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Tabular Data Generation
• The task is to generate more data according to the underlying data generation 

process

Tabular Data Augmented Tabular DataGenerative Model



Goals of Tabular Data Generation
• Augmentation - for performance 

• Replacement - for privacy 

• Class Balancing - for imbalanced data 

• Imputation - for missing data 

• Data Summarization - for redundant data



Challenges
• Generalization across datasets 

- Past works usually involve unstable and time-consuming training and 
hyper-parameter tuning


- The problem exacerbates when the data size is small


• Inductive bias 

- The inductive bias in tabular data is not clear especially with small size data


- This is in contrast to images and text where the inductive bias is commonly 
exploited



Motivation - TabPFN
• TabPFN (Hollmann et al.) outperforms other tree-based and deep learning 

methods according to independent study (McElfresh et al.)


- Can we harness this high-performing discriminative model for generation?


• TabPFN is exposed to a large number of data generation processes and 
inductive biases


- Can we utilize the discriminative power of TabPFN for generation?



Harnessing TabPFN - Energy-based Models
• Energy-based models (EBMs) background


- EBMs parameterize a density using its unnornamlized log-density function


- , where 


-  can be any function or network


• How do we define the energy function for generation?

pθ(x) =
exp(−Eθ(x))

Zθ
Zθ = ∫x

exp(−Eθ(x))dx

Eθ



Harnessing TabPFN - the Energy Function
• Grathwohl et al. proposed to use classifier outputs as the energy function


- , 


- where  is the classifier logit and  indicates indexing function


• To sample from this EBM, we can use Stochastic Gradient Langevin 
Dynamics (SGLD)

Eθ(x) = − log∑
y

exp( fθ(x)[y])

fθ(x) []
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Abstract

Advances in deep generative modelling have not translated well to tabular data. We1

argue that this is caused by a mismatch in structure between popular generative2

models and state-of-the-art discriminative models of tabular data. We thus devise3

a technique to turn TabPFN – a highly performant transformer designed for in-4

context discriminative tabular tasks – into an energy-based generative model, which5

we dub TabPFGen. TabPFGen uses the pre-trained TabPFN as part of the energy6

function and does not require any additional training or hyperparameter tuning,7

thus inheriting TabPFN’s in-context learning capability. We can sample from the8

energy function defined by TabPFGen analogously to other energy-based models.9

We demonstrate strong results on standard generative modelling tasks, including10

data augmentation and class-balancing, unlocking a new frontier of tabular data11

generation.12

1 Introduction13

Tabular data is pervasive and important across various domains [2, 38, 10, 36, 39], yet the application14

of deep generative modeling, successful in domains like images [5, 40, 32] and text [11, 26], has15

lagged behind in the tabular domain [27]. Previous works [37, 17, 30] have argued that attempts in16

this direction have not used the high performing discriminative models of tabular data effectively.17

These discriminative models are typically tree-based – thus not differentiable – which makes it18

challenging to use them in gradient-based methods. One notable exception is TabPFN [19] – a19

transformer-based model for tabular data, which has demonstrated powerful in-context learning20

capability for discriminative tasks on tabular data. It is thus worth considering if TabPFN can be21

leveraged for generative tasks.22

We answer this in the affirmative by introducing TabPFGen, a novel energy-based model that23

leverages the power of TabPFN to synthesize data for data augmentation, class balancing and24

imputation. TabPFGen defines a class-conditional energy using a cross-entropy objective within25

the frozen TabPFN, and we employ a stochastic gradient Langevin dynamics-like method [41] for26

generating samples. Notably, TabPFGen inherits TabPFN’s in-context learning capabilities, requiring27

no additional training or hyperparameter tuning. We conduct experiments on 18 well-established28

datasets from OpenML-CC 18 [3]. Our results shows a substantial improvement in the performance29

of downstream models with the help of TabPFGen for data augmentation, surpassing competitive30

baselines. Moreover, TabPFGen also proves valuable for class balancing and imputation by producing31

samples that closely align with the training data distribution, showcasing its exciting potential tabular32

data generation in practice.33

2 Background & Related Work34

TabPFN, introduced by Hollmann et al. [19], is a transformer-based architecture designed for in-35

context learning of discriminative tabular data tasks [19]. It is trained using a prior-fitting procedure36
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[29] that exposes the network to a massive number of possible inductive biases which may be observed37

in the tabular setting. After training, the learned TabPFN model can be used to generate a posterior38

predictive distribution over test labels ytest given test features xtest, along with training labels ytrain and39

features xtrain. In our work, we use a frozen pre-trained TabPFN and choose synthetic labels ysynth to40

create new synthetic data xsynth, given available training labels ytrain and features xtrain.41

The field of generative modeling for tabular data has witnessed significant advancements. Initially,42

GAN-based approaches [20, 43, 14, 30] dominated, followed by diffusion models [45, 22] and large43

language models (LLMs) [4, 34]. However, surprisingly, the simplest interpolation methods such44

as SMOTE [7] and its variants [28] still prove to be very competitive [6, 27]. We conjecture that45

the culprit is that the aforementioned generative techniques may not have adequately captured the46

inductive biases of successful discriminative approaches.47

Meanwhile, the realm of using discriminators for generative tasks has expanded drastically over48

the years, particularly outside of the tabular domain. Early work by Tu [37] showed promising results49

on computer vision tasks, and recent investigations have further demonstrated efficacy in image50

synthesis [33, 23]. Nock and Guillame-Bert [30] also shed light on this strategy for tabular data using51

decision trees, inspiring our approach.52

Energy-based models (EBMs) have also gained significant traction across machine learning domains.53

Liu et al. [24] used EBMs for out-of-distribution detection, while Florence et al. [15] applied them to54

robot behavioral cloning. Our work extends the research of using EBMs for data generation tasks.55

Notably, Grathwohl et al. [17] highlighted that any classifier can be treated as an EBM, and this56

concept has been applied to image generation in various works [42, 16, 12, 44]. Notably, our work57

stands out by generating tabular data while leveraging a pre-trained model without additional training58

and hyperparameter tuning.59

Empirically, we demonstrate that our approach outperforms highly competitive generative baselines60

for tabular data, showcasing the effectiveness of combining deep learning approaches, specifically61

TabPFN, and EBMs in tabular data generation.62

3 Method63

Figure 1: TabPFGencore Overview. While keeping TabPFN frozen, we backpropagate from the
class-conditional energy to xsynth, in order to generate gradients for SGLD and thus sample from
p(xsynth | ysynth) / exp(�E(xsynth | ysynth)).

We want to leverage the strong discriminative performance of TabPFN on tabular data to then devise a64

class-conditional generative model. In particular, given a synthetic label ysynth 2 {1, . . . ,K}, we seek65

to define a generative model p(xsynth | ysynth) which can synthesize new samples xsynth 2 RD while66

maintaining a link to the classification task solved by TabPFN. To this end, we first note that TabPFN67

– like many classification models – induces a conditional distribution p(y | x) := exp(f(x)[y])P
y0 exp(f(x)[y0]) ⌘68

�(f(x))[y], where x is the network input, f : RD ! RK represents the TabPFN, � : RK ! RK is69

the softmax, and [y] denotes an indexing operation.70

Next, recalling Bayes’ rule, we have p(x | y) / p(y | x) · p(x). We thus only need to specify a71

marginal distribution in x to fully specify the desired conditional. Taking inspiration from Grathwohl72
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Next, recalling Bayes’ rule, we have p(x | y) / p(y | x) · p(x). We thus only need to specify a71

marginal distribution in x to fully specify the desired conditional. Taking inspiration from Grathwohl72
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et al. [17], we define this distribution through an energy function E(x) = �LogSumExpy0(f(x)[y0])73

– which we refer to as the generative energy – so that p(x) / exp(�E(x)).74

Now, writing p(y | x) = exp
�
f(x)[y]� LogSumExpy0(f(x)[y0])

�
, it is clear that75

p(x | y) / p(y | x) · p(x) / exp(f(x)[y]), (1)

and as such we define the class-conditional energy as simply:76

E(x | y) := �f(x)[y] (2)

We have thus arrived at an energy-based class-conditional generative model p(x | y) which relies on77

TabPFN in a principled manner. We refer to this generative model as TabPFGencore.78

To sample from this model we use an approach similar to stochastic gradient Langevin dynamics79

(SGLD) [41] with the class-conditional energy. Whereas SGLD may be seen as using stochastic80

gradient descent – plus noise – to minimize the energy function, our approach instead uses Adam81

[21] plus noise, as we found this to converge more quickly in practice. While this is somewhat of an82

ad-hoc procedure, we note that (i) sample buffers are another ad-hoc sampling procedure which is83

common in previous work on EBMs [12, 35], and (ii) using a noisy version of Adam has also shown84

empirical success in other papers (e.g. [25]). There is a deep relationship between sampling and85

optimization [9] which may be able to fully explain the success of our technique, but we leave this to86

future work. Ablation studies in Appendix B.2 are included to show the effect of Adam and vanilla87

SGLD.88

To further enhance the core methodology, an alternative configuration can be explored by first switch-89

ing (xsynth, ysynth) and (xtrain, ytrain), then subsequently incorporating the resulting class-conditional90

energy into TabPFGencore. We posit this modification introduces a regularization effect to the91

core sampling process; however, the formal proof of this conjecture remains a subject of future92

investigation. Empirically, we have observed that this extended approach exhibits slightly superior93

performance and greater stability in comparison to TabPFGencore. We hereby denote this augmented94

approach as TabPFGen and present ablation studies in Appendix B.2. The details of the method can95

be found in Appendix A.3.96

4 Experiments & Analysis97

4.1 Experimental Results98

We conduct a comprehensive set of experiments utilizing 18 diverse datasets sourced from the99

OpenML-CC18 suite [3], as detailed in Appendix A.1. Our investigation focuses primarily on using100

synthetic data as augmentation and class balancing. Additionally, we explore the usage for imputation.101

Experimental Setup: We partition each dataset into training and validation sets at a 1:1 ratio with102

a random seed. A generative model is then used to generate synthetic data given the training data.103

Subsequently, we obtain the augmented data by combining the synthetic data with the training data.104

Finally, we train a variety of downstream models on the augmented data and evaluate the AUC ROC105

performance on the validation set.106

Downstream Models: For all experiments, we evaluate the efficacy of synthetic data using 4 distinct107

downstream models: XGBoost [8], random forest [18], logistic regression and TabPFN [19]. To108

ensure fair comparisons, we adopt the hyperparameters of downstream models previously published109

by Hollmann et al. [19] if available. Moreover, we conduct experiments with a range of alternative110

hyperparameters, as detailed in Appendix B.5. Our findings consistently demonstrate that TabPFGen111

outperforms baseline methods across various downstream model hyperparameter configurations.112

Baseline Models: In our investigation, we employ a diverse set of baseline models, including113

traditional approaches such as SMOTE [7], generative adversarial networks, represented by CTGAN114

[43], variational autoencoder-based methods, including TVAE [43] and RTVAE [1], normalizing115

flow-based techniques like Neural Spline Flows (NF) [13], and diffusion-based methods shown by116

TabDDPM [22]. All experiments are conducted using the publicly available synthcity package117

[31]. The details of baseline setups and hyperparameters can be found in Appendix A.2 and Table 8.118

Synthetic Data as Augmentation: To use synthetic data for augmentation, we combine the training119

dataset with an equal volume of synthetic data, preserving the original class ratio. The top 4120

3

A Datasets and Training Details257

A.1 Datasets258

Our experiments are conducted using the 18 numerical datasets from OpenML-CC18 [3]. Similar to259

TabPFN, we use datasets with maximum 2000 samples, 100 features and 10 classes without missing260

values. The details of the datasets are listed in Table 3.261

Table 3: 18 numerical datasets from OpenML-CC18

Name #Feat. #Cat. #Inst. #Class. Minor. Class Size OpenML ID

balance-scale 5 1 625 3 49 11
mfeat-fourier 77 1 2000 10 200 14
mfeat-karhunen 65 1 2000 10 200 16
mfeat-morphological 7 1 2000 10 200 18
mfeat-zernike 48 1 2000 10 200 22
diabetes 9 1 768 2 268 37
vehicle 19 1 846 4 199 54
analcatdata_auth... 71 1 841 4 55 458
pc4 38 1 1458 2 178 1049
pc3 38 1 1563 2 160 1050
kc2 22 1 522 2 107 1063
pc1 22 1 1109 2 77 1068
banknote-authenti... 5 1 1372 2 610 1462
blood-transfusion-... 5 1 748 2 178 1464
qsar-biodeg 42 1 1055 2 356 1494
wdbc 31 1 569 2 212 1510
steel-plates-fault 28 1 1941 7 55 40982
climate-model-simu... 21 1 540 2 46 40994

A.2 Baseline Details262

We use the synthcity package [31] to run all of our baselines. The synthcity code repository can263

be found at: https://github.com/vanderschaarlab/synthcity. We keep the same hyperpa-264

rameters as Manousakas and Aydöre [27] when possible. The exact hyperparameters and training265

details can be found in Table 8.266

A.3 TabPFGen Details267

Algorithm 1 TabPFGencore, SGLD: Given TabPFN model f , SGLD step size ↵, SGLD noise �, SGLD
steps ⌘, manually defined synthetic labels ysynth

1: Input: xtrain, ytrain

2: Initialize x0
synth ⇠ N (µxtrain ,⌃xtrain) . SGLD Initialization

3: for t 2[1, 2, ..., ⌘] do

4: E(xt
synth | ysynth) = � log f(xt

synth | (xtrain, ytrain))[ysynth] . Class-conditional Energy

5: xt+1
synth = xt

synth � ↵ · @E(xt
synth|ysynth)

@xt
synth

+ � · N (0, I) . SGLD

6: end for

7: Output: x⌘
synth and ysynth

We use a pre-trained TabPFN for all of our experiments. The pre-trained TabPFN weights can be268

obtained at https://github.com/automl/TabPFN. The TabPFGencore, SGLD sampling algorithm269

is shown in Algorithm 1. TabPFGenSGLD differs from TabPFGencore, SGLD by augmenting the new270

class-conditional energy: E(xt
synth|ysynth)+E(xtrain | ytrain) = � log f(xt

synth | (xtrain, ytrain))[ysynth]�271
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These discriminative models are typically tree-based – thus not differentiable – which makes it21

challenging to use them in gradient-based methods. One notable exception is TabPFN [19] – a22
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capability for discriminative tasks on tabular data. It is thus worth considering if TabPFN can be24

leveraged for generative tasks.25
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2 Background & Related Work34

TabPFN, introduced by Hollmann et al. [19], is a transformer-based architecture designed for in-35
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[29] that exposes the network to a massive number of possible inductive biases which may be observed37

in the tabular setting. After training, the learned TabPFN model can be used to generate a posterior38

predictive distribution over test labels ytest given test features xtest, along with training labels ytrain and39

features xtrain. In our work, we use a frozen pre-trained TabPFN and choose synthetic labels ysynth to40

create new synthetic data xsynth, given available training labels ytrain and features xtrain.41

The field of generative modeling for tabular data has witnessed significant advancements. Initially,42

GAN-based approaches [20, 43, 14, 30] dominated, followed by diffusion models [45, 22] and large43

language models (LLMs) [4, 34]. However, surprisingly, the simplest interpolation methods such44

as SMOTE [7] and its variants [28] still prove to be very competitive [6, 27]. We conjecture that45

the culprit is that the aforementioned generative techniques may not have adequately captured the46

inductive biases of successful discriminative approaches.47

Meanwhile, the realm of using discriminators for generative tasks has expanded drastically over48

the years, particularly outside of the tabular domain. Early work by Tu [37] showed promising results49

on computer vision tasks, and recent investigations have further demonstrated efficacy in image50

synthesis [33, 23]. Nock and Guillame-Bert [30] also shed light on this strategy for tabular data using51

decision trees, inspiring our approach.52

Energy-based models (EBMs) have also gained significant traction across machine learning domains.53

Liu et al. [24] used EBMs for out-of-distribution detection, while Florence et al. [15] applied them to54

robot behavioral cloning. Our work extends the research of using EBMs for data generation tasks.55

Notably, Grathwohl et al. [17] highlighted that any classifier can be treated as an EBM, and this56

concept has been applied to image generation in various works [42, 16, 12, 44]. Notably, our work57

stands out by generating tabular data while leveraging a pre-trained model without additional training58

and hyperparameter tuning.59

Empirically, we demonstrate that our approach outperforms highly competitive generative baselines60

for tabular data, showcasing the effectiveness of combining deep learning approaches, specifically61

TabPFN, and EBMs in tabular data generation.62

3 Method63

Figure 1: TabPFGencore Overview. While keeping TabPFN frozen, we backpropagate from the
class-conditional energy to xsynth, in order to generate gradients for SGLD and thus sample from
p(xsynth | ysynth) / exp(�E(xsynth | ysynth)).
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to define a generative model p(xsynth | ysynth) which can synthesize new samples xsynth 2 RD while66

maintaining a link to the classification task solved by TabPFN. To this end, we first note that TabPFN67

– like many classification models – induces a conditional distribution p(y | x) := exp(f(x)[y])P
y0 exp(f(x)[y0]) ⌘68

�(f(x))[y], where x is the network input, f : RD ! RK represents the TabPFN, � : RK ! RK is69

the softmax, and [y] denotes an indexing operation.70

Next, recalling Bayes’ rule, we have p(x | y) / p(y | x) · p(x). We thus only need to specify a71

marginal distribution in x to fully specify the desired conditional. Taking inspiration from Grathwohl72
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et al. [17], we define this distribution through an energy function E(x) = �LogSumExpy0(f(x)[y0])73

– which we refer to as the generative energy – so that p(x) / exp(�E(x)).74

Now, writing p(y | x) = exp
�
f(x)[y]� LogSumExpy0(f(x)[y0])

�
, it is clear that75

p(x | y) / p(y | x) · p(x) / exp(f(x)[y]), (1)

and as such we define the class-conditional energy as simply:76

E(x | y) := �f(x)[y] (2)

We have thus arrived at an energy-based class-conditional generative model p(x | y) which relies on77

TabPFN in a principled manner. We refer to this generative model as TabPFGencore.78

To sample from this model we use an approach similar to stochastic gradient Langevin dynamics79

(SGLD) [41] with the class-conditional energy. Whereas SGLD may be seen as using stochastic80

gradient descent – plus noise – to minimize the energy function, our approach instead uses Adam81

[21] plus noise, as we found this to converge more quickly in practice. While this is somewhat of an82

ad-hoc procedure, we note that (i) sample buffers are another ad-hoc sampling procedure which is83

common in previous work on EBMs [12, 35], and (ii) using a noisy version of Adam has also shown84

empirical success in other papers (e.g. [25]). There is a deep relationship between sampling and85

optimization [9] which may be able to fully explain the success of our technique, but we leave this to86

future work. Ablation studies in Appendix B.2 are included to show the effect of Adam and vanilla87

SGLD.88

To further enhance the core methodology, an alternative configuration can be explored by first switch-89

ing (xsynth, ysynth) and (xtrain, ytrain), then subsequently incorporating the resulting class-conditional90

energy into TabPFGencore. We posit this modification introduces a regularization effect to the91

core sampling process; however, the formal proof of this conjecture remains a subject of future92

investigation. Empirically, we have observed that this extended approach exhibits slightly superior93

performance and greater stability in comparison to TabPFGencore. We hereby denote this augmented94

approach as TabPFGen and present ablation studies in Appendix B.2. The details of the method can95

be found in Appendix A.3.96

4 Experiments & Analysis97

4.1 Experimental Results98

We conduct a comprehensive set of experiments utilizing 18 diverse datasets sourced from the99

OpenML-CC18 suite [3], as detailed in Appendix A.1. Our investigation focuses primarily on using100

synthetic data as augmentation and class balancing. Additionally, we explore the usage for imputation.101

Experimental Setup: We partition each dataset into training and validation sets at a 1:1 ratio with102

a random seed. A generative model is then used to generate synthetic data given the training data.103

Subsequently, we obtain the augmented data by combining the synthetic data with the training data.104

Finally, we train a variety of downstream models on the augmented data and evaluate the AUC ROC105

performance on the validation set.106

Downstream Models: For all experiments, we evaluate the efficacy of synthetic data using 4 distinct107

downstream models: XGBoost [8], random forest [18], logistic regression and TabPFN [19]. To108

ensure fair comparisons, we adopt the hyperparameters of downstream models previously published109

by Hollmann et al. [19] if available. Moreover, we conduct experiments with a range of alternative110

hyperparameters, as detailed in Appendix B.5. Our findings consistently demonstrate that TabPFGen111

outperforms baseline methods across various downstream model hyperparameter configurations.112

Baseline Models: In our investigation, we employ a diverse set of baseline models, including113

traditional approaches such as SMOTE [7], generative adversarial networks, represented by CTGAN114

[43], variational autoencoder-based methods, including TVAE [43] and RTVAE [1], normalizing115

flow-based techniques like Neural Spline Flows (NF) [13], and diffusion-based methods shown by116

TabDDPM [22]. All experiments are conducted using the publicly available synthcity package117

[31]. The details of baseline setups and hyperparameters can be found in Appendix A.2 and Table 8.118

Synthetic Data as Augmentation: To use synthetic data for augmentation, we combine the training119

dataset with an equal volume of synthetic data, preserving the original class ratio. The top 4120

3

A Datasets and Training Details257

A.1 Datasets258

Our experiments are conducted using the 18 numerical datasets from OpenML-CC18 [3]. Similar to259

TabPFN, we use datasets with maximum 2000 samples, 100 features and 10 classes without missing260

values. The details of the datasets are listed in Table 3.261

Table 3: 18 numerical datasets from OpenML-CC18

Name #Feat. #Cat. #Inst. #Class. Minor. Class Size OpenML ID

balance-scale 5 1 625 3 49 11
mfeat-fourier 77 1 2000 10 200 14
mfeat-karhunen 65 1 2000 10 200 16
mfeat-morphological 7 1 2000 10 200 18
mfeat-zernike 48 1 2000 10 200 22
diabetes 9 1 768 2 268 37
vehicle 19 1 846 4 199 54
analcatdata_auth... 71 1 841 4 55 458
pc4 38 1 1458 2 178 1049
pc3 38 1 1563 2 160 1050
kc2 22 1 522 2 107 1063
pc1 22 1 1109 2 77 1068
banknote-authenti... 5 1 1372 2 610 1462
blood-transfusion-... 5 1 748 2 178 1464
qsar-biodeg 42 1 1055 2 356 1494
wdbc 31 1 569 2 212 1510
steel-plates-fault 28 1 1941 7 55 40982
climate-model-simu... 21 1 540 2 46 40994

A.2 Baseline Details262

We use the synthcity package [31] to run all of our baselines. The synthcity code repository can263

be found at: https://github.com/vanderschaarlab/synthcity. We keep the same hyperpa-264

rameters as Manousakas and Aydöre [27] when possible. The exact hyperparameters and training265

details can be found in Table 8.266

A.3 TabPFGen Details267

Algorithm 1 TabPFGencore, SGLD: Given TabPFN model f , SGLD step size ↵, SGLD noise �, SGLD
steps ⌘, manually defined synthetic labels ysynth

1: Input: xtrain, ytrain

2: Initialize x0
synth ⇠ N (µxtrain ,⌃xtrain) . SGLD Initialization

3: for t 2[1, 2, ..., ⌘] do

4: E(xt
synth | ysynth) = � log f(xt

synth | (xtrain, ytrain))[ysynth] . Class-conditional Energy

5: xt+1
synth = xt

synth � ↵ · @E(xt
synth|ysynth)

@xt
synth

+ � · N (0, I) . SGLD

6: end for

7: Output: x⌘
synth and ysynth

We use a pre-trained TabPFN for all of our experiments. The pre-trained TabPFN weights can be268

obtained at https://github.com/automl/TabPFN. The TabPFGencore, SGLD sampling algorithm269

is shown in Algorithm 1. TabPFGenSGLD differs from TabPFGencore, SGLD by augmenting the new270

class-conditional energy: E(xt
synth|ysynth)+E(xtrain | ytrain) = � log f(xt

synth | (xtrain, ytrain))[ysynth]�271
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Abstract

Advances in deep generative modelling have not translated well to tabular data. We1

argue that this is caused by a mismatch in structure between popular generative2

models and state-of-the-art discriminative models of tabular data. We thus devise3

a technique to turn TabPFN – a highly performant transformer designed for in-4

context discriminative tabular tasks – into an energy-based generative model, which5

we dub TabPFGen. TabPFGen uses the pre-trained TabPFN as part of the energy6

function and does not require any additional training or hyperparameter tuning,7

thus inheriting TabPFN’s in-context learning capability. We can sample from the8

energy function defined by TabPFGen analogously to other energy-based models.9

We demonstrate strong results on standard generative modelling tasks, including10

data augmentation, class-balancing and imputation, unlocking a new frontier of11

tabular data generation. CE f(xsynth) Softmax12

Class-agnostic Energy Class-conditional Energy13

E(xsynth)14

E(ysynth | xsynth)15

1 Introduction16

Tabular data is pervasive and important across various domains [2, 38, 10, 36, 39], yet the application17

of deep generative modeling, successful in domains like images [5, 40, 32] and text [11, 26], has18

lagged behind in the tabular domain [27]. Previous works [37, 17, 30] have argued that attempts in19

this direction have not used the high performing discriminative models of tabular data effectively.20

These discriminative models are typically tree-based – thus not differentiable – which makes it21

challenging to use them in gradient-based methods. One notable exception is TabPFN [19] – a22

transformer-based model for tabular data, which has demonstrated powerful in-context learning23

capability for discriminative tasks on tabular data. It is thus worth considering if TabPFN can be24

leveraged for generative tasks.25

We answer this in the affirmative by introducing TabPFGen, a novel energy-based model that26

leverages the power of TabPFN to synthesize data for data augmentation, class balancing and27

imputation. TabPFGen defines a class-conditional energy using a cross-entropy objective within28

the frozen TabPFN, and we employ a stochastic gradient Langevin dynamics-like method [41] for29

generating samples. Notably, TabPFGen inherits TabPFN’s in-context learning capabilities, requiring30

no additional training or hyperparameter tuning. We conduct experiments on 18 well-established31

datasets from OpenML-CC 18 [3]. Our results shows a substantial improvement in the performance32

of downstream models with the help of TabPFGen for data augmentation, surpassing competitive33

baselines. Moreover, TabPFGen also proves valuable for class balancing and imputation by producing34

samples that closely align with the training data distribution, showcasing its exciting potential tabular35

data generation in practice.36
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1 Introduction13

Tabular data is pervasive and important across various domains [2, 38, 10, 36, 39], yet the application14

of deep generative modeling, successful in domains like images [5, 40, 32] and text [11, 26], has15

lagged behind in the tabular domain [27]. Previous works [37, 17, 30] have argued that attempts in16

this direction have not used the high performing discriminative models of tabular data effectively.17

These discriminative models are typically tree-based – thus not differentiable – which makes it18

challenging to use them in gradient-based methods. One notable exception is TabPFN [19] – a19

transformer-based model for tabular data, which has demonstrated powerful in-context learning20

capability for discriminative tasks on tabular data. It is thus worth considering if TabPFN can be21

leveraged for generative tasks.22

We answer this in the affirmative by introducing TabPFGen, a novel energy-based model that23

leverages the power of TabPFN to synthesize data for data augmentation, class balancing and24

imputation. TabPFGen defines a class-conditional energy using a cross-entropy objective within25

the frozen TabPFN, and we employ a stochastic gradient Langevin dynamics-like method [41] for26

generating samples. Notably, TabPFGen inherits TabPFN’s in-context learning capabilities, requiring27

no additional training or hyperparameter tuning. We conduct experiments on 18 well-established28

datasets from OpenML-CC 18 [3]. Our results shows a substantial improvement in the performance29

of downstream models with the help of TabPFGen for data augmentation, surpassing competitive30

baselines. Moreover, TabPFGen also proves valuable for class balancing and imputation by producing31

samples that closely align with the training data distribution, showcasing its exciting potential tabular32

data generation in practice.33

2 Background & Related Work34

TabPFN, introduced by Hollmann et al. [19], is a transformer-based architecture designed for in-35

context learning of discriminative tabular data tasks [19]. It is trained using a prior-fitting procedure36
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[29] that exposes the network to a massive number of possible inductive biases which may be observed37

in the tabular setting. After training, the learned TabPFN model can be used to generate a posterior38

predictive distribution over test labels ytest given test features xtest, along with training labels ytrain and39

features xtrain. In our work, we use a frozen pre-trained TabPFN and choose synthetic labels ysynth to40

create new synthetic data xsynth, given available training labels ytrain and features xtrain.41

The field of generative modeling for tabular data has witnessed significant advancements. Initially,42

GAN-based approaches [20, 43, 14, 30] dominated, followed by diffusion models [45, 22] and large43

language models (LLMs) [4, 34]. However, surprisingly, the simplest interpolation methods such44

as SMOTE [7] and its variants [28] still prove to be very competitive [6, 27]. We conjecture that45

the culprit is that the aforementioned generative techniques may not have adequately captured the46

inductive biases of successful discriminative approaches.47

Meanwhile, the realm of using discriminators for generative tasks has expanded drastically over48

the years, particularly outside of the tabular domain. Early work by Tu [37] showed promising results49

on computer vision tasks, and recent investigations have further demonstrated efficacy in image50

synthesis [33, 23]. Nock and Guillame-Bert [30] also shed light on this strategy for tabular data using51

decision trees, inspiring our approach.52

Energy-based models (EBMs) have also gained significant traction across machine learning domains.53

Liu et al. [24] used EBMs for out-of-distribution detection, while Florence et al. [15] applied them to54

robot behavioral cloning. Our work extends the research of using EBMs for data generation tasks.55

Notably, Grathwohl et al. [17] highlighted that any classifier can be treated as an EBM, and this56

concept has been applied to image generation in various works [42, 16, 12, 44]. Notably, our work57

stands out by generating tabular data while leveraging a pre-trained model without additional training58

and hyperparameter tuning.59

Empirically, we demonstrate that our approach outperforms highly competitive generative baselines60

for tabular data, showcasing the effectiveness of combining deep learning approaches, specifically61

TabPFN, and EBMs in tabular data generation.62

3 Method63

Figure 1: TabPFGencore Overview. While keeping TabPFN frozen, we backpropagate from the
class-conditional energy to xsynth, in order to generate gradients for SGLD and thus sample from
p(xsynth | ysynth) / exp(�E(xsynth | ysynth)).

We want to leverage the strong discriminative performance of TabPFN on tabular data to then devise a64

class-conditional generative model. In particular, given a synthetic label ysynth 2 {1, . . . ,K}, we seek65

to define a generative model p(xsynth | ysynth) which can synthesize new samples xsynth 2 RD while66
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�
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approach as TabPFGen and present ablation studies in Appendix B.2. The details of the method can95

be found in Appendix A.3.96

4 Experiments & Analysis97

4.1 Experimental Results98
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synthetic data as augmentation and class balancing. Additionally, we explore the usage for imputation.101

Experimental Setup: We partition each dataset into training and validation sets at a 1:1 ratio with102

a random seed. A generative model is then used to generate synthetic data given the training data.103

Subsequently, we obtain the augmented data by combining the synthetic data with the training data.104

Finally, we train a variety of downstream models on the augmented data and evaluate the AUC ROC105

performance on the validation set.106

Downstream Models: For all experiments, we evaluate the efficacy of synthetic data using 4 distinct107

downstream models: XGBoost [8], random forest [18], logistic regression and TabPFN [19]. To108

ensure fair comparisons, we adopt the hyperparameters of downstream models previously published109

by Hollmann et al. [19] if available. Moreover, we conduct experiments with a range of alternative110

hyperparameters, as detailed in Appendix B.5. Our findings consistently demonstrate that TabPFGen111

outperforms baseline methods across various downstream model hyperparameter configurations.112

Baseline Models: In our investigation, we employ a diverse set of baseline models, including113

traditional approaches such as SMOTE [7], generative adversarial networks, represented by CTGAN114

[43], variational autoencoder-based methods, including TVAE [43] and RTVAE [1], normalizing115

flow-based techniques like Neural Spline Flows (NF) [13], and diffusion-based methods shown by116

TabDDPM [22]. All experiments are conducted using the publicly available synthcity package117

[31]. The details of baseline setups and hyperparameters can be found in Appendix A.2 and Table 8.118

Synthetic Data as Augmentation: To use synthetic data for augmentation, we combine the training119

dataset with an equal volume of synthetic data, preserving the original class ratio. The top 4120

3

A Datasets and Training Details257

A.1 Datasets258

Our experiments are conducted using the 18 numerical datasets from OpenML-CC18 [3]. Similar to259

TabPFN, we use datasets with maximum 2000 samples, 100 features and 10 classes without missing260

values. The details of the datasets are listed in Table 3.261

Table 3: 18 numerical datasets from OpenML-CC18

Name #Feat. #Cat. #Inst. #Class. Minor. Class Size OpenML ID

balance-scale 5 1 625 3 49 11
mfeat-fourier 77 1 2000 10 200 14
mfeat-karhunen 65 1 2000 10 200 16
mfeat-morphological 7 1 2000 10 200 18
mfeat-zernike 48 1 2000 10 200 22
diabetes 9 1 768 2 268 37
vehicle 19 1 846 4 199 54
analcatdata_auth... 71 1 841 4 55 458
pc4 38 1 1458 2 178 1049
pc3 38 1 1563 2 160 1050
kc2 22 1 522 2 107 1063
pc1 22 1 1109 2 77 1068
banknote-authenti... 5 1 1372 2 610 1462
blood-transfusion-... 5 1 748 2 178 1464
qsar-biodeg 42 1 1055 2 356 1494
wdbc 31 1 569 2 212 1510
steel-plates-fault 28 1 1941 7 55 40982
climate-model-simu... 21 1 540 2 46 40994

A.2 Baseline Details262

We use the synthcity package [31] to run all of our baselines. The synthcity code repository can263

be found at: https://github.com/vanderschaarlab/synthcity. We keep the same hyperpa-264

rameters as Manousakas and Aydöre [27] when possible. The exact hyperparameters and training265

details can be found in Table 8.266

A.3 TabPFGen Details267

Algorithm 1 TabPFGencore, SGLD: Given TabPFN model f , SGLD step size ↵, SGLD noise �, SGLD
steps ⌘, manually defined synthetic labels ysynth

1: Input: xtrain, ytrain

2: Initialize x0
synth ⇠ N (µxtrain ,⌃xtrain) . SGLD Initialization

3: for t 2[1, 2, ..., ⌘] do

4: E(xt
synth | ysynth) = � log f(xt

synth | (xtrain, ytrain))[ysynth] . Class-conditional Energy

5: xt+1
synth = xt

synth � ↵ · @E(xt
synth|ysynth)

@xt
synth

+ � · N (0, I) . SGLD

6: end for

7: Output: x⌘
synth and ysynth

We use a pre-trained TabPFN for all of our experiments. The pre-trained TabPFN weights can be268

obtained at https://github.com/automl/TabPFN. The TabPFGencore, SGLD sampling algorithm269

is shown in Algorithm 1. TabPFGenSGLD differs from TabPFGencore, SGLD by augmenting the new270

class-conditional energy: E(xt
synth|ysynth)+E(xtrain | ytrain) = � log f(xt

synth | (xtrain, ytrain))[ysynth]�271
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Abstract

Advances in deep generative modelling have not translated well to tabular data. We1

argue that this is caused by a mismatch in structure between popular generative2

models and state-of-the-art discriminative models of tabular data. We thus devise3

a technique to turn TabPFN – a highly performant transformer designed for in-4

context discriminative tabular tasks – into an energy-based generative model, which5

we dub TabPFGen. TabPFGen uses the pre-trained TabPFN as part of the energy6

function and does not require any additional training or hyperparameter tuning,7

thus inheriting TabPFN’s in-context learning capability. We can sample from the8

energy function defined by TabPFGen analogously to other energy-based models.9

We demonstrate strong results on standard generative modelling tasks, including10

data augmentation, class-balancing and imputation, unlocking a new frontier of11

tabular data generation. CE f(xsynth) Softmax12

Class-agnostic Energy Class-conditional Energy13

E(xsynth)14

E(ysynth | xsynth)15

1 Introduction16

Tabular data is pervasive and important across various domains [2, 38, 10, 36, 39], yet the application17

of deep generative modeling, successful in domains like images [5, 40, 32] and text [11, 26], has18

lagged behind in the tabular domain [27]. Previous works [37, 17, 30] have argued that attempts in19

this direction have not used the high performing discriminative models of tabular data effectively.20

These discriminative models are typically tree-based – thus not differentiable – which makes it21

challenging to use them in gradient-based methods. One notable exception is TabPFN [19] – a22

transformer-based model for tabular data, which has demonstrated powerful in-context learning23

capability for discriminative tasks on tabular data. It is thus worth considering if TabPFN can be24

leveraged for generative tasks.25

We answer this in the affirmative by introducing TabPFGen, a novel energy-based model that26

leverages the power of TabPFN to synthesize data for data augmentation, class balancing and27

imputation. TabPFGen defines a class-conditional energy using a cross-entropy objective within28

the frozen TabPFN, and we employ a stochastic gradient Langevin dynamics-like method [41] for29

generating samples. Notably, TabPFGen inherits TabPFN’s in-context learning capabilities, requiring30

no additional training or hyperparameter tuning. We conduct experiments on 18 well-established31

datasets from OpenML-CC 18 [3]. Our results shows a substantial improvement in the performance32

of downstream models with the help of TabPFGen for data augmentation, surpassing competitive33

baselines. Moreover, TabPFGen also proves valuable for class balancing and imputation by producing34

samples that closely align with the training data distribution, showcasing its exciting potential tabular35

data generation in practice.36
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we dub TabPFGen. TabPFGen uses the pre-trained TabPFN as part of the energy6

function and does not require any additional training or hyperparameter tuning,7

thus inheriting TabPFN’s in-context learning capability. We can sample from the8

energy function defined by TabPFGen analogously to other energy-based models.9

We demonstrate strong results on standard generative modelling tasks, including10

data augmentation, class-balancing and imputation, unlocking a new frontier of11

tabular data generation. CE f(xsynth) Softmax12
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1 Introduction16

Tabular data is pervasive and important across various domains [2, 38, 10, 36, 39], yet the application17

of deep generative modeling, successful in domains like images [5, 40, 32] and text [11, 26], has18

lagged behind in the tabular domain [27]. Previous works [37, 17, 30] have argued that attempts in19

this direction have not used the high performing discriminative models of tabular data effectively.20

These discriminative models are typically tree-based – thus not differentiable – which makes it21

challenging to use them in gradient-based methods. One notable exception is TabPFN [19] – a22

transformer-based model for tabular data, which has demonstrated powerful in-context learning23

capability for discriminative tasks on tabular data. It is thus worth considering if TabPFN can be24

leveraged for generative tasks.25

We answer this in the affirmative by introducing TabPFGen, a novel energy-based model that26

leverages the power of TabPFN to synthesize data for data augmentation, class balancing and27

imputation. TabPFGen defines a class-conditional energy using a cross-entropy objective within28

the frozen TabPFN, and we employ a stochastic gradient Langevin dynamics-like method [41] for29

generating samples. Notably, TabPFGen inherits TabPFN’s in-context learning capabilities, requiring30

no additional training or hyperparameter tuning. We conduct experiments on 18 well-established31

datasets from OpenML-CC 18 [3]. Our results shows a substantial improvement in the performance32

of downstream models with the help of TabPFGen for data augmentation, surpassing competitive33

baselines. Moreover, TabPFGen also proves valuable for class balancing and imputation by producing34

samples that closely align with the training data distribution, showcasing its exciting potential tabular35

data generation in practice.36
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2 Background & Related Work34
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[29] that exposes the network to a massive number of possible inductive biases which may be observed37

in the tabular setting. After training, the learned TabPFN model can be used to generate a posterior38

predictive distribution over test labels ytest given test features xtest, along with training labels ytrain and39

features xtrain. In our work, we use a frozen pre-trained TabPFN and choose synthetic labels ysynth to40

create new synthetic data xsynth, given available training labels ytrain and features xtrain.41

The field of generative modeling for tabular data has witnessed significant advancements. Initially,42

GAN-based approaches [20, 43, 14, 30] dominated, followed by diffusion models [45, 22] and large43

language models (LLMs) [4, 34]. However, surprisingly, the simplest interpolation methods such44

as SMOTE [7] and its variants [28] still prove to be very competitive [6, 27]. We conjecture that45

the culprit is that the aforementioned generative techniques may not have adequately captured the46

inductive biases of successful discriminative approaches.47

Meanwhile, the realm of using discriminators for generative tasks has expanded drastically over48

the years, particularly outside of the tabular domain. Early work by Tu [37] showed promising results49

on computer vision tasks, and recent investigations have further demonstrated efficacy in image50

synthesis [33, 23]. Nock and Guillame-Bert [30] also shed light on this strategy for tabular data using51

decision trees, inspiring our approach.52

Energy-based models (EBMs) have also gained significant traction across machine learning domains.53

Liu et al. [24] used EBMs for out-of-distribution detection, while Florence et al. [15] applied them to54

robot behavioral cloning. Our work extends the research of using EBMs for data generation tasks.55

Notably, Grathwohl et al. [17] highlighted that any classifier can be treated as an EBM, and this56

concept has been applied to image generation in various works [42, 16, 12, 44]. Notably, our work57

stands out by generating tabular data while leveraging a pre-trained model without additional training58

and hyperparameter tuning.59

Empirically, we demonstrate that our approach outperforms highly competitive generative baselines60

for tabular data, showcasing the effectiveness of combining deep learning approaches, specifically61

TabPFN, and EBMs in tabular data generation.62

3 Method63

Figure 1: TabPFGencore Overview. While keeping TabPFN frozen, we backpropagate from the
class-conditional energy to xsynth, in order to generate gradients for SGLD and thus sample from
p(xsynth | ysynth) / exp(�E(xsynth | ysynth)).

We want to leverage the strong discriminative performance of TabPFN on tabular data to then devise a64

class-conditional generative model. In particular, given a synthetic label ysynth 2 {1, . . . ,K}, we seek65

to define a generative model p(xsynth | ysynth) which can synthesize new samples xsynth 2 RD while66

maintaining a link to the classification task solved by TabPFN. To this end, we first note that TabPFN67

– like many classification models – induces a conditional distribution p(y | x) := exp(f(x)[y])P
y0 exp(f(x)[y0]) ⌘68

�(f(x))[y], where x is the network input, f : RD ! RK represents the TabPFN, � : RK ! RK is69

the softmax, and [y] denotes an indexing operation.70

Next, recalling Bayes’ rule, we have p(x | y) / p(y | x) · p(x). We thus only need to specify a71

marginal distribution in x to fully specify the desired conditional. Taking inspiration from Grathwohl72
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marginal distribution in x to fully specify the desired conditional. Taking inspiration from Grathwohl72

2

et al. [17], we define this distribution through an energy function E(x) = �LogSumExpy0(f(x)[y0])73

– which we refer to as the generative energy – so that p(x) / exp(�E(x)).74

Now, writing p(y | x) = exp
�
f(x)[y]� LogSumExpy0(f(x)[y0])

�
, it is clear that75

p(x | y) / p(y | x) · p(x) / exp(f(x)[y]), (1)

and as such we define the class-conditional energy as simply:76

E(x | y) := �f(x)[y] (2)

We have thus arrived at an energy-based class-conditional generative model p(x | y) which relies on77

TabPFN in a principled manner. We refer to this generative model as TabPFGencore.78

To sample from this model we use an approach similar to stochastic gradient Langevin dynamics79

(SGLD) [41] with the class-conditional energy. Whereas SGLD may be seen as using stochastic80

gradient descent – plus noise – to minimize the energy function, our approach instead uses Adam81

[21] plus noise, as we found this to converge more quickly in practice. While this is somewhat of an82

ad-hoc procedure, we note that (i) sample buffers are another ad-hoc sampling procedure which is83

common in previous work on EBMs [12, 35], and (ii) using a noisy version of Adam has also shown84

empirical success in other papers (e.g. [25]). There is a deep relationship between sampling and85

optimization [9] which may be able to fully explain the success of our technique, but we leave this to86

future work. Ablation studies in Appendix B.2 are included to show the effect of Adam and vanilla87

SGLD.88

To further enhance the core methodology, an alternative configuration can be explored by first switch-89

ing (xsynth, ysynth) and (xtrain, ytrain), then subsequently incorporating the resulting class-conditional90

energy into TabPFGencore. We posit this modification introduces a regularization effect to the91

core sampling process; however, the formal proof of this conjecture remains a subject of future92

investigation. Empirically, we have observed that this extended approach exhibits slightly superior93

performance and greater stability in comparison to TabPFGencore. We hereby denote this augmented94

approach as TabPFGen and present ablation studies in Appendix B.2. The details of the method can95

be found in Appendix A.3.96

4 Experiments & Analysis97

4.1 Experimental Results98

We conduct a comprehensive set of experiments utilizing 18 diverse datasets sourced from the99

OpenML-CC18 suite [3], as detailed in Appendix A.1. Our investigation focuses primarily on using100

synthetic data as augmentation and class balancing. Additionally, we explore the usage for imputation.101

Experimental Setup: We partition each dataset into training and validation sets at a 1:1 ratio with102

a random seed. A generative model is then used to generate synthetic data given the training data.103

Subsequently, we obtain the augmented data by combining the synthetic data with the training data.104

Finally, we train a variety of downstream models on the augmented data and evaluate the AUC ROC105

performance on the validation set.106

Downstream Models: For all experiments, we evaluate the efficacy of synthetic data using 4 distinct107

downstream models: XGBoost [8], random forest [18], logistic regression and TabPFN [19]. To108

ensure fair comparisons, we adopt the hyperparameters of downstream models previously published109

by Hollmann et al. [19] if available. Moreover, we conduct experiments with a range of alternative110

hyperparameters, as detailed in Appendix B.5. Our findings consistently demonstrate that TabPFGen111

outperforms baseline methods across various downstream model hyperparameter configurations.112

Baseline Models: In our investigation, we employ a diverse set of baseline models, including113

traditional approaches such as SMOTE [7], generative adversarial networks, represented by CTGAN114

[43], variational autoencoder-based methods, including TVAE [43] and RTVAE [1], normalizing115

flow-based techniques like Neural Spline Flows (NF) [13], and diffusion-based methods shown by116

TabDDPM [22]. All experiments are conducted using the publicly available synthcity package117

[31]. The details of baseline setups and hyperparameters can be found in Appendix A.2 and Table 8.118

Synthetic Data as Augmentation: To use synthetic data for augmentation, we combine the training119

dataset with an equal volume of synthetic data, preserving the original class ratio. The top 4120

3

A Datasets and Training Details257

A.1 Datasets258

Our experiments are conducted using the 18 numerical datasets from OpenML-CC18 [3]. Similar to259

TabPFN, we use datasets with maximum 2000 samples, 100 features and 10 classes without missing260

values. The details of the datasets are listed in Table 3.261

Table 3: 18 numerical datasets from OpenML-CC18

Name #Feat. #Cat. #Inst. #Class. Minor. Class Size OpenML ID

balance-scale 5 1 625 3 49 11
mfeat-fourier 77 1 2000 10 200 14
mfeat-karhunen 65 1 2000 10 200 16
mfeat-morphological 7 1 2000 10 200 18
mfeat-zernike 48 1 2000 10 200 22
diabetes 9 1 768 2 268 37
vehicle 19 1 846 4 199 54
analcatdata_auth... 71 1 841 4 55 458
pc4 38 1 1458 2 178 1049
pc3 38 1 1563 2 160 1050
kc2 22 1 522 2 107 1063
pc1 22 1 1109 2 77 1068
banknote-authenti... 5 1 1372 2 610 1462
blood-transfusion-... 5 1 748 2 178 1464
qsar-biodeg 42 1 1055 2 356 1494
wdbc 31 1 569 2 212 1510
steel-plates-fault 28 1 1941 7 55 40982
climate-model-simu... 21 1 540 2 46 40994

A.2 Baseline Details262

We use the synthcity package [31] to run all of our baselines. The synthcity code repository can263

be found at: https://github.com/vanderschaarlab/synthcity. We keep the same hyperpa-264

rameters as Manousakas and Aydöre [27] when possible. The exact hyperparameters and training265

details can be found in Table 8.266

A.3 TabPFGen Details267

Algorithm 1 TabPFGencore, SGLD: Given TabPFN model f , SGLD step size ↵, SGLD noise �, SGLD
steps ⌘, manually defined synthetic labels ysynth

1: Input: xtrain, ytrain

2: Initialize x0
synth ⇠ N (µxtrain ,⌃xtrain) . SGLD Initialization

3: for t 2[1, 2, ..., ⌘] do

4: E(xt
synth | ysynth) = � log f(xt

synth | (xtrain, ytrain))[ysynth] . Class-conditional Energy

5: xt+1
synth = xt

synth � ↵ · @E(xt
synth|ysynth)

@xt
synth

+ � · N (0, I) . SGLD

6: end for

7: Output: x⌘
synth and ysynth

We use a pre-trained TabPFN for all of our experiments. The pre-trained TabPFN weights can be268

obtained at https://github.com/automl/TabPFN. The TabPFGencore, SGLD sampling algorithm269

is shown in Algorithm 1. TabPFGenSGLD differs from TabPFGencore, SGLD by augmenting the new270

class-conditional energy: E(xt
synth|ysynth)+E(xtrain | ytrain) = � log f(xt

synth | (xtrain, ytrain))[ysynth]�271
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context discriminative tabular tasks – into an energy-based generative model, which5

we dub TabPFGen. TabPFGen uses the pre-trained TabPFN as part of the energy6

function and does not require any additional training or hyperparameter tuning,7

thus inheriting TabPFN’s in-context learning capability. We can sample from the8

energy function defined by TabPFGen analogously to other energy-based models.9
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of deep generative modeling, successful in domains like images [5, 40, 32] and text [11, 26], has18

lagged behind in the tabular domain [27]. Previous works [37, 17, 30] have argued that attempts in19

this direction have not used the high performing discriminative models of tabular data effectively.20

These discriminative models are typically tree-based – thus not differentiable – which makes it21

challenging to use them in gradient-based methods. One notable exception is TabPFN [19] – a22

transformer-based model for tabular data, which has demonstrated powerful in-context learning23

capability for discriminative tasks on tabular data. It is thus worth considering if TabPFN can be24

leveraged for generative tasks.25

We answer this in the affirmative by introducing TabPFGen, a novel energy-based model that26

leverages the power of TabPFN to synthesize data for data augmentation, class balancing and27

imputation. TabPFGen defines a class-conditional energy using a cross-entropy objective within28

the frozen TabPFN, and we employ a stochastic gradient Langevin dynamics-like method [41] for29

generating samples. Notably, TabPFGen inherits TabPFN’s in-context learning capabilities, requiring30

no additional training or hyperparameter tuning. We conduct experiments on 18 well-established31

datasets from OpenML-CC 18 [3]. Our results shows a substantial improvement in the performance32

of downstream models with the help of TabPFGen for data augmentation, surpassing competitive33

baselines. Moreover, TabPFGen also proves valuable for class balancing and imputation by producing34

samples that closely align with the training data distribution, showcasing its exciting potential tabular35

data generation in practice.36
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2 Background & Related Work34

TabPFN, introduced by Hollmann et al. [19], is a transformer-based architecture designed for in-35

context learning of discriminative tabular data tasks [19]. It is trained using a prior-fitting procedure36
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[29] that exposes the network to a massive number of possible inductive biases which may be observed37

in the tabular setting. After training, the learned TabPFN model can be used to generate a posterior38

predictive distribution over test labels ytest given test features xtest, along with training labels ytrain and39

features xtrain. In our work, we use a frozen pre-trained TabPFN and choose synthetic labels ysynth to40

create new synthetic data xsynth, given available training labels ytrain and features xtrain.41

The field of generative modeling for tabular data has witnessed significant advancements. Initially,42

GAN-based approaches [20, 43, 14, 30] dominated, followed by diffusion models [45, 22] and large43

language models (LLMs) [4, 34]. However, surprisingly, the simplest interpolation methods such44

as SMOTE [7] and its variants [28] still prove to be very competitive [6, 27]. We conjecture that45

the culprit is that the aforementioned generative techniques may not have adequately captured the46

inductive biases of successful discriminative approaches.47

Meanwhile, the realm of using discriminators for generative tasks has expanded drastically over48

the years, particularly outside of the tabular domain. Early work by Tu [37] showed promising results49

on computer vision tasks, and recent investigations have further demonstrated efficacy in image50

synthesis [33, 23]. Nock and Guillame-Bert [30] also shed light on this strategy for tabular data using51

decision trees, inspiring our approach.52

Energy-based models (EBMs) have also gained significant traction across machine learning domains.53

Liu et al. [24] used EBMs for out-of-distribution detection, while Florence et al. [15] applied them to54

robot behavioral cloning. Our work extends the research of using EBMs for data generation tasks.55

Notably, Grathwohl et al. [17] highlighted that any classifier can be treated as an EBM, and this56

concept has been applied to image generation in various works [42, 16, 12, 44]. Notably, our work57

stands out by generating tabular data while leveraging a pre-trained model without additional training58

and hyperparameter tuning.59

Empirically, we demonstrate that our approach outperforms highly competitive generative baselines60

for tabular data, showcasing the effectiveness of combining deep learning approaches, specifically61

TabPFN, and EBMs in tabular data generation.62

3 Method63

Figure 1: TabPFGencore Overview. While keeping TabPFN frozen, we backpropagate from the
class-conditional energy to xsynth, in order to generate gradients for SGLD and thus sample from
p(xsynth | ysynth) / exp(�E(xsynth | ysynth)).

We want to leverage the strong discriminative performance of TabPFN on tabular data to then devise a64

class-conditional generative model. In particular, given a synthetic label ysynth 2 {1, . . . ,K}, we seek65

to define a generative model p(xsynth | ysynth) which can synthesize new samples xsynth 2 RD while66

maintaining a link to the classification task solved by TabPFN. To this end, we first note that TabPFN67

– like many classification models – induces a conditional distribution p(y | x) := exp(f(x)[y])P
y0 exp(f(x)[y0]) ⌘68

�(f(x))[y], where x is the network input, f : RD ! RK represents the TabPFN, � : RK ! RK is69

the softmax, and [y] denotes an indexing operation.70

Next, recalling Bayes’ rule, we have p(x | y) / p(y | x) · p(x). We thus only need to specify a71

marginal distribution in x to fully specify the desired conditional. Taking inspiration from Grathwohl72
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2

et al. [17], we define this distribution through an energy function E(x) = �LogSumExpy0(f(x)[y0])73
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�
f(x)[y]� LogSumExpy0(f(x)[y0])

�
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4 Experiments & Analysis97

4.1 Experimental Results98
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performance on the validation set.106
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downstream models: XGBoost [8], random forest [18], logistic regression and TabPFN [19]. To108

ensure fair comparisons, we adopt the hyperparameters of downstream models previously published109

by Hollmann et al. [19] if available. Moreover, we conduct experiments with a range of alternative110

hyperparameters, as detailed in Appendix B.5. Our findings consistently demonstrate that TabPFGen111

outperforms baseline methods across various downstream model hyperparameter configurations.112

Baseline Models: In our investigation, we employ a diverse set of baseline models, including113

traditional approaches such as SMOTE [7], generative adversarial networks, represented by CTGAN114

[43], variational autoencoder-based methods, including TVAE [43] and RTVAE [1], normalizing115

flow-based techniques like Neural Spline Flows (NF) [13], and diffusion-based methods shown by116

TabDDPM [22]. All experiments are conducted using the publicly available synthcity package117

[31]. The details of baseline setups and hyperparameters can be found in Appendix A.2 and Table 8.118

Synthetic Data as Augmentation: To use synthetic data for augmentation, we combine the training119

dataset with an equal volume of synthetic data, preserving the original class ratio. The top 4120
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A Datasets and Training Details257

A.1 Datasets258

Our experiments are conducted using the 18 numerical datasets from OpenML-CC18 [3]. Similar to259

TabPFN, we use datasets with maximum 2000 samples, 100 features and 10 classes without missing260

values. The details of the datasets are listed in Table 3.261

Table 3: 18 numerical datasets from OpenML-CC18

Name #Feat. #Cat. #Inst. #Class. Minor. Class Size OpenML ID

balance-scale 5 1 625 3 49 11
mfeat-fourier 77 1 2000 10 200 14
mfeat-karhunen 65 1 2000 10 200 16
mfeat-morphological 7 1 2000 10 200 18
mfeat-zernike 48 1 2000 10 200 22
diabetes 9 1 768 2 268 37
vehicle 19 1 846 4 199 54
analcatdata_auth... 71 1 841 4 55 458
pc4 38 1 1458 2 178 1049
pc3 38 1 1563 2 160 1050
kc2 22 1 522 2 107 1063
pc1 22 1 1109 2 77 1068
banknote-authenti... 5 1 1372 2 610 1462
blood-transfusion-... 5 1 748 2 178 1464
qsar-biodeg 42 1 1055 2 356 1494
wdbc 31 1 569 2 212 1510
steel-plates-fault 28 1 1941 7 55 40982
climate-model-simu... 21 1 540 2 46 40994

A.2 Baseline Details262

We use the synthcity package [31] to run all of our baselines. The synthcity code repository can263

be found at: https://github.com/vanderschaarlab/synthcity. We keep the same hyperpa-264

rameters as Manousakas and Aydöre [27] when possible. The exact hyperparameters and training265

details can be found in Table 8.266

A.3 TabPFGen Details267

Algorithm 1 TabPFGencore, SGLD: Given TabPFN model f , SGLD step size ↵, SGLD noise �, SGLD
steps ⌘, manually defined synthetic labels ysynth

1: Input: xtrain, ytrain

2: Initialize x0
synth ⇠ N (µxtrain ,⌃xtrain) . SGLD Initialization

3: for t 2[1, 2, ..., ⌘] do

4: E(xt
synth | ysynth) = � log f(xt

synth | (xtrain, ytrain))[ysynth] . Class-conditional Energy

5: xt+1
synth = xt

synth � ↵ · @E(xt
synth|ysynth)

@xt
synth

+ � · N (0, I) . SGLD

6: end for

7: Output: x⌘
synth and ysynth

We use a pre-trained TabPFN for all of our experiments. The pre-trained TabPFN weights can be268

obtained at https://github.com/automl/TabPFN. The TabPFGencore, SGLD sampling algorithm269

is shown in Algorithm 1. TabPFGenSGLD differs from TabPFGencore, SGLD by augmenting the new270

class-conditional energy: E(xt
synth|ysynth)+E(xtrain | ytrain) = � log f(xt

synth | (xtrain, ytrain))[ysynth]�271
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Abstract

Advances in deep generative modelling have not translated well to tabular data. We1

argue that this is caused by a mismatch in structure between popular generative2

models and state-of-the-art discriminative models of tabular data. We thus devise3

a technique to turn TabPFN – a highly performant transformer designed for in-4

context discriminative tabular tasks – into an energy-based generative model, which5

we dub TabPFGen. TabPFGen uses the pre-trained TabPFN as part of the energy6

function and does not require any additional training or hyperparameter tuning,7

thus inheriting TabPFN’s in-context learning capability. We can sample from the8

energy function defined by TabPFGen analogously to other energy-based models.9

We demonstrate strong results on standard generative modelling tasks, including10

data augmentation, class-balancing and imputation, unlocking a new frontier of11

tabular data generation. CE f(xsynth) Softmax12

Class-agnostic Energy Class-conditional Energy13

E(xsynth)14

E(ysynth | xsynth)15

1 Introduction16

Tabular data is pervasive and important across various domains [2, 38, 10, 36, 39], yet the application17

of deep generative modeling, successful in domains like images [5, 40, 32] and text [11, 26], has18

lagged behind in the tabular domain [27]. Previous works [37, 17, 30] have argued that attempts in19

this direction have not used the high performing discriminative models of tabular data effectively.20

These discriminative models are typically tree-based – thus not differentiable – which makes it21

challenging to use them in gradient-based methods. One notable exception is TabPFN [19] – a22

transformer-based model for tabular data, which has demonstrated powerful in-context learning23

capability for discriminative tasks on tabular data. It is thus worth considering if TabPFN can be24

leveraged for generative tasks.25

We answer this in the affirmative by introducing TabPFGen, a novel energy-based model that26

leverages the power of TabPFN to synthesize data for data augmentation, class balancing and27

imputation. TabPFGen defines a class-conditional energy using a cross-entropy objective within28

the frozen TabPFN, and we employ a stochastic gradient Langevin dynamics-like method [41] for29

generating samples. Notably, TabPFGen inherits TabPFN’s in-context learning capabilities, requiring30

no additional training or hyperparameter tuning. We conduct experiments on 18 well-established31

datasets from OpenML-CC 18 [3]. Our results shows a substantial improvement in the performance32

of downstream models with the help of TabPFGen for data augmentation, surpassing competitive33

baselines. Moreover, TabPFGen also proves valuable for class balancing and imputation by producing34

samples that closely align with the training data distribution, showcasing its exciting potential tabular35

data generation in practice.36
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datasets from OpenML-CC 18 [3]. Our results shows a substantial improvement in the performance29

of downstream models with the help of TabPFGen for data augmentation, surpassing competitive30

baselines. Moreover, TabPFGen also proves valuable for class balancing and imputation by producing31
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as SMOTE [7] and its variants [28] still prove to be very competitive [6, 27]. We conjecture that45

the culprit is that the aforementioned generative techniques may not have adequately captured the46

inductive biases of successful discriminative approaches.47

Meanwhile, the realm of using discriminators for generative tasks has expanded drastically over48

the years, particularly outside of the tabular domain. Early work by Tu [37] showed promising results49

on computer vision tasks, and recent investigations have further demonstrated efficacy in image50

synthesis [33, 23]. Nock and Guillame-Bert [30] also shed light on this strategy for tabular data using51

decision trees, inspiring our approach.52

Energy-based models (EBMs) have also gained significant traction across machine learning domains.53

Liu et al. [24] used EBMs for out-of-distribution detection, while Florence et al. [15] applied them to54

robot behavioral cloning. Our work extends the research of using EBMs for data generation tasks.55

Notably, Grathwohl et al. [17] highlighted that any classifier can be treated as an EBM, and this56

concept has been applied to image generation in various works [42, 16, 12, 44]. Notably, our work57

stands out by generating tabular data while leveraging a pre-trained model without additional training58

and hyperparameter tuning.59

Empirically, we demonstrate that our approach outperforms highly competitive generative baselines60

for tabular data, showcasing the effectiveness of combining deep learning approaches, specifically61
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et al. [17], we define this distribution through an energy function E(x) = �LogSumExpy0(f(x)[y0])73

– which we refer to as the generative energy – so that p(x) / exp(�E(x)).74

Now, writing p(y | x) = exp
�
f(x)[y]� LogSumExpy0(f(x)[y0])

�
, it is clear that75

p(x | y) / p(y | x) · p(x) / exp(f(x)[y]), (1)

and as such we define the class-conditional energy as simply:76

E(x | y) := �f(x)[y] (2)

We have thus arrived at an energy-based class-conditional generative model p(x | y) which relies on77

TabPFN in a principled manner. We refer to this generative model as TabPFGencore.78

To sample from this model we use an approach similar to stochastic gradient Langevin dynamics79

(SGLD) [41] with the class-conditional energy. Whereas SGLD may be seen as using stochastic80

gradient descent – plus noise – to minimize the energy function, our approach instead uses Adam81

[21] plus noise, as we found this to converge more quickly in practice. While this is somewhat of an82

ad-hoc procedure, we note that (i) sample buffers are another ad-hoc sampling procedure which is83

common in previous work on EBMs [12, 35], and (ii) using a noisy version of Adam has also shown84

empirical success in other papers (e.g. [25]). There is a deep relationship between sampling and85

optimization [9] which may be able to fully explain the success of our technique, but we leave this to86

future work. Ablation studies in Appendix B.2 are included to show the effect of Adam and vanilla87

SGLD.88

To further enhance the core methodology, an alternative configuration can be explored by first switch-89

ing (xsynth, ysynth) and (xtrain, ytrain), then subsequently incorporating the resulting class-conditional90

energy into TabPFGencore. We posit this modification introduces a regularization effect to the91

core sampling process; however, the formal proof of this conjecture remains a subject of future92

investigation. Empirically, we have observed that this extended approach exhibits slightly superior93

performance and greater stability in comparison to TabPFGencore. We hereby denote this augmented94

approach as TabPFGen and present ablation studies in Appendix B.2. The details of the method can95

be found in Appendix A.3.96

4 Experiments & Analysis97

4.1 Experimental Results98

We conduct a comprehensive set of experiments utilizing 18 diverse datasets sourced from the99

OpenML-CC18 suite [3], as detailed in Appendix A.1. Our investigation focuses primarily on using100

synthetic data as augmentation and class balancing. Additionally, we explore the usage for imputation.101

Experimental Setup: We partition each dataset into training and validation sets at a 1:1 ratio with102

a random seed. A generative model is then used to generate synthetic data given the training data.103

Subsequently, we obtain the augmented data by combining the synthetic data with the training data.104

Finally, we train a variety of downstream models on the augmented data and evaluate the AUC ROC105

performance on the validation set.106

Downstream Models: For all experiments, we evaluate the efficacy of synthetic data using 4 distinct107

downstream models: XGBoost [8], random forest [18], logistic regression and TabPFN [19]. To108

ensure fair comparisons, we adopt the hyperparameters of downstream models previously published109

by Hollmann et al. [19] if available. Moreover, we conduct experiments with a range of alternative110

hyperparameters, as detailed in Appendix B.5. Our findings consistently demonstrate that TabPFGen111

outperforms baseline methods across various downstream model hyperparameter configurations.112

Baseline Models: In our investigation, we employ a diverse set of baseline models, including113

traditional approaches such as SMOTE [7], generative adversarial networks, represented by CTGAN114

[43], variational autoencoder-based methods, including TVAE [43] and RTVAE [1], normalizing115

flow-based techniques like Neural Spline Flows (NF) [13], and diffusion-based methods shown by116

TabDDPM [22]. All experiments are conducted using the publicly available synthcity package117

[31]. The details of baseline setups and hyperparameters can be found in Appendix A.2 and Table 8.118

Synthetic Data as Augmentation: To use synthetic data for augmentation, we combine the training119

dataset with an equal volume of synthetic data, preserving the original class ratio. The top 4120

3

A Datasets and Training Details257

A.1 Datasets258

Our experiments are conducted using the 18 numerical datasets from OpenML-CC18 [3]. Similar to259

TabPFN, we use datasets with maximum 2000 samples, 100 features and 10 classes without missing260

values. The details of the datasets are listed in Table 3.261

Table 3: 18 numerical datasets from OpenML-CC18

Name #Feat. #Cat. #Inst. #Class. Minor. Class Size OpenML ID

balance-scale 5 1 625 3 49 11
mfeat-fourier 77 1 2000 10 200 14
mfeat-karhunen 65 1 2000 10 200 16
mfeat-morphological 7 1 2000 10 200 18
mfeat-zernike 48 1 2000 10 200 22
diabetes 9 1 768 2 268 37
vehicle 19 1 846 4 199 54
analcatdata_auth... 71 1 841 4 55 458
pc4 38 1 1458 2 178 1049
pc3 38 1 1563 2 160 1050
kc2 22 1 522 2 107 1063
pc1 22 1 1109 2 77 1068
banknote-authenti... 5 1 1372 2 610 1462
blood-transfusion-... 5 1 748 2 178 1464
qsar-biodeg 42 1 1055 2 356 1494
wdbc 31 1 569 2 212 1510
steel-plates-fault 28 1 1941 7 55 40982
climate-model-simu... 21 1 540 2 46 40994

A.2 Baseline Details262

We use the synthcity package [31] to run all of our baselines. The synthcity code repository can263

be found at: https://github.com/vanderschaarlab/synthcity. We keep the same hyperpa-264

rameters as Manousakas and Aydöre [27] when possible. The exact hyperparameters and training265

details can be found in Table 8.266

A.3 TabPFGen Details267

Algorithm 1 TabPFGencore, SGLD: Given TabPFN model f , SGLD step size ↵, SGLD noise �, SGLD
steps ⌘, manually defined synthetic labels ysynth

1: Input: xtrain, ytrain

2: Initialize x0
synth ⇠ N (µxtrain ,⌃xtrain) . SGLD Initialization

3: for t 2[1, 2, ..., ⌘] do

4: E(xt
synth | ysynth) = � log f(xt

synth | (xtrain, ytrain))[ysynth] . Class-conditional Energy

5: xt+1
synth = xt

synth � ↵ · @E(xt
synth|ysynth)

@xt
synth

+ � · N (0, I) . SGLD

6: end for

7: Output: x⌘
synth and ysynth

We use a pre-trained TabPFN for all of our experiments. The pre-trained TabPFN weights can be268

obtained at https://github.com/automl/TabPFN. The TabPFGencore, SGLD sampling algorithm269

is shown in Algorithm 1. TabPFGenSGLD differs from TabPFGencore, SGLD by augmenting the new270

class-conditional energy: E(xt
synth|ysynth)+E(xtrain | ytrain) = � log f(xt

synth | (xtrain, ytrain))[ysynth]�271
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Abstract

Advances in deep generative modelling have not translated well to tabular data. We1

argue that this is caused by a mismatch in structure between popular generative2

models and state-of-the-art discriminative models of tabular data. We thus devise3

a technique to turn TabPFN – a highly performant transformer designed for in-4

context discriminative tabular tasks – into an energy-based generative model, which5

we dub TabPFGen. TabPFGen uses the pre-trained TabPFN as part of the energy6

function and does not require any additional training or hyperparameter tuning,7

thus inheriting TabPFN’s in-context learning capability. We can sample from the8

energy function defined by TabPFGen analogously to other energy-based models.9

We demonstrate strong results on standard generative modelling tasks, including10

data augmentation, class-balancing and imputation, unlocking a new frontier of11

tabular data generation. CE f(xsynth) Softmax12

Class-agnostic Energy Class-conditional Energy13

E(xsynth)14

E(ysynth | xsynth)15

1 Introduction16

Tabular data is pervasive and important across various domains [2, 38, 10, 36, 39], yet the application17

of deep generative modeling, successful in domains like images [5, 40, 32] and text [11, 26], has18

lagged behind in the tabular domain [27]. Previous works [37, 17, 30] have argued that attempts in19

this direction have not used the high performing discriminative models of tabular data effectively.20

These discriminative models are typically tree-based – thus not differentiable – which makes it21

challenging to use them in gradient-based methods. One notable exception is TabPFN [19] – a22

transformer-based model for tabular data, which has demonstrated powerful in-context learning23

capability for discriminative tasks on tabular data. It is thus worth considering if TabPFN can be24

leveraged for generative tasks.25

We answer this in the affirmative by introducing TabPFGen, a novel energy-based model that26

leverages the power of TabPFN to synthesize data for data augmentation, class balancing and27

imputation. TabPFGen defines a class-conditional energy using a cross-entropy objective within28

the frozen TabPFN, and we employ a stochastic gradient Langevin dynamics-like method [41] for29

generating samples. Notably, TabPFGen inherits TabPFN’s in-context learning capabilities, requiring30

no additional training or hyperparameter tuning. We conduct experiments on 18 well-established31

datasets from OpenML-CC 18 [3]. Our results shows a substantial improvement in the performance32

of downstream models with the help of TabPFGen for data augmentation, surpassing competitive33

baselines. Moreover, TabPFGen also proves valuable for class balancing and imputation by producing34

samples that closely align with the training data distribution, showcasing its exciting potential tabular35

data generation in practice.36
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In-context learning generation with SGLD:

- Frozen TabPFN’s discriminative power is inverted for generation

- No additional training or hyper-parameter tuning required



Experimental Setup
• Use synthetic data to augment, replace or class balance


• Test set is used to evaluate downstream models performance with synthetic 
data


• Downstream models include: XGB, RF, LR and TabPFN

Real Training Data

Real Testing Data

Synthetic Training 
Data

Generative Model

Downstream Model

Train

Test

AUC score



Results - Augmentation and Replacement
Augmentation



Results - Augmentation and Replacement

Replacement



Results - Class Balancing



Results - Qualitative
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