x0 |y) dx0∫
p(xt |x0)p(x0 |y) dx0

) (90)

= − 1

σ(t)2
(xt − E[x0 |xt,y]) (91)

M.4 FINAL FORM OF THE GRADIENT

Therefore, the final form of the gradient is:

∇xt log p(xt |y) = − 1

σ2
(xt − E[x0 |xt,y]) (92)

M.5 DETAILED FORMULA FOR E[x0 |xt,y]

Let’s expand the formula for E[x0 |xt,y]:

1. We start with the posterior distribution:

p(x0 |xt,y) =
∑
i

w′iN (x0 |µ′i,Σ′i) (93)

2. The expectation of this mixture is the weighted sum of the means:

E[x0 |xt,y] =
∑
i

w′iµ
′
i (94)

3. Expanding µ′i:
µ′i = Σ′i((σ(t)2I)−1xt + Σ−1

y y + Σ−1
i µi) (95)

4. Substituting this into the expectation formula:

E[x0 |xt,y] =
∑
i

w′iΣ
′
i((σ(t)2I)−1xt + Σ−1

y y + Σ−1
i µi) (96)

5. Rearranging:

E[x0 |xt,y] = (
∑
i

w′iΣ
′
i(σ(t)2I)−1)xt + (

∑
i

w′iΣ
′
iΣ
−1
y )y +

∑
i

w′iΣ
′
iΣ
−1
i µi (97)
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Let’s define:

A =
∑
i

w′iΣ
′
i(σ(t)2I)−1, (98)

B =
∑
i

w′iΣ
′
iΣ
−1
y , (99)

c =
∑
i

w′iΣ
′
iΣ
−1
i µi. (100)

Then we can write the final formula as:

E[x0 |xt,y] = Axt +By + c (101)

where:

w′i ∝ wiN (xt |µi, σ(t)2I + Σi)N (y |µi,Σy + Σi), (102)

Σ′i = ((σ(t)2I)−1 + Σ−1
y + Σ−1

i )−1. (103)

This formula shows that E[x0 |xt,y] is a linear combination of xt and y, plus a constant term. The
matrices A and B determine how much the expectation depends on xt and y respectively, while c
represents a constant offset based on the prior distribution.
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