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Figure 5: Overview of types of compositions studied. Entity composition (left) necessitates learning
a world model that is equivariant to object replacement. Relational compositions (right) necessitates
learning the properties of entity composition as well as additional constraints where objects with
shared attributes also have shared dynamics. We study two instantiations of shared attributes sets:
“Sticky” and “Team”. Details on these instantiations are given in Appendix[A.2]

A APPENDIX

The Appendix is divided into eight sections. Section explains how we leverage SAM to gen-
erate a set-structured representation, Section surveys the types of compositions we study in
detail, Section introduces a faster algorithm used in implementation for module selection, Sec-
tion outlines experiment details and, notably, presents justification for the Equivariant MRR
metric employed to study encoding separation, Section [A.5]presents details of how the downstream
planning experiments were conducted, Section goes over our reasoning for selecting relevant
benchmarks, Section [A.7]details an ablation study with a “fully-symbolic” model, and Section[A.§]
showcases qualitative results on a randomly sampled subset of five-object state-action pairs.

A.1 GENERATING SET-STRUCTURED REPRESENTATIONS WITH SEGMENT ANYTHING

We prompt SAM (Kirillov et al., [2023) with the image (/) and a 8 x 8 grid of points. This yields
64 x 3 potential masks (as there are three channels). To ensure a set structured representation, we
must ensure that (1) each mask captures a specific property of the image, (2) collectively, all masks
describe the entire image. We ensure (1) by removing duplicate masks and (2) by evaluating all
combinations of remaining slots and selecting the %k tuple (where k is the number of slots) that,
when summed, most closely matches the image. The resulting masks { M7, ... M } are point-wise
multiplied with the image to yield {1, ... I }. Each masked image is passed through a finetuned
Resnet to yield {S1, ... Sk}

A.2 TYPES OF COMPOSITIONS

Entity Composition: Entity composition (Figure [5) necessitates learning a world model that is
equivariant to object replacement. The dynamics of the environment depends on which objects are
present in the scene.

Relational Composition: Relational composition (Figure[3) necessitates learning all the properties
present in entity composition. Additionally, in relational composition, the composition is determined
by constraints placed on observable attributes of individual objects. For instance, in Sticky block
pushing (Fig[3)), the scene is constrained so that two objects start out with the same color adjacent
to each other; and an action on one object moves all objects of the same color with it. This gives the
appearance of two objects being stuck to each other. At test time, the objects stuck together change.
Sticky block pushing demonstrates compositionality constraints based on two attributes: position
and color. In the team block pushing (Figure [5), we relax the adjacency constraint in the sticky
block pushing domain. An action on any object also moves other objects of the same color. This
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allows us to study whether the adjacency constraint places a larger burden on dynamics learning
than the color constraint.

A.3 TRANSITION ALGORITHM

NPS (Goyal et al., 2021) necessitates selecting a primary slot (p) to be modified, a contextual slot
(¢), and a rule (r) to modify the primary slot in the presence of the contextual slot. The naive
algorithm to compute this tuple has a runtime of O(k?1) where k is the number of slots and [ is the
number of rules. However, in implementation, the selection of (7, p, ¢) can be reduced to a runtime
of O(kl + k) by partial application of the query-key attention. This is achieved by selecting the
primary slot p and MLP;, partially transforming S;, using a partial transition module MLP(; 1t ),
selecting the contextual slot ¢, and performing a final transformation of MLP(; 1.¢¢)(Sp) With S,
using MLP(; i gnt)- Algorithmpresents this faster algorithm.

Algorithm 2 Faster Transition Algorithm. This algorithm has a faster runtime than the one presented
in the manuscript. The main difference is that the transition step is bifurcated into two parts, reducing
the runtime of the selection from O(k?l) to O(kl + k) where k is the number of slots and [ is the
number of rules.
1: function TRANSITION(Key={A1, ... A}, Query={R1,... B}, Value={S,...Sk})
A" <+ GumbelSoftmax(KQAttention(key={A1, ... Ay}, query={ Ry, ... R;}))
p,r < argmax(A* axis = ‘all’)
S* <= MLP, 1.¢: (concat(S,, R;))
A} + GumbelSoftmax(KQAttention(key={A1, ... Ay}, query={S*, S*, S*}))
¢, <+ argmax(Aj, axis = ‘all’)
S% <= MLP, ,igne (concat(S,, S*))
return S3

A.4 EVALUATION PROCEDURE

Dataset Generation: To generate each dataset,
we first create a scene configuration file that =0

prescribes the permissible shapes and col- =y
: g . Eq.MRR accounts for all T

ors for objects Wlthln a given dataset. The permutation and

scene configuration ensures that F¢(Dyrqin) N correctly calculates this

fC(Deval) = 0. Next, we sample Dirain as closest embedding.

MRR
incorrectly
calculates
this as the
closest
embedding

and D.,q; from the permissible scenes. Each
dataset is a trajectory of state-action pairs,
where the state is the image of the shape 3 x
224 x 224 and the action is a vector, factor-
ized by object ID (Object x North-East-South-
West). Overall, we generate 3000 trajectories
of length 32 each where the actions are sam-
pled from a random uniform distribution. Our
domain is equivalent to the observed weighted
shapes setup studied in [Ke et al. (2021) with a
compositionality constraint where the weight of
the objects depend only on the shapes.

y=0

. ) Figure 6: Intuition for shortcomings of MRR
Baselines: We compare against past works yhen number of slots k = 2 and dg,; = 1. The
in compositional world modeling with publi-  MRR metric incorrectly finds a point (Z,§) that
cally available codebases at the time of writ- j5 ¢ 4+ 1 units away from (z,y) while Equivari-
ing. For the block pushing domain, we compare gt MRR considers all possible permutations and

against _homomorphic world models (GNN)  finds a point (7, &) that is € units away from (y, z)
(Zhao et al.;|2022) and an ablation of our model  and, in turn, closer to (z,) than (Z, ).

without symbols (ALIGNEDNPS). GNN uses
a slot autoencoder, an action attention module
and a graph neural network for modeling transitions. It requires a two-step training process: first
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3 objects 5 objects
Dataset Model MSE | AE-MSE | Eq.MRR MSE | AE-MSE | Eq.MRR
RC CosMos 4.23E-03 +/- 1.49E-04  4.90E-04 +/- 1.03E-04  1.20E-01 +/- 2.05E-02  4.15E-03 +/- 3.21E-03  1.68E-03 +/- 1.48E-03  3.67E-01 +/- 7.73E-02
(Sticky) ALIGNEDNPS  1.14E-02 +/- 9.89E-04  7.72E-03 +/- 1.21E-03  8.01E-02 +/- 6.79E-02  6.07E-03 +/- 8.30E-04  2.47E-03 +/- 3.60E-04  3.62E-01 +/- 1.81E-02
GNN 7.94E-03 +/- 547E-03  5.11E-03 +/- 4.94E-03  6.03E-04 +/- 1.02E-04  6.21E-03 +/- 1.26E-03  2.73E-03 +/- 1.27E-03  5.30E-04 +/- 5.15E-05
RC CosMos 4.60E-03 +/- 2.32E-03  4.33E-04 +/- 1.58E-04  1.04E-01 +/- 3.19E-02  5.53E-03 +/- 1.95E-03  1.86E-03 +/- 1.61E-03  2.86E-01 +/- 4.32E-02
(Team)  ALIGNEDNPS  1.24E-02 +/- 4.11E-04  8.36E-03 +/- 6.78E-04  1.75E-01 +/- 2.68E-02  9.64E-03 +/- 1.95E-04  3.12E-03 +/- 6.07E-04  2.93E-01 +/- 2.02E-02
GNN 8.92E-03 +/- 6.05E-03  3.82E-03 +/- 3.64E-03  7.16E-04 +/- 1.09E-04  7.01E-03 +/- 9.81E-04  1.62E-03 +/- 1.04E-03  5.46E-04 +/- 1.37E-04
EC CosMos 7.66E-04 +/- 4.08E-04  6.34E-05 +/- 2.01E-05 2.99E-01 +/- 2.85E-02  4.08E-04 +/- 4.68E-06  2.92E-06 +/- 6.34E-07  3.03E-01 +/- 3.88E-02
ALIGNEDNPS  3.51E-03 +/- 6.30E-04  2.69E-03 +/- 6.89E-05  2.97E-01 +/- 7.99E-02  2.45E-03 +/- 3.47E-04  1.22E-03 +/- 9.06E-04  3.19E-01 +/- 1.01E-01
GNN 9.89E-03 +/- 5.77E-03  1.03E-02 +/- 5.44E-03  5.50E-01 +/- 5.18E-01  1.20E-02 +/- 1.13E-02  1.28E-02 +/- 1.08E-02  5.25E-01 +/- 2.67E-01

Table 2: Evaluation results on the 2D block pushing domain for entity composition (EC) and rela-
tional composition (RC) averaged across three seeds. This table includes standard deviation numbers
as well. Our model (COSMOS) achieves best next-state reconstructions for all datasets.

warm starting the slot-autoencoder and then training the action attention model and GNN with an
equivariant contrastive loss (Hungarian matching loss). ALIGNEDNPS uses a slot autoencoder for
modeling perceptions and a NPS module (Goyal et al.|[2021) for modeling transitions. The pipeline
is trained end to end with contrastive loss. We use action attention with NPS as well. For both mod-
els, we weren’t able to reproduce the results using the provided codebases due to issues in training
robust perception models for large images (3 x 224 x 224). To ensure a fair comparison, and since
both these methods are agnostic to the perception model, we opt to reimplement the core ideas for
both these models and use the same fine-tuned perception model for all models.

Evaluation Procedure: We evaluate all models on a single 48 GB NVIDIA A40 GPU with a
(maximum possible) batch size of 64 for 50 epochs for three random seeds. Contrastive learning
necessitates a large batch size to ensure a diverse negative sampling set. As a result, the small
batch size made contrastive learning challenging in our domain. To ensure a fair comparison, we
report results for all models trained using reconstruction loss. We first train the slot autoencoder
(ENTITYEXTRACTOR and SPATIALDECODER) until the model shows no training improvement for
5 epochs. This is sufficient to learn slot autoencoders with near-perfect state reconstructions. All
transition models are initialized with the same slot-autoencoder and are optimized to minimize a
mixture of the autoencoder reconstruction loss and the next-state reconstruction loss. For composi-
tional world modeling, we are interested in two aspects of model performance: next-state predictions
and separation between latent states. We evaluate next-state predictions on all models using the mean
squared error (MSE) between the predicted next image and the ground truth next image in the ex-
perience buffer. We also measure the performance of the autoencoder on reconstructing the current
state by calculating the slot-autoencoder mean squared error (AE-MSE). Generally, training world
models improves the perception model’s ability to reconstruct states as well. We also evaluate the
separability of the learned latent encodings. This is done by measuring the L2 distance between the
predicted next slot encodings and the ground-truth next slot encodings obtained from the encoder
and using information theoretic measures such as mean reciprocal rank (MRR) to measure simi-
larity. Notably, the MRR computation in previous work does not to account for the non-canonical
order of slots, causing higher L2 distance and, consecutively, higher MRR scores when the target
and predicted slots have different orderings. The core issue here is that MRR computation, as used
in previous works, fixed the order of the slots before calculating L2 distance. This ignored k! — 1
possible orderings where a closer target encoding could be found. To rectify this, we propose a
new metric, Equivariant MRR (Eq.MRR), which uses the minimum L2 distance among all permu-
tations of slot encodings to calculate mean reciprocal rank. This metric ensures that the latent slot
encodings are not penalized for having different slot orders. Figure[6|presents an illustration of the
shortcomings of MRR on a simple example. This limitation is characteristic of algorithms which do
not align the slots to a canonical slot ordering. In practice, we observe that the Equivariant MRR is
always lower than or equal to the MRR.

A.5 DOWNSTREAM EVALUATION SETUP

Following Veerapaneni et al.| (2020), we use a greedy planner that chooses the action that minimizes
the Hungarian distance between the current and the goal state. These actions are applied ¢ — 1
times over a trajectory of length ¢, with the output from the world model at the (d — 1)-th step
becoming the state for step d in the trajectory. Due to this compounding nature, we see an increased
divergence from the ground truth as we get deeper into the trajectory. At each step d in the trajectory,
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Dataset Only Symbols (MSE |) Only Neural / AlignedNPS (MSE |) COSMOS (MSE |)
3 Object RC - Sticky  1.36E-02 1.14E-02 4.23E-03
3 Object RC - Team  1.39E-02 1.24E-02 4.60E-03
3 Object EC 1.21E-02 3.51E-03 7.66E-04

Table 3: Evaluation results on the 2D block pushing domain for ablations of COSMOS.

the accuracy of the world model is evaluated as the L1 error of the difference between the current
ground truth and predicted states in the form of their xy-coordinates. These xy-coordinates are
initialized for each object to the origin and updated with every action taken by the corresponding
rule. For example, after one step, if the ground truth moves an object to the east, but the planner
chooses to move the same object to the west, then the distance between the two states would be 2.
We run these experiments for the 500 trajectories of length ¢ = 32 in our test dataset and average
the scores at each trajectory depth. We showcase results in Figure 4} Our model (COSMOS) shows
the most consistency and least deviation from the goal state in all datasets, which suggests that
neurosymbolic grounding helps improve the downstream efficacy of world models.

A.6 DATASET COMPARISON

The focus of our paper is to demonstrate the first neuro-symbolic framework leveraging foundation
models for compositional object-oriented world modelling, and we evaluate on the same benchmarks
as existing work (Kipf et al.| 2019; |Goyal et al.,|[2021; [Zhao et al., [2022). We chose our evaluation
domain based on four properties: (1) object-oriented state and action space, (2) history-invariant dy-
namics, (3) action conditioned (plannable) dynamics, and (4) ease of generating new configurations
(to evaluate entity and relational composition). We curate the following list of domains from related
work to explain what properties are missing for each dataset.

Dataset and Relevant Works Object Oriented History Action Configurable
State and Action Independent Conditioned
Space (Plannable)

2D Block Pushing (Kipf et al.|[2019;/Goyal et al.,[2021)
(Zhao et al.|[2022;|Ke et al./|2021)

Physion (Wu et al.,|2023)

Phyre (Wu et al.|[2023)

Clevrer (Wu et al.[[2023)

3DObj (Wu et al.||2023)

MineRL (Hatner et al.;[2023)

Atari (Pong/Space invaders/Freeway) (Goyal et al.,[2021)
Minigrid/Baby Al Mao et al.|(2022)

v v
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A.7 SYMBOLIC ABLATION OF COSMOS

ALIGNEDNPS serves as a “fully neural” ablation to demonstrate the effectiveness of our model. In
this section, we detail another “fully symbolic” ablation of our model to demonstrate the need for
a neurosymbolic approach. Specifically, we maintain the algorithm presented in [I] but modify the
transition model to use the symbolic embedding to predict the next state. Specifically, line 9 changes
to:

S, + S, + MLPBANK|r](concat(A,, A., R,))

The results, detailed in Table |3 indicate that the “symbols-only”” model significantly underperforms
compared to COSMOS. We believe this is because the symbolic embedding is constructed by con-
catenating symbolic attributes, and the rule module is not aware of this structure. This causes the
MLP to overfit to the attribute compositions seen at train time. COSMOS sidesteps this issue by using
the symbolic embedding in the key-query attention module to select the relevant rule module, while
allowing the real vector to learn local features useful for modeling action-conditioned transitions.

A.8 QUALITATIVE RESULTS
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