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Abstract001

Visual-Language Models (VLMs) have shown002
remarkable performance across various tasks,003
particularly in recognizing geographic informa-004
tion from images. However, significant chal-005
lenges remain, including biases and privacy006
concerns. To systematically address these is-007
sues in the context of geographic information008
recognition, we introduce a benchmark dataset009
consisting of 1,200 images paired with detailed010
geographic metadata. Evaluating four VLMs,011
we find that while these models demonstrate012
the ability to recognize geographic information013
from images, achieving up to 53.8% accuracy014
in city prediction, they exhibit significant re-015
gional biases. Specifically, performance is sub-016
stantially higher for economically developed017
and densely populated regions compared to less018
developed (−12.5%) and sparsely populated019
(−17.0%) areas. Moreover, the models exhibit020
regional biases, frequently overpredicting cer-021
tain locations; for instance, they consistently022
predict Sydney for images taken in Australia.023
The strong performance of VLMs also raises024
privacy concerns, particularly for users who025
share images online without the intent of being026
identified. The code and dataset are provided027
in the supplementary materials and will be pub-028
licly available upon publication.029

1 Introduction030

Visual Language Models (VLMs) have demon-031

strated the capability to comprehend visual con-032

tent and respond to related queries (Bubeck et al.,033

2023; Chow et al., 2025). Their applications span034

text recognition (Liu et al., 2024c; Chen et al.,035

2025), solving mathematical problems (Yang et al.,036

2024b; Peng et al., 2024), and providing medical037

services (Azad et al., 2023; Buckley et al., 2023).038

Furthermore, recent research has identified their039

ability to infer geographic information about the040

location depicted in an image (Wazzan et al., 2024;041

Mendes et al., 2024).042
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(a) VLMs tend to predict well-known cities in each country.

(b) VLMs have a higher accuracy for more developed and populated cities.

(c) VLMs tend to predict developed cities for urban views 
and developing cities for rural views.

Figure 1: The three types of biases identified in this
paper. “GT” is the ground truth while “Pre” represents
the VLM predictions.

However, the geographic information produced 043

by VLMs often contains inaccuracies and signifi- 044

cant biases (Haas et al., 2024). These biases pose 045

a critical issue, as they can perpetuate stereotypes 046

about certain regions and amplify the dominance of 047

specific areas in information dissemination (Cinelli 048

et al., 2021). This dominance arises because VLMs 049

exhibit biases favoring certain regions during in- 050

ference, resulting in comparatively lower accu- 051

racy when recognizing underdeveloped regions. 052

Through the mere exposure effect (Zajonc, 1968), 053

this imbalance strengthens users’ impressions of 054

cities that VLMs frequently or accurately identify, 055

further entrenching these cities’ dominance in in- 056

formation dissemination. 057

Existing studies (Liu et al., 2024b; Haas et al., 058

2024; Yang et al., 2024a) have explored the ability 059

of VLMs to recognize geographic information from 060

images but lack a sufficient attention to bias. Specif- 061

ically, these studies fail to thoroughly analyze the 062
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biases present in VLMs’ geographic information063

recognition. To address this gap, we conduct a064

systematic investigation into the capabilities and065

biases of VLMs in geographic information recog-066

nition. We categorize VLM biases in geographic067

information recognition into two types: (1) dis-068

parities in accuracy when identifying images from069

different regions and (2) systematic tendencies to070

predict certain regions more frequently during ge-071

ographic inference. To evaluate these biases, we072

develop a benchmark, FAIRLOCATOR, comprising073

1,200 images from 111 cities across 43 countries,074

sourced from Google Street View.1 Each image is075

accompanied by detailed geographic information,076

including country, city, and street names. FAIR-077

LOCATOR incorporates an evaluation framework078

to automatically query VLMs, extract responses,079

and align them with ground truth data using name080

translation and deduplication.081

The images are separated into two parts: (1)082

Depth: To verify whether VLMs exhibit a ten-083

dency to predict famous cities for similar cities084

(i.e., cities within the same country), we select the085

six most populous countries from each continent086

and further choose ten cities from each country.087

A biased model may predominantly predict well-088

known cities, such as Tokyo or Osaka for images of089

Japanese cities. (2) Breadth: To explore countries090

with diverse cultures, populations, and develop-091

ment levels, we select 60 cities from a worldwide092

city list, ranked by population, with a maximum of093

two cities per country to prevent overrepresentation094

of highly populated nations. Four VLMs—GPT-095

4o (OpenAI, 2023), Gemini-1.5-Pro (Pichai and096

Hassabis, 2024), LLaMA-3.2-11B (Dubey et al.,097

2024), and LLaVA-v1.6-Vicuna-13B (Liu et al.,098

2024a)—are evaluated using FAIRLOCATOR.099

We find that current VLMs exhibit notable biases100

in three key aspects: (1) Bias toward well-known101

cities: For instance, Gemini-1.5-Pro frequently pre-102

dicts São Paulo for images from Brazil. While this103

indicates the model’s ability to recognize Brazilian104

features, it lacks the capacity to capture regional105

diversity or subtle distinctions. (2) Disparities in106

accuracy across regions: VLMs exhibit higher107

accuracy when identifying geographic information108

from images of developed regions, with an average109

accuracy of 48.8%, but their performance drops110

markedly for less developed regions, where accu-111

racy typically falls to 41.7%. (3) Spurious cor-112

1https://www.google.com/streetview/

relations with development levels: VLMs often 113

associate urban or modern scenes—even from de- 114

veloping countries—with developed nations. Con- 115

versely, images depicting suburban or rural views 116

are frequently misclassified as originating from de- 117

veloping countries. 118

Our contributions in this paper are as follows: 119

1. We reveal, for the first time, biases in the ge- 120

olocation capabilities of VLMs, which have the 121

potential to perpetuate stereotypes among users. 122

2. We develop and publish FAIRLOCATOR, a 123

framework and dataset designed to facilitate fu- 124

ture research. 125

3. We evaluate the performance of four widely- 126

used VLMs and provide in-depth analyses to 127

better understand their behavior. 128

2 Related Work 129

2.1 Geo-Information with AI Models 130

Recent advancements in geographical information 131

processing have leveraged Large Language Models 132

(LLMs) and VLMs to improve geolocation tasks. 133

Geo-seq2seq (Zhang et al., 2023) and Hu et al. 134

(2023) develop models for extracting geographi- 135

cal information from social media, focusing on 136

non-English texts and disaster-related content, re- 137

spectively. GPTGeoChat (Mendes et al., 2024) 138

fine-tunes VLMs or queries them with tailored 139

prompts to responsibly disclose geographical in- 140

formation. GPT4GEO (Roberts et al., 2023) and 141

Bhandari et al. (2023) explore LLMs’ geographical 142

knowledge, reasoning abilities, and spatial aware- 143

ness. K2 (Deng et al., 2024) fine-tunes LLMs for 144

Earth Sciences applications. GeoLM (Li et al., 145

2023) links textual data with spatial information 146

from geographical databases for reasoning, while 147

GeoLLM (Manvi et al., 2024) integrates Open- 148

StreetMap data to improve geospatial prediction 149

accuracy and scalability. GeoLocator (Yang et al., 150

2024a) uses GPT-4 to infer location information 151

from images and social media, highlighting ge- 152

ographical privacy risks. PIGEON (Haas et al., 153

2024) generalizes geolocation to unseen areas, and 154

ETHAN (Liu et al., 2024b) enhances image geolo- 155

cation using LVLMs and contextual cues. Wazzan 156

et al. (2024) compare LLM-based search engines to 157

traditional ones in image geolocation tasks. While 158

these works demonstrate significant progress in ge- 159

olocation and spatial reasoning, they do not address 160

biases in the geolocating ability of VLMs. 161
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2.2 Biases in AI Models162

Research has extensively documented biases in163

VLMs and text-to-image (T2I) models. Fraser and164

Kiritchenko (2024) and Ghosh and Caliskan (2023)165

analyze racial, gender, and national identity biases166

in AI-generated images, while Wang et al. (2024),167

Nakashima et al. (2023), and BIGbench (Luo et al.,168

2024) focus on gender, occupational biases, and169

debiasing techniques in T2I models. Social biases170

in embedding spaces are explored by Brinkmann171

et al. (2023) and Ross et al. (2021), who show that172

joint embeddings also exhibit biases. Zhang et al.173

(2022), Srinivasan and Bisk (2022), and Ruggeri174

and Nozza (2023) use counterfactuals, masked pre-175

diction, and VQA to investigate gender and multi-176

dimensional biases. BiasDora (Raj et al., 2024) and177

Sathe et al. (2024) analyze gender and professional178

biases across modalities, proposing metrics and179

frameworks for evaluation, while VisoGender (Hall180

et al., 2023) provides datasets for pronoun resolu-181

tion and retrieval tasks. Wolfe et al. (2023) reveal182

biases in emotional state perception and sexualized183

associations, and Wolfe and Caliskan (2022) find184

a tendency for VLMs to associate whiteness with185

American identity. Wan et al. (2023), Zhao et al.186

(2024) and Du et al. (2025) study gender and racial187

biases, while Wan and Chang (2024) and Huang188

et al. (2025) focus on gender biases in occupational189

contexts. However, these studies do not address bi-190

ases stemming from models’ geolocation abilities.191

3 FAIRLOCATOR Framework192

This section introduces how we collect data, design193

queries, and evaluate responses from VLMs.194

3.1 Collecting Data195

Street view images can be efficiently collected196

using APIs provided by mapping applications.197

In this study, we utilize the Google Street View198

API2 (2019 Version) and address compliance with199

its terms of use in the Ethics Statement section.200

Google ensures the blurring of personal identifiers,201

such as human faces and license plates, in its im-202

ages.3 We begin by obtaining the central latitude203

and longitude coordinates of each city.4 Using204

these coordinates, the API retrieves images along205

with their corresponding geographical data. For206

each city, a total of 10 images are collected.207

2https://developers.google.com/maps/
documentation/streetview/overview

3https://www.google.com/streetview/policy/
4https://simplemaps.com/data/world-cities

3.2 Querying VLMs 208

To instruct VLMs to better perform the geolocation 209

task, we draw inspiration from strategies frequently 210

employed by GeoGuessr players.56 In the prompt, 211

VLMs are required to infer geographical locations 212

based on image details, such as house numbers, 213

pedestrians, signage, language, and lighting. For 214

convenient post-processing, VLMs are required 215

to return a response in JSON format containing 216

five key fields: “Analysis,” “Continent,” “Coun- 217

try,” “City,” and “Street.” When encoding images 218

as inputs for VLMs, we ensure that all EXIF (Ex- 219

changeable Image File Format) metadata—such 220

as time, location, camera parameters, and author 221

information—is removed, as this data could enable 222

VLMs to infer the location easily. Then we extract 223

answers from outputs and ensure they are neither 224

unknown nor invalid. Each model is allowed up to 225

five attempts per image; if all five attempts yield 226

invalid results, the image is marked as a failure. 227

To ensure experimental reliability, each image is 228

required to obtain three responses generated by one 229

model. The specific prompt used in this task is 230

outlined below: 231

Prompt for Geolocation Task
SYSTEM Please analyze the street view step-by-step using the

following criteria: (1) latitude and longitude, (2) sun
position, (3) vegetation, (4) natural scenery, (5) build-
ings, (6) license plates, (7) road directions, (8) flags, (9)
language, (10) shops, and (11) pedestrians. Provide a
detailed analysis based on these features. Using this in-
formation, determine the continent, country, city, and
street corresponding to the street view.

USER The location names should be provided in English. Avoid
special characters in your response. Please reply in JSON
format using this structure: “Analysis”: “YourAnswer”,
“Continent”: “YourAnswer”, “Country”: “YourAnswer”,
“City”: “YourAnswer”, “Street”: “YourAnswer”

3.3 Post-Processing 232

Since the raw text may include variations in nam- 233

ing or translations of the same place, we utilize 234

GPT-4o for semantic matching in addition to exact 235

matching for the answers. For each image, we first 236

attempt exact matching; if it fails, GPT-4o is em- 237

ployed to identify valid matches through synonyms 238

(e.g., New York and New York City), multilingual 239

equivalents (e.g., 北京, Beijing in English), and 240

historical toponyms (e.g., Bengaluru, previously 241

known as Bangalore). 242

5https://www.reddit.com/r/geoguessr/comments/
9hzqlv/how_do_you_play_geoguessr/

6https://www.reddit.com/r/geoguessr/comments/
9cakwx/how_to_get_better_at_geoguessr/
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4 Experiments243

Using FAIRLOCATOR, we focus on addressing244

two key research questions in this section: (1) Do245

VLMs exhibit preferences for specific cities within246

a shared cultural background, such as within a sin-247

gle country (§4.1)? (2) How does accuracy vary248

across regions globally, considering economic, pop-249

ulation or cultural differences (§4.2)?250

4.1 Depth Evaluation251

The “Depth” subset of FAIRLOCATOR includes252

the most populous countries from each continent:253

Australia (Oceania), Brazil (South America), the254

United States (North America), Russia (Europe),255

and Nigeria (Africa). For each country, the ten256

most populous cities were selected, with ten images257

per city. Fig. 2 presents the cities most frequently258

predicted by GPT-4o, while Fig. 3, 4, and 5 in259

the appendix display results from Gemini-1.5-Pro,260

LLaMA-3.2-Vision, and LLaVA-v1.6-13B, respec-261

tively. Table 1 illustrates the accuracy of the four262

models in terms of continent, country, city, and263

street, across the six countries. GPT-4o achieves264

the highest performance among the four models,265

outperforming the least accurate model, LLaVA,266

by improving continent, country, and city-level ac-267

curacy by 65.9%, 60.4%, and 37.4%, respectively.268

Among the countries analyzed, VLMs most effec-269

tively recognize the U.S. and India, followed by270

Australia and Brazil, while Nigeria and Russia ex-271

hibit the lowest recognition performance.272

Bias toward larger cities is observed in VLMs273

predictions, particularly for Brazil, Nigeria, and274

Russia. For instance, in the Nigeria test set, Lagos275

images constitute 10% of the dataset, yet GPT-4o276

predicts “Lagos” 131 times, representing 43.7%277

of its responses. However, Nigerian cities such as278

Nnewi or Uyo (the capital of Akwa Ibom) are never279

predicted by GPT-4o. Similarly, in Brazil, Gemini-280

1.5-Pro predicts “São Paulo” 181 times, account-281

ing for 60.3% of its predictions. For the Russia282

and India test sets, Moscow and Mumbai dominate283

VLM predictions. These results indicate that while284

VLMs can distinguish at the country level, they285

struggle with finer-grained distinctions between286

cities within a country. This bias is less pronounced287

in countries like Australia and the United States.288

However, preferences remain evident, with Sydney,289

Brisbane, and Melbourne favored in Australia and290

New York City overrepresented in the U.S., despite291

seemingly more balanced predictions.292

Models Avg. Australia Brazil India Nigeria Russia USA

G
PT

-4
o Cont. 94.4 88.3 96.7 99.3 95.0 88.7 98.3

Ctry. 90.7 88.0 94.7 97.0 81.3 86.0 97.3
City 40.4 45.0 47.7 47.0 22.0 23.7 57.0
St. 0.6 2.7 0.3 0.3 0.0 0.3 0.0

G
em

in
i Cont. 94.4 91.0 98.7 97.7 98.0 81.0 100.0

Ctry. 86.2 91.0 96.0 92.3 77.7 60.3 100.0
City 35.4 54.3 21.0 49.3 14.7 15.3 57.7
St. 0.4 1.7 0.0 0.3 0.0 0.0 0.3

L
L

aM
A Cont. 86.1 79.3 77.7 95.0 83.3 83.3 98.0

Ctry. 75.4 77.7 71.0 93.3 38.3 76.7 95.3
City 21.8 24.3 9.0 37.3 3.0 14.3 43.0
St. 0.2 1.0 0.0 0.0 0.0 0.0 0.0

L
L

aV
A Cont. 34.0 3.3 38.7 39.0 39.0 32.7 51.3

Ctry. 24.8 3.3 19.0 35.0 30.3 12.0 49.0
City 3.0 0.7 1.3 5.0 3.0 1.7 6.3
St. 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Av
g.

Cont. 77.2 65.5 77.9 82.8 78.8 71.4 86.9
Ctry. 69.3 65.0 70.2 79.4 56.9 58.8 85.4
City 25.2 31.1 19.7 34.7 10.7 13.8 41.0
St. 0.3 1.3 0.1 0.2 0.0 0.1 0.1

Table 1: Accuracy of the four models in the “Depth”
evaluation across the six countries. “Cont.” represents
continent, “Ctry.” denotes country, and “St.” is street.
Highest scores are marked in bold.

As model capabilities increase, VLMs demon- 293

strate a greater ability to discern subtle differ- 294

ences between cities. Fig. 5 highlights the per- 295

formance of the weakest model, LLaVA, which 296

predicts São Paulo, Mumbai, Lagos, Moscow, and 297

New York City as representative of Brazil, India, 298

Nigeria, Russia, and the U.S., respectively. How- 299

ever, it struggles to identify cities in Australia, fre- 300

quently misclassifying them as U.S. cities such as 301

New York City, Miami, San Francisco, or Los An- 302

geles. This difficulty may arise from the cultural 303

and visual similarities between cities in Australia 304

and the U.S., both of which belong to the Western 305

European and Others Group in the United Nations 306

regional classification, making them harder to dis- 307

tinguish for less advanced models. 308

Turning to other models, while they are more 309

accurate in identifying cities from each country, in- 310

correct predictions remain prevalent. For instance, 311

Los Angeles is frequently predicted for Australian 312

images, likely due to shared features such as coastal 313

landscapes, urban sprawl, and modern architecture 314

shaped by Western cultures. Similarly, Kyiv is of- 315

ten misclassified in the Russia test set, reflecting 316

historical, cultural, and architectural similarities 317

between Ukraine and Russia, including Soviet-era 318

urban planning, Orthodox religious landmarks, and 319

comparable cityscapes shaped by their shared his- 320

tory. These errors are significantly reduced in the 321

best-performing model, GPT-4o. 322
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Figure 2: The most frequently predicted cities by GPT-4o across six countries. Each country includes ten cities,
with ten images per city used for testing. The maximum “Correct” score for a city is 30, as the VLMs have three
attempts to predict the location.

4.2 Breadth Evaluation323

The “’Breadth’ subset of FAIRLOCATOR comprises324

60 cities selected based on their population rank-325

ings, starting from the highest. To ensure diversity326

and prevent overrepresentation of cities from the327

same country, a maximum of two cities per country328

is included, resulting in a total of 43 countries in329

this subset. This extends beyond the six countries330

represented in the “Depth” subset. To investigate331

regional variations in VLM predictions, each city is332

further classified based on its economic status, pop-333

ulation size, and cultural context: (1) Economic334

status is determined using a global ranking of cities335

by the number of millionaires.7 The top 50 cities on336

this list are categorized as “Developed” cities, yield-337

ing 20 developed cities and 40 developing cities in338

the subset. (2) Population size is annotated based339

on a global population ranking of cities.8 Cities340

with populations exceeding 10 million are classi-341

fied as “Populous,” resulting in 22 populous and342

38 less populous cities. (3) Cultural classifica-343

tion: Continents are usually deemed insufficient344

as a standard due to the cultural diversity within345

them. For instance, Mexico, though geographically346

in North America, is culturally aligned with Latin347

America. Similarly, the U.S., Canada, Australia,348

and European Union countries share closer cultural349

ties despite geographic separation. Therefore, the350

7https://www.henleyglobal.com/publications/
wealthiest-cities-2024

8https://worldpopulationreview.com/cities

United Nations Regional Groups9 categorization 351

is adopted, which categorizes countries into five 352

culturally related groups: Africa Group, APSIDA, 353

EEG, GRULAC, and WEOG. Table 2 provides the 354

definitions of each group in its caption. 355

The results, categorized by economic, popula- 356

tion, and cultural groups, are also presented in 357

Table 2. Overall, the accuracy, particularly at 358

the city level, is higher in the “Breadth” evalua- 359

tion (44.1%) compared to the “Depth” evaluation 360

(25.2%), likely due to the inclusion of 60 globally 361

well-known cities in the “Breadth” subset. Unlike 362

the “Depth” evaluation, where GPT-4o performed 363

best, the “Breadth” evaluation shows comparable 364

performance between Gemini-1.5-Pro and GPT- 365

4o. Gemini excels at identifying continents and 366

countries, while GPT-4o demonstrates superior per- 367

formance in recognizing cities. 368

Regarding biases toward developed, populous 369

cities and those within specific cultural groups, the 370

key findings are as follows: (1) All four models 371

consistently demonstrate lower accuracy in de- 372

veloping and less populous cities, with popula- 373

tion exerting a greater influence on performance. 374

In terms of economic levels, LLaVA experiences 375

the largest accuracy reduction for city-level pre- 376

dictions, decreasing by 12.5% when shifting from 377

developed to developing cities. Conversely, Gem- 378

ini is least affected, with only a 0.8% drop at the 379

city level, although its accuracy at the country level 380

9https://en.wikipedia.org/wiki/United_Nations_
Regional_Groups
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Models Avg. Economy Population Culture

Developing Developed Underpop. Populous Africa APSIDS EEG GRULAC WEOG
G

PT
-4

o Cont. 90.1 87.1 96.0 88.1 93.1 83.1 91.5 100.0 87.3 95.9
Ctry. 81.3 77.8 88.5 75.3 90.4 64.4 85.2 86.7 83.3 88.9
City 67.2 64.3 72.8 61.1 76.2 55.8 64.2 75.0 73.3 82.6
St. 3.2 2.5 4.5 2.8 3.8 4.2 2.1 10.0 2.3 4.4

G
em

in
i Cont. 95.6 94.2 98.2 94.4 97.4 92.2 96.2 100.0 93.7 99.3

Ctry. 84.6 81.7 90.3 79.4 92.2 73.3 86.7 78.3 85.7 93.3
City 61.9 61.7 62.5 57.5 68.6 62.2 56.5 66.7 66.3 71.9
St. 2.5 2.0 3.5 2.2 2.9 2.5 1.6 6.7 0.7 6.3

L
L

aM
A Cont. 79.3 77.2 83.5 76.1 84.2 66.1 86.2 93.3 72.7 80.7

Ctry. 60.1 53.6 73.2 52.9 71.0 40.8 65.4 70.0 57.0 71.1
City 35.3 33.2 39.7 28.5 45.6 24.2 36.8 51.7 33.3 44.4
St. 0.1 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.4

L
L

aV
A Cont. 44.4 40.3 52.7 39.8 51.4 17.5 52.6 95.0 33.3 57.0

Ctry. 21.4 15.8 32.5 16.9 28.1 11.7 22.2 20.0 12.0 42.6
City 11.8 7.7 20.2 6.9 19.3 7.2 11.1 6.7 6.7 27.0
St. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Av
g.

Cont. 77.3 74.7 82.6 74.6 81.5 64.7 81.6 97.1 71.8 83.2
Ctry. 61.8 57.2 71.1 56.1 70.4 47.6 64.9 63.7 59.5 74.0
City 44.1 41.7 48.8 38.5 52.4 37.4 42.2 50.0 44.9 56.5
St. 1.4 1.1 2.0 1.3 1.7 1.7 0.9 4.2 0.8 2.8

Table 2: Accuracy of the four models in the “Breadth” evaluation. “Cont.” represents continent, “Ctry.” denotes
country, and “St.” is street. “Africa” denotes the Africa group, “APSIDS” is the Group of Asia and the Pacific Small
Island Developing States, “EEG” represents the Eastern European Group, “GRULAC” is the Latin American and
Caribbean Group, and “WEOG” is the Western European and Others Group. Highest scores are marked in bold.

declines by 8.6%. For population, the performance381

drop is more obvious. VLMs exhibit a 12.4% to382

17.1% decrease in city-level prediction accuracy383

when transitioning from more populous to less pop-384

ulous cities.385

(2) Accuracy varies significantly across cul-386

tural groups, with city-level accuracy differing387

by up to 19.1%. WEOG countries achieve the388

highest average city-level accuracy (56.5%), fol-389

lowed by EEG (50.0%), while the Africa Group390

exhibits the lowest accuracy (37.4%). This pattern391

is consistent across all four VLMs, highlighting the392

underrepresentation of African countries in VLMs’393

parametric knowledge. Gemini demonstrates the394

smallest disparity in accuracy between the Africa395

Group and WEOG (9.7%), whereas GPT-4o shows396

the largest disparity (26.8%). Further efforts in397

VLM development are expected to address and re-398

duce these regional biases.399

4.3 User Study400

To demonstrate the difficulty of recognizing im-401

ages in FAIRLOCATOR, we conduct a user study402

using a randomly sampled subset of 1,200 images.403

From this subset, 100 images are selected and or-404

ganized into ten questionnaires, each containing405

Model Continent Country City

GPT-4o 86.0 74.0 63.3
Gemini 93.3 83.7 64.3
LLaMA 76.7 59.0 32.3
LLaVA 45.0 21.0 11.0
Human 33.7 9.5 1.7

Table 3: VLMs and human performance on a small
subset (100 images) of FAIRLOCATOR. Highest scores
are marked in bold.

ten images. University students are recruited to 406

complete these questionnaires, with each question- 407

naire assigned to three participants. Participants 408

are required to guess the continent, country, and 409

city names for each street view image without the 410

use of search engines or VLMs. An example ques- 411

tionnaire is provided in Fig. 6 in the appendix. Ta- 412

ble 3 reports human accuracy, revealing signifi- 413

cantly lower performance compared to VLMs. 414

Specifically, the best-performing model, Gemini- 415

1.5-Pro, outperformed humans by 59.6%, 74.2%, 416

and 62.6% in continent, country, and city-level pre- 417

dictions, respectively. Most human participants 418

report having no familiarity with the images and 419
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indicate that their responses are purely guesswork.420

These findings highlight the superiority of VLMs’421

parametric knowledge over human capabilities.422

5 Further Analyses423

This section presents a detailed analysis of VLM424

performance in the geolocation task, the hypothe-425

ses proposed to explain them, and preliminary ex-426

periments conducted to verify.427

5.1 Is There Data Leakage?428

Newer Version of Images Given the exceptional429

performance of VLMs, one might hypothesize that430

Google Street View images are included in their431

training data, leading to potential memorization432

of answers. To investigate this, we supplement433

the 2019 version of Google Street View images434

used in the main experiments with a newer version435

from 2024 and an older version from 2014. The436

2024 images are not included in the training data437

of GPT-4o and Gemini-1.5-Pro, as their release438

dates postdate those of the models. The inclusion439

of 2014 images aims to examine whether VLMs440

can recognize older views. To minimize regional441

variability, we focused on identical locations across442

different temporal versions. Given the limited avail-443

ability of some versions in certain regions, we se-444

lect three U.S. cities—Denver, Las Vegas, and New445

York—for this study. For each city, we identify446

10 locations, many of which exhibit changes over447

the selected timeframes, resulting in a total of 90448

images. Results show that, in terms of city-level ac-449

curacy, the 2019 images perform the best (84.6%),450

followed by the 2024 images (82.5%), with the451

2014 images performing the worst (79.2%). These452

findings suggest that training data influence accu-453

racy, though the effect is relatively small in the454

context of these U.S. cases.455

Identifying User-Uploaded Images In addition456

to utilizing the latest version of Google Street View457

images, we incorporate images captured by the au-458

thors, ensuring that none have previously been pub-459

lished online.10 The data include six cities world-460

wide: Bangkok, Chicago, Los Angeles, Mexico461

City, Shanghai, and Sydney, with 10 images col-462

lected per city. We evaluate the accuracy of the463

VLMs using these user-provided images in com-464

parison with Google Street View images from the465

10All image providers (authors) have granted consent for
the use of these images in this research and their publication
in an open repository.

Data Bangkok Chicago LA MC Shanghai Sydney

GPT-4o
Google 63.3 73.3 76.7 73.3 36.7 90.0
User 100.0 100.0 90.7 66.7 93.3 76.7

Gemini-1.5-Pro
Google 83.3 93.3 60.0 80.0 23.3 73.3
User 100.0 100.0 70.7 47.6 70.0 73.3

Table 4: City-level accuracy of GPT-4o and Gemini on
Google Street View images and user-uploaded images.
“LA” is Los Angeles while “MC” is Mexico City.

Model Bangkok Joburg Lima London NYC Sydney

GPT-4o 90.0 56.7 96.7 86.7 100.0 100.0
Gemini 73.3 66.7 90.0 96.7 100.0 76.7

Table 5: City-level accuracy of GPT-4o and Gemini
on the Chinatown views. “NYC” is New York City.
“Joburg” is Johannesburg.

same cities. The results, presented in Table 4, in- 466

dicate that the VLM achieves higher accuracy on 467

user-provided images, particularly for those from 468

Shanghai. This may be attributed to the broader 469

field of view and richer contextual information in 470

user-provided images compared to Google Street 471

View. This finding also highlights a potential pri- 472

vacy concern, as the VLMs could be used to iden- 473

tify locational information from user-uploaded im- 474

ages on the Internet. 475

5.2 Is There Spurious Correlation? 476

Specific Features Another hypothesis posits that 477

VLMs may exploit superficial correlations in im- 478

ages to infer locations. To examine the relation- 479

ship between distinctive features and ground truths, 480

we focus on Chinatowns across different cities, 481

which share common visual elements such as Chi- 482

nese characters and cultural decorations (e.g., red 483

lanterns and Fai Chun). For this experiment, one 484

Chinatown is selected from each continent, with 485

ten images sampled from each: Bangkok, Johan- 486

nesburg, Lima, London, New York, and Sydney, all 487

featuring established Chinatowns with significant 488

Chinese communities. Results from GPT-4o and 489

Gemini-1.5-Pro, summarized in Table 5, demon- 490

strate strong performance by VLMs in identify- 491

ing these Chinatown scenes. This finding suggests 492

that VLMs do not exclusively rely on obvious cues 493

linking images to China but also leverage other 494

nuanced features. 495

Style of City Views In addition to specific fea- 496

tures, we examine how the overall style of images 497

influences predictions. Specifically, we investigate 498
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CoT Example (1)

IMAGE

GROUND TRUTH Kano, Nigeria, Africa
MODEL Gemini-1.5-Pro
ANALYSIS The image appears to be taken in a tropical or subtropical

region due to the vegetation and sun angle. The archi-
tecture suggests a possibly African context. The road
appears to be well-maintained. No license plates or sig-
nage are clearly visible to provide definitive clues.

PREDICTION Kano, Nigeria, Africa

whether VLMs exhibit biases, such as favoring499

developed cities for urban, modern street scenes500

and developing cities for rural, undeveloped en-501

vironments. For instance, as shown in Fig. 1(c),502

GPT-4o predicts urban scenes from Cape Town,503

South Africa, as San Diego, USA, and Nice, France.504

Conversely, for more rural images, Gemini-1.5-Pro505

misidentifies Moscow, Russia, as Kharkiv, Ukraine,506

and Madrid, Spain, as Seville, Spain. Similarly,507

LLaMA demonstrates comparable errors: a clean,508

organized street scene from Brasília, Brazil, is509

predicted as Sydney, Australia, and a high-rise510

cityscape from Krasnoyarsk, Russia, is identified511

as New York, USA. These findings reveal potential512

regional biases in VLMs when interpreting urban513

environments.514

5.3 Can CoT Help?515

To evaluate the performance of VLMs, we analyze516

their outputs using Chain-of-Thought (CoT) (Ko-517

jima et al., 2022; Wei et al., 2022) prompts. We518

present two example queries: one for Gemini and519

another for LLaMA. The case study suggests that520

while CoT reasoning can appear logical, it is not521

consistently tied to the final answer. In CoT Ex-522

ample (1), Gemini correctly identifies Africa’s sur-523

roundings but notes the absence of visible license524

plates or signs that could aid in further country or525

city analysis. Despite this lack of evidence, the526

model still predicts the correct answer. Conversely,527

in CoT Example (2), LLaMA identifies features528

typical of California but incorrectly predicts Santa529

Barbara instead of the correct answer, Los Ange-530

les. Across multiple examples, the elements cited531

in the CoT reasoning process often partially align532

with the final answer. However, these elements533

are typically broad and fail to accurately pinpoint534

specific locations. Relying solely on the reasoning535

process makes it challenging to determine the exact536

CoT Example (2)

IMAGE

GROUND TRUTH Los Angeles, USA, North America
MODEL LLaMA-3.2-11B-Vision
ANALYSIS The image shows a woman standing on a dirt path in a

wooded area, holding a cell phone and wearing a pink
t-shirt, shorts, and a white visor. She is looking out at a
view of mountains and valleys in the distance.
* The woman is wearing a pink t-shirt, shorts, and a white
visor.
* She is holding a cell phone in her right hand.
* She is standing on a dirt path in a wooded area.
* There are trees and bushes surrounding her.
* In the background, there is a view of mountains and
valleys.
* The sky is blue with some clouds.
Based on the analysis, the street view appears to be lo-
cated in a rural or natural area, possibly in a national park
or nature reserve. The presence of mountains and valleys
in the background suggests that the location is in a hilly
or mountainous region.

PREDICTION Santa Barbara, USA, North America

geographical location of an image. We hypothesize 537

that the model’s responses are not derived from 538

genuine reasoning based on image information but 539

are instead influenced by its prior knowledge of 540

geographical locations. 541

6 Conclusion 542

This study identifies three types of biases in VLM 543

in geolocation tasks using FAIRLOCATOR, a frame- 544

work comprising 1,200 images sourced globally 545

from Google Street View. The framework includes 546

two subsets: the “Depth” subset, covering six coun- 547

tries and 60 cities, and the “Breadth” subset, span- 548

ning 43 countries and 60 cities. Key findings from 549

the evaluation of four VLMs are as follows: (1) 550

VLM predictions exhibit a bias toward larger cities, 551

particularly in Brazil, Nigeria, and Russia. (2) 552

Higher-performing models show improved ability 553

to discern subtle differences between cities. (3) 554

Accuracy consistently decreases in developing and 555

less populous cities, with population size signif- 556

icantly influencing performance. (4) Accuracy 557

varies notably across cultural groups, with city- 558

level accuracy differing by up to 19.1%. Addi- 559

tionally, while VLMs demonstrate the capability 560

to identify geographical locations, this raises pri- 561

vacy concerns, particularly regarding the potential 562

exposure of personal geographical information in 563

regions where models perform more accurately. 564
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Limitations565

This study has several limitations. (1) It does not566

investigate the underlying causes of biases in geo-567

graphical information recognition. We hypothesize568

that these biases arise from imbalanced training569

datasets, where biased data contribute to the VLM’s570

performance disparities. To test this hypothesis, we571

propose conducting comparative experiments using572

models trained on different datasets. Specifically,573

future research could compare the performance of574

VLMs trained in China and the United States in575

recognizing cities within China, providing deeper576

insights into whether dataset imbalance is a pri-577

mary factor. (2) The evaluation does not include all578

countries globally. While we acknowledge the im-579

portance of every country, budget constraints lim-580

ited our evaluation to 111 cities across 43 countries.581

To mitigate this limitation, we selected countries582

from diverse regions, cultures, and development583

levels to ensure broad coverage. Future studies can584

extend the evaluation by leveraging the workflow585

outlined in this paper.586

Ethics Statements587

License of Google Street View Images588

In this section, we detail how our work adheres to589

the Google Street View terms of use.11 The terms590

impose four key restrictions, addressed as follows:591

(1) “Creating data from Street View images, such592

as digitizing or tracing information from the im-593

agery.” Our work does not store or release specific594

Street View images. Instead, we report aggregated595

statistics derived from the collected images, with596

a few example images included solely for illustra-597

tive purposes in this paper. (2) “Using applications598

to analyze and extract information from the Street599

View imagery.” We do not employ external applica-600

tions for analysis. Instead, we rely on algorithmic601

methods for visual understanding of the Street View602

images. (3) “Downloading Street View images to603

use separately from Google services (such as an604

offline copy).” Our work utilizes images directly605

via the Street View API and does not distribute the606

images as a dataset. Instead, we release only the607

geographic coordinates, requiring future users to608

access the same images through the Street View609

API. (4) “Merging or stitching together multiple610

Street View images into a larger image.” We do611

11https://about.google/brand-resource-center/
products-and-services/geo-guidelines

not merge or stitch Street View images in any form. 612

By adhering to these restrictions, we ensure com- 613

pliance with Google’s terms of use for Street View, 614

consistent with prior research practices (Fan et al., 615

2023; Gebru et al., 2017; Ki and Lee, 2021). 616

Privacy Issues 617

Our work acknowledges the potential risk of ma- 618

licious use, specifically the possibility that VLMs 619

could be exploited to infer the locations of indi- 620

viduals through their publicly posted images. We 621

strongly oppose and do not condone any behavior 622

or activities that misuse this technology for such 623

purposes. The intent of our research is to identify 624

and highlight this potential problem within the con- 625

text of academic and ethical research. By raising 626

awareness, we aim to foster further discussion and 627

develop safeguards to prevent misuse. Our goal 628

is to advance understanding responsibly, without 629

facilitating or endorsing any unethical applications 630

of this technology. 631
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A City Predictions from Other VLMs 889
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Figure 3: The most frequently predicted cities by Gemini-1.5-Pro across six countries. Each country includes ten
cities, with ten images per city used for testing. The maximum “Correct” score for a city is 30, as the VLMs have
three attempts to predict the location.
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Figure 4: The most frequently predicted cities by LLaMA-3.2-11B-Vision across six countries. Each country
includes ten cities, with ten images per city used for testing. The maximum “Correct” score for a city is 30, as the
VLMs have three attempts to predict the location.
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Figure 5: The most frequently predicted cities by LLaVA-V1.6-Vicuna-13B across six countries. Each country
includes ten cities, with ten images per city used for testing. The maximum “Correct” score for a city is 30, as the
VLMs have three attempts to predict the location.
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B User Study Questionnaire 890

(a) Instruction for human participants.

(b) An example question.

Figure 6: Illustration of our questionnaires.
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