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Abstract

Repeated use of a data sample via adaptively chosen queries can rapidly lead to
overfitting, wherein the empirical evaluation of queries on the sample significantly
deviates from their mean with respect to the underlying data distribution. It
turns out that simple noise addition algorithms suffice to prevent this issue, and
differential privacy-based analysis of these algorithms shows that they can handle
an asymptotically optimal number of queries. However, differential privacy’s
worst-case nature entails scaling such noise to the range of the queries even for
highly-concentrated queries, or introducing more complex algorithms.
In this paper, we prove that straightforward noise-addition algorithms already
provide variance-dependent guarantees that also extend to unbounded queries. This
improvement stems from a novel characterization that illuminates the core problem
of adaptive data analysis. We show that the harm of adaptivity results from the
covariance between the new query and a Bayes factor-based measure of how much
information about the data sample was encoded in the responses given to past
queries. We then leverage this characterization to introduce a new data-dependent
stability notion that can bound this covariance.

1 Introduction

Recent years have seen growing recognition of the role of adaptivity in causing overfitting and thereby
reducing the accuracy of the conclusions drawn from data. Intuitively, allowing a data analyst to
adaptively choose the queries that she issues potentially leads to misleading conclusions, because the
results of prior queries might encode information that is specific to the available data sample and not
relevant to the underlying distribution from which it was drawn. As a result, future queries might
then be chosen to leverage these sample-specific properties, giving answers on the sample that differ
wildly from the values of those queries on the data distribution. Such adaptivity has been blamed, in
part, for the current reproducibility crisis in the data-driven sciences [Ioannidis, 2005, Gelman and
Loken, 2014].

A series of works catalyzed by Dwork et al. [2015] recently established a formal framework for
understanding and analyzing adaptivity in data analysis, and introduced a general toolkit for provably
preventing the harms of choosing queries adaptively—that is, as a function of the results of previous
queries. This line of work has established that enforcing that computations obey a constraint
of differential privacy [Dwork et al., 2006]—which one can interpret as a robustness or stability
requirement on computations—provably limits the extent to which adaptivity can cause overfitting.
Practically, for simple numerical computations, these results translate into adding a level of noise to
the query results that would be sufficient to ensure worst-case stability of the worst-case query on
the worst-case dataset. In particular, when analyzed using differential privacy, simple noise-addition
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mechanisms must add noise that scales with the worst-case change in query value that could be
induced by changing a single input data element, in order to protect against adaptivity.

However, this can be overkill: for the purposes of statistical validity, we do not care about the worst
case but the typical case. In the present work, we prove the following new and better generalization
guarantees for simple Gaussian noise-addition algorithms:
Theorem 1.1 (Informal versions of main theorems). With probability > 1 − δ, the error of the
responses produced by a mechanism which only adds Gaussian noise to the empirical values of the
queries it receives is bounded by ϵ, even after responding to k adaptively chosen queries, if

• the range of the queries is bounded by ∆, their variance is bounded by σ2, and the size of
the dataset n = Ω

(
max

{
∆
ϵ ,

σ2

ϵ2

}√
k · ln

(
kσ
δϵ

))
(Theorem 5.1), or

• the queries are σ2-sub-Gaussian and the size of the dataset n = Ω
(

σ2
√
k

ϵ2 ln
(
kσ
δϵ

))
(Theo-

rem 5.3).

In contrast, analyzing the same mechanism using differential privacy yields a sample size requirement
that scales with n = Ω

(
∆2

√
k

ϵ2 ln
(
kσ
δϵ

))
in the first setting, and provides no guarantee in the latter.

We prove these theorems via a new notion, pairwise concentration (PC) (Definition 4.2), which
captures the extent to which replacing one dataset by another would be “noticeable,” given a particular
query-response sequence. This is thus a function of particular differing datasets (instead of worst-case
over elements), and it also depends on the actual issued queries. We then build a composition toolkit
(Theorem 4.4) that allows us to track PC losses over multiple computations. The PC notion allows for
more careful analysis of the information encoded by the query-response sequence than differential
privacy does.

In order to leverage this more careful analysis of the information encoded in query-response sequences,
we rely on a simple new characterization (Lemma 3.5) that shows explicitly that the harms of
adaptivity come from the covariance between the behavior of the future queries and a Bayes factor-
based measure of how much information about the data sample was encoded in the responses to
the issued queries. Our characterization gives insight into how differential privacy protects against
adaptivity, and then allows us to step away from this worst-case approach. What differential privacy
accomplishes is that it bounds a worst-case version of the Bayes factor; however, as this new
characterization makes clear, it is sufficient to bound the “typical” Bayes factor in order to avoid
overfitting.

We measure the harm that past adaptivity causes to a future query by considering the query as
evaluated on a posterior data distribution and comparing this with its value on a prior. The prior is
the true data distribution, and the posterior is induced by observing the responses to past queries
and updating the prior. If the new query behaves similarly on the prior distribution as it does on this
posterior (a guarantee we call Bayes stability; Definition 3.3), adaptivity has not led us too far astray.1
If furthermore, the the response given by the mechanism is close to the query result on the posterior,
then by a triangle inequality argument, that mechanism is distribution accurate. This type of triangle
inequality first appeared as an analysis technique in Jung et al. [2020].

The dependence of our PC notion on the actual adaptively chosen queries places it in the so-called
fully-adaptive setting [Rogers et al., 2016, Whitehouse et al., 2023], which requires a fairly subtle
analysis involving a set of tools and concepts that may be of independent interest. In particular, we
establish a series of “dissimilarity” notions in Appendix B, which generalize the notion of divergence,
replacing the scalar bound with a function. Our main stability notion (Definition 4.2) can be viewed
as an instance-tailored variant of zero-concentrated differential privacy [Bun and Steinke, 2016], and
we also make use of a similar extension of the classical max-divergence-based differential privacy
definition (B.8).

Related work Differential privacy [Dwork et al., 2006] is a privacy notion based on a bound
on the max divergence between the output distributions induced by any two neighboring input

1This can be viewed as a generalization of the Hypothesis Stability notion of Bousquet and Elisseeff [2002]—
which was proven to guarantee on-average generalization [Shalev-Shwartz et al., 2010]—where the hypothesis
is a post-processing of the responses to past queries, and the future query is the loss function estimation.
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datasets (datasets which differ in one element). One natural way to enforce differential privacy is by
directly adding noise to the results of a numeric-valued query, where the noise is calibrated to the
global sensitivity of the function to be computed—the maximal change in its value between any two
neighboring datasets. Dwork et al. [2015] and Bassily et al. [2021] showed that differential privacy is
also useful as tool for ensuring generalization in settings where the queries are chosen adaptively.

Differential privacy essentially provides the optimal asymptotic generalization guarantees given
adaptive queries [Hardt and Ullman, 2014, Steinke and Ullman, 2015]. However, its optimality is for
worst-case adaptive queries, and the guarantees that it offers only beat the naive intervention—of
splitting a dataset so that each query gets fresh data—when the input dataset is quite huge [Jung
et al., 2020]. A worst-case approach makes sense for privacy, but for statistical guarantees like
generalization, we only need statements that hold with high probability with respect to the sampled
dataset, and only on the actual queries issued.

One cluster of works that steps away from this worst-case perspective focuses on giving privacy
guarantees that are tailored to the dataset at hand [Nissim et al., 2007, Ghosh and Roth, 2011,
Ebadi et al., 2015, Wang, 2019]. In Feldman and Zrnic [2021] in particular, the authors elegantly
manage to track the individual privacy loss of the elements in the dataset. However, their results
do not enjoy a dependence on the standard deviation in place of the range of the queries. Several
truncation-based specialized mechanisms have been proposed, both to provide differential privacy
guarantees for Gaussian and sub-Gaussian queries even in the case of multivariate distribution with
unknown covariance [Karwa and Vadhan, 2018, Ashtiani and Liaw, 2022, Duchi et al., 2023] and,
remarkably, design specialized algorithms that achieve adaptive data analysis guarantees that scale
like the standard deviation of the queries [Feldman and Steinke, 2017]. Recently, Blanc [2023] proved
that randomized rounding followed by sub-sampling provides accuracy guarantees that scale with the
queries’ variance. But none of these results apply to simple noise addition mechanisms.

Another line of work (e.g., Gehrke et al. [2012], Bassily et al. [2013], Bhaskar et al. [2011]) proposes
relaxed privacy definitions that leverage the natural noise introduced by dataset sampling to achieve
more average-case notions of privacy. This builds on intuition that average-case privacy can be
viewed from a Bayesian perspective, by restricting some distance measure between some prior
distribution and some posterior distribution induced by the mechanism’s behavior [Dwork et al., 2006,
Kasiviswanathan and Smith, 2014]. This perspective was used Shenfeld and Ligett [2019] to propose
a stability notion which is both necessary and sufficient for adaptive generalization under several
assumptions. Unfortunately, these definitions have at best extremely limited adaptive composition
guarantees. Bassily and Freund [2016] connect this Bayesian intuition to statistical validity via
typical stability, an approach that discards “unlikely” databases that do not obey a differential privacy
guarantee, but their results require a sample size that grows linearly with the number of queries even
for iid distributions. Triastcyn and Faltings [2020] propose the notion of Bayesian differential privacy
which leverages the underlying distribution to improve generalization guarantees, but their results
still scale with the range in the general case.

An alternative route for avoiding the dependence on worst case queries and datasets was achieved
using expectation based stability notions such as mutual information and KL stability Russo and
Zou [2016], Bassily et al. [2021], Steinke and Zakynthinou [2020]. Using these methods Feldman
and Steinke [2018] presented a natural noise addition mechanism, which adds noise that scales
with the empirical variance when responding to queries with known range and unknown variance.
Unfortunately, in the general case, the accuracy guarantees provided by these methods hold only for
the expected error rather than with high probability.

A detailed comparison to other lines of work can be found in Appendix F.

2 Preliminaries

2.1 Setting

We study datasets, each of fixed size n ∈ N, whose elements are drawn from some domain X . We
assume there exists some distribution DXn defined over the datasets s ∈ Xn.2 We consider a family

2Throughout the paper, the notation D (·) describing a distribution over a domain, will either represent the
probability mass function defined by a discrete probability over a countable sample space or the probability
density function (the Radon–Nikodym derivative) in case of a measure over measurable spaces.
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of functions (queries) Q of the form q : Xn → R ⊆ R. We refer to the functions’ outputs as
responses.3

We denote by q (DXn) := E
S∼DXn

[q (S)] the mean of q with respect to the distribution DXn , and

think of it as the true value of the query q, which we wish to estimate. As is the case in many machine
learning or data-driven science settings, we do not have direct access to the distribution over datasets,
but instead receive a dataset s sampled fromDXn , which can be used to compute q (s)—the empirical
value of the query.

A mechanism M is a (possibly non-deterministic) function M : Xn ×Q× Θ → R which, given
a dataset s ∈ Xn, a query q ∈ Q, and some auxiliary parameters θ ∈ Θ, provides some response
r ∈ R (we omit θ when not in use). The most trivial mechanism would simply return r = q (s), but
we will consider mechanisms that return a noisy version of q (s). A mechanism induces a distribution
over the responses Dq,θ

R|Xn (· | s)—indicating the probability that each response r will be the output
of the mechanism, given s, q, and θ as input. Combining this with DXn induces the marginal
distribution Dq,θ

R over the responses, and the conditional distribution Dq,θ
Xn|R (· | r) over sample sets.

Considering the uniform distribution over elements in the sample set induces similar distributions
over the elements DX and Dr := Dq,θ

X|R (· | r). This last distribution, Dr, is central to our analysis,
and it represents the posterior distribution over the sample elements given an observed response—a
Bayesian update with respect to a prior of DX . All of the distributions discussed in this subsection
are more formally defined in Appendix A.

An analyst A is a (possibly non-deterministic) function A : R∗ → (Q,Θ) which, given a sequence
of responses, provides a query and parameters to be asked next. An interaction between a mechanism
and an analyst— wherein repeatedly (and potentially adaptively) the analyst generates a query, then
the mechanism generates a response for the analyst to observe—generates a sequence of k queries
and responses for some k ∈ N, which together we refer to as a view vk = (r1, r2, . . . , rk) ∈ Vk (we
omit k when it is clear from context). In the case of a non-deterministic analyst, we add its coin
tosses as the first entry in the view, in order to ensure each (qi, θi) is a deterministic function of
vi−1, as detailed in Definition A.3; given a view v ∈ V , we denote by q̄v the sequence of queries
that it induces. Slightly abusing notation, we denote v =M (s,A). The distributions Dq,θ

R|Xn , Dq,θ
R ,

Dq,θ
Xn|R, and Dr naturally extend to versions where a sequence of queries is generated by an analyst:

DA
V|Xn , DA

V , DA
Xn|V , and Dv := DA

X|V (· | v).

Notice that M holds s but has no access to D. On the other hand, A might have access to D, but her
only information regarding s comes from M ’s responses as represented by Dv . This intuitively turns
some metric of distance between D and Dv into a measure of potential overfitting, an intuition that
we formalize in Definition 3.3 and Lemma 3.5.

2.2 Notation

Throughout the paper, calligraphic letters denote domains (e.g., X ), lower case letters denote elements
of domains (e.g., x ∈ X ), and capital letters denote random variables (e.g., X ∼ DX ).

We omit most superscripts and subscripts when clear from context (e.g., D (r | s) = Dq,θ
R|Xn (r | s) is

the probability to receive r ∈ R as a response, conditioned on a particular input dataset s, given a
query q and parameters θ). Unless specified otherwise, we assume DXn , n, k, and M are fixed, and
omit them from notations and definitions.

We use ∥·∥ to denote the Euclidean norm, so ∥q̄v (x)∥ =
√∑k

i=1 (qi (x))
2 will denote the norm of a

concatenated sequence of queries.

2.3 Definitions

We introduce terminology to describe the accuracy of responses that a mechanism produces in
response to queries.

3Most of the definitions and claims in this paper can be extended beyond R and the Euclidean norm. To do
so, the divergence in Lemma 3.5 and the φ function (Definition 4.2) must be chosen accordingly.
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Definition 2.1 (Accuracy of a mechanism). Given a dataset s, an analyst A, and a view
v = M (s,A), we define three types of output error for the mechanism: sample error
errS (s, v) := max

i∈[k]
|ri − qi (s)|, distribution error errD (s, v) := max

i∈[k]
|ri − qi (D)|, and posterior

error errP (s, v) := max
i∈[k]
|ri − qi (Dv)|, where qi is the ith query and ri is the ith response in v.

These errors can be viewed as random variables with a distribution that is induced by the underlying
distribution D and the internal randomness of M and A. Given ϵ, δ ≥ 0 we call a mechanism M
(ϵ, δ)-sample/distribution/posterior accurate with respect to A if

Pr
S∼D(n),V∼M(S,A)

[(err (S, V )) > ϵ] ≤ δ,

for err = errS /errD/errP , respectively.

Notice that if each possible value of ϵ has a corresponding δ, then δ is essentially a function of ϵ.
Given such a function δ : R+ → [0, 1], we will say the mechanism is (ϵ, δ (ϵ)) accurate, a perspective
which will be used in Lemma 3.1.

We start by introducing a particular family of queries known as linear queries, which will be used to
state the main results in this paper, but it should be noted that many of the claims extend to arbitrary
queries as discussed in Section C.2

Definition 2.2 (Linear queries). A function q : Xn → R is a linear query if it is defined by a function

q1 : X → R such that q (s) := 1
n

n∑
i=1

q1 (si). For simplicity, we denote q1 as q throughout.

The aforementioned error bounds implicitly assume some known scale of the queries, which is
usually chosen to be their range, denoted by ∆q := sup

x,y∈X
|q (x)− q (y)| (we refer to such a query

as ∆-bounded). This poses an issue for concentrated random variables, where the “typical” range
can be arbitrarily smaller than the range, which might even be infinite. A natural alternative source
of scale we consider in this paper is the query’s variance σ2

q := E
X∼DX

[
(q (X)− q (DX ))

2
]
, or its

variance proxy in the case of a sub-Gaussian query (Definition 5.2). The corresponding definitions
for arbitrary queries are presented in Section C.2.

Our main tool for ensuring generalization is the Gaussian mechanism, which simply adds Gaussian
noise to the empirical value of a query.

Definition 2.3 (Gaussian mechanism). Given η > 0 and a query q, the Gaussian mechanism with
noise parameter η returns its empirical mean q (s) after adding a random value, sampled from an
unbiased Gaussian distribution with variance η2. Formally, M (s, q) ∼ N

(
q (s) , η2

)
.4

3 Analyzing adaptivity-driven overfitting

In this section, we give a clean, new characterization of the harms of adaptivity. Our goal is to bound
the distribution error of a mechanism that responds to queries generated by an adaptive analyst. This
bound will be achieved via a triangle inequality, by bounding both the posterior accuracy and the
Bayes stability (Definition 3.3). Missing proofs from this section appear in Appendix C.

The simpler part of the argument is posterior accuracy, which we prove can be inherited directly from
the sample accuracy of a mechanism. This lemma resembles Lemma 6 in Jung et al. [2020], but has
the advantage of being independent of the range of the queries.

Lemma 3.1 (Sample accuracy implies posterior accuracy). Given a function δ : R→ [0, 1] and an
analystA, if a mechanismM is (ϵ, δ (ϵ))-sample accurate for all ϵ > 0, thenM is (ϵ, δ′ (ϵ))-posterior

accurate for δ′ (ϵ) := inf
ξ∈(0,ϵ)

(
1
ξ

∫∞
ϵ−ξ

δ (t) dt
)

.

We use this lemma to provide accuracy guarantees for the Gaussian mechanism.

4In the case of an adaptive process, one can also consider the case where ηi are adaptively chosen by the
analyst and provided to the mechanism as the auxiliary parameter θi.
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Lemma 3.2 (Accuracy of Gaussian mechanism). Given η > 0, the Gaussian mechanism with

noise parameter η that receives k queries is (ϵ, δ (ϵ))-sample accurate for δ (ϵ) := 2k√
π
e
− ϵ2

2η2 , and

(ϵ, δ (ϵ))-posterior accurate for δ (ϵ) := 4k · e−
ϵ2

4η2 .

In order to complete the triangle inequality, we have to define the stability of the mechanism. Bayes
stability captures the concept that the results returned by a mechanism and the queries selected by the
adaptive adversary are such that the queries behave similarly on the true data distribution and on the
posterior distribution induced by those results. This notion first appeared in Jung et al. [2020], under
the name Posterior Sensitivity, as did the following theorem.

Definition 3.3 (Bayes stability). Given ϵ, δ > 0 and an analyst A, we say M is (ϵ, δ)-Bayes stable
with respect to A, if

Pr
S∼D(n)

V ∼M(S,A),Q∼A(V )

[∣∣Q (DV
)
−Q (D)

∣∣ > ϵ
]
≤ δ.

Bayes stability and sample accuracy (implying posterior accuracy) combine via a triangle inequality
to give distribution accuracy.

Theorem 3.4 (Generalization). Given two functions δ1 : R→ [0, 1], δ2 : R→ [0, 1], and an analyst
A, if a mechanismM is (ϵ, δ1 (ϵ))-Bayes stable and (ϵ, δ2 (ϵ))-sample accurate with respect toA, then

M is (ϵ, δ′ (ϵ))-distribution accurate for δ′ (ϵ) := inf
ϵ′∈(0,ϵ),ξ∈(0,ϵ−ϵ′)

(
δ1 (ϵ

′) + 1
ξ

∫∞
ϵ−ϵ′−ξ

δ2 (t) dt
)

.

Since achieving posterior accuracy is relatively straightforward, guaranteeing Bayes stability is the
main challenge in leveraging this theorem to achieve distribution accuracy with respect to adaptively
chosen queries. The following lemma gives a useful and intuitive characterization of the quantity that
the Bayes stability definition requires be bounded. Simply put, the Bayes factor K (·, ·) (defined in
the lemma below) represents the amount of information leaked about the dataset during the interaction
with an analyst, by moving from the prior distribution over data elements to the posterior induced by
some view v. The degree to which a query q overfits to the dataset is expressed by the correlation
between the query and that Bayes factor. This simple lemma is at the heart of the progress that we
make in this paper, both in our intuitive understanding of adaptive data analysis, and in the concrete
results we show in subsequent sections. Its corresponding version for arbitrary queries are presented
in Section C.2.

Lemma 3.5 (Covariance stability). Given a view v ∈ V and a linear query q,

q (Dv)− q (DX ) = Cov
X∼DX

(q (X) ,K (X, v)) .

Furthermore, given ∆, σ > 0,

sup
q∈Q s.t. ∆q≤∆

|q (Dv)− q (DX )| = ∆ ·DTV (D
v∥DX )

and
sup

q∈Q s.t. σ2
q≤σ2

|q (Dv)− q (DX )| = σ
√

Dχ2 (Dv∥DX ),

where K (x, v) := D(x | v)
D(x) = D(v | x)

D(v) is the Bayes factor of x given v (and vice-versa), DTV is the
total variation distance (Definition B.1), and Dχ2 is the chi-square divergence (Definition B.2).

Proof. By definition, q (Dv) = E
X∼Dv

[q (X)] = E
X∼D

[K (X, v) q (X)], so

q (Dv)−q (D) = E
X∼D

[K (X, v) q (X)]−
=1︷ ︸︸ ︷

E
X∼D

[K (X, v)]·
=q(D)︷ ︸︸ ︷

E
X∼D

[q (X)] = Cov
X∼D

(q (X) ,K (X, v)) .

The second part is a direct result of the known variational representation of total variation distance
and χ2 divergence, which are both f -divergences (see Equations 7.88 and 7.91 in Polyanskiy and Wu
[2022] for more details).
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Using the first part of the lemma, we guarantee Bayes stability by bounding the correlation between
specific q andK (·, v) as discussed in Section 6. The second part of this Lemma implies that bounding
the appropriate divergence is necessary and sufficient for bounding the Bayes stability of the worst
query in the corresponding family, which is how the main theorems of this paper are all achieved,
using the next corollary.
Corollary 3.6. Given an analyst A, for any ϵ > 0 we have

Pr
S∼D(n)

V ∼M(S,A),Q∼A(V )

[∣∣Q (DV
)
−Q (D)

∣∣ > σQ · ϵ
]
≤ Pr

S∼D(n)

V ∼M(S,A)

[
Dχ2 (Dv

X ∥DX ) > ϵ2
]
.

The corresponding version of this corollary for bounded range queries provides an alternative proof
to the generalization guarantees of the the LS stability notion [Shenfeld and Ligett, 2019].

4 Pairwise concentration

In order to leverage Lemma 3.5, we need a stability notion that implies Bayes stability of query
responses in a manner that depends on the actual datasets and the actual queries (not just the worst
case). In this section we propose such a notion and prove several key properties of it. Missing proofs
from this section can be found in Appendix D.

We start by introducing a measure of the stability loss of the mechanism.
Definition 4.1 (Stability loss). Given two sample sets s, s′ ∈ Xn, a query q, and a response
r ∈ R, we denote by ℓq (s, s′; r) := ln

(
Dq(r | s)
Dq(r | s′)

)
the stability loss of r between s and s′ for q

(we omit q from notation for simplicity).5 Notice that if R ∼ M (s, q), the stability loss defines a
random variable. Similarly, given two elements x, y ∈ X , we denote ℓ (x, y; r) := ln

(
D(r | x)
D(r | y)

)
and

ℓ (x; r) := ln
(

D(r | x)
D(r)

)
. This definition extends to views as well.

Next we introduce a notion of a bound on the stability loss, where the bound is allowed to depend on
the pair of swapped inputs and on the issued queries.
Definition 4.2 (Pairwise concentration). Given a non-negative function φ : Xn ×Xn ×Q → R+

which is symmetric in its first two arguments, a mechanismM will be called φ-Pairwise Concentrated
(or PC, for short), if for any two datasets s, s′ ∈ Xn and q ∈ Q, for any α ≥ 0,6

E
R∼M(s,q)

[exp ((α− 1) ℓ (s, s′;R))] ≤ exp (α (α− 1)φ (s, s′; q)) .

Given a non-negative function φ : Xn×Xn×V → R+ which is symmetric in its first two arguments
and an analyst A, a mechanism M will be called φ-Pairwise Concentrated with respect to A, if for
any s, s′ ∈ Xn and α ≥ 0,

E
V∼M(s,A)

[exp ((α− 1) (ℓ (s, s′;V )− αφ (s, s′;V )))] ≤ 1.

We refer to such a function φ as a similarity function over responses or views, respectively.

The similarity function serves as a measure of the local sensitivity of the issued queries with respect
to the replacement of the two datasets, by quantifying the extent to which they differ from each
other with respect to the query q. The case of noise addition mechanisms provides a natural intuitive
interpretation, where the φ scales with the difference between q (s) and q (s′), which governs how
much observing the response r distinguishes between the two datasets, as stated in the next lemma.

We note that the first part of this definition can be viewed as a refined version of zCDP (Definition
B.18), where the bound on the Rényi divergence (Definition B.5) is a function of the sample sets

5This quantity is sometimes referred to as privacy loss in the context of differential privacy, or information
density in the context of information theory.

6The requirement for the range 0 ≤ α ≤ 1 might appear somewhat counter-intuitive, and results from
the fact that φ provides simultaneously a bound on the stability loss random variable’s mean (the − (α− 1)

coefficient) and variance proxy (the (α− 1)2 coefficient), as discusses in Definitions B.17, B.18.
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and the query. As for the second part, since the bound depends on the queries, which themselves
are random variables, it should be viewed as a bound on the Rényi dissimilarity notion that we
introduce in the appendix (Definition B.9). This kind of extension is not limited to Rényi divergence,
as discussed in Appendix B.
Lemma 4.3 (Gaussian mechanism is PC). Given η > 0 and an analyst A, if M is a Gaussian

mechanism with noise parameter η, then it is φ-PC for φ (s, s′; q) :=
(q(s)−q(s′))

2

2η2 and φ-PC with

respect to A for φ (s, s′; v) :=
∥q̄v(s)−q̄v(s′)∥2

2η2 .

To leverage this stability notion in an adaptive setting, it must hold under adaptive composition, which
we prove in the next theorem.
Theorem 4.4 (PC composition). Given k ∈ N, a similarity function over responses φ, and an
analyst A issuing k queries, if a mechanism M is φ-PC, then it is φ̃-PC with respect to A, where
φ̃ (s, s′; v) :=

∑k
i=1 φ (s, s′; qi).

Before we state the stability properties of PC mechanisms, we first transition to its element-wise
version, which while less general than the original definition, is more suited for our use.
Lemma 4.5 (Element-wise PC). Given a similarity function φ and an analyst A, if a mechanism M
that is φ-PC with respect to A receives an iid sample from Xn, then for any two elements x, y ∈ X
and α ≥ 1 we have

E
V∼D(· | x)

[exp ((α− 1) (ℓ (x, y;V )− αφ (x, y;V )))] ≤ 1

and
E

V∼D(· | x)
[exp ((α− 1) (ℓ (x;V )− αφ (x;V )))] ≤ 1,

where φ (x, y; v) := sup
s∈Xn−1

(φ ((s, x) , (s, y) ; v)) and φ (x; v) := ln
(

E
Y∼D

[
eφ(x,Y ;v)

])
.

Finally, we bound the Bayes stability of PC mechanisms.
Theorem 4.6 (PC stability). Given a similarity function over views φ and an analyst A, if a
mechanism M that is φ-PC with respect to A receives an iid sample from Xn, then for any ϵ, δ > 0,
ϕ ≥ E

X∼D,S∼D(n)

V ∼M(S,A)

[φ (X;V )], we have

Pr
S∼D(n)

V ∼M(S,A),Q∼A(V )

[|Q (Dv
X )−Q (DX )| > σQϵ]

≤ Pr
S∼D(n)

V ∼M(S,A)

[
E

X∼D

[
e27ln(

1
δ )(φ(X;V )+ϕ)

]
> 1 +

ϵ2

6

]
+O

(
eϕδ

ϕϵ2

)
,

where φ (x; v) is as defined in Lemma 4.5.

An exact version of the bound can be found in Theorem D.10.

Proof outline. From Corollary 3.6,

Pr
S∼D(n)

V ∼M(S,A),Q∼A(V )

[|Q (Dv
X )−Q (DX )| > σQϵ] ≤ Pr

S∼D(n)

V ∼M(S,A)

[
Dχ2 (Dv

X ∥DX ) > ϵ2
]
.

Denoting ε (x; v) := φ (x; v) + ϕ+ 4
√

ln
(
1
δ

)
(φ (x; v) + ϕ), this can be bounded by

Pr
S∼D(n)

V ∼M(S,A)

[
Dχ2 (Dv

X ∥DX ) > E
X∼D

[(
eε(X;V ) − 1

)2]
+
ϵ2

2

]
+ Pr

S∼D(n)

V ∼M(S,A)

[
E

X∼D

[(
eε(X;V ) − 1

)2]
>
ϵ2

2

]
.

We then show via algebraic manipulation that this second term can be bounded using the inequality

E
X∼D

[(
eε(X;v) − 1

)2]
≤ 3

(
E

X∼D

[
e27ln(

1
δ )(φ(X;v)+ϕ)

]
− 1
)
,
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and, recalling the definition of the chi square divergence between P and Q (Definition B.2)

Dχ2 (P∥Q) := E
X∼D2

[(
P (X)
Q(X) − 1

)2]
, the first term can be bounded using Markov’s inequality

followed by the Cauchy-Schwarz inequality by the term:

2

ϵ2
E

X∼D,S∼D(n)

V ∼M(S,A)

[(
D (V |X)

D (V )
− 1

)2

· 1B(ε) ((X,V ))

]

≤ 2

ϵ2

√√√√√√√
∗︷ ︸︸ ︷ E

X∼D,S∼D(n)

V ∼M(S,A)

[(
D (V |X)

D (V )

)4
]
+ 1

 · ∗∗︷ ︸︸ ︷
Pr

X∼D,S∼D(n)

V ∼M(S,A)

[(X,V ) ∈ B (ε)]

where B (ε) :=
{
(x, v) ∈ X × V |

∣∣∣ln(D(v | x)
D(v)

)∣∣∣ > ε (x; v)
}

.

We then bound the quantity * by O
(
eϕ
)
, and we bound ** by O

(
δ2

ϕ

)
, which completes the

proof.

Combining this theorem with Theorem 3.4 we get that PC and sample accuracy together imply
distribution accuracy.

5 Variance-based generalization guarantees for the Gaussian mechanism

In this section we leverage the theorems of the previous sections to prove variance-based general-
ization guarantees for the Gaussian mechanism under adaptive data analysis. All proofs from this
section appear in Appendix E.

We first provide generalization guarantees for bounded queries.
Theorem 5.1 (Generalization guarantees for bounded queries). Given k ∈ N; ∆, σ, ϵ ≥ 0; 0 < δ ≤
1
e ; and an analyst A issuing k ∆-bounded linear queries with variance bounded by σ2, if M is a

Gaussian mechanism with noise parameter η = Θ

(
σ

√√
k

n

)
that receives an iid dataset of size

n = Ω
(
max

{
∆
ϵ ,

σ2

ϵ2

}√
k · ln

(
kσ
δϵ

))
, then M is (ϵ, δ)-distribution accurate.

An exact version of the bound can be found in Theorem E.4.

This theorem provides significant improvement over similar results that were achieved using differen-
tial privacy (see, e.g., Theorem 13 in Jung et al. [2020], which is defined for ∆ = 1), by managing to
replace the ∆2 term with σ2. The remaining dependence on ∆ is inevitable, in the sense that such a
dependence is needed even for non-adaptive analysis. This improvement resembles the improvement
provided by Bernstein’s inequality over Hoeffding’s inequality.

This generalization guarantee, which nearly avoids dependence on the range of the queries, begs the
question of whether it is possible to extend these results to handle unbounded queries. Clearly such a
result would not be true without some bound on the tail distribution for a single query, so we focus in
the next theorem on the case of sub-Gaussian queries. Formally, we will consider the case where
q (X)− q (D) is a sub-Gaussian random variable, for all queries.
Definition 5.2 (Sub-Gaussian random variable). Given σ > 0, a random variable X ∈ R will be
called σ2-sub-Gaussian if for any λ ∈ R we have E

[
eλX

]
≤ eλ2

2 ν .

We can now state our result for unbounded queries.
Theorem 5.3 (Generalization guarantees for sub-Gaussian queries). Given k ∈ N; σ, ϵ ≥ 0; 0 <
δ ≤ 1

e ; and an analyst A issuing k σ2-sub-Gaussian linear queries, if M is a Gaussian mechanism

with noise parameter η = Θ

(
σ

√√
k

n

)
that receives an iid dataset of size n = Ω

(
σ2

ϵ2

√
kln
(
kσ
δϵ

))
,

then M is (ϵ, δ)-distribution accurate.
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An exact version of the bound can be found in Theorem E.10.

These results extend to the case where the variance (or variance proxy) of each query qi is bounded
by a unique value σ2

i , by simply passing this value to the mechanism as auxiliary information and
scaling the added noise ηi accordingly. Furthermore, using this approach we can quantify the extent
to which incorrect bounds affect the accuracy guarantee. Overestimating the bound on a query’s
variance would increase the error of the response to this query by a factor of square root of the ratio
between the assumed and the correct variance, while the error of the other responses would only
decrease. On the other hand, underestimating the bound on a query’s variance would only decrease
the error of the response to this query, while increasing the error of each subsequent query by a factor
of the square root of the ratio between the assumed and the correct variance, divided by the number
of subsequent queries. A formal version of this claim can be found in Section E.3.

6 Discussion

The contribution of this paper is two-fold. In Section 3, we provide a tight measure of the level of
overfitting of some query with respect to previous responses. In Sections 4 and 5, we demonstrate
a toolkit to utilize this measure, and use it to prove new generalization properties of fundamental
noise-addition mechanisms. The novelty of the PC definition stems replacing the fixed parameters
that appear in the differential privacy definition with a function of the datasets and the query. The
definition presented in this paper provides a generalization of zero-concentrated differential privacy,
and future work could study similar generalizations of other privacy notions, as discussed in Section
B.4.

One small extension of the present work would be to consider queries with range Rd. It would also
be interesting to extend our results to handle arbitrary normed spaces, using appropriate noise such as
perhaps the Laplace mechanism. It might also be possible to relax our assumption that data elements
are drawn iid to a weaker independence requirement. Furthermore, it would be interesting to explore
an extension from linear queries to general low-sensitivity queries.

We hope that the mathematical toolkit that we establish in Appendix B to analyze our stability notion
may find additional applications, perhaps also in context of privacy accounting. Furthermore, the
max divergence can be generalized analogously to the “dynamic” generalization of Rényi divergence
proposed in this paper (B.9), perhaps suggesting that this approach may be useful in analyzing other
mechanisms as well.

Our Covariance Lemma (3.5) shows that there are two possible ways to avoid adaptivity-driven
overfitting—by bounding the Bayes factor term, which induces a bound on |q (Dv)− q (D)|, as we
do in this work, or by bounding the correlation between q and K (·, v). This second option suggests
interesting directions for future work. For example, to capture an analyst that is non-worst-case in
the sense that she “forgets” some of the information that she has learned about the dataset, both the
posterior accuracy and the Bayes stability could be redefined with respect to the internal state of the
analyst instead of with respect to the full view. This could allow for improved bounds in the style
of Zrnic and Hardt [2019].
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A Formal definitions

A.1 Distributions of interest

Definition A.1 (Distributions over Xn and R). A distribution DXn , a query q, and a mechanism
M : Xn ×Q → R, together induce a set of distributions over Xn,R, and Xn ×R.

The conditional distribution Dq
R|Xn over R represents the probability to get r as the output of

M (s, q). That is, ∀s ∈ Xn, r ∈ R, ifR is countable,

Dq
R|Xn (r | s) := Pr

R∼M(s,q)
[R = r | s] ,

where the probability is taken over the internal randomness of M . In caseR is a measurable spaces,
it represents the probability density function (the Radon–Nikodym derivative).

The joint distribution Dq
(Xn,R) over Xn ×R represents the probability to sample a particular s and

get r as the output of M (s, q). That is, ∀s ∈ Xn, r ∈ R,

Dq
(Xn,R) (s, r) := DXn (s) ·Dq

R|Xn (r | s) .

The marginal distribution Dq
R over R represents the prior probability to get output r without any

knowledge of s. That is, ∀r ∈ R,

Dq
R (r) :=

∫
s∈Xn

Dq
(Xn,R) (s, r) dr.

The conditional distributionDq
Xn|R over Xn represents the posterior probability that the input dataset

to M was s, given that M (·, q) returns r. That is, ∀s ∈ Xn, r ∈ R,

Dq
Xn|R (s | r) :=

Dq
(Xn,R) (s, r)

Dq
R (r)

.

Definition A.2 (Distributions over X andR). The marginal distribution DX over X represents the
probability to get x by sampling a dataset and then sampling one element from that dataset uniformly
at random. That is, ∀x ∈ X ,

DX (x) :=

∫
s∈Xn

DXn (s) ·DX|Xn (x | s) ds,

where DX|Xn (x | s) denotes the probability to get x by sampling s uniformly at random.

The joint distribution Dq
(X ,R) over X ×R represents the probability to get x by sampling a dataset

uniformly at random and also get r as the output of M (·, q) from the same dataset. That is,
∀x ∈ X , r ∈ R,

Dq
(X ,R) (x, r) :=

∫
s∈Xn

DXn (s) ·DX|Xn (x | s) ·Dq
R|Xn (r | s) ds.

where DX|Xn (x | s) denotes the probability to get x by sampling s uniformly at random.

The conditional distribution Dq
X|R over X represents the probability to get x by sampling a dataset

uniformly at random, given the fact that we got r as the output of M (·, q) from that dataset. That is,
∀x ∈ X , r ∈ R,

Dr (x) := Dq
X|R (x | r) :=

∫
s∈Xn

Dq
Xn|R (s | r) ·DX|Xn (x | s) ds.

Although all of these definitions depend on DXn and M , we typically omit these from the notation
for simplicity, and usually omit the superscripts and subscripts entirely. We include them only when
necessary for clarity.

Though the conditional distributions Dq
R|X and Dq

X|R were not defined as the ratio between the joint
and marginal distribution, the analogue of Bayes’ rule still holds for these distributions. A formal
proof of this claim can be found in Appendix A in Shenfeld and Ligett [2019].
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A.2 A Formal treatment of adaptivity

Definition A.3 (Adaptive mechanism). Illustrated below, the adaptive mechanism AdpM : Xn×A →
Vk is a particular type of mechanism, which inputs an analyst as its query and which returns a view
as its response and is parametrized by a mechanism M and number of iterations k. Given a dataset
s and an analyst A as input, the adaptive mechanism iterates k times through the process where A
sends a query and auxiliary information to M and receives its response to that query on the dataset.
The adaptive mechanism returns the resulting sequence of k responses vk. Naturally, this requires A
to match M such that M ’s output can be A’s input, and vice versa.

If A is randomized, we add one more step at the beginning where AdpM randomly generates some
bits c—A’s “coin tosses.” In this case, vk := (c, r1, . . . , rik) and A receives the coin tosses as an
input as well. This addition turns qk+1 and θk+1 into a deterministic function of vi for any i ∈ N, a
fact that we later rely on. In this situation, the randomness of AdpM results both from the randomness
of the coin tosses and from that of M . We will denote M (s,A) := AdpM (s,A) for simplicity.

Adaptive mechanism AdpM
Input: s ∈ Xn, A ∈ A
Output: vk ∈ Vk
v0 ← ∅ or c
for i ∈ [k] :
(qi, θi)← A (vi−1)
ri ←M (s, qi, θi)
vi ← (vi−1, ri)

return vk

Using the adaptive mechanism we can extend the set of distributions presented in Definitions A.1 and
A.2, to distributions over V and X , with V taking the place ofR and A replacing q.
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B Divergence, dissimilarity, and stability measures

Given two probability distributions P,Q over some domain Ω, there are many useful measures of their
dissimilarity. In this section we develop what is as far as we know a new type of dissimilarity measure
between distributions, which generalizes the notion of divergences. We start by recalling several
common divergence measures in Section B.1. Next, Section B.2, we present in a generalization of
the divergence notion, where a scalar is replaced by a function, yielding dynamic measures which
we refer to as dissimilarities. We then prove (Section B.3) several convexity properties for max and
Rényi dissimilarities. Finally (Section B.4) we propose several novel stability measures which build
on the proposed dissimilarity measures and are used throughout the paper.

B.1 Divergence measures

Dissimilarity between distributions is typically measured using a divergence, that is, a function
receiving two distributions as input, and outputting a non-negative value which is equal to 0 if and
only if the two distributions are identical almost surely. One commonly used family of divergences
is the f -divergences, defined as Df (P∥Q) := E

ω∼Q

[
f
(

P (ω)
Q(ω)

)]
. Here we recall several instances

which are used in this paper.
Definition B.1 (Total variation distance). The total variation distance (also known as statistical
distance) between P and Q is defined as

DTV (P∥Q) :=
1

2
E

ω∼Q

[∣∣∣∣P (ω)

Q (ω)
− 1

∣∣∣∣] .
Definition B.2 (Chi-square divergence). The Chi-square divergence (also known as Pearson’s χ2

divergence) between P and Q is defined as

Dχ2 (P∥Q) := E
ω∼Q

[(
P (ω)

Q (ω)
− 1

)2
]
.

Definition B.3 (KL divergence). The Kullback–Leibler divergence (or KL divergence) between P
and Q is defined as

DKL (P∥Q) := E
ω∼P

[
ln

(
P (ω)

Q (ω)

)]
= E

ω∼Q

[
P (ω)

Q (ω)
· ln
(
P (ω)

Q (ω)

)]
.

Not all divergences are f -divergences. For example:
Definition B.4 ((δ-Approximate) max divergence). Given δ ≥ 0, the δ-approximate max divergence
between P and Q is defined as

Dδ
∞ (P∥Q) := sup

ω⊆Ω |P (ω)≥δ

(
ln

(
P (ω)− δ
Q (ω)

))
.

The case of δ = 0 is simply called the max divergence and is denoted by D∞.

These two last definitions are generalized by the following one:
Definition B.5 (Rényi divergence). Given α ∈ [0,∞], the Rényi divergence between two probability
distributions P and Q is defined as

Dα (P∥Q) :=
1

α− 1
ln

(
E

ω∼P

[(
P (ω)

Q (ω)

)α−1
])

.

The cases of α = 0, 1, and∞ are defined using the limit and converge to −ln
(

Pr
ω∼Q

[ω > 0]

)
, the

KL divergence, and the max divergence, respectively.7.
7This definition generalizes the original one introduced by Alfréd Rényi to include the range [0, 1), which

will become useful later in Theorem B.12. For more details, see Van Erven and Harremos [2014]
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B.2 Dissimilarity measures

In this section we present a generalization of the Rényi divergence and the max divergence. We start
by recalling two useful identities that are a direct result of the definitions.

Fact B.6. Given ϵ, δ ≥ 0 and two probability distributions P,Q, we have Dδ
∞ (P∥Q) ≤ ϵ if and

only if for any ω ⊆ Ω, Pr
ω∼P

[ω ∈ ω] ≤ eϵ Pr
ω∼Q

[ω ∈ ω] + δ.

Fact B.7. Given ϕ ≥ 0, α ≥ 1, and two probability distributions P,Q, we have Dα (P∥Q) ≤ ϕ if
and only if

E
ω∼P

[
exp

(
(α− 1) ln

(
P (ω)

Q (ω)

))]
≤ e(α−1)ϕ.

Motivated by these two identities, we generalize these divergences by replacing the scalar bounding
the divergence by a function, leading to a more “dynamic” measure that can no longer be regarded a
divergence, hence the names.

We first generalize the notion of max divergence.

Definition B.8 (Max dissimilarity). Given δ ≥ 0, and a non-negative function ε : Ω→ R+, we say
the (δ-approximate) max dissimilarity between P and Q is bounded by ε if for any ω ⊆ Ω,∫

ω∈ω

P (ω) dω ≤
∫
ω∈ω

eε(ω)Q (ω) dω + δ.

We denote this fact by P ≤+
(ε,δ) Q.

Similarly, we denote P ≤−
(ε,δ) Q if for any ω ⊆ Ω,∫

ω∈ω

e−ε(ω)P (ω) dω ≤
∫
ω∈ω

Q (ω) dω + δ.

Next we generalize the notion of Rényi divergence. This dissimilarity measure serves as the mathe-
matical basis for the new stability measure that we introduce (Definition 4.2).

Definition B.9 (Rényi dissimilarity). Given α ≥ 0 and a non-negative function φ : Ω→ R+, we say
the α-Rényi dissimilarity between P and Q is bounded by φ if

E
ω∼P

[
exp

(
(α− 1)

(
ln

(
P (ω)

Q (ω)

)
− φ (ω)

))]
≤ 1.

The following theorem states several implications between the various max dissimilarity definitions.

Theorem B.10. Given δ ≥ 0, a non-negative function ε : Ω→ R+, and two distributions P,Q:

1. Pr
ω∼P

[
ln
(

P (ω)
Q(ω)

)
> ε (ω)

]
≤ δ implies P ≤+

(ε,δ) Q,

2. P ≤+
(ε,δ) Q implies P ≤−

(ε,δ) Q,

3. P ≤+
(ε,δ) Q implies Pr

ω∼P

[
ln
(

P (ω)
Q(ω)

)
> ε (ω) + a

]
< eaδ

ea−1 for any a > 0, and

4. Q ≤−
(ε,δ) P implies Pr

ω∼P

[
ln
(

Q(ω)
P (ω)

)
> ε (ω) + a

]
< δ

ea−1 for any a > 0.

Proof. Part 1: Denoting Bε (P,Q) :=
{
ω ∈ Ω | ln

(
P (ω)
Q(ω)

)
> ε (ω)

}
we have
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∫
ω∈ω

P (ω) dω =

∫
ω∈ω\Bε(P,Q)

P (ω) dω +

∫
ω∈ω∩Bε(P,Q)

P (ω) dω

(a)

≤
∫
ω∈ω\Bε(P,Q)

eε(ω)Q (ω) dω +

∫
ω∈Bε(P,Q)

P (ω) dω

=

∫
ω∈ω\Bε(P,Q)

eε(ω)Q (ω) dω + Pr
ω∼P

[
ln

(
P (ω)

Q (ω)

)
> ε (ω)

]
(b)

≤
∫
ω∈ω

eε(ω)Q (ω) dω + δ,

where (a) results from the definition of Bε (P,Q) and (b) from the assumption that
Pr

ω∼P

[
ln
(

P (ω)
Q(ω)

)
> ε (ω)

]
≤ δ.

Part 2: Denoting δ (ω) := max
{
P (ω)− eε(ω)Q (ω) , 0

}
, which implies P (ω) ≤ eε(ω)Q (ω) +

δ (ω), we have

∫
ω∈ω

e−ε(ω)P (ω) dω
(a)

≤
∫
ω∈ω

e−ε(ω)
(
eε(ω)Q (ω) + δ (ω)

)
dω

=

∫
ω∈ω

(
Q (ω) + e−ε(ω) · δ (ω)

)
dω

(b)

≤
∫
ω∈ω

Q (ω) dω +

∫
ω∈ω

δ (ω) dω

(c)

≤
∫
ω∈ω

Q (ω) dω + δ

where (a) results from the fact the inequality holds for any element ω ∈ Ω, (b) from the non-negativity
of ε, and (c) from the assumption that P ≤+

(ε,δ) Q.

Part 3: Denoting ϵ+Q := ln

(
E

ω∼Q

[
eε(X)

])
and Q+

P (ω) := eε(ω)−ϵ+QQ (ω), we notice that from the

definition Q+
P is a valid distribution, since

∫
ω∈Ω

Q+
P (ω) dω = e−ϵ+Q

∫
ω∈Ω

eε(ω)Q (ω) dω =
1

E
ω∼Q

[
eε(X)

] E
ω∼Q

[
eε(X)

]
= 1.

We first transform the P ≤+
(ε,δ) Q bound into a bound on the max divergence between P and Q+

P .

Pr
ω∼P

[ω ∈ ω]
(a)

≤
∫
ω∈ω

eε(ω)Q (ω) dω + δ
(b)
= eϵ

+
Q

∫
ω∈ω

Q+
P (ω) dω + δ = eϵ

+
Q Pr
ω∼Q+

P

[ω ∈ ω] + δ,

where (a) results from the assumption that P ≤+
(ε,δ) Q and (b) from the definition of Q+

P (ω).

Next we denote Ba
ε (P,Q) :=

{
ω ∈ Ω | ln

(
P (ω)
Q(ω)

)
> ε (ω) + a

}
, and notice that for any ω ∈

Ba
ε (P,Q) we have P (ω) > eε(ω)+aQ (ω) = eϵ

+
Q+aQ+

P (ω), so
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Pr
ω∼P

[ω ∈ Ba
ε (P,Q)]

(a)

≤ eϵ
+
Q Pr
ω∼Q+

P

[ω ∈ Ba
ε (P,Q)] + δ

= eϵ
+
Q

∫
ω∈Ba

ε (P,Q)

Q+
P (ω) dω + δ

(b)
< eϵ

+
Q

∫
ω∈Ba

ε (P,Q)

e−(ϵ
+
Q+a)P (ω) dω + δ

= e−a Pr
ω∼P

[ω ∈ Ba
ε (P,Q)] + δ

where (a) results from the previous bound and (b) from the fact the inequality holds for any element
ω ∈ Ω.

Reordering the terms we get

Pr
ω∼Q

[
ln

(
P (ω)

Q (ω)

)
> ε (ω) + a

]
= Pr

ω∼P
[ω ∈ Ba

ε (P,Q)] <
eaδ

ea − 1
.

Part 4: Denoting ϵ−Q := −ln
(

E
ω∼Q

[
e−ε(ω)

])
and Q−

P (ω) := e−ε(ω)+ϵ−QQ (ω), we notice that from

the definition Q−
P is a valid distribution, since∫

ω∈Ω

Q−
P (ω) dω = eϵ

−
Q

∫
ω∈Ω

e−ε(ω)Q (ω) dω =
1

E
ω∼Q

[
e−ε(ω)

] E
ω∼Q

[
e−ε(ω)

]
= 1.

We first transform the Q ≤−
(ε,δ) P bound into a bound on the max divergence between Q−

P and P .

Pr
ω∼Q−

P

[ω ∈ ω]
(a)
= eϵ

−
Q

∫
ω∈ω

e−ε(ω)Q (ω) dω
(b)

≤ eϵ
−
Q

(∫
ω∈ω

P (ω) + δ

)
= eϵ

−
Q Pr
ω∼P

[ω ∈ ω]+eϵ
−
Qδ

where (a) results from the definition of Q−
P and (b) from the assumption that Q ≤−

(ε,δ) P .

Next we denote Ba
ε (Q,P ) :=

{
ω ∈ Ω | ln

(
Q(ω)
P (ω)

)
> ε (ω) + a

}
, and notice that for any ω ∈

Ba
ε (Q,P ) we have P (ω) < e−(ε(ω)+a)Q (ω) = e−(ϵ

−
Q+a)Q−

P (ω), so

Pr
ω∼P

[ω ∈ Ba
ε (Q,P )] =

∫
ω∈Ba

ε (Q,P )

P (ω) dω

(a)
<

∫
ω∈Ba

ε (Q,P )

e−(ϵ
−
Q+a)Q−

P (ω) dω

= e−(ϵ
−
Q+a) Pr

ω∼Q−
P

[ω ∈ Ba
ε (Q,P )]

(b)

≤ e−(ϵ
−
Q+a)

(
eϵ

−
Q Pr
ω∼P

[ω ∈ Ba
ε (Q,P )] + eϵ

−
Qδ
)

= e−a
(

Pr
ω∼P

[ω ∈ Ba
ε (Q,P )] + δ

)
where (a) results from the fact the inequality holds for any element ω ∈ Ω and (b) from the previous
bound.

Reordering the terms we get

Pr
ω∼P

[
ln

(
Q (ω)

P (ω)

)
> ε (ω) + a

]
= Pr

ω∼P
[ω ∈ Ba

ε (Q,P )] <
δ

ea − 1
.
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Next we prove an important connection between the two dissimilarity measures, starting with a
supporting lemma which is a slight variation of Theorem 2.7 in Victor et al. [2007]. This technique is
sometimes referred to as the method of mixtures.

Lemma B.11. Given two jointly distributed random variables (A,B) ∼ D, if

E
(A,B)∼D

[
exp

(
λA− λ2B2

2

)]
≤ 1 for all λ ∈ R, then for any δ, b > 0,

Pr
(A,B)∼D

[
|A| > 2

√
ln

(
1

δ

)
(B2 + b2)

]
≤ δ

√√√√ E
A,B∼D

[√
B2

b2
+ 1

]
.

As Victor et al. [2007] note, at first glance this claim might seem trivial, and one can expect to prove
it by simply optimizing over λ to show E

A,B,∼D

[
exp

(
A

2B2

)]
≤ 1 and combining with Markov’s

inequality. The problem is, the optimal λ depends on the value of B which is a random variables,
while λ must be set beforehand. To solve this, we define a distribution over λ and use Fubini’s
theorem.

Proof. Consider a Gaussian distribution over λ with parameters µ = 0, σ = 1
b .

1
(a)

≥ E
λ∼N(0, 1

b2
)

[
E

A,B,∼D

[
exp

(
λA− λ2B2

2

)]]
(b)
= E

A,B,∼D

[
E

λ∼N(0, 1
b2
)

[
exp

(
λA− λ2B2

2

)]]

= E
A,B,∼D

[
b√
2π

∫ ∞

−∞
exp

(
λA− λ2B2

2

)
exp

(
−λ

2b2

2

)
dλ

]
= E

A,B,∼D

[
b√
2π

∫ ∞

−∞
exp

(
−B

2 + b2

2

(
λ2 − 2λ

A

B2 + b2

))
dλ

]
(c)
= E

A,B,∼D

[
b√

B2 + b2
exp

(
A2

2 (B2 + b2)

) √
B2 + b2√

2π

∫ ∞

−∞
exp

(
−B

2 + b2

2

(
λ− A

B2 + b2

)2
)
dλ

]

(d)
= E

A,B,∼D

 b√
B2 + b2

exp

(
A2

2 (B2 + b2)

)
E

λ∼N
(

A
B2+b2

, 1
B2+b2

) [1]


= E
A,B,∼D

[
b√

B2 + b2
exp

(
A2

2 (B2 + b2)

)]
.

where (a) results from the fact the inequality E
A,B,∼D

[
exp

(
λA− λ2B2

2

)]
≤ 1 holds for all λ, which

implies it holds for the expectation taken with respect to any distribution over λ as well, (b) results
from Fubini’s theorem, (c) is simply completing the square, and (d) from the definition of the Gaussian
distribution.

20



Using this bound we get

Pr
A,B,∼D

[
|A| > 2

√
ln

(
1

δ

)
(B2 + b2)

]

= Pr
A,B,∼D

[
exp

(
A2

4 (B2 + b2)

)
>

1

δ

]
(a)

≤ δ E
A,B,∼D

[
exp

(
A2

4 (B2 + b2)

)]

= δ E
A,B,∼D

√√B2 + b2

b

√
b√

B2 + b2
exp

(
A2

4 (B2 + b2)

)
(b)

≤ δ

√√√√ E
A,B,∼D

[√
B2 + b2

b

]
E

A,B,∼D

[
b√

B2 + b2
exp

(
A2

2 (B2 + b2)

)]
(c)

≤ δ

√√√√ E
A,B,∼D

[√
B2

b2
+ 1

]
,

where (a) results from Markov’s inequality, (b) from the Cauchy-Schwarz inequality, and (c) from the
previous inequality.

We can now prove the implication Theorem.
Theorem B.12. Given a non-negative function φ : Ω → R+ and two distributions P,Q,
if the α-Rényi dissimilarity between P and Q is bounded by αφ for any α ≥ 0, then

Pr
ω∼P

[∣∣∣ln(P (ω)
Q(ω)

)∣∣∣ > ε (ω)
]
≤ δ

√
E

ω∼P

[√
φ(ω)
ϕ + 1

]
for any ϕ, δ > 0, where ε (ω) := φ (ω) +

2
√
2ln
(
1
δ

)
(φ (ω) + ϕ).

Proof. Denoting A := ln
(

P (ω)
Q(ω)

)
− φ (ω) and B :=

√
2φ (ω), for any λ ≥ 0 we denote α = λ+ 1

and from the assumption we get that

E
A,B∼D

[
exp

(
λA− λ2B2

2

)]
(a)

≤ E
ω∼P

[
exp

(
(α− 1)

(
ln

(
P (ω)

Q (ω)

)
− αφ (ω)

))]
(b)

≤ 1

For any λ < 0 we denote α = −λ and from the assumption we get that

E
A,B∼D

[
exp

(
λA− λ2B2

2

)]
(a)

≤ E
ω∼P

[
exp

(
λ

(
ln

(
P (ω)

Q (ω)

)
− (λ+ 1)φ (ω)

))]
(c)
= E

ω∼P

[
exp

(
α

(
ln

(
Q (ω)

P (ω)

)
− (α− 1)φ (ω)

))]
= E

ω∼P

[(
Q (ω)

P (ω)

)α

exp (−α (α− 1)φ (ω))

]
(d)
= E

ω∼Q

[(
Q (ω)

P (ω)

)α−1

exp (−α (α− 1)φ (ω))

]

= E
ω∼Q

[
exp

(
(α− 1)

(
ln

(
Q (ω)

P (ω)

)
− αφ (ω)

))]
(b)

≤ 1

where (a) results from the definition of λ, (b) from the Rényi dissimilarity assumption, (c) from the
fact ln

(
a
b

)
= −ln

(
b
a

)
, and (d) is a renormalization step.
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Combining the two with Lemma B.11 and setting ϕ := 2b2 we get

Pr
ω∼P

[∣∣∣∣ln(P (ω)

Q (ω)

)∣∣∣∣ > ε (ω)

]
= Pr

ω∼P

[∣∣∣∣ln(P (ω)

Q (ω)

)∣∣∣∣ > φ (ω) + 2

√
2ln

(
1

δ

)
(φ (ω) + ϕ)

]
(a)

≤ Pr
ω∼P

[∣∣∣∣ln(P (ω)

Q (ω)

)
− φ (ω)

∣∣∣∣ > +2

√
2ln

(
1

δ

)
(φ (ω) + ϕ)

]

= Pr
(A,B)∼D

[
|A| > 2

√
ln

(
1

δ

)
(B2 + b2)

]
(b)

≤ δ

√√√√ E
A,B∼D

[√
B2

b2
+ 1

]

= δ

√√√√ E
ω∼P

[√
φ (ω)

ϕ
+ 1

]
,

where (a) results from the triangle inequality and (b) from Lemma B.11.

B.3 Convexity

Next we prove some convexity results for max and Rényi dissimilarities.

Theorem B.13 (Max dissimilarity convexity). Given λ ∈ (0, 1), δi ≥ 0, distributions Pi, Qi, and
non-negative functions εi : ω → R+ for i ∈ {0, 1}, denote Pλ := λP0 + (1− λ)P1, Qλ :=
λQ0 + (1− λ)Q1, ελ (ω) := ln

(
λeε0(ω) + (1− λ) eε1(ω)

)
, and δλ := λδ0 + (1− λ) δ1.

1. Joint quasi-convexity: If Pi ≤+
(εi,δi)

Qi for i ∈ {0, 1}, then Pλ ≤+
(εmax,δλ)

Qλ, where
εmax (ω) := max {ε0 (ω) , ε1 (ω)}

2. Left-hand log-convexity: If Pi ≤+
(εi,δi)

Q for i ∈ {0, 1}, then Pλ ≤+
(ελ,δλ)

Q

3. Right-hand log-convexity: If P ≤−
(εi,δi)

Qi for i ∈ {0, 1}, then P ≤−
(ελ,δλ)

Qλ

Proof. Part 1: For any ω ⊆ Ω,∫
ω∈ω

Pλ (ω) dω
(a)
=

∫
ω∈ω

(λP0 (ω) + (1− λ)P1 (ω)) dω

= λ

∫
ω∈ω

P0 (ω) dω + (1− λ)
∫
ω∈ω

P1 (ω) dω

(b)

≤ λ

(∫
ω∈ω

eε0(ω)Q0 (ω) dω + δ0

)
+ (1− λ)

(∫
ω∈ω

eε1(ω)Q1 (ω) dω + δ1

)
(c)

≤ λ

(∫
ω∈ω

eεmax(ω)Q0 (ω) dω + δ0

)
+ (1− λ)

(∫
ω∈ω

eεmax(ω)Q1 (ω) dω + δ1

)
(d)
=

∫
ω∈ω

eεmax(ω)Qλ (ω) dω + δλ

where (a) results from the definition of Pλ, (b) from the assumption Pi ≤+
(εi,δi)

Qi, (c) from the
definitions of εmax and δλ, and (d) from the definition of Qλ.
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Part 2: For any ω ⊆ Ω,

∫
ω∈ω

Pλ (ω) dω
(a)
=

∫
ω∈ω

(λP0 (ω) + (1− λ)P1 (ω)) dω

= λ

∫
ω∈ω

P0 (ω) dω + (1− λ)
∫
ω∈ω

P1 (ω) dω

(b)

≤ λ

(∫
ω∈ω

eε0(ω)Q (ω) dω + δ0

)
+ (1− λ)

(∫
ω∈ω

eε1(ω)Q (ω) dω + δ1

)
(c)
=

∫
ω∈ω

(
λeε0(ω) + (1− λ) eε1(ω)

)
Q (ω) dω + δλ

(d)
=

∫
ω∈ω

eελ(ω)Q (ω) dω + δλ

where (a) results from the definition of Pλ, (b) from the assumption Pi ≤+
(εi,δi)

Q, (c) from the
definition of δλ, and (d) from the definition of ελ.

Part 3: For any ω ⊆ Ω,

∫
ω∈ω

e−ελ(ω)P (ω) dω
(a)
=

∫
ω∈ω

1

λeε0(ω) + (1− λ) eε1(ω)
P (ω) dω

(b)

≤
∫
ω∈ω

(
λe−ε0(ω) + (1− λ) e−ε1(ω)

)
P (ω) dω

= λ

(∫
ω∈ω

e−ε0(ω)P (ω) dω

)
+ (1− λ)

(∫
ω∈ω

e−ε1(ω)P (ω) dω

)
(c)

≤ λ

(∫
ω∈ω

Q0 (ω) dω + δ0

)
+ (1− λ)

(∫
ω∈ω

Q1 (ω) dω + δ1

)
(d)
=

∫
ω∈ω

Qλ (ω) dω + δλ

where (a) results from the definition of ελ, (b) from Jensen’s inequality for the convex function 1
x , (c)

from the assumption P ≤−
(εi,δi)

Qi, and (d) from the definitions of Qλ and δλ.

Theorem B.14 (Rényi dissimilarity convexity). Given α ≥ 1, λ ∈ (0, 1), and non-negative functions
φi : ω → R+ for i ∈ {0, 1}, denote Pλ := λP0 + (1− λ)P1, Qλ := λQ0 + (1− λ)Q1, and
φλ (ω) := λφ0 (ω) + (1− λ)φ1 (ω).

1. Joint quasi-convexity: If the α-Rényi dissimilarity between Pi and Qi is bounded by φi for
i ∈ {0, 1}, then the α-Rényi dissimilarity between Pλ and Qλ is bounded by φmax, where
φmax (ω) := max {φ0 (ω) , φ1 (ω)}

2. Right-hand convexity: If the α-Rényi dissimilarity between P and Qi is bounded by φi for
i ∈ {0, 1}, then the α-Rényi dissimilarity between P and Qλ is bounded by φλ

Proof. The case of α = 1 is trivial for both parts, so we focus on the α > 1 case.
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Part 1: We first notice that
Pλ (ω) = λP0 (ω) + (1− λ)P1 (ω)

= λ (Q0 (ω))
α−1
α

P0 (ω)

(Q0 (ω))
α−1
α

+ (1− λ) (Q1 (ω))
α−1
α

P1 (ω)

(Q1 (ω))
α−1
α

(a)

≤
(
λ
(
(Q0 (ω))

α−1
α

) α
α−1

+ (1− λ)
(
(Q1 (ω))

α−1
α

) α
α−1

)α−1
α

·

(
λ

(
P0 (ω)

(Q0 (ω))
α−1
α

)α

+ (1− λ)

(
P1 (ω)

(Q1 (ω))
α−1
α

)α) 1
α

= (λQ0 (ω) + (1− λ)Q1 (ω))
α−1
α ·

(
λ

(P0 (ω))
α

(Q0 (ω))
α−1 + (1− λ) (P1 (ω))

α

(Q1 (ω))
α−1

) 1
α

= Qλ (ω) ·

(
λ
P0 (ω)

Qλ (ω)

(
P0 (ω)

Q0 (ω)

)α−1

+ (1− λ) P1 (ω)

Qλ (ω)

(
P1 (ω)

Q1 (ω)

)α−1
) 1

α

where (a) results from the generalized version of Hölder’s inequality, E [X · Y ] ≤
(
E [Xp]

) 1
p ·(

E [Y q]
) 1

q

for any p, q > 0 such that 1
p + 1

q = 1.

Using this bound we get

E
ω∼Pλ

[
exp

(
(α− 1)

(
ln

(
Pλ (ω)

Qλ (ω)

)
− φmax (ω)

))]
= E

ω∼Pλ

[(
Pλ (ω)

Qλ (ω)

)α−1

exp (− (α− 1)φmax (ω))

]

= E
ω∼Qλ

[(
Pλ (ω)

Qλ (ω)

)α

exp (− (α− 1)φmax (ω))

]
(a)

≤ E
ω∼Qλ

[(
λ
P0 (ω)

Qλ (ω)

(
P0 (ω)

Q0 (ω)

)α−1

+ (1− λ) P1 (ω)

Qλ (ω)

(
P1 (ω)

Q1 (ω)

)α−1
)
exp (− (α− 1)φmax (ω))

]

= λ E
ω∼Qλ

[
P0 (ω)

Qλ (ω)

(
P0 (ω)

Q0 (ω)

)α−1

exp (− (α− 1)φmax (ω))

]

+ (1− λ) E
ω∼Qλ

[
P1 (ω)

Qλ (ω)

(
P1 (ω)

Q1 (ω)

)α−1

exp (− (α− 1)φmax (ω))

]
(b)
= λ E

ω∼P0

[
exp

(
(α− 1)

(
ln

(
P0 (ω)

Q0 (ω)

)
− φmax (ω)

))]
+ (1− λ) E

ω∼P1

[
exp

(
(α− 1)

(
ln

(
P1 (ω)

Q1 (ω)

)
− φmax (ω)

))]
(c)

≤ λ E
ω∼P0

[
exp

(
(α− 1)

(
ln

(
P0 (ω)

Q0 (ω)

)
− φ0 (ω)

))]
+ (1− λ) E

ω∼P1

[
exp

(
(α− 1)

(
ln

(
P1 (ω)

Q1 (ω)

)
− φ1 (ω)

))]
(d)

≤ 1

where (a) results from the previous inequality, (b) is a renormalization step, (c) from the the definition
of φmax, and (d) from the Rényi dissimilarity assumption.
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Part 2:

E
ω∼P

[
exp

(
(α− 1)

(
ln

(
P (ω)

Qλ (ω)

)
− φλ (ω)

))]
= E

ω∼P

[
exp

(
(α− 1)

(
ln

(
P (ω)

λQ0 (ω) + (1− λ)Q1 (ω)

)
− φλ (ω)

))]
(a)

≤ E
ω∼P

[
exp

(
(α− 1)

(
λln

(
P (ω)

Q0 (ω)

)
+ (1− λ) ln

(
P (ω)

Q1 (ω)

)
− φλ (ω)

))]
(b)
= E

ω∼P

[
exp

(
λ (α− 1)

(
ln

(
P (ω)

Q0 (ω)

)
− φ0 (ω)

)
+ (1− λ) (α− 1)

(
ln

(
P (ω)

Q1 (ω)

)
− φ1 (ω)

))]
(c)

≤ λ E
ω∼P

[
exp

(
(α− 1)

(
ln

(
P (ω)

Q0 (ω)

)
− φ0 (ω)

))]
+ (1− λ) E

ω∼P

[
exp

(
(α− 1)

(
ln

(
P (ω)

Q1 (ω)

)
− φ1 (ω)

))]
(d)

≤ 1

where (a) results from Jensen’s inequality for the convex function ln
(
1
x

)
, (b) from the definition of

φλ, (c) from Jensen’s inequality for the convex function ex over the λ weighted combination, and (d)
from the Rényi dissimilarity assumption.

B.4 Stability measures

The various divergence and dissimilarity measures considered in the previous sections were used to
define several stability notions; the divergence (dissimilarity) between the distributions over responses
induced by two differing input datasets serves as a measure of the stability of the mechanism
producing those responses.

One major application of stability notions is in privacy-preserving mechanisms.

Definition B.15 (Differential privacy [Dwork et al., 2006]). Given ϵ, δ ≥ 0, a mechanism M will
be called (ϵ, δ)-differentially private (or DP, for short) if for any two datasets s, s′ ∈ Xn that differ
only in one element, and any query q ∈ Q, the δ-approximate max divergence between the two
distributions defined overR by M (s, q) and M (s′, q) is bounded by ϵ.

As in Definition 2.1, δ can be viewed as a function of ϵ. In this case, δ is essentially a tail bound on
the distribution of the privacy loss random variable (Definition 4.1). An alternative stability notion
can be based on a bound on the moments of the stability loss.

Definition B.16 (Rényi differential privacy [Mironov, 2017]). Given α, ϕ ≥ 0, a mechanism M will
be called (α, ϕ)-Rényi differentially private (or RDP, for short) if for any two datasets s, s′ ∈ Xn

that differ only in one element, and any query q ∈ Q, the α-Rényi divergence between the two
distributions defined overR by M (s, q) and M (s′, q) is bounded by ϕ.

The following two definitions bound the shape of the privacy loss curve.

Definition B.17 (Concentrated differential privacy [Dwork and Rothblum, 2016]). Given µ, σ ≥ 0,
a mechanism M will be called (µ, σ)-concentrated differentially private (or CDP, for short) if for
any two datasets s, s′ ∈ Xn that differ only in one element, and any query q ∈ Q, the stability
loss random variable (Definition 4.1) is a σ2-sub-Gaussian random variable (Definition 5.2) with
expectation bounded by µ. Formally, E

R∼M(s,q)
[ℓ (s, s′;R)] ≤ µ and for any α ≥ 1 we have

E
R∼M(s,q)

[
exp

(
(α− 1)

(
ℓ (s, s′;R)− E

R′∼M(s,q)
[ℓ (s, s′;R′)]

))]
≤ e

α2

2σ2 .

Definition B.18 (Zero-concentrated differential privacy [Bun and Steinke, 2016]). Given ϕ ≥ 0, a
mechanism M will be called ϕ-zero concentrated differentially private (or zCDP, for short) if for any
two datasets s, s′ ∈ Xn that differ only in one element, any query q ∈ Q, and α ≥ 1, the α-Rényi
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divergence between the two distributions defined over R by M (s, q) and M (s′, q) is bounded by
αϕ in both directions.8

This definition can be viewed as a special case of the CDP definition, with µ = ϕ and σ2 = 2ϕ. The
comparison is formalized in Lemma 24 in [Bun and Steinke, 2016].

The above notions all hold over all pairs of neighboring datasets, which can be achieved by scaling the
randomness added by the mechanism to the worst-case sensitivity—that is, to the worst-case change
in the output that can be induced by replacing one dataset by a neighboring one. As discussed in detail
in Appendix F, to avoid the dependence on the range of the queries, our approach instead focuses
on a version of the the “local sensitivity,” which, in turn, involves transitioning from divergences to
dissimilarity notions.
Definition B.19 (Pairwise concentration; equivalent to Definition 4.2 but restated in terms of di-
vergence and dissimilarity). Given a non-negative function φ : Xn × Xn × Q → R+ which is
symmetric in its first two arguments, a mechanism M will be called φ-Pairwise Concentrated (or PC,
for short), if for any s, s′ ∈ Xn, query q ∈ Q, and α ≥ 0, the α-Rényi divergence between the two
distributions defined overR by M (s, q) and M (s′, q) is bounded by αφ (s, s′; q) in both directions.

Given a non-negative function φ : Xn×Xn×V → R+ which is symmetric in its first two arguments
and an analyst A, a mechanism M will be called φ-Pairwise Concentrated with respect to A, if for
any s, s′ ∈ Xn and α ≥ 0, the α-Rényi dissimilarity between the two distributions defined over V by
M (s,A) and M (s′, A) is bounded by αφ (s, s′; ·) in both directions.

Analogously to how one can generalize the zCDP stability notion by replacing the divergence by a
dissimilarity measure, one can also generalize other stability notions such as differential privacy.
Definition B.20 (Pairwise indistinguishability). Given δ ≥ 0 and a non-negative function ε :
Xn ×Xn ×Q → R+ which is symmetric in its first two arguments, a mechanism M will be called
ε-Pairwise Indistinguishable (or PI, for short), if for any s, s′ ∈ Xn, and any query q ∈ Q, the max
divergence between the two distributions defined over R by M (s, q) and M (s′, q) is bounded by
ε (s, s′; q) in both directions.

Given a non-negative function ε : Xn×Xn×V → R+ which is symmetric in its first two arguments
and an analyst A, a mechanism M will be called ε-Pairwise Indistinguishable with respect to A, if
for any s, s′ ∈ Xn, the max dissimilarity between the two distributions defined over V by M (s,A)
and M (s′, A) is bounded by ε (s, s′; ·) in both directions.

We note that Theorem 4.6 can be stated in terms of pairwise indistinguishability as well.

8The original definition includes an additional parameter that is equal to 0 in the case of the Gaussian
mechanism, so we omit it here for simplicity.
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C Missing parts from Section 3

C.1 Missing proofs

Lemma C.1. Given a probability distribution P over a product domain X × Y and a function
f : X × Y → R, for any ϵ, ξ > 0 we have,

Pr
X∼PX

[∣∣∣∣ E
Y∼PY|X

[f (X,Y ) |X]

∣∣∣∣ > ϵ+ ξ

]
≤ 1

ξ

∫ ∞

ϵ

Pr
(X,Y )∼P

[|f (X,Y )| > t] dt.

Proof.

Pr
X∼PX

[∣∣∣∣ E
Y∼PY|X

[f (X,Y ) |X]

∣∣∣∣ > ϵ+ ξ

]
(a)

≤ Pr
X∼PX

[[∣∣∣∣ E
Y∼PY|X

[f (X,Y ) |X]

∣∣∣∣− ϵ]+ > ξ

]
(b)

≤ 1

ξ
E

X∼PX

[[∣∣∣∣ E
Y∼PY|X

[f (X,Y ) |X]

∣∣∣∣− ϵ]+
]

(c)

≤ 1

ξ
E

X∼PX

[[
E

Y∼PY|X
[|f (X,Y )| |X]− ϵ

]+]
(d)

≤ 1

ξ
E

X∼PX

[
E

Y∼PY|X

[
[|f (X,Y )| − ϵ]+ |X

]]
=

1

ξ
E

(X,Y )∼P

[
[|f (X,Y )| − ϵ]+

]
(e)
=

1

ξ

∫ ∞

0

Pr
(X,Y )∼P

[
[|f (X,Y )| − ϵ]+ > t

]
dt

=
1

ξ

∫ ∞

ϵ

Pr
(X,Y )∼P

[|f (X,Y )| > t] dt

where (a) [x]+ := max {x, 0} is the ReLU function, (b) results from Markov’s inequality, (c) from the

triangle inequality which implies
∣∣∣E [X]

∣∣∣ ≤ E [|X|] and
[
E [X]

]+
≤ E

[
[X]

+
]
, (d) from Jensen’s

inequality for the convex ReLU function, and (e) from the fact that the expectation is taken over a
non-negative random variable.

Lemma C.2 (Lemma 3.1 restated). Given a function δ : R → [0, 1] and an analyst A, if a
mechanism M is (ϵ, δ (ϵ))-sample accurate for all ϵ > 0, then M is (ϵ, δ′ (ϵ))-posterior accurate for

δ′ (ϵ) := inf
ξ∈(0,ϵ)

(
1
ξ

∫∞
ϵ−ξ

δ (t) dt
)

.

Proof. For any v ∈ V , denote I (v) := argmax
i∈[k]

|ri − qi (Dv)|, and rv := rI(v), qv := qI(v). When

the view is a random variable V , the corresponding query QV and response RV are also random
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variables, and hence we denote them with capital letters.

Pr
V∼DV

[
max
i∈[k]

∣∣Ri −Qi

(
DV
)∣∣ > ϵ+ ξ

]
= Pr

V∼D

[∣∣RV −QV

(
DV
)∣∣ > ϵ+ ξ

]
= Pr

V∼D

[∣∣∣∣ E
S∼D(· |V )

[RV −QV (S)]

∣∣∣∣ > ϵ+ ξ

]
(a)

≤ 1

ξ

∫ ∞

ϵ−ξ

Pr
S∼D(n),V∼M(S,A)

[|RV −QV (S)| > u] du

=
1

ξ

∫ ∞

ϵ−ξ

Pr
S∼D(n),V∼M(S,A)

[
max
i∈[k]
|Ri −Qi (S)| > u

]
du

(b)

≤ 1

ξ

∫ ∞

ϵ−ξ

δ (t) dt

where (a) results from part one of Lemma C.1 and (b) from the definition of sample accuracy
(Definition 2.1).

Lemma C.3 (Lemma 3.2 restated). Given η > 0, the Gaussian mechanism with noise parameter η

that receives k queries is (ϵ, δ (ϵ))-sample accurate for δ (ϵ) := 2k√
π
e
− ϵ2

2η2 , and (ϵ, δ (ϵ))-posterior

accurate for δ (ϵ) := 4k · e−
ϵ2

4η2 .

Proof. In the case of a Gaussian distribution, δ (ϵ) is known as the Q-function and for any dataset s
and query q,

Pr
R∼M(s,q)

[|R− q (s)| > ϵ] = erfc
(

ϵ√
2η

)
≤ 2√

π
e
− ϵ2

2η2 .

Combining this with a union bound completes the proof of sample accuracy.

Invoking Lemma 3.1 with ξ = ϵ−
√
ϵ2 − 2η2 implies for all ϵ ≥

√
2η and any i ∈ [k],

Pr
S∼D(n),V∼M(S,A)

[errP (S, V, i) > ϵ] ≤ 1

ξ

∫ ∞

ϵ−ξ

erfc
(

t√
2η

)
dt

(
u:= t√

2η

)
=

√
2η

ξ

∫ ∞

ϵ−ξ√
2η

erfc (u) du

(a)
<

√
2η · e−

ϵ2−2η2

2η2

√
πϵ

(
1−

√
1− 2η2

ϵ2

)
(b)

≤
√
2eϵ√
πη

e
− ϵ2

2η2

(c)

≤ 2e√
π
e
− ϵ2

4η2

≤ 4e
− ϵ2

4η2

where (a) results from the fact that
∫∞
a

erfc (x) dx = e−a2

√
π
− a · erfc (a) < e−a2

√
π

and the definition

of ξ, (b) from the bound on ϵ and the inequality
√
1 + x ≤ 1 + x

2 , and (c) from the inequality

x · e−x2 ≤ e− x2

2 .

Combining this with a union bound completes the proof of posterior accuracy.
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Theorem C.4 (Theorem 3.4 restated). Given two functions δ1 : R → [0, 1], δ2 :
R → [0, 1], and an analyst A, if a mechanism M is (ϵ, δ1 (ϵ))-Bayes stable and (ϵ, δ2 (ϵ))-
sample accurate with respect to A, then M is (ϵ, δ′ (ϵ))-distribution accurate for δ′ (ϵ) :=

inf
ϵ′∈(0,ϵ),ξ∈(0,ϵ−ϵ′)

(
δ1 (ϵ

′) + 1
ξ

∫∞
ϵ−ϵ′−ξ

δ2 (t) dt
)

.

Proof. Consider an analyst A, which once completed an interaction of length k resulting in a view v,
chooses qk+1 := argmax

i∈[k]

|qi (Dv)− qi (D)|. In this case,

Pr
S∼D(n)

V ∼M(S,A)

[
max
i∈[k]
|Ri −Qi (D)| > ϵ

]

≤ Pr
S∼D(n)

V ∼M(S,A)

[
max
i∈[k]

∣∣Ri −Qi

(
DV
)∣∣+max

i∈[k]

∣∣Qi

(
DV
)
−Qi (D)

∣∣ > ϵ

]

≤ Pr
S∼D(n)

V ∼M(S,A)

[
max
i∈[k]

∣∣Ri −Qi

(
DV
)∣∣ > ϵ− ϵ′

]
+ Pr

S∼D(n)

V ∼M(S,A),Q∼A(V )

[∣∣Q (DV
)
−Q (D)

∣∣ > ϵ′
]

(a)

≤ 1

ξ

∫ ∞

ϵ−ϵ′−ξ

δ (t) dt+ δ (ϵ′) ,

where (a) results from Lemma 3.1 and the definition of Bayes stability (Definition 3.3).

C.2 Generalized results for arbitrary queries

While the main results in this paper were stated for linear queries, some of the intermedi-
ate results extend to arbitrary queries. Denoting by ∆̄q := sup

s,s′∈X
|q (s)− q (s)| and σ̄2

q :=

E
X∼DX

[
(q (X)− q (DXn))

2
]

and extending the posterior distribution notations to Dv
Xn :=

DA
Xn|V (· | v), Lemma 3.5 can be restated in terms of arbitrary queries.

Lemma C.5 (Covariance stability for arbitrary queries). Given a view v ∈ V and a query q,

q (Dv
Xn)− q (DXn) = Cov

S∼DXn

(q (S) ,K (S, v)) .

Furthermore, given ∆, σ > 0,

sup
q∈Q s.t. ∆̄q≤∆

|q (Dv
Xn)− q (DXn)| = 2∆ ·DTV (D

v
Xn∥DXn)

and
sup

q∈Q s.t. σ̄2
q≤σ2

|q (Dv
X )− q (DX )| = σ

√
Dχ2 (Dv

Xn∥DXn),

where K (s, v) := D(s | v)
D(s) = D(v | s)

D(v) is the Bayes factor of s given v (and vice-versa).

Combining this lemma with the PC definition for arbitrary sample sets, we can state a simple version
of Theorem 4.6 for arbitrary queries, and achieve results similar to those guaranteed using typical
stability [Bassily and Freund, 2016]. Like in the case of typical stability, this method does not
achieve optimal accuracy rates for the iid case as discussed by Kontorovich et al. [2022].
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D Missing parts from Section 4

D.1 PC mechanisms

Lemma D.1 (Lemma 4.3 restated). Given η > 0 and an analyst A, if M is a Gaussian mechanism

with noise parameter η, then it is φ-PC for φ (s, s′; q) :=
(q(s)−q(s′))

2

2η2 and φ-PC with respect to A

for φ (s, s′; v) :=
∥q̄v(s)−q̄v(s′)∥2

2η2 .

Proof. From Lemma 16 in [Bun and Steinke, 2016], for any query q, we have φ (s, s′; q) =
(q(s)−q(s′))

2

2η2 .9 Combining this result with the composition theorem (Theorem 4.4) completes
the proof.

D.2 Composition

Theorem D.2 (Theorem 4.4 restated). Given k ∈ N, a similarity function over responses φ, and an
analyst A issuing k queries, if a mechanism M is φ-PC, then it is φ̃-PC with respect to A, where
φ̃ (s, s′; v) :=

∑k
i=1 φ (s, s′; qi).

Proof. Notice that

ℓ (s, s′; vk) = ln

(
D (vk | s)
D (vk | s′)

)
=

k∑
i=1

ln

(
D (ri | s, vi−1)

D (ri | s′, vi−1)

)
(a)
=

k∑
i=1

ln

(
Dqi (ri | s)
Dqi (ri | s′)

)
=

k∑
i=1

ℓ (s, s′; ri)

where (a) results from the fact that given s/s′ the additional information of vi−1 does not change
the distribution over ri, since it can be encoded in the auxiliary parameter θi. In case of a non-
deterministic analyst, the sum includes an additional term of the form ln

(
D(c | s)
D(c | s′)

)
for the coin-

tossing step, as discussed in Section A.2. But since c is independent of the dataset, the ratio is equal
to 1 and this term has no effect.

Using this fact we can prove the theorem by induction over k. The base case k = 0 is trivial. For
every k > 0,

E
Vk∼M(s,A)

[
e(α−1)(ℓ(s,s′;Vk)−αφ(s,s′;Vk))

]
= E

Vk−1∼M(s,A)

[
E

Vk∼M(s,A)

[
e(α−1)(ℓ(s,s′;Vk)−αφ(s,s′;Vk)) |Vk−1

]]

(a)
= E

Vk−1∼M(s,A)

e(α−1)(ℓ(s,s′;Vk−1)−αφ(s,s′;Vk−1)) ·

≤1︷ ︸︸ ︷
E

Rk∼M(s,Qk)

[
e(α−1)(ℓ(s,s′;Rk)−αφ(s,s′;Qk))

]
(b)

≤ E
Vk−1∼M(s,A)

[
e(α−1)(ℓ(s,s′;Vk−1)−αφ(s,s′;Vk−1))

]
(c)

≤ 1,

where (a) results from the definition of φ (·, ·; q̄), the previous equation and the fact that both
ℓ (s, s′;Vk−1) and φ (s, s′;Vk−1) are independent of Rk, (b) follows from the PC definition, and (c)
follows from the induction assumption.

In the next section we prove Lemma 4.5, as well as a bound on the Rényi divergence between the
prior and posterior distributions over elements, which will later be used in the proof of Theorem 4.6.

9The lemma is stated for the range α ∈ [1,∞], but holds for the range [0, 1) as well, directly from the
integral definition.
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D.3 Expected stability bound

Lemma D.3 (Lemma 4.5 restated). Given a similarity function φ and an analyst A, if a mechanism
M that is φ-PC with respect toA receives an iid sample from Xn, then for any two elements x, y ∈ X
and α ≥ 1 we have

E
V∼D(· | x)

[exp ((α− 1) (ℓ (x, y;V )− αφ (x, y;V )))] ≤ 1

and

E
V∼D(· | x)

[exp ((α− 1) (ℓ (x;V )− αφ (x;V )))] ≤ 1,

where φ (x, y; v) := sup
s∈Xn−1

(φ ((s, x) , (s, y) ; v)) and φ (x; v) := ln
(

E
Y∼D

[
eφ(x,Y ;v)

])
.

Proof. The notation used in this proof is defined in Appendix B.

Notice that since the dataset was sampled iid, we have D (v |x) = E
S∼D(n−1)

[D (v | (S, x))], so the

first part is a direct result of Part 1 of Theorem B.14, where Pλ := D (· |x), Qλ := D (· | y), and the
convexity is taken over the convex combination of the sample sets of size n− 1.

For the second part, notice that D (v) = E
X∼D

[D (v |X)], so

E
V∼D(· | x)

[exp ((α− 1) (ℓ (x;V )− αφ (x;V )))]

(a)

≤ E
V∼D(· | x)

[
exp

(
(α− 1)

(
ℓ (x;V )− α E

Y∼D
[φ (x, Y ; v)]

))]
(b)

≤ 1,

where (a) results from Jensen’s inequality for the convex function ex and (b) from combining the first
part with Part 2 of Theorem B.14, where P := D (· |x), Qλ := D, and the convexity is taken over
the convex combination of the elements.

Next, we bound the Rényi divergence between the prior and posterior distributions for PC mechanisms.

Lemma D.4. Given an element x ∈ X , a similarity function over views φ and an analyst A, if a
mechanism M that is φ-PC with respect to A receives an iid sample from Xn, then for any α ≥ 1 we
have

Dα (DV (·|x) ∥DV) ≤
1

2 (α− 1)
ln
(

E
V∼D

[exp (2α (2α− 1)φ (x;V ))]
)
,

where φ (x; v) is as was defined in Lemma 4.5.
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Proof.

exp ((α− 1)Dα (DV (·|X) ∥DV))

= E
V∼D(· | x)

[(
D (V |x)
D (V )

)α−1
]

= E
V∼D

[(
D (V |x)
D (V )

)α]
= E

V∼D
[exp (α (ℓ (x;V )− (2α− 1)φ (x;V ))) · exp (α (2α− 1)φ (x;V ))]

(a)

≤
√

E
V∼D

[exp (2α (ℓ (x;V )− (2α− 1)φ (x;V )))] · E
V∼D

[exp (2α (2α− 1)φ (x;V ))]

=

√√√√ E
V∼D

[(
D (V |x)
D (V )

)2α

exp (−2α (2α− 1)φ (x;V ))

]
· E
V∼D

[exp (2α (2α− 1)φ (x;V ))]

=

√√√√ E
V∼D(· | x)

[(
D (V |x)
D (V )

)2α−1

exp (−2α (2α− 1)φ (x;V ))

]
· E
V∼D

[exp (2α (2α− 1)φ (x;V ))]

=
√

E
V∼D(· | x)

[exp ((2α− 1) (ℓ (x;V )− 2αφ (x;V )))] · E
V∼D

[exp (2α (2α− 1)φ (x;V ))]

(b)

≤
√

E
V∼D

[exp (2α (2α− 1)φ (x;V ))]

where (a) results from the Cauchy-Schwarz inequality and (b) from the second part of Lemma 4.5.

Taking the log of both sides and dividing by α− 1 completes the proof.

In the next section we prove a high probability bound on the stability loss in terms of the similarity
function, as a second step toward proving Theorem 4.6.

D.4 High probability stability bound

Lemma D.5. Given a similarity function over views φ and an analyst A, if a mechanism M that is
φ-PC with respect to A receives an iid sample from Xn, then

Pr
X∼D,S∼D(n)

V ∼M(S,A)

[|ℓ (X;V )| > ε (X;V )] ≤
2

1
4

(
eϕ + 1

)
δ2

eϕ − 1

(
E

X∼D
V ∼D

[exp (12φ (X;V ))]

) 1
8

for any δ > 0, ϕ ≥ E
X∼D,S∼D(n)

V ∼M(S,A)

[φ (X;V )], where ε (x; v) := φ (x; v) + ϕ +

2
√
2ln
(
1
δ

)
(φ (x; v) + ϕ) and φ (x; v) is as was defined in Lemma 4.5.

Before we prove this lemma, we present several supporting claims. Throughout, we will fix a
similarity function over views φ, an analyst A, and a mechanism M which is φ-PC with respect to A
receiving an iid sample from Xn. The notation used here is all defined in Appendix B.
Claim D.6. Given ϕ, δ > 0 and two sample sets s, s′ ∈ Xn, we have D (· | s) ≤+

(εs,s′ ,δs,s′)

D (· | s′), where εs,s′ (v) := φ (s, s′; v) + 2
√
2ln
(
1
δ

)
(φ (s, s′; v) + ϕ) and δs,s′ :=

δ

√
E

V∼D(· | s)

[√
φ(s,s′;V )

ϕ + 1

]
.

Proof. Denote Ω := V , P := D (· | s), and Q := D (· | s′). From the PC definition, for any α ≥ 0
the α-Rényi dissimilarity between P and Q is bounded by α · φ (s, s′; ·).
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Invoking Theorem B.12 we get Pr
V∼P

[∣∣∣ln(P (V )
Q(V )

)∣∣∣ > ε̃s,s′ (V )
]
≤ δs,s′ , where

ε̃s,s′ (v) := φ (s, s′; v) + 2

√
2ln

(
1

δ

)
(φ (s, s′; v) + ϕ).

Combining this with Part 1 of Theorem B.10 we get that P ≤+

(εs,s′ ,δs,s′)
Q.

Claim D.7. Given ϕ, δ > 0 and two elements x, y ∈ X , we have D (· |x) ≤+
(εx,y,δx,y)

D (· | y) and D (· |x) ≤−
(εx,y,δx,y)

D (· | y), where εx,y (v) := sup
s∈Xn−1

(
ε(s,x),(s,y) (v)

)
, δx,y :=

E
S∼D(n−1)

[
δ(S,x),(S,y)

]
, and εs,s′ , δs,s′ are defined as in Claim D.6.

Proof. Notice that from the iid assumption, D (v |x) = E
S∼D(n−1)

[D (v | (S, x))], so combining

Claim D.6 and Part 1 of Theorem B.13 implies D (· |x) ≤+
(εx,y,δx,y)

D (· | y). Combining it with Part
2 of Theorem B.10 implies D (· |x) ≤−

(εx,y,δx,y)
D (· | y).

Claim D.8. Given ϕ, δ > 0 and an element x ∈ X , we have DV ≤+
(εx,δx,∗)

DV|X (·|x) and

DV|X (·|x) ≤−
(εx,δ∗,x)

DV , where εx (v) := ln
(

E
Y∼D

[
eε(x,Y ;v)

])
, δx,∗ := E

Y∼D
[δx,Y ], δ∗,x :=

E
Y∼D

[δY,x], and εx,y , δx,y are defined as in Claim D.7.

Proof. Notice that D (v) = E
Y∼D

[D (v |Y )], so combining the first part of Claim D.7 and Part 2 of

Theorem B.13 implies D (·) ≤+
(εx,δx,∗)

D (· |x).

Similarly, combining the second part of Claim D.7 and Part 3 of Theorem B.13 implies
D (· |x) ≤−

(εx,δ∗,x)
D (·). Notice that the symmetry of φ implies ε is symmetric as well, so the

same ε function bounds both terms.

Claim D.9. Given ϕ, ϵ, δ > 0 and an element x ∈ X , we have Pr
V∼D

[
ln
(

D(V )
D(V | x)

)
> εx (V ) + ϵ

]
<

eϵδx,∗
eϵ−1 and Pr

V∼D

[
ln
(

D(V | x)
D(V )

)
> εx (ω) + ϵ

]
<

δ∗,x
eϵ−1 , where εx, δx,∗, and δ∗,x are defined as in

Claim D.8.

Proof. The first part results from combining the first part of Claim D.8 and Part 3 of Theorem
B.10. The second part results from combining the second part of Claim D.8 and Part 4 of Theorem
B.10.

Proof of Lemma D.5. Notice that for any ϕ, δ̃ > 0 we have

εx,y (v) = sup
s∈Xn−1

(
ε(s,x),(s,y) (v)

)
= sup

s∈Xn−1

(
φ ((s, x) , (s, y) ; v) + 2

√
2ln

(
1

δ̃

)
(φ ((s, x) , (s, y) ; v) + ϕ)

)

≤ sup
s∈Xn−1

(φ ((s, x) , (s, y) ; v)) + 2

√
2ln

(
1

δ̃

)(
sup

s∈Xn−1

(φ ((s, x) , (s, y) ; v)) + ϕ

)

= φ (x, y; v) + 2

√
2ln

(
1

δ̃

)
(φ (x, y; v) + ϕ)

33



which implies

εx (v) = E
Y∼D

[εx,Y (v)]

(a)

≤ E
Y∼D

[
φ (x, Y ; v) + 2

√
2ln

(
1
˜̃
δ

)
(φ (x, Y ; v) + ϕ)

]
(b)

≤ E
Y∼D

[φ (x, Y ; v)] + 2

√
2ln

(
1

δ

)(
E

Y∼D
[φ (x, Y ; v)] + ϕ

)
= φ (x; v) + 2

√
2ln

(
1

δ̃

)
(φ (x; v) + ϕ),

where (a) results from the previous inequality and (b) from Jensen’s inequality for the concave
function

√
x.

Setting ϵ := ϕ and δ̃ := δ2 we get

Pr
X∼D,S∼D(n)

V ∼M(S,A)

[|ℓ (X;V )| > ε (X;V )]

= E
X∼D

 Pr
S∼D(n)

V ∼M(S,A)

[∣∣∣∣ln(D (V |X)

D (V )

)∣∣∣∣ > φ (X;V ) + ϕ+ 2

√
2ln

(
1

δ̃

)
(φ (X;V ) + ϕ)

]
(a)

≤ E
X∼D

 Pr
S∼D(n)

V ∼M(S,A)

[∣∣∣∣ln(D (V |X)

D (V )

)∣∣∣∣ > εX (V ) + ϵ

]
(b)

≤ eϵ

eϵ − 1
E

X∼D
[δ∗,X ] +

1

eϵ − 1
E

X∼D
[δX,∗]

(c)
=
eϵ + 1

eϵ − 1
E

X∼D,Y ∼D

S∼D(n−1)

δ̃
√√√√ E

V∼M((S,X),A)

[√
φ ((S,X) , (S, Y ) ;V )

ϕ
+ 1

]
(d)

≤
(
eϕ + 1

)
δ2

eϕ − 1

√√√√√ E
X∼D,Y ∼D,S∼D(n−1)

V ∼M((S,X),A)

[√
φ ((S,X) , (S, Y ) ;V )

ϕ
+ 1

]
,

where (a) results from the previous bound, (b) from the two parts of Claim D.9, (c) from the definitions
of δx,∗ and δ∗,x, and (d) from Jensen’s inequality for the concave function

√
x.
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Analyzing the expectation term we get

E
X∼D,Y ∼D,S∼D(n−1)

V ∼M((S,X),A)

[√
φ ((S,X) , (S, Y ) ;V )

ϕ
+ 1

]
(a)

≤ E
X∼D,Y ∼D
V ∼D(· |X)

[√
φ (X,Y ;V )

ϕ
+ 1

]

= E
X∼D,Y ∼D

V ∼D

[
D (V |X)

D (V )

√
φ (X,Y ;V )

ϕ
+ 1

]
(b)

≤

√√√√ E
X∼D
V ∼D

[(
D (V |X)

D (V )

)2
]
· E

X∼D,Y ∼D
V ∼D

[
φ (X,Y ;V )

ϕ
+ 1

]
(c)

≤
√
2 E

X∼D
V ∼D(· |X)

[
D (X |V )

D (X)

]
=
√
2 E
X∼D

[exp (D2 (DV (·|X) ∥DV))]

(d)

≤
√
2

(
E

X∼D
V ∼D

[exp (12φ (X;V ))]

) 1
4

,

where (a) results from the definition of φ (x, y; v), (b) from the Cauchy-Schwarz inequality, (c) from
the bound on ϕ, and (d) from Lemma D.4.

Plugging this term back in completes the proof.

We can now prove the main stability theorem for PC mechanisms.

D.5 Bayes stability of PC mechanisms

Theorem D.10 (Exact version of Theorem 4.6). Given a similarity function over views φ and an
analyst A, if a mechanism M that is φ-PC with respect to A receives an iid sample from Xn, then

Pr
S∼D(n)

V ∼M(S,A),Q∼A(V )

[
|Q (Dv

X )−Q (DX )| > σQ ·
√
ϵ2 + ξ

]
≤ Pr

S∼D(n)

V ∼M(S,A),Q∼A(V )

[
E

X∼D

[
e27ln(

1
δ )(φ(X;v)+ϕ)

]
> 1 +

ϵ2

3

]

+
δ

ξ
(4ψ (12))

1
16

√(√
ψ (56) + 1

)
· e

ϕ + 1

eϕ − 1

for any ϵ, ξ, δ > 0, ϕ ≥ E
X∼D,S∼D(n)

V ∼M(S,A)

[φ (X;V )], where φ (x; v) is as was defined in Lemma 4.5 and

ψ (α) := E
X∼D,S∼D(n)

V ∼M(S,A)

[
eαφ(X;V )

]
.

We first prove several supporting claims.
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Claim D.11. Given a function f : X × V → R, an analyst A, and a mechanism M , then for any
ξ > 0 we have

Pr
S∼D(n)

V ∼M(S,A)

[
Dχ2 (Dv

X ∥DX ) > E
X∼D

[(
ef(X,V ) − 1

)2]
+ ξ

]

≤ 1

ξ

√√√√√
 E

X∼D,S∼D(n)

V ∼M(S,A)

[
e4ℓ(X;V )

]
+ 1

 · Pr
X∼D,S∼D(n)

V ∼M(S,A)

[|ℓ (X;V )| > f (X,V )].

Proof. Denoting B (f) := {(x, v) ∈ X × V | |ℓ (x; v)| > ε (x; v)} and B̄ (f) := (X × V) \B (f)
we get

Dχ2 (Dv
X ∥DX )− E

X∼D

[(
ef(X,V ) − 1

)2]
= E

X∼D

[(
eℓ(X;V ) − 1

)2]
− E

X∼D

[(
ef(X,V ) − 1

)2]
= E

X∼D

[((
eℓ(X;V ) − 1

)2
−
(
ef(X,V ) − 1

)2)
· 1B̄(f) ((X,V ))

]
+ E

X∼D

[((
eℓ(X;V ) − 1

)2
−
(
ef(X,V ) − 1

)2)
· 1B(f) ((X,V ))

]
(a)

≤ E
X∼D

[((
e|ℓ(X;V )| − 1

)2
−
(
ef(X,V ) − 1

)2)
· 1B̄(f) ((X,V ))

]
+ E

X∼D

[((
eℓ(X;V ) − 1

)2
−
(
ef(X,V ) − 1

)2)
· 1B(f) ((X,V ))

]
(b)

≤ E
X∼D

[(
eℓ(X;V ) − 1

)2
· 1B(f) ((X,V ))

]

where (a) results from the fact that (ex − 1)
2 ≤

(
e|x| − 1

)2
and (b) from removing negative terms.

Using this bound we get

Pr
S∼D(n)

V ∼M(S,A)

[
Dχ2 (Dv

X ∥DX ) > E
X∼D

[(
ef(X,V ) − 1

)2]
+ ξ

]
(a)

≤ Pr
S∼D(n)

V ∼M(S,A)

[
E

X∼D

[(
eℓ(X;V ) − 1

)2
· 1B(f) ((X,V ))

]
> ξ

]
(b)

≤ 1

ξ
E

X∼D,S∼D(n)

V ∼M(S,A)

[(
eℓ(X;V ) − 1

)2
· 1B(f) ((X,V ))

]
(c)

≤ 1

ξ

√
E

X∼D,S∼D(n)

V ∼M(S,A)

[(
eℓ(X;V ) − 1

)4] · E
X∼D,S∼D(n)

V ∼M(S,A)

[
1
2
B(f) ((X,V ))

]
(d)

≤ 1

ξ

√√√√√
 E

X∼D,S∼D(n)

V ∼M(S,A)

[
e4ℓ(X;V )

]
+ 1

 · Pr
X∼D,S∼D(n)

V ∼M(S,A)

[(X,V ) ∈ B (f)]

where (a) results from the previous bound, (b) from Markov’s inequality, (c) from the Cauchy-Schwarz
inequality, and (d) from the inequality (x− 1)

4 ≤ x4 + 1 for any x ≥ 0.
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Claim D.12. Given ϕ > 0, δ ∈
(
0, 1e

)
, and a view v ∈ V , we have

E
X∼D

[(
eε(X;v) − 1

)2]
≤ 3

(
E

X∼D

[
e27ln(

1
δ )(φ(X;v)+ϕ)

]
− 1
)

where ε (x; v) was defined in Lemma D.5.

Proof. We first notice that for any α ≥ 1,

E
X∼D

[
eαφ(X;v)

]
(a)
= E

X∼D

[(
E

Y∼D

[
eφ(X,Y ;v)

])α] (b)

≤ E
X,Y∼D

[
eαφ(X,Y ;v)

]
(1)

where (a) follows from the definition of φ (x; v) and (b) from Jensen’s inequality for the convex
function xα.

Next we prove a useful identity. For any a, b ≥ 0,

ea+b−1 = ea
(
eb − 1

)
+(ea − 1) = ea

√
(eb − 1)

2
+

√
(ea − 1)

2 ≤ ea
√(

e
3
2 b

2 − 1
)
+
√
(e2a − 1)

where the inequality results from the inequalities (ex − 1)
2 ≤ e

3
2x

2 − 1 for any x ∈ R and
(ex − 1)

2 ≤ e2x − 1 for any x ≥ 0.

Using this bound we get

(
ea+b − 1

)2 (a)

≤

(
ea
√(

e
3
2 b

2 − 1
)
+
√
(e2a − 1)

)2

= e2a
(
e

3
2 b

2

− 1
)
+ 2ea

√(
e

3
2 b

2 − 1
)
(e2a − 1) +

(
e2a − 1

)
=
(
e2a+

3
2 b

2

− 1
)
+ 2ea

√(
e

3
2 b

2 − 1
)
(e2a − 1)

(b)

≤
(
e2a+

3
2 b

2

− 1
)
+ 2

(
e3a+

3
2 b

2

− 1
)

≤ 3
(
e3a+

3
2 b

2

− 1
)

where (a) results from the previous bound and (b) from the inequalities (ex − 1) (ey − 1) ≤
(ex+y − 1)

2 and ex (ey − 1) ≤ (ex+y − 1) for any x, y ≥ 0.

Using this inequality we get

E
X∼D

[(
eε(X;v) − 1

)2]

= E
X∼D

(exp(φ (X; v) + ϕ+ 4

√
ln

(
1

δ

)
(φ (X; v) + ϕ)

)
− 1

)2


(a)

≤ E
X∼D

[
3

(
exp

(
3

(
1 + 8ln

(
1

δ

))
(φ (X; v) + ϕ)

)
− 1

)]
(b)

≤ 3
(

E
X∼D

[
e27ln(

1
δ )(φ(X;v)+ϕ)

]
− 1
)

where (a) results from the previous inequality and (b) from the bound on δ.
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Proof of Theorem D.10. First notice

E
X∼D,S∼D(n)

V ∼M(S,A)

[
e4ℓ(X;V )

]
= E

X∼D

[
E

V∼D

[(
D (V |X)

D (V )

)4
]]

= E
X∼D

[
E

V∼D(· |X)

[(
D (V |X)

D (V )

)3
]]

= E
X∼D

[exp (D4 (DV (·|X) ∥DV))]

(a)

≤ E
X∼D

[√
E

V∼D

[
e56φ(X;V )

]]
(b)

≤
√

E
X∼D,V∼D

[
e56φ(X;V )

]
(c)
=
√
ψ (56)

where (a) results from Lemma D.4, (b) from Jensen’s inequality for the concave function
√
x, and (c)

from the definition of ψ.

Using this bound we get

Pr
S∼D(n)

V ∼M(S,A),Q∼A(V )

[
|Q (Dv

X )−Q (DX )| > σQ ·
√
ϵ2 + ξ

]
(a)

≤ Pr
S∼D(n)

V ∼M(S,A),Q∼A(V )

[
Dχ2

(
DV

X ∥DX
)
> ϵ2 + ξ

]
(b)

≤ Pr
S∼D(n)

V ∼M(S,A),Q∼A(V )

[
Dχ2 (Dv

X ∥DX ) > E
X∼D

[(
eε(X;V ) − 1

)2]
+ ξ

]

+ Pr
S∼D(n)

V ∼M(S,A),Q∼A(V )

[
E

X∼D

[(
eε(X;V ) − 1

)2]
> ϵ2

]

(c)

≤ 1

ξ

√√√√√
 E

X∼D,S∼D(n)

V ∼M(S,A)

[
e4ℓ(X;V )

]
+ 1

 · Pr
X∼D,S∼D(n)

V ∼M(S,A)

[|ℓ (X;V )| > ε (X;V )]

+ Pr
S∼D(n)

V ∼M(S,A),Q∼A(V )

[
3
(

E
X∼D

[
e27ln(

1
δ )(φ(X;v)+ϕ)

]
− 1
)
> ϵ2

]
(d)

≤ 1

ξ

√(√
ψ (56) + 1

)
· 2

1
4 (eϕ + 1) δ2

eϕ − 1
(ψ (12))

1
8

+ Pr
S∼D(n)

V ∼M(S,A),Q∼A(V )

[
E

X∼D

[
e27ln(

1
δ )(φ(X;v)+ϕ)

]
> 1 +

ϵ2

3

]

where (a) results from Corollary 3.6, (b) from the inequality Pr [a > b] ≤ Pr [a > c ∨ c > b] ≤
Pr [a > c] + Pr [c > b], (c) from Claims D.11 and D.11, and (d) from the previous bound and Lemma
D.5.
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E Missing parts from Section 5

Using Theorem D.10, one only has to bound E
X∼D

[
e27ln(

1
δ )(φ(X;v)+ϕ)

]
and ψ (α) to prove Bayes

stability. To do so, we first prove a supporting claim and then provide separate bounds for the bounded
case (Section E.1) and sub-Gaussian case (Section E.2).

Claim E.1. Given k ∈ N; η > 0 and a view v ∈ V consisting of responses to k linear queries,
produced by a Gaussian mechanism M with noise parameter η which receives an iid sampled dataset
of size n, then for any α ≥ 1 we have

E
X∼D

[
eαφ(X;v)

]
≤ E

X,Y∼D

[
eαφ(X,Y ;v)

]
= E

X,Y∼D

[
exp

(
α

2n2η2

k∑
i=1

(qi (X)− qi (Y ))
2

)]
,

where φ (x; v) and ϕ are defined as in Theorem 4.6.

Proof. Notice that

E
X∼D

[
eαφ(X;v)

]
(a)
= E

X∼D

[(
E

Y∼D

[
eφ(X,Y ;v)

])α]
(b)

≤ E
X,Y∼D

[
eαφ(X,Y ;v)

]
(c)
= E

X,Y∼D

[
exp

(
α sup
s∈Xn−1

(
∥q̄v ((s,X))− q̄v ((s, Y ))∥2

2η2

))]

= E
X,Y∼D

[
exp

(
α

2η2
sup

s∈Xn−1

(
k∑

i=1

(qi ((s,X))− qi ((s, Y )))
2

))]

= E
X,Y∼D

[
exp

(
α

2n2η2

k∑
i=1

(qi (X)− qi (Y ))
2

)]
where (a) results from the definition of φ (x; v), (b) from Jensen’s inequality for the convex function
xa for any a ≥ 1, and (c) from Theorem 4.3.

E.1 Generalization guarantees, bounded case

Claim E.2. Given k ∈ N; η,∆, σ > 0; ϕ ≥ 0, and a view v ∈ V consisting of responses to k
∆-bounded linear queries with variance bounded by σ2, produced by a Gaussian mechanism M with
noise parameter η which receives an iid sampled dataset of size n, then for any 1 ≤ α ≤ 1

k∆2

2n2η2 +ϕ

we have

E
X∼D

[
eα(φ(X;v)+ϕ)

]
≤ E

X,Y∼D

[
eα(φ(X,Y ;v)+ϕ)

]
≤ 1 + 2α

(
ϕ+

kσ2

n2η2

)
,

where φ (x; v) is as was defined in Theorem 4.6.

Proof. First notice that for any linear query q with variance σ2,

E
X,Y∼D

[
(q (X)− q (Y ))

2
]
= E

X,Y∼D

[
((q (X)− q (D)) + (q (D)− q (Y )))

2
]

(a)
= E

X∼D

[
(q (X)− q (D))

2
]
+ E

Y∼D

[
(q (D)− q (Y ))

2
]

(2)

+ 2 E
X∼D

[q (X)− q (D)] · E
Y∼D

[q (D)− q (Y )]

(b)
= 2σ2

where (a) results from the fact X,Y are independent and (b) from the fact that q (X) is a random
variable with expectation q (D) and variance σ2.
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For any two elements x, y ∈ X we have

φ (x, y; v) =
1

2n2η2

k∑
i=1

(qi (X)− qi (Y ))
2 ≤ k∆2

2n2η2
. (3)

Using this bound we get

E
X∼D

[
eα(φ(X;v)+ϕ)

] (a)

≤ E
X,Y∼D

[
eα(φ(X,Y ;v)+ϕ)

]
= E

X,Y∼D

[
exp

(
α

(
ϕ+

1

2n2η2

k∑
i=1

(qi (X)− qi (Y ))
2

))]
(b)

≤ E
X,Y∼D

[
1 + 2α

(
ϕ+

1

2n2η2

k∑
i=1

(qi (X)− qi (Y ))
2

)]

= 1 + α

(
2ϕ+

1

n2η2

k∑
i=1

E
X,Y∼D

[
(qi (X)− qi (Y ))

2
])

(c)

≤ 1 + α

(
2ϕ+

1

n2η2

k∑
i=1

2σ2

)

= 1 + 2α

(
ϕ+

kσ2

n2η2

)
where (a) results from combining the assumption α ≥ 1 with Claim E.1, (b) from combining Equation
3, the assumption α ≤ 1

k∆2

2n2η2 +ϕ
, and the inequality ex ≤ 1 + 2x for any 0 ≤ x ≤ 1, and (c) from

Equation 2.

Lemma E.3. Given k ∈ N; ∆, σ, η ≥ 0; 0 < δ ≤ 1
e ; and an analyst A issuing k ∆-bounded linear

queries with variance bounded by σ2, if M is a Gaussian mechanism with noise parameter η that

receives an iid dataset of size n ≥ 9
√
k∆
η

√
ln
(
1
δ

)
, then M is

(
σ2

nη

√
488kln

(
1
δ

)
, 2n

3η3δ

k
3
2 σ3

)
-Bayes

stable.

Proof. Setting ϕ := 2kσ2

n2η2 we get

27ln
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1

δ

)
(a)
<

2n2η2

5k∆2
=

1
5k∆2

2n2η2

(b)
<

1
k∆2

2n2η2 + ϕ

where (a) results from the assumption n ≥ 9
√
k∆
η

√
ln
(
1
δ

)
and (b) from the definition of ϕ.

Using this bound we can invoke Claim E.2, and get that for any view v ∈ V ,

E
X∼D

[
e27ln(

1
δ )(φ(X;v)+ϕ)

]
≤ 1 + 54

(
kσ2

n2η2
+ ϕ

)
ln

(
1

δ

)
. (4)

Next, we notice that

E
X∼D,V∼D

[φ (X;V )] = E
X∼D,V∼D

[
ln
(

E
Y∼D

[
eφ(X,Y ;V )

])]
(a)

≤ ln

(
E

X,Y∼D,V∼D

[
eφ(X,Y ;V )

])
(b)

≤ ln

(
1 +

2kσ2

n2η2

)
(5)

(c)

≤ 2kσ2

n2η2

(d)
= ϕ
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where (a) results from Jensen’s inequality for the concave function ln (x), (b) from Claim E.2 where

the condition on α is fulfilled by the assumption that n ≥ 9
√
k∆
η

√
ln
(
1
δ

)
, (c) from the inequality

ln (1 + x) ≤ x for any x ≥ 0, and (d) from the definition of ϕ.

Similarly, for any α ≤ 2n2η2

k∆2 we have

ψ (α)
(a)

≤ 1 +
2αkσ2

n2η2

(b)

≤ 1 +
αk∆2

2n2η2

(c)

≤ 1 +
αk∆2

2n2η2

(d)

≤ 1 +
α

162
(6)

where (a) results from the assumption on α and Claim E.2, (b) from the fact that for any distribution,

σ2 ≤ ∆2

4 , (c) from the assumption that δ ≤ 1
e , and (d) from the assumption that n ≥ 9

√
k∆
η

√
ln
(
1
δ

)
.

Setting ξ := 2kσ2

n2η2 we get

Pr
S∼D(n)

V ∼M(S,A),Q∼A(V )

[
|Q (Dv

X )−Q (DX )| > σ2

nη

√
488kln

(
1

δ

)]
(a)

≤ Pr
S∼D(n)

V ∼M(S,A),Q∼A(V )

[
|Q (Dv

X )−Q (DX )| > σQ

√
488kσ2
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ln

(
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(b)
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]

(c)
= Pr

S∼D(n)

V ∼M(S,A),Q∼A(V )

[
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]
(d)

≤ Pr
S∼D(n)

V ∼M(S,A),Q∼A(V )

[
E

X∼D

[
e27ln(

1
δ )(φ(X;v)+ϕ)

]
> 1 + 54

(
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)
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(c)
=

2n3η3δ

k
3
2σ3

where (a) results from fact that the variance of all queries issued by A is bounded by σ2, (b) from
the assumption that δ ≤ 1

e , (c) from the definition of ϕ and ξ, (d) from Theorem D.10 where the
condition was proven in Equation 5, (e) from Equation 4, and (f) from Equation 6, and the fact that
ex+1
ex−1 ≤

3
x for any 0 < x < 2.

Theorem E.4 (Exact version of Theorem 5.1). Given k ∈ N; ∆, σ, ϵ ≥ 0; 0 < δ ≤ 1
e ; and an

analyst A issuing k ∆-bounded linear queries with variance bounded by σ2, if M is a Gaussian

mechanism with noise parameter η = (122)
1
4 σ

√√
k

n that receives an iid dataset of size n ≥

max
{

9∆
ϵ ,

89σ2

ϵ2

}√
kln
(
8k
δ

)
, and k ≥ 2n, then M is (ϵ, δ)-distribution accurate.
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Proof. From Lemma E.3 setting δ′ := δ
8k (where δ′ denotes the parameter δ used in the Lemma) we

get that M is
(

σ2

nη

√
488kln

(
4k
δ

)
, n

3η3δ

k
5
2 σ3

)
-Bayes stable. From Lemma 3.2, M is

(
2η
√

ln
(
4k
δ

)
, δ2

)
-

posterior accurate.

Optimizing over η we get that η = (122)
1
4 σ

√√
k

n . Combining this with the bound on k im-

plies n3η3

k
3
2 σ3

= 3(122)
1
4 n

3
2

√
2k

3
4

≤ 2k
3
4 ≤ 2k. Plugging the definition of η back in we get that M is(

σ

√√
488k
n ln

(
4k
δ

)
, δ2

)
-Bayes stable and posterior accurate.

Using the bound on n we get that M is
(
ϵ
2 ,

δ
2

)
-Bayes stable and posterior accurate. Combining this

with Theorem 3.4 completes the proof.

E.2 Generalization guarantees, sub-Gaussian case

To prove the generalization guarantees in the sub-Gaussian case, we must first introduce the notion of
sub-exponential random variables, and recall several folklore facts about sub-exponential random
variables.

Definition E.5. Given σ, α ≥ 0, a random variable X is called
(
α, σ2

)
-sub-exponential if for all

λ ∈
[
− 1

α ,
1
α

]
we have E

[
eλX

]
≤ eλ2σ2

2 .

Fact E.6. Given σ ≥ 0 and a σ2-sub-Gaussian random variable X , the random variable Y :=
X2 − E

[
X ′2] is

(
4σ2, 64σ4

)
-sub-exponential.

Fact E.7. Given σi,≥ 0 and independent σ2
i -sub-Gaussian random variables Xi for i ∈ {0, 1}, the

random variable Y := X0 +X1 is
(
0, σ2

0 + σ2
1

)
-sub-Gaussian.

Claim E.8. Given k ∈ N; η, σ > 0 and a view v ∈ V consisting of responses to k σ2-sub-Gaussian
linear queries, produced by a Gaussian mechanism M with noise parameter η which receives an iid
sampled dataset of size n, then for any 1 ≤ α ≤ n2η2

4kσ2 we have

E
X∼D

[
eαφ(X;v)

]
≤ E

X,Y∼D

[
eαφ(X,Y ;v)

]
≤ exp

(
9αkσ2

n2η2

)
,

where φ (x; v) is as was defined in Theorem 4.6.

Proof. From Fact E.7 and the assumption, the random variable q (X) − q (Y ) is a
(
0, 2σ2

)
-

sub-Gaussian random variable. Combining this with Fact E.6 we get that the random variable
(q (X)− q (Y ))

2 − 2σ2 is a
(
8σ2, 256σ4

)
-sub-exponential random variable, where we rely on the

fact that

E
X,Y∼D

[
(q (X)− q (Y ))

2
]
= E

X,Y∼D

[
((q (X)− q (D)) + (q (D)− q (Y )))

2
]

(a)
= E

X∼D

[
(q (X)− q (D))

2
]
+ E

Y∼D

[
(q (D)− q (Y ))

2
]

+ 2 E
X∼D

[q (X)− q (D)] · E
Y∼D

[q (D)− q (Y )]

(b)

≤ 2σ2

where (a) results from the fact X,Y are independent and (b) from the fact that q (X) is a random
variable with expectation q (D) and variance proxy σ2 which upper bounds its variance.
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Using this we get
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)
where (a) results from combining the assumption α ≥ 1 with the Claim E.1, (b) from the generalized
version of Hölder’s inequality, (c) from the fact (q (X)− q (Y ))

2 − 2σ2 is a
(
8σ2, 256σ4

)
-sub-

exponential random variable and the assumption α ≤ n2η2

4kσ2 , and (d) from the the assumption

α ≤ n2η2

4kσ2 .

Lemma E.9. Given k ∈ N; σ, η > 0; 0 < δ ≤ 1
e ; and an analyst A issuing k σ2-sub-Gaussian

linear queries, if M is a Gaussian mechanism with noise parameter η that receives an iid dataset of

size n ≥ 23
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)
, then M is
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)
-Bayes stable.

Proof. Setting ϕ := 9kσ2

n2η2 we get
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where (a) results from the definition of ϕ, (b) from Claim E.8 where the condition on α is fulfilled

by the assumption that n ≥ 23
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, and (c) from the inequality ex ≤ 1 + 2x for any x ≤ 1
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.
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Next, we notice that
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X∼D,V∼D

[φ (X;V )] = E
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where (a) results from Jensen’s inequality for the concave function ln (x), (b) from the assumption

n ≥ 23
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and Claim E.8, and (c) from the definition of ϕ.

Similarly, for any α ≤ n2η2

4kσ2 we have
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where (a) results from the assumption on α and Claim E.8 and (b) from the fact that n ≥
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.

Setting ξ := 6kσ2

n2η2 we get

Pr
S∼D(n)
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where (a) results from fact that the variance of all queries issued by A is bounded by σ2, (b) from
the assumption that δ ≤ 1

e , (c) from the definition of ϕ and ξ, (d) from Theorem D.10 where the
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condition was proven in Equation 8, (e) from Equation 7, and (f) from Equation 9, and the fact that
ex+1
ex−1 ≤

3
x for any 0 < x < 2.

Theorem E.10 (Exact version of Theorem 5.3). Given k ∈ N; σ, ϵ ≥ 0; 0 < δ ≤ 1
e ; and an analyst

A issuing k σ2-sub-Gaussian linear queries, if M is a Gaussian mechanism with noise parameter

η = (244)
1
4 σ

√√
k

n that receives an iid dataset of size n ≥ 32
√
kσ2

ϵ2 ln
(
2k
δ

)
, and k ≥ 2n, then M is

(ϵ, δ)-distribution accurate.

Proof. From Lemma E.9 setting δ′ := δ
4k (where δ′ denotes the parameter δ used in the Lemma) we

get thatM is
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Optimizing over η we get that η = (244)
1
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n . Combining this with the bound on k im-
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4 ≤ 2k. Plugging the definition of η back in we get that M is(
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Using the bound on n we get that M is
(
ϵ
2 ,

δ
2

)
-Bayes stable and Posterior accurate. Combining this

with Theorem 3.4 completes the proof.

E.3 Different or incorrect variances

In this section we discuss in detail the case of a mechanism receiving queries with different variances,
and then extend the discussion to the effects of analyst relying upon an incorrect bound on the
variance of one of the queries.

In the case of a Gaussian mechanism with queries qi, each with variance bounded by σ2
i , the results

we achieved translate to a guarantee that with probability ≥ 1− δ, for any i ∈ k, we have
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where ηi is the noise parameter chosen at each iteration.
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√
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)
term represents the sample / posterior accuracy bound, and the σi

√
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represents the Bayes stability. Optimizing over ηi, we get that the this error is minimized by setting
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, which implies
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Now consider a situation where the correct variances were each bounded by σ2
i , but the analyst

mistakenly assumed a different bound τ2i which might be higher or lower than σ2
i . In this case ηi

would have been set to O
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)
, so
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which is the same term as in the case of correctly estimated variances, multiplied by the term
τi
σi

+

√
1
k

∑k
j=1

σ2
j

τ2
j

.

Analyzing this term allows us to precisely understand the implications of an analyst making a mistake
in the assumed variance bound.

If τi ≥ σi for a single query qi (which means we added too much noise to the response to that query),
the first term increased only for that query, and the second term decreased for all queries. On the
other hand, if τi < σi (which means we did not add enough noise to the response to that query), the
first term decreased for that query, but the second term increased for all queries.

The effect on the first term is proportional to the square root of the ratio of the wrong variance to the
correct variance of that query, while the effect on the second term is proportional to the square root
of average over all k queries of the ratio of the correct variance to the wrong variances (notice the
switch between numerator and denominator).
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F Relationships to other stability notions

Intuitively speaking, ensuring (ϵ, δ)-differential privacy means that for any query q and any two
neighboring datasets s, s′, with probability > 1 − δ over the choice of the response r, the log
conditional probability ratio ln

(
D(r | s)
D(r | s′)

)
is bounded by ϵ (this quantity is sometimes referred to as

the privacy loss).10 The most basic method for ensuring (ϵ, δ)-DP in the context of numerical queries
is by randomizing the response through noise addition, calibrating the added noise to the global
sensitivity, that is, the worst-case privacy loss over all queries and all pairs of neighboring datasets.
A series of works initiated by Dwork et al. [2015] leverages bounds on the privacy loss to provide
generalization guarantees for mean estimation under adaptive data analysis. Bassily et al. [2021]
asymptotically improved this guarantee and extended it to low-sensitivity queries and optimization
queries.

Differential privacy’s dependence on the global sensitivity naturally yields generalization guarantees
that scale with the range of the query’s values. However, a dependence on the range of the queries
is not required to protect against overfitting in the non-adaptive setting, where the generalization
guarantees achievable via Bernstein’s inequality scale with the queries’ standard deviation. The worst-
case nature of DP is not a bug but a feature, since privacy must be ensured for all participants under
any circumstances against every potential attack. On the contrary, the task of statistical estimation
focuses only on the typical case, even in the non-adaptive setting. To overcome the dependence on the
queries’ range, we seek to decouple DP’s stability-preserving powers from its dependence on global
sensitivity. This can be done by, in a sense, considering the distribution over the local sensitivity
induced by the underlying distribution over the data, as we discuss in the next sections.

F.1 Scaling back the noise

One approach one might consider to attempt to circumvent DP’s worst-case nature in the context
of adaptive data analysis is by adding noise that scales like the local sensitivity of each query, that
is, the privacy loss given the specific query, the specific dataset under study, and the worst-case
neighbor of that specific dataset. A variant of this notion was first introduced by Nissim et al. [2007],
who illustrated that if the magnitude of noise addition depends naïvely on the local sensitivity, then
the chosen magnitude “leaks information” about the dataset, resulting in a mechanism that is not
differentially private. To address this, they introduce the smoothed sensitivity notion, which smooths
out the addition of locally-tailored noise, achieving improved DP guarantees for the task of median
estimation (or any other quantile estimation), but not for mean estimation.

Several works have leveraged this result to improve private mean estimation as well, using more
involved mechanisms. For example, Feldman and Steinke [2017] propose an algorithm that splits
a dataset into m subsets, estimates the empirical mean over each one in a non-private manner, and
then privately reports the median of the means. They prove that this mechanism is still DP, and
provide accuracy guarantees that scale with the queries’ standard deviation. Another line of work
uses truncation-based specialized mechanisms to provide differential privacy guarantees for Gaussian
and sub-Gaussian queries, even in the case of multivariate distribution unknown covariance [Karwa
and Vadhan, 2018, Ashtiani and Liaw, 2022, Duchi et al., 2023]. Feldman and Steinke [2018] use a
more natural mechanism for the purpose of generalization under adaptivity, which adds noise that
scales like the empirical standard deviation of the query. The generalization guarantees they prove
scale like the true standard deviation, but apply only to the expected error.

An alternative method for avoiding the privacy loss that results from scaling the added noise addition
to parameters of the actual dataset is keeping the noise level constant, and instead using local
sensitivity only when analyzing the mechanism’s accuracy and privacy/stability guarantees. This line
of work was initiated by Ghosh and Roth [2011] and later extended by Ebadi et al. [2015], who use
similar notions to provide privacy accounting for each individual in the dataset, but do not improve
generalization (or privacy) guarantees in the general case. For a survey of this type of analysis,
see Wang [2019]. One notable exception is a work by Feldman and Zrnic [2021], who provide
improved guarantees under sparsity assumptions on the data—that is, assuming every sample element
is relevant only to a small portion of the issued queries.

10This intuition is formalized with small degradation in the ϵ and δ terms in Lemma 3.3.2 of Kasiviswanathan
and Smith [2014].
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F.2 Accounting for the underlying distribution

The degradation in the guaranteed generalization capabilities caused by scaling the added noise to the
global sensitivity of a query might be also mitigated by considering the “natural noise” induced by
sampling the dataset from some underlying distribution. A variety of relaxations of the DP definition
in this vein were introduced by Gehrke et al. [2012] and Bassily et al. [2013]. Bhaskar et al. [2011]
even consider an alternative privacy notion that relies solely on noise from sampling without any noise
added by the mechanism, but all of these approaches suffer from a similar problem: while the privacy
guarantee of a single query might improve due to noise introduced by sampling, these definitions
have little to no adaptive composition guarantees. A key step in DP’s composition proof is the identity
ln
(

D(rk | s,vk−1)
D(rk | s′,vk−1)

)
= ln

(
D(rk | s)
D(rk | s′)

)
, which relies on the guarantee that the mechanism’s response is

stable, given any auxiliary information (as discussed in the proof of Theorem 4.4). This guarantee
can hold only if we condition on the full dataset, which one cannot do when using a definition that
leverages the sampling of the data.

Failure to compose—or to compose well—is a common issue with alternative notions of stability
that attempt to weaken DP. Shenfeld and Ligett [2019] propose a stability notion that is both
necessary and sufficient for adaptive generalization (under certain assumptions), but it suffers from
limited composition guarantees. Triastcyn and Faltings [2020] propose the notion of Bayesian
differential privacy, which does not enjoy advanced composition guarantees. Instead they prove that
the generalization guarantees implied by this notion do compose, but their generalization guarantees
still scale with the queries’ range in the general case. A notable exception to these composition
limitations is the notion of Typical stability introduced by Bassily and Freund [2016]; their approach
only requires that the stability notion hold with respect to a subset the of possible datasets, so long
as the probability of drawing a dataset outside the set is negligible. Using this notion, they provide
generalization guarantees that extend beyond datasets where each element is drawn independently
and bounded linear queries, and they obtain guarantees that scale with the variance proxy in case
of sub-Gaussian distributions. Unfortunately, this notion only provides accuracy guarantees for
a number of queries that scales linearly with the sample size, rather than the quadratic guarantee
achieved using DP in the iid case.

Considering the underlying data distribution also paves the way for a Bayesian interpretation of
stability. This perspective actually dates back to the work that introduced differential privacy. Dwork
et al. [2006] interpret the bound on the privacy loss as a bound on the change in the a posteriori
probability belief of an analyst, over the sample set held by the mechanism. This interpretation was
later formalized by Kasiviswanathan and Smith [2014], who prove that DP is essentially equivalent
to a bound on the Total Variation distance (Definition B.1) between the two possible posteriors. Later,
Jung et al. [2020] use the posterior distribution induced by the transcript of the interaction between
the mechanism and the analyst as a key component in their analysis of DP’s generalization guarantees
under adaptivity, which forms the basis for the ideas presented in this paper.

Some works consider a true Bayesian setting, where the analyst and/or the mechanism hold a prior
over possible data distributions. Machanavajjhala et al. [2009] and Li et al. [2013] use such an
assumption to provide stronger privacy guarantees under the assumption that the analyst’s knowledge
about the distribution is limited. Yang et al. [2015] use this setting to account for non iid data
distributions, where knowing of one element in the dataset changes the probability that another
element is included in it, thus degrading the privacy of other elements. In the context of adaptive
data analysis, Elder [2016] considered a more realistic setting, which removes the gap between the
knowledge of the analyst and the mechanism regarding the underlying data distribution. Unfortunately,
any assumption about the analyst’s knowledge is hard to justify in many realistic scenarios, where
implicit priors might be embedded in her algorithm. The guarantees we provide hold even in the case
of a fixed distribution which is known to the analyst.

F.3 Our approach

In this work we combine these two approaches, leveraging the potential improved stability resulting
from low local sensitivity and the properties of the underlying distribution, to avoid the aforementioned
potential pitfalls. We do so by introducing a localized stability notion that depends on the specific
dataset(s) and on the queries issued during the interaction. Using this notion we can leverage the
distribution over the local sensitivity induced by the underlying distribution over the domain. By
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considering the local sensitivity only in the analysis stage, we avoid the induced stability loss that
might be caused, had we scaled the noise with the local sensitivity. Similarly, by choosing a stability
notion that depends on the full dataset(s), saving the underlying distribution for the analysis stage, we
guarantee that this stability notion composes well.

By transitioning from a global stability notion to a local one, we provide high-probability general-
ization guarantees that scale with the queries’ standard deviation. Furthermore, by removing the
dependency on the range, our guarantees extend to unbounded queries as well, so long as they are
well-concentrated. Unlike previous works, both of these advantages are achieved even for simple
noise-addition mechanisms.

Moving our focus from an a priori stability guarantee to an a posteriori guarantee provided after the
fact is similar to the notion of ex-post privacy presented by Ligett et al. [2017]. This approach can
also be viewed as a variant of the metric differential privacy (mDP) notion [Chatzikokolakis et al.,
2013, Imola et al., 2022], for the purpose of adaptive data analysis. Unlike mDP, our notion does not
rely on some external fixed metric over elements domain, but rather uses a separate metric at each
iteration which is induced by the corresponding query.

The dependence of the stability function on the issued queries also introduces a new challenge. Since
these queries are adaptively chosen, the sensitivity is not predefined even by fixing the two datasets,
and, in fact, is a random variable. This challenge has been considered with different motivation under
the name full adaptivity, first by Rogers et al. [2016] and later by Whitehouse et al. [2023]. In their
framework, the sensitivity is fixed, but the privacy parameters are adaptively chosen. The dependence
of our PC definition on the actual issued queries during the interaction is analogous to their privacy
odometer.

Although differential privacy is defined with respect to given ϵ and δ parameters, most mechanisms
in fact establish a relationship between the two, where each ϵ has a corresponding δ, and vice-versa
(see Zhu et al. [2022] for a survey of possible representations of this relationship). [M: Be aware of
the order things are presented] Mironov [2017] provided a simple representation of this relation, by
introducing Rényi DP (Definition B.16), which replaces max divergence (Definition B.4) by Rényi
divergence (Definition B.5) as the stability measure. Building on this notion, Bun and Steinke [2016]
introduced a new privacy definition which they call zero-concentration differential privacy (zCDP)
(Definition B.18), and prove that it implies a relationship between the ϵ and δ parameters for DP.
This definition can also be viewed as a sub-Gaussian bound on the distribution of the privacy loss
(Definition 4.1), in the style of Concentrated differential privacy introduced by Dwork and Rothblum
[2016] (Definition B.17). Our PC stability notion (Definition 4.2) can be viewed as a “localized”
version of zCDP, replacing the divergence by a dissimilarity measure as discussed in Appendix B,
but the same technique could be used to creating a “localized” version of DP as well (Definition
B.8). Triastcyn and Faltings [2020] also propose a notion similar to PC, but they do not leverage it to
achieve variance-dependent accuracy guarantees.

Although we have managed to transition from worst-case to typical-case guarantees by considering
the issued queries and chosen sample set, the guarantees we provide still protect against a worst-case
analyst. Using the Cauchy-Schwarz inequality in the proof of the Covariance Lemma (Lemma 3.5),
we bound the stability loss even for queries that are adversarially correlated with the previous view to
increase the chance of overfitting. This might be viewed as overkill for a real-world setting that is
typically non-adversarial. One possible extension for future work could be to consider a version of
“natural analysts”, a notion introduced by Feldman and Zrnic [2021], who improve generalization
guarantees for such analysts. Alternatively, Du and Dwork [2022] consider a setting where, in each
iteration, the issued query is related to a different covariant of the data elements, which are weakly
correlated. Although we do not consider this type of relaxation in the present work, the tools we
develop here might be used to give improved guarantees under similar assumptions.
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