
A Derivations and Additional Experiment Results

A.1 Derivations

Derivation for Forward Process Posteriors: In this section, we derive the mean and variance of
the forward process posteriors q(yt−1 |yt,y0,x) in Eq. (9), which are tractable when conditioned
on y0:

q(yt−1 |yt,y0,x) ∝ q
(
yt |yt−1, fϕ(x)

)︸ ︷︷ ︸
Eq. (7)

q
(
yt−1 |y0, fϕ(x)

)︸ ︷︷ ︸
Eq. (8)

(13)

∝ exp

(
− 1

2

((
yt − (1−√

αt)fϕ(x)−
√
αtyt−1

)2
βt

+

(
yt−1 −

√
ᾱt−1y0 − (1−√

ᾱt−1)fϕ(x)
)2

1− ᾱt−1

))
(14)

∝ exp

(
− 1

2

(
αty

2
t−1 − 2

√
αt

(
yt − (1−√

αt)fϕ(x)
)
yt−1

βt

+
y2
t−1 − 2

(√
ᾱt−1y0 + (1−√

ᾱt−1)fϕ(x)
)
yt−1

1− ᾱt−1

))
(15)

= exp

(
− 1

2

((αt

βt
+

1

1− ᾱt−1︸ ︷︷ ︸
1

)
y2
t−1

− 2
(√

ᾱt−1

1− ᾱt−1
y0 +

√
αt

βt
yt +

(√αt(
√
αt − 1)

βt
+

1−√
ᾱt−1

1− ᾱt−1

)
fϕ(x)︸ ︷︷ ︸

2

)
yt−1

))
, (16)

where

1 =
αt(1− ᾱt−1) + βt

βt(1− ᾱt−1)
=

1− ᾱt

βt(1− ᾱt−1)
, (17)

and we have the posterior variance

β̃t =
1

1
=

1− ᾱt−1

1− ᾱt
βt. (18)

Meanwhile, the following coefficients of the terms in the posterior mean through dividing each
coefficient in 2 by 1 :

γ0 =

√
ᾱt−1

1− ᾱt−1
/ 1 =

√
ᾱt−1

1− ᾱt
βt, (19)

γ1 =

√
αt

βt
/ 1 =

1− ᾱt−1

1− ᾱt

√
αt, (20)

and

γ2 =

(√
αt(

√
αt − 1)

βt
+

1−√
ᾱt−1

1− ᾱt−1

)
/ 1

=
αt − ᾱt −

√
αt(1− ᾱt−1) + βt − βt

√
ᾱt−1

1− ᾱt

= 1 +
(
√
ᾱt − 1)(

√
αt +

√
ᾱt−1)

1− ᾱt
, (21)

which together give us the posterior mean
µ̃
(
yt,y0, fϕ(x)

)
= γ0y0 + γ1yt + γ2fϕ(x).

17

Derivation for Forward Process Sampling Distribution with Arbitrary Timesteps: For com-
pleteness, we include the derivation for the parameters of the forward diffusion process sampling
distribution with arbitrary t steps.

The expectation term is based on Eqs. (36)–(38) in Pandey et al. (2022). From Eq. (7), we have that
for all t = 1, . . . , T ,

yt =
√
1− βtyt−1 + (1−

√
1− βt)fϕ(x) +

√
βtϵ, where ϵ ∼ N (0, I). (22)

Taking expectation of both sides, we have

E(yt) =
√
1− βtE(yt−1) + (1−

√
1− βt)fϕ(x) (23)

=
√
1− βt

(√
1− βt−1E(yt−2) + (1−

√
1− βt−1)fϕ(x)

)
+ (1−

√
1− βt)fϕ(x)

=
√
(1− βt)(1− βt−1)E(yt−2) +

(
1−

√
(1− βt)(1− βt−1)

)
fϕ(x) (24)

...

=

√√√√ t∏
i=2

(1− βi)E(y1) +

(
1−

√√√√ t∏
i=2

(1− βi)

)
fϕ(x) (25)

=

√√√√ t∏
i=2

(1− βi)
(√

1− β1y0 + (1−
√
1− β1)fϕ(x)

)
+

(
1−

√√√√ t∏
i=2

(1− βi)

)
fϕ(x)

(26)

=

√√√√ t∏
i=1

(1− βi)y0 +

(
1−

√√√√ t∏
i=1

(1− βi)

)
fϕ(x) (27)

=
√
ᾱty0 + (1−

√
ᾱt)fϕ(x). (28)

Meanwhile, since the addition of two independent Gaussians with different variances, N (0, σ2
aI)

and N (0, σ2
bI), is distributed as N (0, (σ2

a + σ2
b)I), we can derive the variance term accordingly,

σ2(yt) = (1− ᾱt)I. (29)

A.2 More In-Depth Discussion on Several Related Works

In this section, we discuss the relations between CARD and several existing works, which are briefly
addressed in Section 3, in more depth.

A.2.1 Comparing CARD with the Neural Processes Family

In short, CARD models p(y |x,Din), while the Neural Processes Family (NPF) (Garnelo et al.,
2018b,a; Kim et al., 2019; Gordon et al., 2020) models p(y |x,Dout), where Din and Dout represents
in-distribution dataset and out-of-distribution dataset, respectively.

Although both classes of methods can be expressed as modeling p(y |x,D), CARD assumes such
(x,y) comes from the same data-generating mechanism as the set D, while NPF assumes (x,y) to
be not from the same distribution as D. While CARD fits in the traditional supervised learning setting
for in-distribution generalization, NPF is specifically suited for few-shot learning scenarios, where
a good model would capture enough pattern from previously seen datasets so that it can generalize
well with very limited samples from the new dataset.

Furthermore, both classes of models are capable of generating stochastic outputs, where CARD aims
to capture aleatoric uncertainty, which is intrinsic to the data (thus cannot be reduced), while NPF can
express epistemic uncertainty as it proposes more diverse functional forms at regions where data is
sparse (and such uncertainty would reduce when more data is given). In terms of the conditioning of
D, the information of D is amortized into the network ϵθ for CARD, while it is included as an explicit
representation in the network of NPF that outputs the distribution parameters for p(y |x). It is also

18

worth pointing out that CARD does not assume a parametric distributional form for p(y |x,D), while
NPF assumes a Gaussian distribution, and designs the objective function with such assumption.

The concept and comparison between epistemic and aleatoric uncertainty is more thoroughly dis-
cussed by Kendall and Gal (2017), in which we quote, “Out-of-data examples, which can be identified
with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.” We acknowledge
that modeling OOD uncertainty is an important topic for regression tasks; however, we design our
model to focus on modeling aleatoric uncertainty in this paper. We plan to explore CARD’s ability in
extrapolation as part of our future work.

A.2.2 Comparing CARD with Discrete Diffusion Models

To construct our framework for classification, we assume the class labels (in terms of one-hot vectors)
are from real continuous spaces instead of discrete ones. This assumption enables us to model the
forward diffusion process and prior distribution at timestep T with Gaussian distributions, thus all
derivations under the regression setting with analytical computation of KL terms, as well as the
corresponding algorithms, generalize naturally into the classification settings. The code for training
and inference is exactly the same. Discrete Denoising Diffusion Probabilistic Models (D3PMs)
(Austin et al., 2021) fit conventional perception in classification tasks naturally by keeping the
assumption of a categorical distribution. Therefore, the corresponding evaluation metrics like NLL
can directly translate into such a framework — we believe that by adopting the discrete space
assumption, a better NLL metric can be achieved. Meanwhile, it would require a lot more changes to
be made from our framework for regression tasks, including the choice of the transition matrix, the
incorporation of x into the diffusion processes, as well as the addition of the auxiliary loss into the
objective function — all of the above are classification-task-specific settings, and cannot be adopted
with the existing framework for regression tasks.

Besides the intention for consistency and generalizability across the two types of supervised learning
tasks, we found that our current construction gives reasonable results to access model prediction
confidence at the instance level — by directly using the prediction intervals obtained in the raw
continuous space, i.e., before adopting the softmax function for conversion to probability space, we
obtain the sharp contrast in true label PIW between correct and incorrect predictions, and can already
achieve high accuracy by merely predicting the label with the narrowest PIW for each instance.
However, after converting the reconstructed labels to the probability space, the true label PIW contrast
is reduced drastically, and the prediction accuracy by the narrowest PIW is similar to a random guess.

To recap, if achieving the best NLL and ECE for classification is the goal, then we think discrete
diffusion models like Austin et al. (2021) could be excellent choices due to their use of the cross-
entropy loss that is directed related to NLL and ECE; however, if the main goal is to access the
prediction confidence at the instance level, the proposed CARD framework works well, and it would
be interesting to make a head-to-head comparison with discrete diffusion-based classification models
that yet need to be developed.

A.2.3 Comparing CARD with Kendall and Gal (2017)

Kendall and Gal (2017) address BNN as an important class of methods for modeling uncertainty.
CARD is similar to BNNs in providing stochastic outputs. However, BNNs deliver such stochasticity
by modeling epistemic uncertainty, the uncertainty over network parameters W (by placing a prior
distribution over W) — this type of uncertainty is a property of the model. On the other hand,
CARD does not model epistemic uncertainty, as it applies a deterministic deep neural network as its
functional form; it is designed to model aleatoric uncertainty instead, which is a property intrinsic to
the data. In Eq. 2 of Kendall and Gal (2017), such aleatoric uncertainty is captured by the last term
as σ2, which is a constant with respect to the network parameters θ for the variational distribution
of model parameter W , thus ignored during the optimization of θ. The new method proposed in
Kendall and Gal (2017) aims to model the aleatoric uncertainty by making σ2 as part of the BNN
output (Eq. 7); however, note that it still explicitly assumes p(y |x) to be a Gaussian distribution, as
the objective function is the negative Gaussian log-likelihood, thus its effectiveness in capturing the
actual aleatoric uncertainty depends on the validity of such parametric assumption for p(y |x).

19

A.2.4 Comparing CARD with Score-Based Generative Classifiers

From a naming perspective, it might be easy to confuse CARD for classification as a type of
generative classifiers, as it utilizes a generative model to conduct classification tasks. However,
they are two different types of generative models, as generative classifiers model the conditional
distribution p(x |y), while CARD models a different conditional distribution, i.e., p(y |x). In fact,
CARD shall be categorized as a type of discriminative classifier, by the definition in Zimmermann
et al. (2021). Note that although both types of classifiers under image-based tasks would report NLL
as one evaluation metric, they are also different, since the NLL for generative classifiers is evaluated
in the space transformed from the logit space of x, while the NLL for discriminative classifiers is
computed in the space of y as the cross-entropy between the true label and the predicted probability.

A.3 Classification on FashionMNIST Dataset

We perform classification on FashionMNIST dataset with CARD, and present the results in a similar
fashion as Section 4.2.2. We first contextualize the performance of CARD through the accuracy of
other BNNs with the LeNet CNN (LeCun et al., 1998) architecture in Table 6, where the metrics
were first reported in Tomczak et al. (2021). For this dataset, our pre-trained classifier has the same
LeNet architecture as the baselines, which achieves a test accuracy of 91.12%. CARD improves the
mean test accuracy to 91.79%.

Table 6: Comparison of accuracy (in %) on FashionMNIST dataset with other BNNs.

Model CMV-MF-VI CM-MF-VI CV-MF-VI CM-MF-VI OPT MF-VI MAP MC Dropout MF-VI EB fϕ (LeNet) CARD

Accuracy 91.10± 0.22 90.95± 0.31 88.53± 0.13 90.67± 0.07 87.04± 0.28 88.06± 0.22 87.99± 0.17 87.04± 0.08 91.12 91.79± 0.09

We then present Table 7, from which we can draw the same conclusions as Table 5 on the CIFAR-10
dataset. Note that we set α = 0.01 for the paired two-sample t-test. When making the prediction for
each instance merely by the class with the narrowest PIW, we obtain a test accuracy of 89.36%.

Table 7: PIW (multiplied by 100) and t-test results for FashionMNIST classification task.

Class Accuracy PIW Accuracy by t-test Status
Correct Incorrect Rejected Not-Rejected (Count)

All 91.79% 0.67 3.20 92.07% 55.84% (77)

1 88.10% 0.96 3.40 88.45% 61.54% (13)
2 98.50% 0.39 2.08 98.60% 66.67% (3)
3 87.70% 0.84 3.42 88.00% 50.00% (8)
4 91.10% 0.76 2.97 91.59% 53.85% (13)
5 87.90% 0.89 2.91 88.40% 33.33% (9)
6 97.20% 0.41 2.89 97.29% 66.67% (3)
7 74.80% 1.37 3.26 74.90% 70.00% (20)
8 97.40% 0.49 1.60 97.50% 50.00% (2)
9 98.40% 0.34 1.93 98.50% 0.00% (1)
10 96.80% 0.46 5.59 97.09% 40.00% (5)

A.4 Test for Normality Assumption of Paired Two-Sample t-test

To assess the normality assumption of the paired two-sample t-test, we inspect the Q-Q plots of the
differences in probability between the most and the second most predicted classes within each test
instance. We include 16 instances in Figure 2 from CARD predictions on FashionMNIST dataset,
each with 100 samples. We observe that in all plots, the points align closely with the 45-degree line,
indicating that the normality assumption is valid.

A.5 Patch Accuracy vs Patch Uncertainty (PAvPU)

Besides the methods of assessing model confidence at the instance level introduced in this paper, we
also consider an additional uncertainty evaluation metric in this section, Patch Accuracy vs Patch

20

Figure 2: Q-Q plots for the differences in probability between the most and 2nd most predicted class.

Uncertainty (PAvPU) (Mukhoti and Gal, 2018), which measures the proportion of predictions that
are either correct while the model is confident about them, or incorrect while the model is ambiguous.
Based on the t-test results, we can easily compute PAvPU, which is defined as

PAvPU :=
nac + niu

nac + nau + nic + niu
, (30)

where nac, nau, nic, niu represent the number of accurate (correct) predictions when the model is
certain (confident) about them, accurate but uncertain, inaccurate but certain, as well as inaccurate
and uncertain. We apply the t-test results as the proxy for the model’s confidence level on each of its
predictions. A higher value indicates that the model tends to be correct when being confident, and to
make mistakes when being vague — a characteristic that we want our model to possess. On a related
note, accuracy can be computed by replacing niu with nau in Eq. (30). In the following section, we
provide additional experimental results including this metric.

A.6 Classification on Noisy MNIST dataset

To further demonstrate the effectiveness of the CARD model for classification, especially in expressing
model confidence, we run additional experiments on Noisy MNIST dataset (adding a Gaussian noise
with mean 0 and variance 1 to each pixel). Besides reporting PIW and t-test results similar to Table 5,
we also compute PAvPU, and compare the results with baseline models in Fan et al. (2021), i.e., MC
Dropout (Gal and Ghahramani, 2016), Gaussian Dropout (Srivastava et al., 2014), Concrete Dropout
(Gal et al., 2017), Bayes by Backprop (Blundell et al., 2015), and variants of Contextual Dropout
(Fan et al., 2021).

Following the same experimental settings in Fan et al. (2021), we apply a batch size of 128 for model
training, and adopt the same MLP architecture with two hidden layers of 300 and 100 hidden units,
respectively, each followed by a ReLU non-linearity, as the network architecture for the pre-trained
classifier fϕ(x). We simplify the diffusion network architecture (detailed in Section A.8) by reducing
feature dimension from 2048 to 128 to match the model parameter scale for a fair comparison. We

21

pre-train fϕ(x) for 100 epochs, and obtain a test set accuracy of 85.50%. We train the diffusion
model for 1000 epochs. Unlike on CIFAR-10 or FashionMNIST dataset, we do not apply data
normalization on the noisy MNIST dataset, following the settings in Fan et al. (2021).

Similar to Table 5, we report the mean PIW among correct and incorrect predictions, and the mean
accuracy among instances rejected and not-rejected by the paired two-sample t-test, in Table 8. Same
as Fan et al. (2021), we set α = 0.05. We report these metrics at the scope of the entire test set, and
for each true class label along with their group accuracy.

Table 8: PIW (multiplied by 100) and t-test (α = 0.05) results for Noisy MNIST classification task.

Class Accuracy PIW Accuracy by t-test Status
Correct Incorrect Rejected Not-Rejected (Count)

All 88.26% 39.76 76.25 91.24% 43.04% (618)

1 94.69% 15.93 68.67 96.63% 35.48% (31)
2 96.48% 20.48 74.73 97.66% 46.15% (26)
3 88.47% 29.92 74.98 91.25% 44.26% (61)
4 87.23% 41.38 78.58 90.85% 45.68% (81)
5 85.34% 48.87 78.61 87.65% 53.73% (67)
6 85.76% 51.35 76.43 89.85% 40.54% (74)
7 92.28% 22.92 74.04 94.49% 28.13% (32)
8 86.97% 39.80 74.42 90.17% 37.10% (62)
9 80.90% 62.48 77.73 84.25% 45.88% (85)
10 83.25% 76.92 76.67 87.69% 42.42% (99)

From Table 8, we are able to draw similar conclusions as in Table 5: across the entire test set, mean
PIW of the true class label among the correct predictions is much narrower than that of the incorrect
predictions, implying that CARD is confident in its correct predictions, and tends to make mistakes
when being vague. When comparing mean PIWs at true class level, we observe that a more accurate
class is inclined to have a larger difference between correct and incorrect predictions. Meanwhile,
similar to Table 5, the accuracy of test instances rejected by the t-test is much higher than that of the
not-rejected ones, both across the entire test set and at the class level, while there are almost 10 times
of not-rejected cases as those for CIFAR-10 task. This result could have a more significant practical
impact when applying human-machine collaboration: we are able to identify more than 6% of the
data with a mean accuracy of less than 50% — if we pass these cases to human agents, we would be
able to remarkably improve the classification accuracy, while still enjoying the automation by the
machine classifier in the vast majority of test instances.

Furthermore, we contextualize the performance of CARD by reporting accuracy, PAvPU and NLL,
along with those from the baseline models mentioned at the beginning of Section A.6, in Table 9.
The metrics of the other models are from Table 1 in Fan et al. (2021).

Table 9: PAvPU (in %) along with accuracy (in %) and NLL for Noisy MNIST classification.

Method Accuracy PAvPU (α = 0.05) NLL

MC - Bernoulli 86.36 85.63 1.72
MC - Gaussian 86.31 85.64 1.72
Concrete 86.52 86.77 1.68
Bayes by Backprop 86.55 87.13 2.30
Contextual Gating 86.20 - 1.81
Contextual Gating + Dropout 86.70 87.01 1.71
Bernoulli Contextual 87.43 87.81 1.41
Gaussian Contextual 87.35 87.72 1.43

CARD (ours) 88.26 89.12 0.39

We observe that CARD obtains an accuracy of 88.26% (improves from 85.50% by the pre-trained
classifier fϕ), and a PAvPU of 89.12%, both are the best among all models. This implies that our
model is making not only accurate classifications, but also high-quality predictions in terms of
model confidence. Lastly, we apply temperature scaling (Guo et al., 2017) to calibrate the predicted
probability for the computation of NLL, where the temperature parameter is tuned with the training
set, and again obtain the best metric among all models.

22

A.7 Classification on Large-Scale Benchmark Datasets

In this section, we demonstrate the generalizability of CARD on classification tasks with our pro-
posed framework of evaluating instance-level model prediction confidence, particularly on large-scale
datasets, by reporting the experimental results on CIFAR-100 (100 classes, 10, 000 test instances),
ImageNet-100 (100 classes, 5, 000 test instances), and ImageNet (1000 classes, 50, 000 test in-
stances).

For the CIFAR-100 dataset, we pre-train the deterministic base classifier fϕ with a ResNet-18
architecture, which achieves a test accuracy of 71.37%. For the ImageNet-100 dataset, we apply a
ResNet-50 architecture and use the parameters of a linear classifier fine-tuned with the self-supervised
recipe (He et al., 2020; Zheng et al., 2021) for fϕ, which achieves a test accuracy of 82.30%. For
the ImageNet dataset, we adopt three different training paradigms for fϕ, all using a ResNet-50
architecture, but obtain different test accuracies: the first one has its parameters learned with the
self-supervised pipeline, i.e., the feature encoder of the ResNet-50 network is firstly pre-trained in a
self-supervised manner with the loss proposed by Zheng et al. (2021), and then by fixing the encoder
the linear classifier of the network is further tuned with label supervision — this fϕ achieves a test
accuracy of 73.87%; the second one reads the pre-trained weights provided by TorchVision, with the
paradigm specified by Liang et al. (2022), which achieves a test accuracy of 76.13%; the third one
also reads the pre-trained weights provided by TorchVision, with the paradigm specified by Pham
and Le (2021), which achieves a test accuracy of 80.30%.

For each of the three large-scale benchmark datasets, we conduct 10 experimental runs, and report
both majority-voted accuracy and PAvPU (with α = 0.01 for the paired two-sample t-test) by
CARD, along with the accuracy by the corresponding fϕ, in Table 11. We observe that under all
circumstances, CARD is able to improve the accuracy from the base classifier fϕ.

For the CIFAR-100 dataset with CARD, we also contextualize the performance of CARD through the
accuracy of other BNNs with ResNet-18 architecture in Table 10, where the metrics were reported in
Tomczak et al. (2021).

Table 10: Comparison of accuracy (in %) on CIFAR-100 dataset with other BNNs.

Model CMV-MF-VI CM-MF-VI CV-MF-VI MF-VI MC Dropout MAP fϕ (ResNet-18) CARD

Accuracy 60.59± 0.39 59.61± 0.37 46.22± 0.54 40.54± 0.72 54.49± 0.36 52.08± 0.34 71.37 71.42± 0.01

Regarding instance-level model prediction uncertainty assessment, we pick one run for each dataset,
and report PIW among correct and incorrect predictions, at the entire test set level and at the true
class level. Since each dataset has either 100 or 1000 total number of classes, we only report PIW
for the class with the most and the least accurate predictions, as well as the mean accuracy given
the t-test rejection status at the whole test set level. Furthermore, we record the test accuracy when
making the prediction for each instance merely by the class with the narrowest PIW. We report
these metrics for all three large-scale datasets in Table 12. For all experimental runs, we are able
to draw conclusions consistent with those from the smaller-scale benchmark datasets (CIFAR-10
with Table 5, FashionMNIST with Table 7, and Noisy MNIST with Table 8): relative variability in
label reconstruction captured by true label PIW is strongly related to prediction correctness, with
sharper contrast between correct and incorrect predictions in a more accurate class; meanwhile, the
accuracy of instances not rejected by the t-test is much lower than that of the rejected ones, indicating
a great potential of improvement in prediction accuracy if combined with human inspection for the
not-rejected cases.

A.8 General Experiment Setup Details

In this section, we provide the experimental setup for the CARD model in both regression and
classification tasks.

Training: As mentioned at the beginning of Section 4, we set the number of timesteps to 1000, and
adopt a linear βt schedule same as Ho et al. (2020). We set the learning rate to 0.001 for all tasks.
We use the AMSGrad (Reddi et al., 2018) variant of the Adam optimizer (Kingma and Ba, 2015) for
all regression tasks. We use the Adam optimizer for the classification tasks on all presented datasets,

23

Table 11: Majority-voted accuracy and PAvPU by CARD on CIFAR-100, ImageNet-100, and
ImageNet, over 10 experimental runs. Pre-trained base classifier fϕ accuracy is also reported.

Dataset Acc. by fϕ Accuracy PAvPU

CIFAR-100 71.37% 71.42± 0.01% 71.48± 0.03%

ImageNet-100 82.30% 82.35± 0.03% 82.73± 0.07%

ImageNet 73.87% 74.28± 0.01% 74.63± 0.02%

ImageNet 76.13% 76.20± 0.00% 76.29± 0.01%

ImageNet 80.30% 80.35± 0.01% 80.55± 0.01%

Table 12: PIW (multiplied by 100), accuracy by predicting with the narrowest PIW, and accuracy by
t-test rejection status, for the CIFAR-100, ImageNet-100, and ImageNet classification tasks, over a
single experimental run. Due to the number of classes, we only report the PIW for all test instances,
and within the most and least accurate classes. We applied multiple fϕ for the ImageNet dataset.

Dataset Accuracy PIW Acc. by PIW Acc. by t-test Result
Correct Incorrect Rejected Not-Rejected (Count)

CIFAR-100

overall 71.42% 0.59 3.91 60.53% 71.56% 35.90% (39)

most acc. 95.00% 0.16 1.92
least acc. 44.00% 5.09 5.84

ImageNet-100

overall 82.34% 2.06 13.73 68.64% 82.90% 34.48% (58)

most acc. 98.00% 0.72 8.06
least acc. 42.00% 6.79 14.15

ImageNet (fϕ Accuracy 73.87%)

overall 74.28% 0.65 3.11 69.22% 74.63% 24.93% (349)

most acc. 98.00% 0.27 2.80
least acc. 8.00% 20.10 50.07

ImageNet (fϕ Accuracy 76.13%)

overall 76.20% 0.51 3.60 75.21% 76.30% 25.71% (105)

most acc. 98.00% 0.08 2.66
least acc. 18.00% 1.87 3.26

ImageNet (fϕ Accuracy 80.30%)

overall 80.35% 1.42 5.13 74.08% 80.59% 27.63% (228)

most acc. 98.00% 0.49 2.34
least acc. 8.00% 91.70 84.61

and adopt cosine learning rate decay (Loshchilov and Hutter, 2017). We use exponentially weighted
moving averages (Cox, 1961) on model parameters with a decay factor of 0.9999. We adopt antithetic
sampling (Ren et al., 2019) to draw correlated timesteps during training. We set the number of epochs
at 5000 by default for regression tasks, and 1000 by default for classification tasks, to sufficiently
cover the timesteps with T = 1000. The batch size for each UCI regression task are reported in Table
15. We also apply a batch size of 256 for all toy regression tasks and classification tasks. For all UCI
regression tasks, we follow the convention in Hernández-Lobato and Adams (2015) and standardize
both the input features and the response variable to have zero mean and unit variance, and remove
the standardization to compute the metrics. For all toy regression tasks, we do not standardize the
input feature; we only standardize the response variable on the log-log cubic regression task. For
classification on CIFAR-10 and FashionMNIST, we normalize the dataset with the mean and standard
deviation of the training set.

Network Architecture: For the diffusion model, we adopt a simpler network architecture than that
in previous work (Xiao et al., 2022; Zheng et al., 2022), by first changing the Transformer sinusoidal

24

position embedding to linear embedding for the timestep. As the network ϵθ
(
x,yt, fϕ(x), t

)
has

three other inputs besides the timestep t, we integrate them in different ways for regression and
classification tasks:

• For regression, we first concatenate x, yt, and fϕ(x), then send the resulting vector through
three fully-connected layers, all with an output dimension of 128. We perform Hadamard
product between each of the output vector with the corresponding timestep embedding,
followed by a Softplus non-linearity, before sending the resulting vector to the next fully-
connected layer. Lastly, we apply a 4-th fully-connected layer to map the vector to one
with a dimension of 1, as the output forward diffusion noise prediction. We summarize the
architecture in Table 13 (a).

• For classification on CIFAR-10, we first apply an encoder on the flattened input image
(originally 32 × 32 × 3) to obtain a representation with 4096 dimensions. The encoder
consists of three fully-connected layers with an output dimension of 4096. Meanwhile, we
concatenate yt and fϕ(x), and apply a fully-connected layer to obtain an output vector of
4096 dimensions. We perform a Hadamard product between such vector and a timestep
embedding to obtain a response embedding conditioned on the timestep. We then perform
Hadamard product between image embedding and response embedding to integrate these
variables, and send the resulting vector through two more fully-connected layers with 4096
output dimensions, each would first followed by a Hadamard product with a timestep
embedding, and lastly a fully-connected layer with an output dimension of 1 as the noise
prediction. Note that all fully-connected layers are also followed by a batch normalization
layer and a Softplus non-linearity, except the output layer. We summarize the architecture in
Table 13 (b).

Table 13: CARD ϵθ network architecture. We denote concatenation as ⊕, Hadamard product as ⊙,
and Softplus non-linearity as σ. We also denote a fully-connected layer as g, and a hidden layer
output as l, with subscripts to differentiate them.

(a) Regression network architecture.

input: x,yt, fϕ(x), t

l1 = σ
(
g1,a

(
x⊕ yt ⊕ fϕ(x)

)
⊙ g1,b(t)

)
l2 = σ

(
g2,a(l1)⊙ g2,b(t)

)
l3 = σ

(
g3,a(l2)⊙ g3,b(t)

)
output: g4(l3)

(b) Classification network architecture.

input: x,yt, fϕ(x), t

l1,x = σ
(

BN
(
g1,x(x)

))
l2,x = σ

(
BN
(
g2,x(x)

))
l3,x = BN

(
g1,x(x)

)
l1,y = σ

(
BN
(
g1,y

(
yt ⊕ fϕ(x)

)
⊙ g1,b(t)

))
l1 = l3,x ⊙ l1,y

l2 = σ
(

BN
(
g2,a(l1)⊙ g2,b(t)

))
l3 = σ

(
BN
(
g3,a(l2)⊙ g3,b(t)

))
output: g4(l3)

For the pre-trained model fϕ(x), we adjust the functional form and training scheme based on the task.
For regression, we adopt a feed-forward neural network with two hidden layers, each with 100 and
50 hidden units, respectively. We apply a Leaky ReLU non-linearity with a 0.01 negative slope after
each hidden layer. In practice, we find that when the dataset size is small (most of the UCI tasks have
less than 10, 000 data points, and several around or less than 1000), a deep neural network fϕ(x) is
prone to overfitting. We thus set the default number of epochs to 1000, and adopt early stopping with
a patience of 50 epochs, i.e., we terminate the training if there is no improvement in the validation set
MSE for 50 consecutive epochs. We split the original training set with 60%/40% ratio and apply
early stopping to find the optimal number of epochs, then train fϕ(x) on the full training set. For
classification, we apply a pre-trained ResNet-18 network for CIFAR-10 dataset. We only train the
model with 10 epochs, as more would lead to overfitting. We apply the Adam optimizer for fϕ(x) in
all tasks, and we only pre-train the model and freeze it during the training of the diffusion model,
instead of fine-tuning it.

25

A.9 UCI Baseline Model Experiment Setup Details and Dataset Information

In this section, we first provide the experimental setup for the UCI regression baseline models (PBP,
MC Dropout, Deep Ensembles, and GCDS), including learning rate, batch size, network architecture,
number of epochs, etc. We applied the GitHub repo (Joachims, 2021) to run BNN models, and
implemented our own version of GCDS (Zhou et al., 2021) since the code has not been published.
We note that GCDS is related to a concurrent work of Yang et al. (2022), who share a comparable
idea but use it in a different application: regularizing the learning of an implicit policy in offline
reinforcement learning.

Overall, we apply the same learning rate of 0.001 for all models on all datasets, except for PBP on
the Boston dataset, which is 0.1. We also apply the Adam optimizer for all experiments. We follow
the convention in Hernández-Lobato and Adams (2015) and standardize both the input features and
response variable for training, and remove the standardization for evaluation.

For batch size, we adjust on a case-by-case basis, taking the running time and dataset size into
consideration. We provide the batch size in Table 15. For network architecture, we use ReLU
non-linearities for all 3 BNNs, and Leaky ReLU with a 0.01 negative slope for GCDS; we choose the
number of hidden layers with the number of hidden units per layer from the following 3 options: a) 1
hidden layer with 50 hidden units; b) 1 hidden layer with 100 hidden units; c) 2 hidden layers with
100 and 50 hidden units, respectively. We show the choice of hidden layer architecture in Table 16.
For the number of training epochs, we also vary on a case-by-case basis: PBP and Deep Ensembles
both applied 40 epochs, but we observed in many experiments that the model has not converged. We
show the number of epochs in Table 17. Lastly, datasets Boston, Energy, and Naval all contain one or
more categorical variables, thus we ran the experiments both with and without conducting one-hot
encoding on the data. We found that except the Naval dataset with PBP, all other cases had worse
metrics when one-hot encoding was applied.

We summarize the dataset information in terms of their size and number of features in Table 14.

Table 14: Dataset size (N observations, P features) of UCI regression tasks.

Dataset Boston Concrete Energy Kin8nm Naval Power Protein Wine Yacht Year

(N,P) (506, 13) (1030, 8) (768, 8) (8192, 8) (11, 934, 16) (9568, 4) (45, 730, 9) (1599, 11) (308, 6) (515, 345, 90)

Table 15: Batch size settings of UCI regression tasks across different models.

PBP MC Dropout Deep Ensembles GCDS CARD (ours)

Boston 32 32 32 32 32
Concrete 32 32 32 32 32
Energy 32 32 32 32 32
Kin8nm 64 32 64 64 64
Naval 64 32 64 64 64
Power 64 64 64 64 64
Protein 100 256 100 256 256
Wine 32 32 32 32 32
Yacht 32 32 32 32 32
Year 256 256 100 256 256

We reiterate that we re-ran the experiments with the baseline BNN models to compute the new metric
QICE along with the conventional metrics RMSE and NLL. We carefully tuned the hyperparameters
to obtain results better than or comparable with the ones reported in the original papers.

A.10 UCI Regression Tasks PICP across All Methods

In this section, we report PICP for all methods in Table 18 from the same runs with the corresponding
metrics in Tables 1, 2, and 3.

26

Table 16: Network hidden layer architecture for UCI regression tasks across different models.

PBP MC Dropout Deep Ensembles GCDS

Boston a c a c
Concrete a c c c
Energy a b a c
Kin8nm a c a a
Naval a c a a
Power a b a a
Protein b c b c
Wine a c a c
Yacht a a a a
Year b c b b

Table 17: Number of training epochs of UCI regression tasks across different models.

PBP MC Dropout Deep Ensembles GCDS

Boston 100 1000 100 500
Concrete 100 500 40 500
Energy 100 500 100 500
Kin8nm 100 500 100 500
Naval 100 500 100 500
Power 100 500 100 500
Protein 100 500 100 500
Wine 100 500 100 500
Yacht 100 500 100 500
Year 100 100 100 500

A.11 Ablation Study on Choice of Prior — UCI Boston Dataset

In this section, we conduct ablation study for two model variants with different prior distribution
settings on the UCI Boston dataset, under various settings of the number of timesteps T with adjusted
βt linear schedule (to make sure that

√
ᾱ1 is close to 1 and

√
ᾱT is close to 0). We report the

evaluation metrics in Table 19, where we compare the original CARD setting with N (fϕ(x), I) as
the prior distribution at timestep T , to the alternative setting with N (0, I) as the prior distribution.
We observe that as T decreases, RMSE and NLL do not deteriorate for N (fϕ(x), I) prior (CARD
setting), but those from N (0, I) prior become worse. The metrics that measure distributional fitting,
QICE and PICP, gets worse under the N (fϕ(x), I) prior setting as well, but such deterioration is not
as much as N (0, I) prior. The results indicate that our setting of an informative prior N (fϕ(x), I)
contributes to the regression performance of CARD. Furthermore, the setting of the total number of
timesteps T does not affect the mean estimation for N (0, I) prior, but would noticeably impact the
distributional fitting (i.e., the recovery of aleatoric uncertainty).

A.12 Ablation Study on Diffusion Network Parameterization — CIFAR-10 Dataset

In this section, we study the impact of different ϵθ network parameterization forms on the CIFAR-10
dataset, through model performance in terms of accuracy and PAvPU, as well as training efficiency at
the first 100 epochs. We compare four model variants, each with a different prior and ϵθ network
parameterization combination, in Table 20, by reporting accuracy and PAvPU on the test set over
10 runs.

We observe that given the same prior distribution setting, both metrics do not differ much by whether
or not we include fϕ(x) as the input of the ϵθ network. Meanwhile, both model variants (V1, V2) with
a prior of N (fϕ(x), I) outperform the other two variants (V3, V4) of N (0, I) prior, suggesting the
application of an informative prior would benefit the performance. Furthermore, the variant (V4) with
fϕ(x) as neither the prior mean nor ϵθ input has the worst performance, indicating the inclusion of a
pre-trained classifier can improve the model performance in both accuracy and uncertainty estimation.

Furthermore, the choice of N (fϕ(x), I) prior also helps with training efficiency: we observe in
Figure 3 that the model performance improved faster for N (fϕ(x), I) prior at the beginning of

27

Table 18: PICP (in %) of UCI regression tasks.

Dataset | PICP − 95 | ↓
PBP MC Dropout Deep Ensembles GCDS CARD (ours)

Boston 91.27± 4.82 96.08± 2.70 88.73± 5.68 31.37± 6.79 93.24± 3.59
Concrete 92.28± 2.87 97.52± 2.43 90.34± 3.64 39.85± 4.53 90.24± 3.45
Energy 93.18± 3.12 99.03± 1.08 96.49± 1.97 63.57± 10.26 98.70± 1.30
Kin8nm1 95.06± 0.77 95.37± 2.24 96.53± 0.67 59.06± 5.31 93.68± 0.79
Naval2 93.52± 4.40 100.00± 0.00 99.78± 0.28 83.71± 14.87 95.35± 0.60
Power 95.75± 0.69 96.28± 0.76 95.91± 0.71 89.13± 1.14 94.87± 0.65
Protein 94.79± 0.13 96.46± 0.77 96.08± 0.28 85.24± 0.86 95.38± 0.16
Wine 92.72± 1.80 91.41± 2.66 91.06± 1.64 86.37± 2.33 93.88± 2.10
Yacht 96.94± 2.60 100.00± 0.00 98.87± 1.54 83.23± 4.28 99.84± 0.70
Year 93.04± NA 94.61± NA 95.44± NA 87.08± NA 93.35± NA

best 3 3 1 0 3

Table 19: Ablation study on 2 prior distribution settings on UCI Boston dataset with different T .

T βt schedule
(β1, βT)

Prior RMSE NLL QICE PICP

1000 (0.0001, 0.02) N (fϕ(x), I) 2.61± 0.63 2.65± 0.12 3.45± 0.83 93.24± 3.59
N (0, I) 2.71± 0.69 2.37± 0.12 3.53± 0.99 93.53± 3.34

500 (0.0001, 0.04) N (fϕ(x), I) 2.63± 0.72 2.33± 0.13 3.94± 1.05 93.14± 3.19
N (0, I) 2.70± 0.68 2.34± 0.12 3.48± 0.76 91.76± 3.75

100 (0.001, 0.175) N (fϕ(x), I) 2.65± 0.67 2.30± 0.18 4.09± 1.13 88.82± 5.15
N (0, I) 2.69± 0.66 2.32± 0.21 4.19± 1.12 85.20± 6.34

50 (0.001, 0.35) N (fϕ(x), I) 2.61± 0.71 2.31± 0.25 5.06± 1.46 81.96± 6.31
N (0, I) 2.76± 0.66 2.57± 0.39 5.38± 1.55 76.18± 7.13

10 (0.01, 0.95) N (fϕ(x), I) 2.63± 0.58 2.56± 0.44 5.34± 1.24 77.65± 7.00
N (0, I) 2.80± 0.75 2.98± 0.85 5.52± 1.20 75.39± 7.58

training, by measuring the accuracy on the test set with 1 sample every 10 epochs for the first 100
epochs during training, and plotting the metric (as the mean across all runs) against the number of
epochs. Due to the measurement similarity, we omit V2 and V4 and only plot the metrics from
V1 (for N (fϕ(x), I) prior) and V3 (for N (0, I) prior). We observe that after only 20 epochs, the
accuracy of 1 sample by CARD is already close to 90%, while the variant with a N (0, I) prior is
only around 75%, suggesting the advantage in training efficiency with an informative prior.

A.13 Regression Toy Example Details

The 8 toy examples are summarized by Table 21. For each task, we create the dataset by sampling
10, 240 data points from the data generating function, and randomly split them into training and test
sets with an 80%/20% ratio. For all uni-modal cases as well as the full circle task, the x variable is
sampled from a uniform distribution. The noise variable ϵ is sampled from a Gaussian distribution.
The dataset of the inverse sinusoidal task is created by simply swapping x and y variable of the
sinusoidal task (so that we have multi-modality when the new x is roughly between 0.25 and 0.75),
thus the name of the task.

To quantitatively evaluate the performance of CARD, we generate 1000 y samples for each x in the
test set, and compute the corresponding metrics. We conduct such a procedure over 10 runs, each
applying a different random seed to generate the dataset, and report the mean and standard deviation
over all runs for each metric. For all tasks regardless of the form of p(y |x), we compute PICP and
QICE. For tasks with uni-modal p(y |x) distributions, we summarize the 1000 samples for each test
x by computing their mean, as an unbiased estimator to E(y |x), and compute the root mean squared
error (RMSE) between the estimated and true conditional means. For all tasks, we obtain a mean
PICP very close to the optimal 95%, and most of the tasks have a mean QICE value far less than

1The data generating function of this task was originally proposed in Bishop (1994).
2Swap x and the generated y from the sinusoidal regression task.
3We set the coordinates of 8 modes at (

√
2, 0), (−

√
2, 0), (0,

√
2), (0,−

√
2), (1, 1), (1,−1), (−1, 1),

(−1,−1), and add a noise sample to both coordinates of a mode to generate one instance.

28

Table 20: 4 Ablation study on 4 model variants on CIFAR-10 dataset.

Variant Prior fϕ(x) included as ϵθ input Accuracy PAvPU

V1 N (fϕ(x), I) True 90.93± 0.02 91.11± 0.04
V2 N (fϕ(x), I) False 90.94± 0.02 91.08± 0.03
V3 N (0, I) True 90.88± 0.03 91.06± 0.03
V4 N (0, I) False 90.82± 0.02 91.02± 0.03

Figure 3: Performance from two prior settings on CIFAR-10 test set with 1 sample.

0.01 except log-log cubic regression, which also has a mean RMSE noticeably larger by an order
of magnitude among cases with uni-modal conditional distributions. Note that the y samples here
have a much wider range: as x increases from 0 to 10, y increases from 0 to over 1200, resulting in
a much more difficult task. Therefore, the metrics reported here can be viewed with relativity, and
combined with the qualitative conclusions from Figure 1. The metrics of all tasks, including RMSE,
QICE, and PICP, are recorded in Table 22. Note that QICE has been converted to a percentage scale
as we report two significant figures for all metrics.

The results in Table 22 implicitly suggest that our proposed metric QICE is reasonable: when RMSE
is low (way below 1) and PICP is close to 95%, implying that CARD is performing well in terms of
both mean estimation and distributional matching, QICE is also low (far less than 1%); for the most
difficult task, log-log cubic regression, as RMSE is above 5 and PICP deviates relatively most from
95% (but not much), QICE also has the largest value (slightly above 1%).

A.14 The Evolution of Samples through the Diffusion Process

We present the evolution of both q and p distribution samples through the forward and reverse
diffusion process, respectively. We first visualize the behaviors of these samples from the training on
linear regression tasks in Figure 4, where we pick timesteps with an interval of 200 steps including the
1st and the last timestep, namely t = 1, 200, 400, 600, 800, T . The p samples presented are from near
the end of training. We observe that ϵθ has been trained to match the q samples at different timesteps
well, including the variance. Furthermore, note that the true variance from the data generating
function is set to 4, while the prior p(yT |x) has a variance of 1. We can observe the gradual increase
of variance in the reverse direction. This example helps to illustrate that when fϕ(x) can already
estimate the mean accurately, it makes the task for the diffusion model easier: in this case to solely
focus on recovering the aleatoric uncertainty.

Similarly, we present the samples from q and p distribution during training for the full circle regression
task in Figure 5. Besides observing the matching in samples at all selected timesteps, we emphasize
CARD’s ability to model multi-modality at various intensities. As t increases, we observe the samples
gradually evolve from a uni-modal distribution into a multi-modal one, and the diffusion model
is able to capture such progress. To quantify such match, we plot the quantile coverage ratios for
samples at t = 0 from one run, along with the optimal coverage ratio (0.1, for 10 bins), in Figure 6.

29

Table 21: Regression toy examples.

Regression Task Data Generating Function x ϵ

Linear y = 2x+ 3 + ϵ U(−5, 5) N (0, 22)
Quadratic y = 3x2 + 2x+ 1 + ϵ U(−5, 5) N (0, 22)
Log-Log Linear y = exp

(
log(x) + ϵ

)
U(0, 10) N (0, 0.152)

Log-Log Cubic y = exp
(
3 log(x) + ϵ

)
U(0, 10) N (0, 0.152)

Sinusoidal1 y = x+ 0.3 sin(2πx) + ϵ U(0, 1) N (0, 0.082)
Inverse Sinusoidal2 swap x and y from Sinusoidal — —
8 Gaussians3 8 modes — N (0, 0.12)
Full Circle y = (10 + ϵ)

(
cos(2πx) + sin(2πx)

)
U(0, 1) N (0, 0.52)

Table 22: Regression toy example RMSE, QICE (in %), and PICP (in %).

Regression Task RMSE ↓ QICE ↓ PICP

Linear 0.07± 0.02 0.54± 0.14 95.29± 0.53
Quadratic 0.21± 0.03 0.55± 0.12 95.12± 0.55
Log-Log Linear 0.07± 0.01 0.55± 0.15 95.17± 0.62
Log-Log Cubic 5.85± 1.38 1.31± 0.26 96.08± 0.62
Sinusoidal 0.01± 0.00 0.48± 0.11 94.81± 0.54
Inverse Sinusoidal — 0.71± 0.18 95.89± 0.52
8 Gaussians — 0.66± 0.19 95.92± 0.46
Full Circle — 0.60± 0.05 95.52± 0.42

Note that we obtain a QICE of 0.62 in this run. We observe that CARD samples cover the true data
with a ratio close to the optimal across all bins; The 5th bin has relatively the most deviation from the
optimal ratio (which is understandable as the full circle dataset has a bi-modal distribution across
most x, with no data points in the center portion), which is compensated by the 2nd, 4th and last bin
with coverage slightly above the optimal ratio.

We continue with a plot of samples during test time from the UCI Boston dataset. In Figure 7,
we plot the generated samples from p (in blue) along with q samples (in red) at various t. The
x-axis represents the count of samples, instead of the actual x since the true covariate space is
high-dimensional. Note that we generate 1000 samples given each x. While still observing the good
mix between q and p samples for t = 200, . . . , T from 2nd plot to the right, we observe that for
t = 1, all samples for each x forms a vertical region that covers the corresponding y1 (which shall be
very close to y0 due to the linear βt schedule) from q distribution at various positions (i.e., middle,
upper half, lower half, near top, near bottom). We observe that the samples are representative of the
true conditionals p(y |x = x) for each x.

A.15 The Development of Model Performance through the Reverse Diffusion Process

Following the demonstration of behavior change in samples with respect to timestep t during both the
training and test time, we present the change in model evaluation metrics on the test set as a function
of t. We again use the UCI Boston dataset, and compute all evaluation metrics, including RMSE,
NLL, QICE, and PICP, at all timesteps from t = T to t = 0. Since the standard procedure for running
the task contains 20 different splits on the dataset, we compute these metrics at all timesteps for all
splits, and take the mean across all splits at each timestep t. We combine these plots in Figure 8. For
RMSE, we observe that the performance at t = T is already quite good, due to the setting of fϕ(x)
as the prior mean; as the reverse process continues, the metric gradually improves by decreasing.
Both NLL and QICE behave in a similar fashion: as t decreases, the metric steadily improves. For
PICP, note that it crosses the optimal value of 0.95 coverage ratio around the end of the reverse
process; however, it did not deviate much from such value. This plot demonstrates the successive
improvements across all metrics during the reverse diffusion process, starting from an already decent
place (in terms of RMSE and NLL) due to the application of an informative prior.

30

Figure 4: q and p distribution samples for linear regression task during training. (Top) left to
right: q

(
yt |y0, fϕ(x)

)
for t = 1, 200, . . . , T ; (Bottom) right to left: pθ(yt−1 |yt,x) for t =

T, . . . , 200, 1.

Figure 5: q (top) and p (bottom) distribution samples for full circle regression task during training.

A.16 Improving the Granularity of ECE from Subgroup to Instance Level

In this section, we first present the definition of ECE. This material is from Guo et al. (2017), and we
include it here for completeness. We then provide our analysis, specifically about its granularity to
measure prediction confidence by the model, which motivates us to introduce an alternative way to
measure model prediction confidence at a finer granularity (i.e., at instance level) in our paper.

ECE is defined as:

ECE := EP̂

[∣∣P(Ŷ = Y | P̂ = p
)
− p
∣∣], (31)

where Y and Ŷ are true and predicted class labels, respectively; P̂ is the predicted probability
associated with Ŷ . A perfect calibration is defined as:

P
(
Ŷ = Y | P̂ = p

)
= p, ∀p ∈ [0, 1]. (32)

However, since the predicted probability Ŷ is continuous in [0, 1], we cannot compute ECE with
finite instances, thus we approximate it by first dividing the probability space into M bins with
equal width, then compute the confidence and accuracy within each bin. Each test instance is placed
into one specific bin by the predicted probability value associated with the true class label. For the
m-th bin Bm, we have accuracy (proportion of correct predictions)

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi) (33)

31

Figure 6: Sample coverage ratio by bins for full circle regression task (QICE 0.62).

Figure 7: q (red) and p (blue, 1000 samples per x) samples from UCI Boston test set.

and confidence (mean of predicted probabilities)

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i, (34)

where ŷi and p̂i are the predicted label and its associated probability value, and yi is the true label,
for instance i. We thus have the empirical version of ECE as:

ECE :=

M∑
m=1

|Bm|
n

∣∣acc(Bm)− conf(Bm)
∣∣, (35)

where |Bm| and n are the cardinality of the m-th bin and the total number of instances, respectively.

To summarize, although we are interested in measuring the miscalibration through the difference
between p(yi = ŷi |xi) and p̂i, we are only able to compute such miscalibration at the granularity
of subgroup level — usually with the number of subgroups M set to 10 or less in practice. In other
words, we cannot make a statement with the existing classification framework like the following:
given this new test instance, we predict the class label to be (some class), but we are very sure our
prediction is correct. This observation motivates us to introduce an alternative way of measuring
model confidence, at the granularity of the instance level.

A.17 Insights on How CARD Accurately Recovers the Conditional Distributions

Although a theoretical justification is not within the scope of our paper, in this section we plan to
briefly talk about what makes CARD stands out as a great candidate to model p(y |x,D), through
the capability to model implicit distributions by diffusion models in general: the theory of stochastic
processes by Feller (1949) suggests that:

a) With a large enough number of timesteps T , q(xT |x0) would converge to a stationary distribution
p(xT) regardless of the distribution at timestep t = 0, q(x0). In other words, we are able to go from
any distribution q(x0) to a stationary distribution p(xT) by choice.

b) Meanwhile, with a large enough T and small enough noise schedule {βt}t=1:T , the product in
q(xt−1 |xt) ∝ q(xt |xt−1)q(xt−1) would be dominated by q(xt |xt−1), thus both forward and
reverse diffusion processes would share the same functional form. Although q(xt−1 |xt) cannot be

32

easily estimated, if we are able to learn a function pθ(xt−1 |xt) that approximates q(xt−1 |xt) well,
we are able to reverse the direction mentioned in a) and go from p(xT) to any q(x0).

For real world datasets like the ones in Dua and Graff (2017), the relationship between the covariates
and response variable can be quite complicated. The class of diffusion models in general, including
CARD, places no restriction on the parametric form for q(x0) (i.e., it fits the data as it is), therefore it
is suitable to the situations where a flexible distribution assumption is needed, instead of just the ones
where an explicit distribution assumption is valid (e.g., Gaussian for BNNs).

A.18 Insights on Why CARD Outperforms Other BNN Approaches

We observe the following two limitations of the class of BNN approaches:

a) It places an explicit distributional form assumption to p(y |x,W), where W denotes the model
parameter: for regression, it assumes an additive Gaussian noise model for p(y |x,W) (Eq. 2 in
Kendall and Gal (2017)) — we have addressed the limitation of such additive-noise assumption in
the first two paragraphs of Section 1.

b) BNNs do not directly fit the actual posterior p(W |X,Y), which is required for evaluating
the marginal p(Y |X), due to its intractability, but rather fit an approximated distribution q(W)
that minimizes its KL divergence to the actual posterior. Such distribution q(W) has a simple
distributional assumption (usually Gaussian), which places another layer of restrictions for BNNs
to model their predictive distribution p(y |x) =

∫
p(y |x,W)p(W |X,Y)dW . CARD is able to

dodge both limitations through the modeling of implicit distributions, as elaborated in Section A.17.

33

1000 900 800 700 600 500 400 300 200 100 0
timestep

2.625

2.650

2.675

2.700

2.725

y
RM

SE

1000 900 800 700 600 500 400 300 200 100 0
timestep

2.50

2.75

3.00

3.25

3.50

y
NL

L

1000 900 800 700 600 500 400 300 200 100 0
timestep

0.04

0.06

0.08

0.10

y
QI

CE

1000 900 800 700 600 500 400 300 200 100 0
timestep

0.94

0.96

0.98

1.00

y
PI

CP

95 % coverage

Figure 8: Change in regression evaluation metrics on UCI Boston dataset. The value at each timestep
is the mean across all 20 splits.

34

B Broader Impact and Limitations

We believe that our model has a practical impact in various industrial settings, where supervised
learning methods have been increasingly applied to facilitate the decision-making process. For
regression tasks, e.g., understanding the relationship between drug dosage and biographical features
of a patient in the medical domain, and evaluating player performance given various on-court
measurements, where the actual distribution of the real-world data is complicated and unknown, we
are able to compute summary statistics with a minimal amount of assumptions, as we do not assume
the parametric form of the conditionals p(y |x). The analytical results from our framework thus have
the potential to reach a broader audience, who in the past might be hindered by the sheer amount
of jargon due to the lack of statistical training. For classification tasks, as mentioned in both of the
experiments, we could easily adopt a human-machine collaboration framework: since our model
is capable of conveying the prediction confidence along with the prediction itself, we could pass
the cases where the model is less assertive to humans for further evaluation. This trait is especially
valuable for classification tasks with exceptionally imbalanced data, e.g., fraud detection, and ad
click-through rate prediction, where the volume of one class could be orders of magnitude more
than the other. False negative errors for these applications are usually quite expensive, and simply
adjusting the classification threshold would often put too many positive predictions for human agent
evaluation. As demonstrated in our experiments, CARD is capable of providing uncertain cases with
a very reasonable ratio, keeping the workload for human agents at a sensible level.

Meanwhile, since CARD is capable of modeling multi-modality, we are concerned that it could be
devised for malicious purposes, like revealing personalized information of the patient through reverse
engineering the prediction results: as an extension to the medical example of breast cancer given in
the introduction section, one could tell with high confidence the gender of the patient based on the
predicted mode. For research purposes, in this work, we only consider Gaussian diffusion and the
reverse denoising in CARD, while there could be much more options when given different data. For
example, in classification, we can optimize the classification likelihood with cross-entropy instead of
using simple MSE loss, and directly perform diffusion in discrete spaces, as in Austin et al. (2021).
We only take a pre-trained model fϕ as a deterministic neural network, while there could be more
possibilities like combining BNN methods with CARD. Moreover, the computation efficiency of
CARD may also be further investigated if the dataset size becomes larger. We encourage researchers
in our community to further study those potential safety concerns and approaches for improvements
in order to develop more mature supervised learning tools.

C Computational Resources

Our models are trained and evaluated with a single Nvidia GeForce RTX 3090 GPU. We use
PyTorch (Paszke et al., 2019) 1.10.0 as the deep learning framework. CARD trains between 100 and
200 steps per second at the batch size specified in Table 15 for regression tasks, and at 44 steps per
second at batch size 256 for classification on the CIFAR-10 dataset. The sampling for a batch of 250
test instances, each with 100 samples, takes around 1.05 seconds at most for the classification task
on FashionMNIST. The computation time could vary if we apply different network architectures for
regression and classification tasks, and the architecture details are provided in Appendix A.8.

Table 23: Model size and computation complexity of CARD and deterministic neural networks
(architecture same as fϕ) on different datasets. Throughputs measures the number of samples
calculated per second. For UCI tasks, we measure the parameter size and computation complexity on
the subset with the biggest data dimension.

Task Regression Classification
Dataset Toy UCI FMNIST CIFAR-10/100 ImageNet-100/1K
model #Params Throughputs #Params Throughputs #Params Throughputs #Params Throughputs #Params Throuputs
CARD 5.24e-2M 25334.72 6.55e-2M 244146.47 6.41e-2M 1033.24 16.52M 244.21 32.76M 137.13
DNN 5.22e-2M 25378.50 6.51e-2M 250555.79 6.02e-2M 1057.95 11.17M 249.56 25.62M 147.56

We summarize the model parameter size and measure the throughputs, i.e., how many data samples
can be proceeded per second, as computation complexity measure in Table 23. As our model consists
of both a diffusion model ϵθ in the response prediction and a pre-trained prior mean model fϕ, we
compute them respectively.

35

	Derivations and Additional Experiment Results
	Derivations
	More In-Depth Discussion on Several Related Works
	Comparing CARD with the Neural Processes Family
	Comparing CARD with Discrete Diffusion Models
	Comparing CARD with Kendall and Gal (2017)
	Comparing CARD with Score-Based Generative Classifiers

	Classification on FashionMNIST Dataset
	Test for Normality Assumption of Paired Two-Sample t-test
	Patch Accuracy vs Patch Uncertainty (PAvPU)
	Classification on Noisy MNIST dataset
	Classification on Large-Scale Benchmark Datasets
	General Experiment Setup Details
	UCI Baseline Model Experiment Setup Details and Dataset Information
	UCI Regression Tasks PICP across All Methods
	Ablation Study on Choice of Prior — UCI Boston Dataset
	Ablation Study on Diffusion Network Parameterization — CIFAR-10 Dataset
	Regression Toy Example Details
	The Evolution of Samples through the Diffusion Process
	The Development of Model Performance through the Reverse Diffusion Process
	Improving the Granularity of ECE from Subgroup to Instance Level
	Insights on How CARD Accurately Recovers the Conditional Distributions
	Insights on Why CARD Outperforms Other BNN Approaches

	Broader Impact and Limitations
	Computational Resources

