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Abstract

We consider optimization problems in which the goal is to find a k-dimensional
subspace of Rn, k << n, which minimizes a convex and smooth loss. Such
problems generalize the fundamental task of principal component analysis (PCA)
to include robust and sparse counterparts, and logistic PCA for binary data, among
others. This problem could be approached either via nonconvex gradient methods
with highly-efficient iterations, but for which arguing about fast convergence
to a global minimizer is difficult or, via a convex relaxation for which arguing
about convergence to a global minimizer is straightforward, but the corresponding
methods are often inefficient in high dimensions. In this work we bridge these
two approaches under a strict complementarity assumption, which in particular
implies that the optimal solution to the convex relaxation is unique and is also
the optimal solution to the original nonconvex problem. Our main result is a
proof that a natural nonconvex gradient method which is SVD-free and requires
only a single QR-factorization of an n× k matrix per iteration, converges locally
with a linear rate. We also establish linear convergence results for the nonconvex
projected gradient method, and the Frank-Wolfe method when applied to the convex
relaxation.

1 Introduction

We consider the problem of finding a k-dimensional subspace of Rn, k << n, which minimizes a
given objective function, where we identify a subspace with its corresponding projection matrix. That
is, we consider the following optimization problem:

min f(X) subject to X ∈ Pn,k := {QQ> |Q ∈ Rn×k, Q>Q = I}. (1)

Throughout this work and unless stated otherwise, we assume that f(·) is convex, β-smooth (gradient
Lipschitz) and, for ease of presentation, we also assume that the gradient∇f(·) is a symmetric matrix
over the space of n× n symmetric matrices Sn1.

Problems of interest that fall into this model include among others robust counterparts of PCA,
which are based on the smooth and convex Huber loss (see concrete examples in Section 4), logistic
PCA [15], and sparse PCA [26]. Note that in Problem (1) we are interested in the low-dimensional
subspace itself (as opposed to the projection of the data onto it, as in many other formulations), which
is important for instance when the end goal is to perform dimension reduction, which is one of the
most important applications of PCA-style methods.

1in case the gradient is not a symmetric matrix at some point X ∈ Sn, then denoting it by ∇nonsymf(X),
we can always take its symmetric counterpart∇f(X) = 1

2
(∇nonsymf(X) +∇nonsymf(X)>) and, unless stated

otherwise, our derivations throughout this work will remain the same
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Motivated by high-dimensional problems, we are interested in highly efficient (in particular in terms of
the dimension n) first-order methods for Problem (1). Moreover, we are interested in establishing, at
least locally, fast convergence to the global minimizer, despite the fact that Problem (1) is nonconvex.
Subspace recovery/optimization problems similar to Problem (1) have received significant interest in
recent years, see for instance [25, 28, 4, 17, 18, 11, 16, 22, 23] however, different from these works,
our approach will not assume that f(·) admits a very specific structure (e.g., a linear or quadratic
function), or will be based on a specific underlying statistical model. Instead, we will be interested in
deterministic conditions that may hold for quite general f(·) (which is convex and smooth), and may
render quite a wide variety of problems “well-posed” for efficient optimization.

We begin by briefly describing two natural dimension-efficient first-order methods for tackling
Problem (1). One such method is the nonconvex projected gradient method which follows the
dynamics:

Xt+1 ← ΠPn,k
[Xt − ηt∇f(Xt)], (2)

where ΠPn,k
[·] denotes the Euclidean projection onto the setPn,k (note that since this set is nonconvex,

in general, the projection need not be unique), and ηt > 0 is the step-size. Given the gradient∇f(Xt),
the runtime to compute Xt+1 is dominated by the computation of the projection. It is well known that
the Euclidean projection is given by the projection matrix which corresponds to the span of the top k
eigenvectors of the matrix Xt − ηt∇f(Xt). While accurate computation of this projection requires
a (thin) singular value decomposition (SVD) of a n× n matrix, which amounts to O(n3) runtime,
it can also be approximated up to sufficiently small error using fast iterative methods, such as the
well-known orthogonal iteration method [10] (aka subspace iteration method [24]). The orthogonal
iteration method finds a n× k matrix Q with orthonormal columns which approximately span the
subspace spanned by the k leading eigenvectors of a given positive semidefinite n × n matrix A,
by repeatedly applying the iterations: (Q,R)← QR-FACTORIZE(AQ), where QR-FACTORIZE(·)
denotes the QR factorization of a matrix, i.e., Q ∈ Rn×k has orthonormal columns. Every iteration
of this method takes in worst case only O(kn2) time. When the gradient ∇f(Xt) admits a favorable
structure such as sparsity or a low-rank factorization, the runtime to approximate the projection onto
Pn,k using the orthogonal iteration method could be significantly improved.

Another natural approach to tackle Problem (1) is to exploit the fact that each X ∈ Pn,k could be
factored as X = QQ>, Q ∈ Rn×k having orthonormal columns, and to apply gradient steps w.r.t.
this factorization. This leads to the following dynamics, which we refer to as Gradient Orthogonal
Iteration:

Zt+1 ← Qt − ηt
∂f(QQ>)

∂Q

∣∣∣
Qt

= Qt − ηt∇f(QtQ
>
t )Qt,

(Qt+1,Rt+1)← QR-FACTORIZE(Zt+1), (3)

where the QR-factorization step is required to ensure that Qt+1Q
>
t+1 is also a projection matrix.

As opposed to the Dynamics (2), which as discussed, an efficient implementation of will require to
run a QR-based iterative method to compute the Euclidean projection onto Pn,k on each iteration,
the Dynamics (3) only requires a single QR factorization per iteration, and thus, given the gradient
matrix∇f(QtQ

>
t ), the next iterate Qt+1 can be computed in overall O(n2k) time. As mentioned

above, this runtime could be further significantly improved if the multiplication∇f(QtQt)Qt could
be carried out faster than O(n2k) (for instance when the gradient is sparse or admits a low-rank
factorization), since all other operations require only O(k2n) time (e.g., factorizing of Zt+1).

Obtaining provable guarantees on the fast local convergence of the Dynamics (3) to a global optimal
solution of Problem (1) is the main contribution of this work.

While both Dynamics (2), (3) apply efficient iterations, since they are inherently nonconvex, arguing
about their convergence to a global optimal solution of (1) is difficult in general. An alternative is to
replace Problem (1) with a convex counterpart, for which, arguing about the convergence of first-order
methods to a global optimal solution is well understood. Consider the convex set Fn,k = conv(Pn,k),
where conv(·) denotes the convex-hull operation. Fn,k is also called the Fantope and it is known to
admit the following important characterization: Fn,k = {X ∈ Sn | I � X � 0,Tr(X) = k}, where
A � 0 denotes that A is a positive semidefinite matrix (PSD), see for instance [20]. This leads to the

2



convex problem:

min f(X) subject to X ∈ Fn,k = {X ∈ Sn | I � X � 0,Tr(X) = k}. (4)

A well known first-order method applicable to (4) is the Frank-Wolfe method (aka conditional
gradient) [12], which for the convex Problem (4) follows the dynamics:

Vt ← arg min
V∈Pn,k

Tr(V∇f(Xt)), Xt+1 ← (1− ηt)Xt + ηtVt, ηt ∈ [0, 1]. (5)

It follows from Ky Fan’s maximum principle [7] that computing Vt amounts to computing the
projection matrix onto the span of the k eigenvectors corresponding to the k smallest eigenvalues of
∇f(Xt), and hence can be carried out efficiently using the orthogonal iterations method or similar
methods, similarly to the computation of the projection in (2)) discussed above. 2 Note however that
the Frank-Wolfe iterates will not be, in general, low rank, and only yield a O(1/t) convergence rate
[12].

1.1 The eigengap assumption and strict complementarity

We now turn to discuss our only non-completely standard assumption on Problems (1), (4), which
will underly all of our contributions, and in particular will facilitate our local linear convergence rates.
Assumption 1 (Main assumption). An optimal solution X∗ to the convex Problem (4) is said to
satisfy the eigen-gap assumption with parameter δ > 0, if λn−k(∇f(X∗))−λn−k+1(∇f(X∗)) ≥ δ.

Assumption 1 in particular implies the following theorem which states that the convex relaxation (4)
exactly recovers the unique and optimal solution to the nonconvex Problem (1). This is one aspect in
which Assumption 1 captures “well-posed” instances of Problem (1). The proof is in the appendix.
Theorem 1. If an optimal solution X∗ to Problem (4) satisfies Assumption 1 with some parameter
δ > 0, then it has rank k, i.e., X∗ ∈ Pn,k, and it is the unique optimal solution to both Problem (4)
and Problem (1).

Assumption 1 is tightly related to the convex Problem (4) through the concept of strict-
complementarity, which is a classical concept in constrained continuous optimization theory [1]. A
similar connection between an eigengap in the gradient at an optimal solution and strict comple-
mentarity has been already established in [5] for low-rank matrix optimization problems, where the
underlying convex set is either the nuclear norm ball of matrices or the set of PSD matrices with unit
trace. Now we establish a similar relationship for the convex relaxation (4) and the Fantope, which is
slightly more involved. Let us write the Lagrangian of the convex Problem (4):

L(X,Z1,Z2, s) = f(X)− 〈Z1,X〉 − 〈Z2, I−X〉 − s(Tr(X)− k),

where the dual matrix variables Z1,Z2 are constrained to be PSD, i.e., Z1 � 0,Z2 � 0.

The KKT conditions state that X∗, (Z∗1,Z
∗
2, s
∗) are corresponding optimal primal-dual solutions if

and only if the following conditions hold:

1. I � X∗ � 0,Tr(X∗) = k,Z∗1 � 0,Z∗2 � 0, 2.∇f(X∗) = Z∗1 − Z∗2 + s∗I,

3. 〈Z∗1,X∗〉 = 〈Z∗2, I−X∗〉 = 0.

Condition 3 is known as complementarity. Since Z∗1,Z
∗
2 are PSD and 0 � X∗ � I, this further

implies that Z∗1X
∗ = 0,Z∗2(I−X∗) = 0, which in turn implies that

range(X∗) ⊆ nullspace(Z∗1) ∧ range(I−X∗) ⊆ nullspace(Z∗2).

Definition 1. A pair of primal-dual solutions X∗, (Z∗1,Z
∗
2, s
∗) for Problem (4) is said to satisfy strict

complementarity, if range(X∗) = nullspace(Z∗1) ∨ range(I −X∗) = nullspace(Z∗2), which is the
same as: rank(Z∗1) = n− rank(X∗) ∨ rank(Z∗2) = rank(X∗).
Theorem 2. If an optimal solution X∗ for Problem (4) with rank(X∗) = k satisfies strict comple-
mentarity for some corresponding dual solution, then λn−k(∇f(X∗))−
λn−k+1(∇f(X∗)) > 0. Conversely, if an optimal solution X∗ for Problem (4) satisfies
λn−k(∇f(X∗))− λn−k+1(∇f(X∗)) > 0, then it satisfies strict complementarity for every
corresponding dual solution.

2We note that one can also consider projection-based first-order methods for Problem (4), such as the
projected gradient method, however in general, the projection onto the Fantope Fn,k will not be a low-rank
matrix and hence its computation will require an expensive SVD computation (see details in the sequel).
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The proof is given in the appendix. Strict complementarity has played a central role in several recent
works, both for establishing linear convergence rates for first-order methods, e.g., [29, 6, 8, 5], and
improving the runtime of projected gradient methods due to SVD computations, for low-rank matrix
optimization problems, e.g., [9, 13].

1.2 Additional related work

Efficient gradient methods for low-rank nonconvex optimization have received significant interest
in recent years, here we mention only a few. [2, 21] gave deterministic guarantees on the local
convergence to a global minimizer of factorized gradient descent for certain low-rank optimization
problems, under the mild assumption that a low-rank global minimizer exists. However, these results
cannot capture constraints such as those in our Problem (1) which encode projection matrices. [4],
which considers nonconvex gradient methods for low-rank statistical estimation, also considers
constraints that cannot capture projection matrices as in Problem (1). An exception is a specific case
they consider of linear objective functions. Moreover, even for linear functions such as the specific
sparse PCA objective they consider, their analysis requires several non-trivial conditions to hold (e.g.
local descent, local smoothness etc), which they only show to hold under Gaussian data.

1.3 Notation

Throughout this work we let ‖·‖ denote the Euclidean norm for vectors in Rn and the spectral norm
(largest singular value) for matrices in Rm×n or Sn. We let ‖·‖F denote the Frobenius (Euclidean)
norm for matrices. For a matrix X ∈ Sn, we let λi(X) denote the ith largest eigenvalue of X. We let
〈·, ·〉 denote the standard inner-product for both spaces Rn and Sn.

2 Overview of Results

2.1 Main result

Our main novel contribution is the proof of the following theorem regarding the local linear conver-
gence of the gradient orthogonal iteration (3) to the optimal solution of Problems (4), (1).

Theorem 3. [Local linear convergence of gradient orthogonal iteration] Suppose Assumption 1
holds true for some optimal solution X∗ to Problem (4) with some parameter δ > 0. Let G ≥
supX∈Fn,k

‖∇f(X)‖. Consider the sequence {Qt}t≥1 generated by Dynamics (3) with a fixed
step-size ηt = η = 1

5max{β,G} for all t ≥ 1, and when initialized with Q1 ∈ Pn,k such that

‖Q1Q
>
1 −X∗‖F ≤ min{1,

√
δ
2}

ηδ
2(1+ηβ) . Then, we have that

∀t ≥ 1 : f(QtQ
>
t )− f(X∗) ≤

(
f(Q1Q

>
1 )− f(X∗)

)
exp

(
− δ(t− 1)

40 max{β,G}

)
.

While, as stated above, this is not the first work to consider strict complementarity conditions
for bridging convex and nonconvex methods for low-rank optimization, previous works such as
[8, 5, 9, 13] consider gradient methods that rely on (nearly) exact (low-rank) SVD computations on
each iteration, whereas Theorem 3 considers the more efficient SVD-free Dynamics (3), that requires
only a single QR-factorization of an n× k matrix per iteration, which is much faster and simpler to
implement. Accordingly, the proof is also considerably more challenging and requires new ideas.

2.2 Additional results

We also prove the following two theorems regarding the local linear convergence of the projected
gradient Dynamics (2) and the Frank-Wolfe Dynamics (5). These extend the results in [9, 8] from
optimization over the set of positive semidefinite matrices with unit trace to the Fantope.

Theorem 4. [Local linear convergence of nonconvex PGD] Suppose Assumption 1 holds true for
some optimal solution X∗ to Problem (4) with some parameter δ > 0. Consider the sequence
{Xt}t≥1 generated by Dynamics (2) with a fixed step-size ηt = η = 1/β for all t ≥ 1, and when
initialized with X1 ∈ Fn,k such that ‖X1 −X∗‖F ≤ δ

4β . Then, for all t ≥ 1 it holds that
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1. rank(Xt+1) = k, and thus, given Xt and ∇f(Xt), Xt+1 can be computed via a rank-k
SVD,

2. f(Xt)− f(X∗) ≤ (f(X1)− f(X∗)) · exp(−Θ(δ/β)(t− 1))).
Theorem 5. [Local linear convergence of Frank-Wolfe] Suppose Assumption 1 holds true for
some optimal solution X∗ to Problem (4) with some parameter δ > 0. Consider the sequences
{(Xt,Vt)}t≥1 generated by Dynamics (5) when ηt is chosen via line-search. Then, there exists
T0 = O

(
k(β/δ)3

)
such that,

∀t ≥ T0 : f(Xt+1)− f(X∗) ≤
(
f(Xt)− f(X∗)

)(
1−min{ δ

12β
,

1

2
}
)
.

Moreover, for all t ≥ 1, the rank-k matrix Vt satisfies ‖Vt −X∗‖2F = O
(β2

δ3
(
f(Xt)− f(X∗)

))
.

What if Assumption 1 fails? In case Assumption 1 does not hold or holds with negligible parame-
ter δ, not all is lost, since by considering weaker versions of Assumption 1, which consider eigen-gaps
between higher eigenvalues, we can still guarantee that X∗ (an optimal solution to Problem (4)) has
low rank, and that at least the projected gradient method (when applied to Problem (4)), locally, will
require only a low-rank SVD to compute the projection onto the Fantope, while guaranteeing the
standard convergence rate of O(1/t) (not linear rate as when Assumption 1 holds).
Theorem 6. Let X∗ ∈ Fn,k be some optimal solution to Problem (4) and let µ1 ≥ µ2 ≥ ...µn denote
the eigenvalues of −∇f(X∗). Let r be the smallest integer such that r ≥ k and µr − µr+1 > 0.
Then, it holds that rank(X∗) ≤ r. Moreover, consider the projected gradient dynamics w.r.t. Problem
(4) given by, Xt+1 ← ΠFn,k

[Xt − β−1∇f(Xt)]. For any r′ ∈ {r, . . . , n− 1}, if ‖X1 −X∗‖F ≤
µk−µr′+1

4β , then it holds that,

1. ∀t ≥ 1, rank(Xt+1) ≤ r′, i.e., given Xt and∇f(Xt), Xt+1 can be computed via a rank-r′
SVD.

2. {Xt}t≥1 converges with the standard PGD rate: f(Xt)− f(X∗) = O(β‖X1 −X∗‖2F /t).
Remark 1. Note that via the parameter r′, Theorem 6 offers a flexible tradeoff between the radius of
the ball in which PGD needs to be initialized in (increasing r′ increases the radius), and the rank of
the iterates which in turn, implies an upper-bound on the rank of SVD computations required for the
projection, which controls the runtime of each iteration.
Remark 2. Theorem 6 may be in particular interesting when f(·) is subspace-monotone in the sense
that for any two subspaces S1 ⊆ S2 ⊆ Rn and their corresponding projection matrices P1,P2 ∈ Sn,
it holds that f(P2) ≤ f(P1). In this case, given an optimal solution X∗ to the convex Problem
(4) with eigen-decomposition X∗ =

∑r
i=1 λiuiu

>
i , when k < r << n, using a projection matrix

P∗ =
∑r
i=1 uiu

>
i which satisfies f(P∗) ≤ minX∈Pn,k

f(X) may be of interest. For instance, it
is not hard to show that f(·) of the form f(X) =

∑m
i=1 gi(‖qi −Xqi‖), where gi(·) is monotone

non-decreasing and {qi}mi=1 ⊂ Rn, is subspace-monotone.

The complete proofs of Theorems 3, 4, 5, 6, as well as additional results, are given in the appendix.
Below we give the main ideas in the proof of Theorem 3.

3 Proof Sketch of Theorem 3

3.1 Preliminaries

Lemma 1 (Euclidean projection onto the Fantope). Let X ∈ Sn and consider its eigen decom-
position X =

∑n
i=1 γiuiu

>
i . The Euclidean projection ΠFn,k

[X] is given by: ΠFn,k
[X] =∑n

i=1 γ
+
i (θ)uiu

>
i , where γ+i (θ) = min(max(γi − θ, 0), 1), and θ satisfies the equation∑n

i=1 γ
+
i (θ) = k. Moreover, ∀r ∈ {k, ..., n − 1} it holds that rank(ΠFn,k

(X)) ≤ r if and

only if
∑r
i=1 min(γi − γr+1, 1) ≥ k.

Remark 3. Lemma 1 implies that if rank(X) ≤ r, then only the top r components in the SVD of X
are needed to compute ΠFn,k

[X], i.e., a rank-r SVD of X. Moreover, given the rank-(r+ 1) SVD, we
can check the condition

∑r
i=1 min(γi − γr+1, 1) ≥ k, to verify whether the projection has rank ≤ r.
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The following lemma lower bounds, under Assumption 1, the radius of the ball around the unique
optimal solution X∗ inside-which, the PGD mapping w.r.t. the Fantope Fn,k with a fixed step-size, is
guaranteed to produce rank-k matrices, i.e., matrices in Pn,k, which means that it coincides precisely
with the PGD mapping w.r.t. the nonconvex set Pn,k, given by the Dynamics (2).
Lemma 2. Let X∗ ∈ Fn,k be an optimal solution to Problem (4) which satisfies Assumption 1 with

some parameter δ > 0, and let η > 0. For any X ∈ Fn,k which satisfies ‖X−X∗‖F ≤
ηδ

2(1 + ηβ)
,

it holds that rank(ΠFn,k
[X− η∇f(X)]) = k.

The following lemma establishes that under Assumption 1, Problem (4) has a quadratic growth
property. This property is known to facilitate linear convergence rates of gradient methods [19, 14].
Lemma 3 (Quadratic Growth). Let X∗ ∈ Fn,k be an optimal solution to Problem (4) for which

Assumption 1 holds with some δ > 0. Then, ∀X ∈ Fn,k : ‖X−X∗‖2F ≤
2

δ
(f(X)− f(X∗)).

3.2 Gradient Orthogonal Iteration Analysis

We outline the proof of our main algorithmic result — the local linear convergence result of the
gradient orthogonal iteration (3) given in Theorem 3. For convenience, we rewrite the Dynamics (3)
as Algorithm 1 below which also introduces notation that will be helpful throughout the analysis.
Throughout this section we also introduce the auxiliary sequence {Xt}t≥1 ⊂ Fn,k given by: X1 =
Y1 and Xt+1 = ΠFn,k

[Yt − η∇f(Yt)] for all t ≥ 1.

At a high-level, our analysis of Algorithm 1 relies on the following two components:

1. Using Lemma 2 we can argue that, in the proximity of X∗, rank(Xt) = k, i.e., Xt ∈ Pn,k.
This implies that Xt is the projection matrix onto the span of top k eigenvectors of Wt.

2. We view Qt as the outcome of applying one iteration of the orthogonal iterations method
[10, 24] to Wt (see also discussion in the Introduction). Combined with the previous point,
this allows to argue that Yt = QtQ

>
t is sufficiently close to the projected gradient update

Xt, which drives the convergence.

Algorithm 1 Gradient Orthogonal Iteration

1: initialization: Y1 = Q1Q
>
1 for some Q1 ∈ Rn×k such that Q>1 Q1 = I

2: for t = 1, 2... do
3: Wt+1 ← Yt − η∇f(Yt)
4: (Qt+1,Rt+1)← QR-FACTORIZE(Wt+1Qt) (that is Qt+1Rt+1 = Wt+1Qt)
5: Yt+1 ← Qt+1Q

>
t+1

6: end for

The following key lemma establishes the connection between the sequence {Yt}t≥1 produced by
Algorithm 1, and the corresponding sequence of exact projected gradient steps {Xt}t≥1. The proof
relies on an original extension of the classical orthogonal iteration method (see [10]).
Lemma 4. Fix some iteration t ≥ 1. Suppose that η < 1/G, Xt+1 ∈ Pn,k, and ‖Xt+1 −Yt‖F <
√

2. It holds that, ‖Xt+1 −Yt+1‖2F ≤ 1
1− 1

2‖Xt+1−Yt‖2F

(
ηG

1−ηG

)2
‖Xt+1 −Yt‖2F .

Proof of Lemma 4. Let us write the eigen-decomposition of Wt+1 = Yt − η∇f(Yt) as:

Wt+1 = VΛV> = [V1 V2]

[
Λ1 0
0 Λ2

] [
V>1
V>2

]
,

where V1 ∈ Rn×k,Λ1 ∈ Rk×k correspond to the largest k eigenvalues.

The main part of the proof will be to prove that ‖V>2 Qt+1‖2F ≤ 1
σ2
min(V

>
1 Qt)

(
ηG

1−ηG

)2
‖V>2 Qt‖2F .

Note that by definition of Xt+1 we have that,

Xt+1 = arg min
X∈Fn,k

‖X−Wt+1‖2F =
(a)

arg min
X∈Pn,k

‖X−Wt+1‖2F =
(b)

arg max
X∈Pn,k

〈X,Wt+1〉 = V1V
>
1 ,
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where (a) follows from the assumption of the lemma that Xt+1 ∈ Pn,k, and (b) follows since all
matrices in Pn,k have the same Frobenius norm.

This further implies that

σ2
min(V

>
1 Qt) = λk(V

>
1 QtQ

>
t V1) =

k∑
i=1

λi(V
>
1 QtQ

>
t V1)−

k−1∑
j=1

λj(V
>
1 QtQ

>
t V1)

≥ Tr(V>1 QtQ
>
t V1)− (k − 1)λ1(V

>
1 QtQ

>
t V1) ≥ Tr(Xt+1Yt)− (k + 1)

=

(
k − 1

2
‖Xt+1 −Yt‖2F

)
− (k − 1) = 1− 1

2
‖Xt+1 −Yt‖2F . (6)

Thus, under the assumption that ‖Xt+1 −Yt‖F <
√

2, we have that (V>1 Qt) is invertible.

Since (Qt+1,Rt+1) is the QR factorization of Wt+1Qt, using the eigen-decomposition of Wt+1

we can write Qt+1Rt+1 = VΛV>Qt. Multiplying both sides from the left by V> we get,[
V>1 Qt+1

V>2 Qt+1

]
Rt+1 =

[
Λ1 0
0 Λ2

] [
V>1 Qt

V>2 Qt

]
,

which leads to the two equations:

Λ1V
>
1 Qt = V>1 Qt+1Rt+1, (7)

Λ2V
>
2 Qt = V>2 Qt+1Rt+1. (8)

Under the assumption that η < 1/G, using Weyl’s inequality we have that λk(Wt+1)
≥ λk(Yt)−ηλ1(∇f(Yt)) > 0, and so Λ1 is invertible. Since from (6) we have that σmin(V>1 Qt) >
0, it follows that rank(Λ1V

>
1 Qt) = k and thus, from Equation (7) we have that V>1 Qt+1 and Rt+1

are both invertible and we can write Rt+1 = (V>1 Qt+1)−1Λ1V
>
1 Qt.

Multiplying both sides of Equation (8) from the right with R−1t+1, we get

V>2 Qt+1 = Λ2V
>
2 Qt

(
(V>1 Qt+1)−1Λ1V

>
1 Qt

)−1
= Λ2V

>
2 Qt(V

>
1 Qt)

−1Λ−11 V>1 Qt+1.

Now we can use this to bound ‖V>2 Qt+1‖2F :

‖V>2 Qt+1‖2F = ‖Λ2V
>
2 Qt(V

>
1 Qt)

−1Λ−11 V>1 Qt+1‖2F

≤
(a)
‖(V>1 Qt)

−1‖22‖Λ−11 ‖22‖V>1 Qt+1‖22‖Λ2‖22‖V>2 Qt‖2F ≤
(b)

‖V>2 Qt‖2F
σ2
min(V>1 Qt)

(
λk+1(Wt+1)

λk(Wt+1)

)2

,

(9)

where (a) follows from the inequalities ‖AB‖F ≤ min{‖A‖F ‖B‖2, ‖A‖2‖B‖F },
‖AB‖2 ≤ ‖A‖2‖B‖2, and (b) follows from the eigen-decomposition of Wt+1 and by noting that
since V1,Qt+1 both have orthonormal columns, it holds that ‖V>1 Qt+1‖2 ≤ 1.

We upper-bound λk+1(Wt+1)/λk(Wt+1) by using Weyl’s inequality as follows:

λk+1(Wt+1)

λk(Wt+1)
≤ λk+1(Yt) + ηλ1(−∇f(Yt))

λk(Yt) + ηλn(−∇f(Yt))
≤ ηG

1− ηG
, (10)

where we have used the fact that Yt ∈ Pn,k, and so λk(Yt) = 1, λk+1(Yt) = 0.

Plugging (10) into (9) we indeed obtain,

‖V>2 Qt+1‖2F ≤
1

σ2
min(V>1 Qt)

(
ηG

1− ηG

)2

‖V>2 Qt‖2F . (11)

Now, for the final part of the proof, we note that ‖V>2 Qt+1‖2F = Tr(V2V
>
2 Yt+1) =

Tr((I −Xt+1)Yt+1) = k − Tr(Xt+1Yt+1) = 1
2‖Xt+1 −Yt+1‖2F , and similarly, ‖V>2 Qt‖2F =

1
2‖Xt+1 −Yt‖2F . Plugging these observations and (6) into (11), we obtain the lemma.

The following lemma is the main step in the proof of the convergence rate of Algorithm 1.
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Lemma 5. Let us denote ht = f(Yt) − f(X∗) for all t ≥ 1. Fix some iteration t of Algorithm 1,
and suppose that η ≤ 1

5max{β,G} , Xt+1 ∈ Pn,k, and that ‖Xt+1 −Yt‖F ≤ 1. Denote the constants

C0 = 2
(

ηG
1−ηG

)2
, C1 = 2(1+ηG)C0

1−2ηβ−2C0(1+ηG) . It holds that, ht+1 ≤
(

1− ηδ
4(1+C1)

)
ht, where δ > 0 is

the constant from Assumption 1.

Proof. Using the β-smoothness of f(X), for any X ∈ Fn,k and η ≤ 1

β
it holds that

f(X) ≤ f(Yt) + 〈X−Yt,∇f(Yt)〉+
1

2η
‖X−Yt‖2F

≤
(a)

f(Yt) + 〈X−Yt,∇f(Yt)〉+ η−1〈Yt,Yt −X〉

= f(Yt) + η−1〈Yt −X,Yt − η∇f(Yt)〉, (12)

where (a) follows since using the fact that Yt ∈ Pn,k, we have that for any X ∈ Fn,k it holds that
‖X‖2F ≤ k = ‖Yt‖2F = 〈Yt,Yt〉.
Since Xt+1 = ΠFn,k

[Yt − η∇f(Yt)] = arg minX∈Fn,k
‖X− (Yt − η∇f(Yt))‖2F , and by the

assumption of the lemma that Xt+1 ∈ Pn,k, using the first-order optimality condition, it can be
shown that for all Z ∈ Fn,k: 〈Xt+1 − Z,Yt − ηt∇f(Yt)〉 ≥ 0, see Lemma 6. This implies that for
all Z ∈ Fn,k:

〈Yt+1,Yt − η∇f(Yt)〉 = 〈Xt+1,Yt − η∇f(Yt)〉 − 〈Xt+1 −Yt+1,Yt − η∇f(Yt)〉 ≥
〈Z,Yt − η∇f(Yt)〉 − 〈Xt+1 −Yt+1,Yt − η∇f(Yt)〉 ≥
〈Z,Yt − η∇f(Yt)〉 − ‖Xt+1 −Yt+1‖2F ‖Wt+1‖2, (13)

where the last inequality is due to Lemma 8, which uses again the facts that Xt+1 ∈ Pn,k
and Xt+1 = arg minX∈Fn,k

‖X− (Yt − η∇f(Yt))‖2F , which in turn imply that Xt+1 =
arg maxX∈Pn,k

〈X,Wt+1〉, and recalling that Wt+1 = Yt − η∇f(Yt).

Setting X = Yt+1 in (12) and plugging-in (13), we have that for any Z ∈ Fn,k it holds that,

f(Yt+1) ≤ f(Yt) + η−1
(
〈Yt − Z,Yt − η∇f(Yt)〉+ ‖Xt+1 −Yt+1‖2F ‖Wt+1‖2

)
= f(Yt) + 〈Z−Yt,∇f(Yt)〉+

1

2η
‖Z−Yt‖2F +

1

η
‖Xt+1 −Yt+1‖2F ‖Wt+1‖2

≤ f(Yt) + 〈Z−Yt,∇f(Yt)〉+
1

2η
‖Z−Yt‖2F +

1 + ηG

η
‖Xt+1 −Yt+1‖2F , (14)

where the last inequality is due to the following upper-bound on ‖Wt+1‖2:

‖Wt+1‖2 = ‖Yt − η∇f(Yt)‖2 ≤ ‖Yt‖2 + η‖∇f(Yt)‖2 ≤ 1 + ηG.

In particular, setting Z = (1− α)Yt + αX∗ for some α ∈ [0, 1], we get that

f(Yt+1) ≤ f(Yt) + α〈X∗ −Yt,∇f(Yt)〉+
α2

2η
‖X∗ −Yt‖2F +

1 + ηG

η
‖Xt+1 −Yt+1‖2F .

Subtracting f(X∗) from both sides, using the convexity of f(·), and Lemma 3 gives

ht+1 ≤
(

1− α+
α2

ηδ

)
ht +

1 + ηG

η
‖Xt+1 −Yt+1‖2F .

Setting α = ηδ/2 (note that since η ≤ 1/G, we have that α ∈ [0, 1]), gives

ht+1 ≤
(

1− ηδ

4

)
ht +

1 + ηG

η
‖Xt+1 −Yt+1‖2F . (15)

We now continue to upper-bound the term ‖Xt+1 −Yt+1‖2F . Using Lemma 9, which apply standard
arguments in the analysis of first-order methods, that rely only on the facts that Xt+1 = ΠFn,k

[Yt −
η∇f(Yt)] and that f(·) is smooth and convex, we have that

‖Xt+1 −Yt‖2F ≤
η

1− ηβ
(f(Yt)− f(Xt+1)) . (16)
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Let us set Z = Xt+1 in (14) to obtain that

f(Yt+1) ≤ f(Yt) + 〈Xt+1 −Yt,∇f(Yt)〉+
1

2η
‖Xt+1 −Yt‖2F +

1 + ηG

η
‖Xt+1 −Yt+1‖2F

≤ f(Xt+1) +
1

2η
‖Xt+1 −Yt‖2F +

1 + ηG

η
‖Xt+1 −Yt+1‖2F ,

where the last inequality is due to convexity of f(·). Rearranging and using Lemma 4 along with the

notation C0 = 2
(

ηG
1−ηG

)2
, we have f(Xt+1) ≥ f(Yt+1)− 1

η

(
1
2 + C0(1 + ηG)

)
‖Xt+1 −Yt‖2F .

Plugging into (16) we obtain

‖Xt+1 −Yt‖2F ≤
η

1− ηβ

(
f(Yt)− f(Yt+1) +

1

η

(1

2
+ C0(1 + ηG)

)
‖Xt+1 −Yt‖2F

)
,

and rearranging we obtain

‖Xt+1 −Yt‖2F ≤
1

1− 1+2C0(1+ηG)
2(1−ηβ)

η

1− ηβ
(f(Yt)− f(Yt+1)) =

2η(ht − ht+1)

2(1− ηβ)− 1− 2C0(1 + ηG)
.

Using Lemma 4 again we have, ‖Xt+1 −Yt+1‖2F ≤
2ηC0

1−2ηβ−2C0(1+ηG) (ht − ht+1). Plug-

ging back into (15) we obtain ht+1 ≤
(

1− ηδ
4

)
ht + 2(1+ηG)C0

1−2ηβ−2C0(1+ηG) (ht − ht+1). Denoting

C1 = 2(1+ηG)C0

1−2ηβ−2C0(1+ηG) , we finally obtain ht+1 ≤ 1
1+C1

(
1− ηδ

4 + C1

)
ht =

(
1− ηδ

4(1+C1)

)
ht, as

required. The only thing left is to choose a feasible step size. We have to require: 1− 2ηβ − 2C0(1 +
ηG) > 0. The latter holds for any η ≤ 1

5max{β,G} .

4 Numerical Simulations

Due to lack of space, some of the implementation details and results are deferred to the appendix. We
consider two models for robust recovery of a low-dimensional subspace from noisy samples: 1. a
spiked covariance model, and 2. a sparsely corrupted entries model. In both models we minimize a
robust loss based on the Huber function, which is convex and smooth, over the Fantope. We generate
random instances and solve them to high precision (duality gap < 10−10) and take the resulting point
X∗ as the optimal solution. We measure the eigen-gap in ∇f(X∗) (as in Assumption 1), and we
compare the recovery error w.r.t. the naive PCA solution XPCA which simply computes the leading
subspace of the empirical covariance. The results are given in Table 1. For both models the recovery
error is significantly lower than that of naive PCA, which demonstrates the usefulness of the chosen
models . We see that the eigen-gap assumption indeed holds with substantial values of δ.

Noise prob. (p) 0.05 0.1 0.2 0.3 0.4 0.5
↓Model 1: spiked covariance ↓

Eigen-gap (δ) 3.21 2.87 2.36 2.04 1.501 1.03
‖X∗ −P‖F 0.0047 0.0075 0.012 0.016 0.022 0.0298

‖XPCA −P‖F 0.045 0.072 0.115 0.157 0.212 0.292
↓Model 2: sparsely corrupted entries ↓

Eigen-gap (δ) 5.72 5.49 5.15 4.81 4.38 3.79
‖X∗ −P‖F 0.049 0.067 0.097 0.111 0.134 0.148

‖XPCA −P‖F 0.148 0.199 0.291 0.335 0.401 0.439

Table 1: Recovery and eigen-gap results for the spiked covariance and sparsely corrupted entries
models with varying noise probabilities. P is the projection matrix onto the ground truth subspace.
n = 100, k = 10, sample size m = 500. Results are averages of 20 i.i.d. experiments.

We additionally test the empirical convergence of nonconvex PGD (Dynamics (2)) and the gradient
orthogonal iteration method (GOI, Dynamics (3)) on the two models. We initialize both methods
with the PCA solution XPCA and use the same fixed step-size for both. We examine the convergence
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of both methods in terms of recovery error and approximation error (w.r.t. the objective function).
Additionally, to showcase the benefit of avoiding exact SVD computations (as employed by non-
convex PGD) and using only a single QR factorization per iteration (as in GOI), we compare the
runtimes of GOI and nonconvex PGD, but we exclude the time it takes to compute the gradient
on each iteration and only account for the time it takes to perform either a rank− k SVD or a QR
factorization, where both algorithms were implemented in Python and we have used the built-in
functions NUMPY.LINALG.EIGH and NUMPY.LINALG.QR to compute thin-SVDs and QR factoriza-
tions, respectively. Finally, we verify during the run of nonconvex PGD, that on each iteration, the
projection onto Pn,k is indeed the same as the projection onto the Fantope Fn,k (see Remark 3),
which suggests that nonconvex PGD indeed converges to the global minimum.

The results for the spiked covariance model are given in Figure 1 (the results for the sparsely corrupted
entries model are very similar and given in the appendix). It can be seen that indeed the distance
between the iterates of the two methods decays very quickly and so the graphs of the recovery and
approximation errors of both methods coincide. We see that both methods demonstrate a linear
convergence rate (w.r.t. the objective). We also see the significant savings in runtime when replacing
a thin-SVD computation (in nonconvex PGD) with only a single QR factorization (in GOI).

Figure 1: Convergence of PGD and GOI for the spiked covariance model with p = 0.1. 1st and
3rd panels from the left show the recovery error (P is the ground truth projection matrix) and
approximation error w.r.t. objective value of PGD, respectively. Convergence of GOI is omitted since
it coincides with that of PGD. 2nd panel from the left shows the distance (in Frobenius norm) between
the iterates of PGD (Xt) and those of GOI (Yt). The rightmost panel shows the approximation error
(in log scale) vs. time, when only the time to compute matrix factorizations is taken into account.

Importance of warm-start initalization: We examine the performance of nonconvex PGD over
Pn,k (Dynamics (2)) for the spiked covariance model considered above, but this time, when initialized
with a random (uniformly distributed) projection matrix. We compare it with convex PGD which
optimizes over the Fantope Fn,k and uses a full-rank SVD to compute the projection. We use the
same step-size as before. We see in Figure 2 (right panel) two trends. First, we clearly see that PGD
w.r.t. Pn,k and Fn,k produce very different iterates which in particular implies that, as opposed to the
case of warm-start initializaion, the projections of convex PGD onto the Fantope, throughout most of
the run are not rank-k. Second, we see that nonconvex PGD is significantly slower than convex PGD.
Thus, while both methods eventually converge to the same error, this suggests that far from a global
minimizer, the behaviour of nonconvex gradient methods is indeed significantly different than in the
local proximity of one, which supports the fact that our theoretical guarantees only hold in a local
neighbourhood of a minimizer.

Figure 2: Convergence of PGD for the spiked covariance model with p = 0.1 over the Fantope Fn,k
with a full-rank SVD, and over Pn,k with rank-k SVD, when initialized with the PCA solution (left
panel) and with random initialization (right panel). In the left panel the plots exactly coincide.
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Figure 3: Convergence of PGD and GOI for the sparsely corrupted entries model with p = 0.1. 1st
and 3rd panels from the left show the recovery error (P is the ground truth projection matrix) and
approximation error w.r.t. objective value of PGD, respectively. Convergence of GOI is omitted since
it coincides with that of PGD. 2nd panel from the left shows the distance (in Frobenius norm) between
the iterates of PGD (Xt) and those of GOI (Yt). The rightmost panel shows the approximation error
(in log scale) vs. time, when only the time to compute matrix factorizations is taken into account.

A Additional Details on Experiments

The first robust recovery model we consider is a spiked covariance model, in which we draw a
uniformly distributed projection matrix onto a k-dimensional subspace P ∈ Pn,k, and we generate m
samples q1, . . . ,qm ∈ Rn such that for each i ∈ [m], we set qi = Pzi/‖Pzi‖ with probability 1−p,
and qi = zi with probability p, where p ∈ (0, 0.5], and z1, . . . , zm are i.i.d. uniformly distributed
unit vectors. The goal is to recover P by minimizing the following objective function over Fn,k:

f(X) =

m∑
i=1

Huberγ(‖qi − aXqi‖), Huberγ(x) :=

{
1
2x

2 if |x| ≤ γ
γ(|x| − 1

2γ) else.

Here a ∈ (0, 1] is a regularization parameter and we set it to slightly less than one.

The second model we consider is that of sparsely corrupted entries in which we again draw a
uniformly distributed projection matrix P. This time the data points q1, . . . ,qm are generated by
taking qi = Pzi/‖Pzi‖ for each i ∈ [m], where as before z1, . . . , zm are i.i.d. uniformly distributed
unit vectors, but for each i ∈ [m], with probability p, we pick a uniformly distributed entry j ∈ [n]
and set it to −1 or +1 (with equal probability). The goal is to recover P by minimizing the following
objective function over Fn,k:

f(X) =

m∑
i=1

n∑
j=1

Huberγ([qi]j − [aXqi]j),

where here also a ∈ (0, 1] is a regularization parameter.

For both models we set the Huber loss parameter to γ = 0.1. For the first model we set a = 0.9 and for
the second a = 0.8. For a given projection matrix X ∈ Pn,k, we measure the recovery error according
to ‖X−P‖2F . For both models we let XPCA ∈ Pn,k denote the standard PCA solution, i.e., the
projection matrix onto the span of the top k eigenvectors of the empirical covariance 1

m

∑m
i=1 qiq

>
i .

For both models we set n = 100, k = 10, and m = 500. For both models we use the projected
gradient method to find a projection matrix X∗ ∈ Pn,k which has negligible dual gap (< 10−10). 3

For this X∗ we measure the corresponding eigen-gap λn−k(∇f(X∗))− λn−k+1(∇f(X∗)), and the
recovery error ‖X∗ −P‖F . The results are given in Table 1. For each set of parameters the results
are the average of 20 i.i.d. experiments.

In a second experiment we fix for both models p = 0.1 and vary the dimension n (while keeping
k,m fixed as before). The results are given in Table 2. In particular, we see that the eigen-gap δ does
not change substantially with the dimension.

We turn to demonstrate the empirical performance of the projected gradient method w.r.t. to the
nonconvex set Pn,k (PGD), as given in Dynamics (2), and and gradient orthogonal iteration (GOI),
as given in Dynamics (3), for the two models discussed above. We fix n = 100 and p = 0.1 (keeping
all other parameters unchanged). For both methods we use the fixed step-size η = 1/λ, where

3For X ∈ Fn,k the dual gap is defined as dg(X) = 〈X−V,∇f(X)〉, were V ∈
argminZ∈Pn,k

〈Z,∇f(X)〉. Since f(·) is convex, we in particular have f(X)−minY∈Fn,k f(Y) ≤ dg(X).
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dim. (n) 100 200 300 400
↓Model 1: spiked covariance ↓

Eigen-gap (δ) 2.87 3.02 2.96 3.04
‖X∗ −P‖F 0.0071 0.005 0.0043 0.0035

‖XPCA −P‖F 0.068 0.049 0.043 0.036
↓Model 2: sparsely corrupted entries ↓

Eigen-gap (δ) 5.49 5.902 6.06 6.1
‖X∗ −P‖F 0.067 0.0617 0.058 0.055

‖XPCA −P‖F 0.199 0.208 0.206 0.202

Table 2: Recovery and eigen-gap results for the spiked covariance model and corrupted entries model
with varying dimension. Each result is the average of 20 i.i.d. experiments.

λ = λ1(
∑m
i=1 qiq

>
i ), i.e., the largest eigenvalue of the (unnormalized) empirical covariance. We

note that smaller values of η seem too conservative in practice from our experimentations. We initialize
both methods with the k-PCA projection matrix XPCA. We examine the convergence of both methods
in terms of recovery error and approximation error (w.r.t. the objective function). Additionally, to
showcase the benefit of avoiding exact SVD computations (as employed by nonconvex PGD) and
using only a single QR factorization per iteration (as in GOI), we compare the runtimes of GOI and
nonconvex PGD, but we exclude the time it takes to compute the gradient on each iteration and only
account for the time it takes to perform either a rank − k SVD or a QR factorization, where both
algorithms were implemented in Python and we have used the built-in functions NUMPY.LINALG.EIGH
and NUMPY.LINALG.QR to compute thin-SVDs and QR factorizations, respectively.

The results for the spiked covariance model are given in Figure 1, and the results for the sparsely
corrupted entries model, which are very similar, are given in Figure 3. It can be seen that indeed
the distance between the iterates of the two methods decays very quickly and so the graphs of the
recovery and approximation errors of both methods coincide. We in particular see that both methods
indeed demonstrate a linear convergence rate (w.r.t. the objective value). We also see the significant
savings in runtime when replacing a thin-SVD computation (as used by nonconvex PGD) with only a
single QR factorization (as used by GOI).

Moreover, in order to verify the convergence of nonconvex PGD to the global optimal solution (and
not just a stationary point of the nonconvex Problem (1)), we verify using the procedure suggested
in Remark 3, that on each iteration t, the projection step onto the Fantope Fn,k is also of rank k,
i.e., identical to the projection onto Pn,k. This means that the iterates of PGD w.r.t. the nonconvex
Problem (1) and the iterates of PGD w.r.t. the convex relaxation (4), coincide. Indeed, for all random
instances generated and for all iterations executed, we observe that the projection onto the Fantope is
of rank k. This suggests that the nonconvex PGD (and consequently also GOI) in particular converges
to the global optimal solution of the convex relaxation (4).

B Proof of Theorem 2

Proof. First, observe that for any dual solution (Z∗1,Z
∗
2, s
∗), it holds that Z∗1 and Z∗2 are orthogonal

to each other. This is true since, denoting by X∗ the corresponding primal solution, we have that,

〈Z∗1,Z∗2〉 = Tr(Z∗1Z
∗
2) = Tr(Z∗1(X∗ + (I−X∗))Z∗2)

= Tr(Z∗1X
∗Z∗2) + Tr(Z∗1(I−X∗)Z∗2) = 0,

where the last equality follows from the complementarity conditions Z∗1X
∗ = 0 and (I−X∗)Z∗2 = 0.

For a given dual solution (Z∗1,Z
∗
2, s
∗), let us denote r1 = rank(Z∗1) and r2 = rank(Z∗2).

Let us write the eigen decompositions Z∗1 =
∑r1
i=1 ρiuiu

T
i and Z∗2 =

∑r2
j=1 µjvjv

T
j .

From the orthogonality of Z∗1 and Z∗2 established above, we get an orthonormal set of vectors
{u1, ...,ur1 ,v1, ...,vr2} and we can complete it to an orthonormal basis of Rn:

B = {u1, ...,ur1 ,v1, ...,vr2 ,w1, ...,wn−r1−r2},

where Z∗1wi = 0 and Z∗2wi = 0 for any i ∈ {1, . . . , n− r1 − r2}.
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From the KKT conditions for Problem (4), we have that∇f(X∗) = Z∗1−Z∗2 + s∗I, and so it follows
that any v ∈ B is an eigenvector of ∇f(X∗). Thus, we can write the eigenvalues of ∇f(X∗) in
non-increasing order from left to right as:

ρ1 + s∗, ..., ρr1 + s∗, s∗, ..., s∗︸ ︷︷ ︸
n−r1−r2 times

, s∗ − µr2 , ..., s∗ − µ1. (17)

For the first direction of the theorem, let us assume X∗ satisfies strict complementarity, so for some
dual solution (Z∗1,Z

∗
2, s
∗) we have that r1 = n− k or r2 = k.

Now, if r1 = n− k, using (17) we get that λn−k(∇f(X∗)) = ρn−k + s∗ and
λn−k+1(∇f(X∗)) ≤ s∗, and so there is a gap of

λn−k(∇f(X∗))− λn−k+1(∇f(X∗)) ≥ ρn−k + s∗ − s∗ = ρn−k > 0.

Otherwise, if r2 = k, then using (17) we have that λn−k+1(∇f(X∗)) = s∗ − µk and
λn−k(∇f(X∗)) > s∗, and so there is a gap of

λn−k(∇f(X∗))− λn−k+1(∇f(X∗)) ≥ s∗ − (s∗ − µk) = µk > 0.

In both cases we get a positive eigen-gap, which proves the first direction of the theorem.

For the reversed direction, let us assume that X∗ satisfies the eigen-gap assumption, and recall that
according to Theorem 1 it follows that rank(X∗) = k. Suppose by way of contradiction that there
exists a dual solution (Z∗1,Z

∗
2, s
∗) for which r1 < n− k and r2 < k. In this case we have from (17)

that,

λn−k(∇f(X∗)) = λn−k+1(∇f(X∗)) = s∗,

which contradicts the existence of an eigen-gap and so, it must be that r1 = n− k or r2 = k.

C Details Missing from Section 3.1 and Proof of Theorem 1

C.1 Proof of Lemma 1

Proof. The first part of the lemma is a known fact, see for instance [26]. For the second part, let
us prove that if

∑r
i=1 min(γi − γr+1, 1) ≥ k, then θ must satisfy θ ≥ γr+1. Assume by way

contradiction that θ < γr+1. Then,

k =

n∑
i=1

min(max(γi − θ, 0), 1) >

n∑
i=1

min(max(γi − γr+1, 0), 1) =

r∑
i=1

min(γi − γr+1, 1),

which is a contradiction, and so it must be that θ ≥ γr+1, and in that case the projection sets all the
bottom n − r components of the eigen-decomposition of X to zero. Hence, rank(ΠFn,k

[X]) ≤ r.
The reversed direction holds from similar reasoning.

C.2 Proof of Theorem 1

Before we prove Theorem 1 we need the following lemma which is central to our analysis and
connects between an optimal solution and the eigen-decomposition of its corresponding gradient.

Lemma 6. Let X∗ ∈ Fn,k be an optimal solution to Problem (4) and write the eigen-
decomposition of −∇f(X∗) as −∇f(X∗) =

∑n
i=1 µiuiu

>
i . Let r be the smallest integer such

that r ≥ k and µk − µr+1 > 0. Then, for all n ≥ i ≥ r + 1, X∗ is orthogonal to uiu
>
i , and

rank(X∗) ≤ r.
In particular, if r = k, then X∗ ∈ Pn,k is the unique projection matrix onto the span of the k leading
eigenvectors of −∇f(X∗).
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Proof. Assume by way of contradiction that X∗ is not orthogonal ur+1u
>
r+1, . . . ,unu

>
n . In this

case,
∑n
i=r+1 u

>
i X
∗ui > 0, and we can write,

〈X∗,−∇f(X∗)〉 =

r∑
i=1

µiu
>
i X
∗ui +

n∑
i=r+1

µiu
>
i X
∗ui

<
(a)

r∑
i=1

µiu
>
i X
∗ui + µr

n∑
i=r+1

u>i X
∗ui

=
(b)

k−1∑
i=1

µiu
>
i X
∗ui + µk

n∑
i=k

u>i X
∗ui

=
(c)

k−1∑
i=1

µiu
>
i X
∗ui + µk

(
k −

k−1∑
i=1

u>i X
∗ui

)
,

where both (a) and (b) follow from the definition of r, and (c) follows since
∑n
i=1 u

>
i X
∗ui =

Tr(X∗
∑n
i=1 uiu

∗
i ) = Tr(X∗I) = k.

Let us denote the projection matrix onto the span of the top k eigenvectors of −∇f(X∗) by P∗ =∑k
i=1 uiu

>
i , and note that 〈P∗,−∇f(X∗)〉 =

∑k
i=1 µi. It follows that

〈P∗ −X∗,∇f(X∗)〉 = 〈X∗ −P∗,−∇f(X∗)〉

<

k−1∑
i=1

µiu
>
i X
∗ui + µk

(
k −

k−1∑
i=1

u>i X
∗ui

)
−

k∑
i=1

µi

=

k−1∑
i=1

µi
(
u>i X

∗ui − 1
)

+ µk

k−1∑
i=1

(
1− u>i X

∗ui
)

=

k−1∑
i=1

(
1− u>i X

∗ui
)

(µk − µi) ≤ 0,

where the last inequality follows since for all i, u>i X
∗ui ∈ [0, 1].

Thus, we have that X∗ violates the first-order optimality condition which contradicts that as-
sumption that it is an optimal solution, and thus we have that X∗ must indeed be orthogonal to
ur+1u

>
r+1, . . . ,unu

>
n .

An immediate consequence is that the eigenvectors of X∗ which correspond to non-zero eigenvalues
must lie in span{u1, ...,ur} and thus, it must be that rank(X∗) ≤ r.

For the final part of the lemma, in case r = k, since for all X ∈ Fn,k, rank(X) ≥ k, we have that
rank(X∗) = k. In particular, X∗ is a projection matrix, i.e., X ∈ Pn,k. By the orthogonality result
above, it follows that the eigenvectors of X∗ lie in span{u1, . . . ,uk}, which means that X∗ is indeed
the projection matrix onto span{u1, . . . ,uk}, as stated in the lemma. Note that when r = k, this
projection matrix is indeed unique (i.e., the subspace spanned by the top k eigenvectors of −∇f(X∗)
is unique).

We now prove Theorem 1.

Proof of Theorem 1. Let X∗ be an optimal solution to the convex relaxation (4) which satisfies
Assumption 1 with some δ > 0. It follows directly from Lemma 6 that rank(X∗) = k. From Lemma
6 it further follows that X∗ is the unique projection matrix onto the span of top k eigenvectors of
−∇f(X∗), i.e., it is the unique matrix in X ∈ Pn,k such that 〈X,−∇f(X∗)〉 =

∑k
i=1 µi, where

we write the eigen-decomposition of −∇f(X∗) as −∇f(X∗) =
∑n
i=1 µiuiu

>
i . From the von

Neumann trace inequality it follows that for any matrix X ∈ Pn,k it holds that 〈X,−∇f(X∗)〉 ≤∑n
i=1 λi(X)µi =

∑k
i=1 λi(X)µi =

∑k
i=1 µi. Thus, we have that for all X ∈ Pn,k \ {X∗} :

〈X−X∗,∇f(X∗)〉 = 〈X∗ −X,−∇f(X∗)〉 > 0. Since Fn,k = conv{Pn,k}, this further implies
that for all X ∈ Fn,k \ {X∗}: 〈X−X∗,∇f(X∗)〉 > 0. Since f(·) is convex, it further holds that
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for all X ∈ Fn,k \ {X∗}: f(X∗)− f(X) ≤ 〈X∗ −X,∇f(X∗)〉 < 0, and thus, we conclude that
X∗ is indeed the unique optimal solution to Problem (4), which also implies that it is the unique
optimal solution to Problem (1).

C.3 Proof of Lemma 3

Proof. Let us write the eigen-decomposition of the gradient ∇f(X∗) as ∇f(X∗) =
∑n
i=1 λiuiu

>
i .

For any X ∈ Fn,k it holds that:

f(X)− f(X∗) ≥
(a)
〈X−X∗,∇f(X∗)〉 =

(b)

n∑
i=1

λiu
>
i Xui −

n∑
i=n−k+1

λi

≥
(c)

(λn−k+1 + δ)

n−k∑
i=1

u>i Xui +

n∑
i=n−k+1

λiu
>
i Xui −

n∑
i=n−k+1

λi

= (λn−k+1 + δ)

n−k∑
i=1

u>i Xui −
n∑

i=n−k+1

λi(1− u>i Xui)

≥
(d)

(λn−k+1 + δ)

n−k∑
i=1

u>i Xui − λn−k+1

n∑
i=n−k+1

(1− u>i Xui)

= λn−k+1

n∑
i=1

u>i Xui − kλn−k+1 + δ

n−k∑
i=1

u>i Xui, (18)

where (a) follows from the convexity of f(X), (b) follows since according Lemma 6 X∗ =∑n
i=n−k+1 uiu

>
i and so, 〈X∗,∇f(X∗)〉 =

∑n
i=n−k+1 λi, (c) follows from Assumption 1, and

(d) follows since X � I, which implies that u>i Xui ≤ u>i ui = 1.

Using
∑n
i=1 u

>
i Xui = Tr(X

∑n
i=1 uiu

>
i ) = Tr(XI) = k and Eq. (18), we have,

f(X)− f(X∗) ≥ δ
n−k∑
i=1

u>i Xui = δ

(
k −

n∑
i=n−k+1

u>i Xui

)
. (19)

Also, using again the fact that X∗ =
∑n
i=n−k+1 uiu

>
i , we have that,

‖X−X∗‖2F = ‖X‖2F + ‖X∗‖2F − 2

n∑
i=n−k+1

u>i Xui ≤ 2

(
k −

n∑
i=n−k+1

u>i Xui

)
, (20)

where the last inequality follows since for any X ∈ Fn,k it holds that ‖X‖2F =
∑n
i=1 λ

2
i (X) ≤∑n

i=1 λi(X) = k. Combining Eq. (19) and (20) we finally have that,

f(X)− f(X∗) ≥ δ

2
‖X−X∗‖2F .

D Projected Gradient Descent Analysis

In this section we turn to analyze the local convergence of the projected gradient method w.r.t. the
sets Pn,k and Fn,k, and to prove Theorems 4 and 6.

We first provide the proof of Lemma 2 which is fairly simple, and then prove a more general version
of the lemma, which in particular allows to relax Assumption 1.

Proof of Lemma 2. Denote Y∗ = X∗ − η∇f(X∗) and denote the eigenvalues of Y∗ in non-
increasing order σi = λi(Y

∗), i = 1, . . . , n. Denote also Y = X − η∇f(X) with its eigen-
values γi = λi(Y), i = 1, . . . , n. Let us write the eigen-decomposition of −∇f(X∗) as
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−∇f(X∗) =
∑n
i=1 µiuiu

>
i . From Lemma 6, we have that under Assumption 1, it holds that

X∗ =
∑k
i=1 uiu

>
i . Thus, we can deduce that

σi =

{
1 + ηµi if i ∈ {1, ..., k};
ηµi else.

(21)

From Lemma 1 we have that rank(ΠFn,k
(Y)) = k if and only if

∑k
i=1 min(γi − γk+1, 1) ≥ k.

Thus, a sufficient condition so that rank(ΠFn,k
(Y)) = k is,

γk − γk+1 ≥ 1. (22)

By Weyl’s inequality for the eigenvalues and Eq. (21) we have,

γk − γk+1 = (σk − σk+1) + (γk − σk) + (σk+1 − γk+1)

≥ 1 + η(µk − µk+1)− 2‖Y −Y∗‖F
= 1 + η(µk − µk+1)− 2‖X−X∗ − η∇f(X) + η∇f(X∗)‖F
≥ 1 + η(µk − µk+1)− 2(1 + ηβ)‖X−X∗‖F .

Thus, we see that a sufficient condition so that (22) holds, is that X satisfies

‖X−X∗‖F ≤
ηδ

2(1 + ηβ)
≤ η(µk − µk+1)

2(1 + ηβ)
,

and so the lemma follows.

The following lemma generalizes Lemma 2 and offers a natural trade-off between the rank of the
projected gradient mapping and the size of the ball around an optimal solution X∗ in which it is
guaranteed to be upper-bounded.
Lemma 7. Let X∗ ∈ Fn,k be an optimal solution to Problem (4), and let µ1 ≥ µ2 ≥ . . . µn denote
the eigenvalues of −∇f(X∗). Let r be the smallest integer such that r ≥ k and µk > µr+1. Fix
some η > 0. For any X ∈ Fn,k which satisfies

‖X−X∗‖F ≤
η(µk − µr+1)

2(1 + ηβ)
, (23)

it holds that rank(ΠFk
(X− η∇f(X))) ≤ r.

More generally, for any r′ ∈ {r, r + 1, ..., n− 1} and for any η > 0, if X ∈ Fn,k satisfies

‖X−X∗‖F ≤
η(µk − µr′+1)

2(1 + ηβ)
, (24)

then rank(ΠFk
(X− η∇f(X))) ≤ r′.

Proof. From Lemma 6 we have that r∗ := rank(X∗) ≤ r. Denote Y∗ = X∗ − η∇f(X∗) and
denote the eigenvalues of Y∗ as σi = λi(Y

∗), i = 1, . . . , n. Denote also Y = X− η∇f(X) with
its eigenvalues γi = λi(Y), i = 1, . . . , n.
From the min-max principle for the eigenvalues, letting V ⊆ Rn denote some subspace of Rn, we
have that for any i ∈ {1, ..., r},

σi = min
V:dim(V)=n−i+1

max
v∈V:‖v‖=1

v>(X∗ + η(−∇f(X∗)))v. (25)

Let us write the eigen-decomposition of −∇f(X∗) as −∇f(X∗) =
∑n
i=1 µiuiu

>
i . Note that in Eq.

(25) we minimize over all the subspaces V of dimension n− i+ 1, i ≤ r, and so,

V ∩ span{u1, ...,ur} 6= ∅, (26)

otherwise the direct sum V ⊕ span{u1, ...,ur} ⊆ Rn would have dimension n− i+ 1 + r > n.

Any unit vector v ∈ V can be written as v = au + bw such that u ∈ span{u1, ...,ur}, ‖u‖ = 1,
w ∈ span{ur+1, ...,un}, ‖w‖ = 1, and a2 + b2 = 1. Thus, for any such unit vector v, using Lemma
6, we have that,

v>(X∗ + η(−∇f(X∗)))v = a2u>X∗u + a2ηu>(−∇f(X∗))u + b2ηw>(−∇f(X∗))w. (27)
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Note that

u>(−∇f(X∗))u ≥ µr > µr+1 ≥ w>(−∇f(X∗))w. (28)

This implies that the inner maximum in (25) can only be obtained by vectors in V ∩ span{u1, ...,ur}
(note (26) guarantees such vectors exist). Thus, plugging this observation into (25) we have that for
any i ∈ {1, . . . , r},

σi = min
V:dim(V)=n−i+1

max
v∈V∩span{u1,...,ur},‖v‖=1

v>(X∗ + η(−∇f(X∗)))v

≥ min
V:dim(V)=n−i+1

max
v∈V∩span{u1,...,ur},‖v‖=1

v>X∗v + ηµr

=
(a)

min
V:dim(V)=n−i+1

max
v∈V,‖v‖=1

v>X∗v + ηµr =
(b)
λi(X

∗) + ηµk, (29)

where (a) follows from the orthogonality of X∗ to ur+1u
>
r+1, ...,unu

>
n (see Lemma 6), and (b)

follows from the min-max principle for the eigenvalues, and since by definition µr = µk.

Using the max-min principle for the eigenvalues, we can write for any j ∈ {r + 1, ..., n},

σj = max
V:dim(V)=j

min
v∈V:‖v‖=1

v>(X∗ + η(−∇f(X∗)))v. (30)

This time we maximize over all subspaces of dimension j, j ≥ r + 1. Thus, it must hold that for
each such subspace V ,

V ∩ span{ur+1, ...,un} 6= ∅,
otherwise the direct sum V ⊕ span{ur+1, ...,un} ⊆ Rn would have dimension j + n − r >
n. Thus, using (27) and (28), we have that the inner minimum in (30) is obtained by vectors in
V ∩ span{ur+1, . . . ,un}, which is not an empty set. Using this observation we have that for any
j ∈ {r + 1, . . . , n},

σj = max
V:dim(V)=j

min
v∈V∩span{ur+1,...,un},‖v‖=1

v>(X∗ + η(−∇f(X∗)))v

=
(a)

max
V:dim(V)=j

min
v∈V∩span{ur+1,...,un},‖v‖=1

v>(η(−∇f(X∗)))v

=
(b)

max
V:dim(V)=j

min
v∈V,‖v‖=1

v>(η(−∇f(X∗)))v = ηµj , (31)

where (a) follows since X∗ is orthogonal to ur+1u
>
r+1, . . . ,unu

>
n (see Lemma 6),

and (b) follows since by the eigen-decomposition of −∇f(X∗), restricting v to the intersection
V ∩ span{ur+1, ...,un} does not increase the inner minimum.

From Lemma 1 we have the sufficient condition so that rank(ΠFn,k
(Y)) ≤ r:

r∑
i=1

min(γi − γr+1, 1) ≥ k =⇒ rank(ΠFn,k
(Y)) ≤ r. (32)

By Weyl’s inequality we have that for any i ∈ {1, . . . , r},
γi − γr+1 ≥ σi − σr+1 − 2‖Y −Y∗‖F

= σi − σr+1 − 2‖X− η∇f(X)−X∗ + η∇f(X∗)‖F
≥ σi − σr+1 − 2(1 + ηβ)‖X−X∗‖F . (33)

Thus, we have that
r∑
i=1

min(γi − γr+1, 1) ≥
(a)

r∑
i=1

min(σi − σr+1 − 2(1 + ηβ)‖X−X∗‖F , 1)

≥
(b)

r∑
i=1

min(λi(X
∗) + η(µi − µr+1)− 2(1 + ηβ)‖X−X∗‖F , 1)

≥
r∑
i=1

min(λi(X
∗) + η(µr − µr+1)− 2(1 + ηβ)‖X−X∗‖F , 1), (34)
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where (a) follows from (33), and (b) follows from (29) and (31).

Thus, we indeed see that if

‖X−X∗‖F ≤
η(µr − µr+1)

2(1 + ηβ)
,

then
∑r
i=1 min(γi−γr+1, 1) ≥

∑r∗

i=1 λi(X
∗) = k, which by (32) implies that rank(ΠFn,k

(Y)) ≤ r,
as needed.

For the second part of the lemma let us fix some r′ ∈ {r, ..., n− 1}. If we have that

‖X−X∗‖F ≤
η(µr − µr′+1)

2(1 + ηβ)
, (35)

then similarly to (34), we will have that,

r′∑
i=1

min(γi − γr′+1, 1) ≥
r∑
i=1

min(γi − γr′+1, 1)

≥
(a)

r∑
i=1

min(σi − σr′+1 − 2(1 + ηβ)‖X−X∗‖F , 1)

≥
(b)

r∑
i=1

min(λi(X
∗) + η(µi − µr′+1)− 2(1 + ηβ)‖X−X∗‖F , 1)

≥
r∑
i=1

min(λi(X
∗) + η(µr − µr′+1)− 2(1 + ηβ)‖X−X∗‖F , 1)

≥
(c)

r∑
i=1

min(λi(X
∗), 1) =

r∗∑
i=1

λi(X
∗) = k,

where (a) follows from the same reasoning as (33), (b) follows from (29) and (31), and (c) follows
from (35).

Thus, from Lemma 1 we have that (35) indeed implies that rank(ΠFn,k
(Y)) ≤ r′, which proves the

second part of the lemma.

We can now easily prove Theorems 4 and 6 by proving the following unifying theorem.
Theorem 7. Let {Xt}t≥1 be a sequence produced by the projected gradient dynamics w.r.t. the
convex Problem (4) with a fixed step-size η ∈ (0, 1/β]:

Xt+1 = ΠFn,k
(Xt − η∇f(Xt)).

Fix some optimal solution X∗ and let µ1 ≥ µ2 ≥ ...µn denote the eigenvalues of −∇f(X∗). Let r
be the smallest integer such that r ≥ k and µr − µr+1 > 0. If the initialization X1 ∈ Fn,k satisfies

‖X1 −X∗‖F ≤
η(µk − µr+1)

2(1 + ηβ)
, then for all t ≥ 1, rank(Xt+1) ≤ r.

More generally, for every r′ ∈ {r, . . . , n}, if ‖X1 −X∗‖F ≤
η(µk − µr′+1)

2(1 + ηβ)
, then for all t ≥ 1,

rank(Xt+1) ≤ r′.

In particular, if r = k, i.e., Assumption 1 holds with some δ > 0, and ‖X1 −X∗‖F ≤
δ

4β
, setting

η = 1/β guarantees that for all t ≥ 1, rank(Xt+1) = k, and the sequence {Xt}t≥1 converges
linearly with rate:

∀t ≥ 1 : f(Xt)− f(X∗) ≤ (f(X1)− f(X∗)) exp (−Θ (δ/β) (t− 1)) .

Proof. It is a well known fact that the distances of the iterates generated by the projected gradient
method with step-size η ∈ (0, 1/β] to any optimal solution are monotone non-increasing, i.e., the
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sequence {‖Xt −X∗‖F }t≥1 is monotone non-increasing, see for instance [3]. Thus, all results of
the theorem regarding the rank of the iterates Xt, t ≥ 1, follow immediately from this observation,
the initialization conditions listed in the theorem, and Lemma 7.

The linear convergence rate under Assumption 1 follows from the quadratic growth result — Lemma
3, and the known linear convergence rate of the projected gradient method for smooth functions that
satisfy the quadratic growth property, see for instance [19].

E Details Missing from Section 3.2

We prove two auxiliary lemmas and then prove Theorem 3.
Lemma 8. Let M ∈ Sn, and let X ∈ Pn,k be the projection matrix onto the span of the top k
eigenvectors of M. Then, for any Z ∈ Pn,k it holds that,

〈X− Z,M〉 ≤ ‖Z−X‖2F ‖M‖2.

Proof. Let us denote by X⊥ the projection matrix onto the orthogonal subspace, i.e., X⊥ = I−X.
It holds that,

〈X− Z,M〉 = 〈X− Z,XM〉+ 〈X− Z,X⊥M〉
= 〈X− Z,XM〉 − 〈Z,X⊥M〉. (36)

We consider each of the two terms on the RHS separately.

〈X− Z,XM〉 = Tr((X− Z)XM) = Tr(X(X− Z)XM)

≤
(a)

Tr(X(X− Z)X) · λ1(M)

= 〈X− Z,X〉 · λ1(M) = (k − 〈Z,X〉) · λ1(M)

≤ 1

2
‖Z−X‖2F · ‖M‖2, (37)

where (a) holds since X(X− Z)X is positive semidefinite.

〈Z,X⊥M〉 = Tr(ZX⊥M) = Tr(X⊥ZX⊥M)

≥
(b)

Tr(X⊥ZX⊥) · λn(M) = 〈Z,X⊥〉 · λn(M)

= 〈Z, I−X〉 · λn(M) = (k − 〈Z,X〉) · λn(M)

≥ −1

2
‖Z−X∗‖2F · ‖M‖2, (38)

where (b) holds since X⊥ZX⊥ is positive semidefinite.

The lemma follows from plugging (37) and (38) into (36).

Lemma 9. Fix some t ≥ 1 and suppose η < 1/β. Then it holds that,

‖Xt+1 −Yt‖2F ≤
η

1− ηβ
(f(Yt)− f(Xt+1)) .

Proof. Define the following function

φ(Z) := 〈Z,∇f(Yt)〉+
1

2η
‖Z−Yt‖2F ,

and note that it is 1/η strongly convex, and that by definition, Xt+1 is its minimizer over Fn,k. Thus,

‖Xt+1 −Yt‖2F ≤ 2η (φ(Yt)− φ(Xt+1))

= 2η〈Yt −Xt+1,∇f(Yt)〉 − ‖Xt+1 −Yt‖2F .
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Rearranging we get,
‖Xt+1 −Yt‖2F ≤ η〈Yt −Xt+1,∇f(Yt)〉

= η〈Yt −Xt+1,∇f(Xt+1)〉+ η〈Yt −Xt+1,∇f(Yt)−∇f(Xt+1)〉
≤
(a)

η〈Yt −Xt+1,∇f(Xt+1)〉+ ηβ‖Xt+1 −Yt‖2F

≤
(b)
η (f(Yt)− f(Xt+1)) + ηβ‖Xt+1 −Yt‖2F ,

where (a) follows from the β-smoothness of f(·), and (b) follows from the convexity of f(·).
Rearranging, we get the lemma.

Proof of Theorem 3. The theorem follows from Lemma 5, it only remains to prove that the necessary
conditions hold for all t ≥ 1, i.e., that for all t ≥ 1, it holds that ‖Xt+1 −Yt‖F ≤ 1, and
Xt+1 ∈ Pn,k, i.e., rank(Xt+1) = k. The proof is by induction. For the base case t = 1, we first note
that using Lemma 9 we have that,

‖X2 −Y1‖2F ≤
η

1− ηβ
(f(Y1)− f(X2)) ≤ η

1− ηβ
(f(Y1)− f(X∗))

≤
(a)

η

1− ηβ

(
〈X∗ −Y1,−∇f(X∗)〉+

β

2
‖Y1 −X∗‖2F

)
≤
(b)

η

1− ηβ

(
G+

β

2

)
‖Y1 −X∗‖2F , (39)

where (a) follows from the β-smoothness of f(·), and (b) follows from Lemma 8 and recalling that
under Assumption 1, X∗ is the projection matrix onto the span of the top k eigenvectors of−∇f(X∗)
(see Lemma 6).

Note that for η ∈ (0, β), η
1−ηβ

(
G+ β

2

)
≤ 1 ⇐⇒ η

(
G+ 3β

2

)
≤ 1, which clearly holds for our

choice of step-size η = 1
5max{β,G} .

Thus, noting that for our choice of step-size and initialization assumption it holds that ‖Y1 −X∗‖F ≤
1, we indeed have that ‖X2 −X1‖F ≤ 1. Also, combining the initialization condition for Y1 listed
in the theorem, together with Lemma 2, immediately implies that rank(X2) = k. Thus, the base case
t = 1 of the induction holds.

Suppose now the induction holds for all i ∈ {1, . . . , t− 1}, for some t ≥ 2, and we will prove it for
t. Using Lemma 9 we have that,

‖Xt+1 −Yt‖2F ≤
η

1− ηβ
(f(Yt)− f(Xt+1)) ≤ η

1− ηβ
(f(Yt)− f(X∗))

≤
(a)

η

1− ηβ
(f(Y1)− f(X∗)) ≤

(b)

η

1− ηβ

(
G+

β

2

)
‖Y1 −X∗‖2F , (40)

where (a) follows by using the induction hypothesis for all i ≤ t together with Lemma 5, which
guarantees that f(Yt) ≤ f(Y1), and (b) follows from the same steps as in (39).

Since we have already established that the RHS of (40) is upper-bounded by 1 in the base case of the
induction, it follows that ‖Xt+1 −Yt‖F ≤ 1.

Using the quadratic growth of f(·) (Lemma 3) we have that,

‖Yt −X∗‖2F ≤
2

δ
(f(Yt)− f(X∗)) ≤

(a)

2

δ
(f(Y1)− f(X∗))

≤
(b)

2

δ

η

1− ηβ

(
G+

β

2

)
‖Y1 −X∗‖2F ,

where again, (a) follows by using the induction hypothesis for all i ≤ t together with Lemma 5 which
guarantees that f(Yt) ≤ f(Y1), and (b) follows from (39).

Thus, using the fact that for our choice of step-size it holds that η
1−ηβ

(
G+ β

2

)
≤ 1, using the

initalization assumption on Y1, and invoking Lemma 2, it follows that indeed rank(Xt+1) = k, i.e.,
Xt+1 ∈ Pn,k, and thus the induction holds for step t as well.
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F Frank-Wolfe Analysis

In this section we prove Theorem 5. Our analysis extends the one in [8] which only considered the
case k = 1.

We begin with a lemma, whose proof is similar to the arguments used in the proof of Lemma 3, which
will be essential to proving the local linear convergence of Frank-Wolfe under Assumption 1.

Lemma 10. Let X ∈ Fn,k and assume that λn−k(∇f(X)) − λn−k+1(∇f(X)) ≥ δX > 0. Then,
for V ∈ arg minP∈Pn,k

〈P,∇f(X)〉 it holds that,

〈X−V,∇f(X)〉 ≥ δX
2
‖X−V‖2F .

Proof. The proof follows the same lines as the proof of Lemma 3, but replacing X∗ with X, and
noting that V is the (unique) projection matrix onto the span of the top k eigenvectors of −∇f(X),
similarly to the use of X∗ as the projection matrix onto the span of the top k eigenvectors of−∇f(X∗)
in the proof of Lemma 3.

Algorithm 2 Frank-Wolfe with line-search for the Fantope

1: X1 ← arbitrary point in Fn,k
2: for t = 1... do
3: Vt ← arg minV∈Pn,k

〈V,∇f(Xt)〉
4: Choose step size ηt ∈ [0, 1] using one of the two options:
5: First Option : ηt ← arg minη∈[0,1] f((1− η)Xt + ηVt)

6: Second Option : ηt ← arg minη∈[0,1] f(Xt) + η〈Vt −Xt,∇f(Xt)〉+ η2β
2 ‖Vt −Xt‖2F

7: Xt+1 ← (1− ηt)Xt + ηtVt

8: end for

Theorem 8 (Formal version of Theorem 5). Let {Xt}t≥1 be a sequence produced by Algorithm 2
and denote ∀t ≥ 1, ht := f(Xt)− f(X∗). Then,

∀t ≥ 1 : ht = O(kβ/t). (41)

In addition, if Assumption 1 holds with parameter δ > 0, then there exists T0 = O
(
k(β/δ)3

)
such

that,

∀t ≥ T : ht+1 ≤ ht
(

1−min{ δ

12β
,

1

2
}
)

). (42)

Finally, under Assumption 1, we have that,

∀t ≥ 1 : ‖Vt −X∗‖2F = O

(
β2

δ3
ht

)
. (43)

Proof. Result (41) follows from standard convergence results for the Frank-Wolfe method with
line-search [12], and the fact that the Euclidean diameter of the Fantope Fn,k is

√
2k.

For the second part, observe that under Assumption 1, using the the β-smoothness of f(·), the
quadratic growth result (Lemma 3) and (41), we have that for all t ≥ 1,

‖∇f(Xt)−∇f(X∗)‖F ≤ β‖Xt −X∗‖ ≤ β
√

2ht
δ

= O

(√
kβ3

tδ

)
.

Thus, for some T0 = O
(
k(β/δ)3

)
we have that,

∀t ≥ T0 : ‖∇f(Xt)−∇f(X∗)‖F ≤
δ

3
.
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Let us write the eigen-decomposition of ∇f(Xt) as ∇f(Xt) =
∑n
i=1 λiviv

>
i . Using Weyl’s

inequality for the eigenvalues we can write for every t ≥ T0,

λn−k − λn−k+1 ≥ λn−k(∇f(X∗))− λn−k+1(∇f(X∗))− 2‖∇f(X)−∇f(X∗)‖F

≥ δ − 2δ

3
=
δ

3
.

Thus, for all t ≥ T0, λn−k+1 < λn−k and the matrix Vt is uniquely defined and given by Vt =∑n
i=n−k+1 viv

>
i . Using Xt+1 = (1− ηt)Xt + ηtVt, the smoothness of f(·), and the fact that ηt is

chosen via line-search, we have that,

∀η ∈ [0, 1] : f(Xt+1) ≤ f(Xt) + η〈Vt −Xt,∇f(Xt)〉+
η2β

2
‖Vt −Xt‖2F .

Subtracting f(X∗) from both sides and using Lemma 10 with gap δX = δ/3, we have that for all
t ≥ T0,

∀η ∈ [0, 1] : ht+1 ≤ ht +
η

2
〈Vt −Xt,∇f(Xt)〉+ (

η2β

2
− ηδ

12
)‖Vt −Xt‖2F

≤ (1− η

2
)ht + (

η2β

2
− ηδ

12
)‖Vt −Xt‖2F ,

where the last inequality follows from the convexity of f(·).

Now, if
δ

6β
≤ 1, by setting η =

δ

6β
we have that ht+1 ≤ (1− δ

12β
)ht. Otherwise, δ > 6β and so,

setting η = 1, we get that ht+1 ≤
1

2
ht, which proves Result (42).

Finally, for the third part of the lemma, recalling that Vt and X∗ are the projection matrices onto
the span of the top k eigenvectors of −∇f(Xt) and −∇f(X∗), respectively, using the well known
Davis-Kahan sinθ theorem (see for instance [27]), we have that for all t ≥ 1,

‖Vt −X∗‖2F ≤
8‖∇f(Xt)−∇f(X∗)‖2F

(λn−k(∇f(X∗))− λn−k+1(∇f(X∗)))2
≤ 8β2‖Xt −X∗‖2F

δ2
≤ 16β2ht

δ3
,

where the last inequality follows from the quadratic growth result, Lemma 3. Thus, Result (43)
follows.

25


	Introduction
	The eigengap assumption and strict complementarity
	Additional related work
	Notation

	Overview of Results
	Main result
	Additional results

	Proof Sketch of Theorem 3
	Preliminaries
	Gradient Orthogonal Iteration Analysis

	Numerical Simulations
	Additional Details on Experiments
	Proof of Theorem 2
	Details Missing from Section 3.1 and Proof of Theorem 1
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Lemma 3

	Projected Gradient Descent Analysis
	Details Missing from Section 3.2
	Frank-Wolfe Analysis

