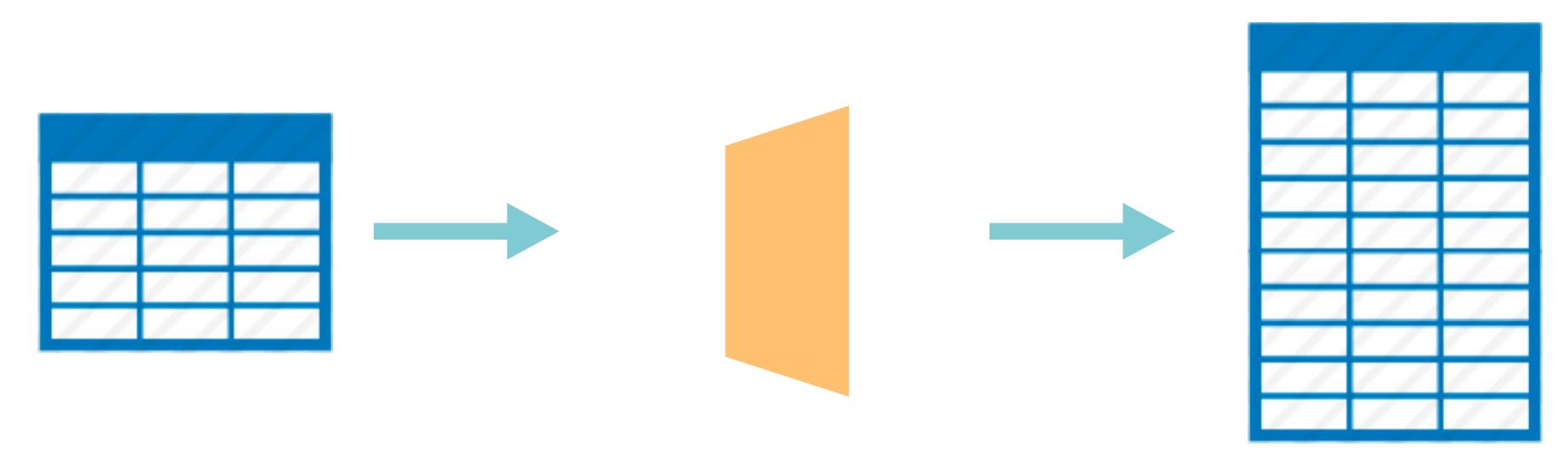
TabPFGen - Tabular Data Generation with TabPFN

Junwei Ma, Apoorv Dankar, George Stein, Guangwei Yu, Anthony Caterini



Tabular Data Generation

process

Tabular Data

Generative Model Augmented Tabular Data

The task is to generate more data according to the underlying data generation

Goals of Tabular Data Generation

- Augmentation for performance
- **Replacement** for privacy
- Class Balancing for imbalanced data
- Imputation for missing data
- Data Summarization for redundant data

Challenges

- **Generalization across datasets**
 - Past works usually involve unstable and time-consuming training and hyper-parameter tuning
 - The problem exacerbates when the data size is small
- Inductive bias
 - The inductive bias in tabular data is not clear especially with small size data
 - This is in contrast to images and text where the inductive bias is commonly exploited

layer6

Motivation - TabPFN

- TabPFN (Hollmann et al.) outperforms other tree-based and deep learning methods according to independent study (McElfresh et al.)
 - Can we harness this high-performing discriminative model for generation?
- TabPFN is exposed to a large number of data generation processes and inductive biases
 - Can we utilize the discriminative power of TabPFN for generation?

Harnessing TabPFN - Energy-based Models

- Energy-based models (EBMs) background

$$p_{\theta}(x) = \frac{exp(-E_{\theta}(x))}{Z_{\theta}}$$
, where Z_{θ}

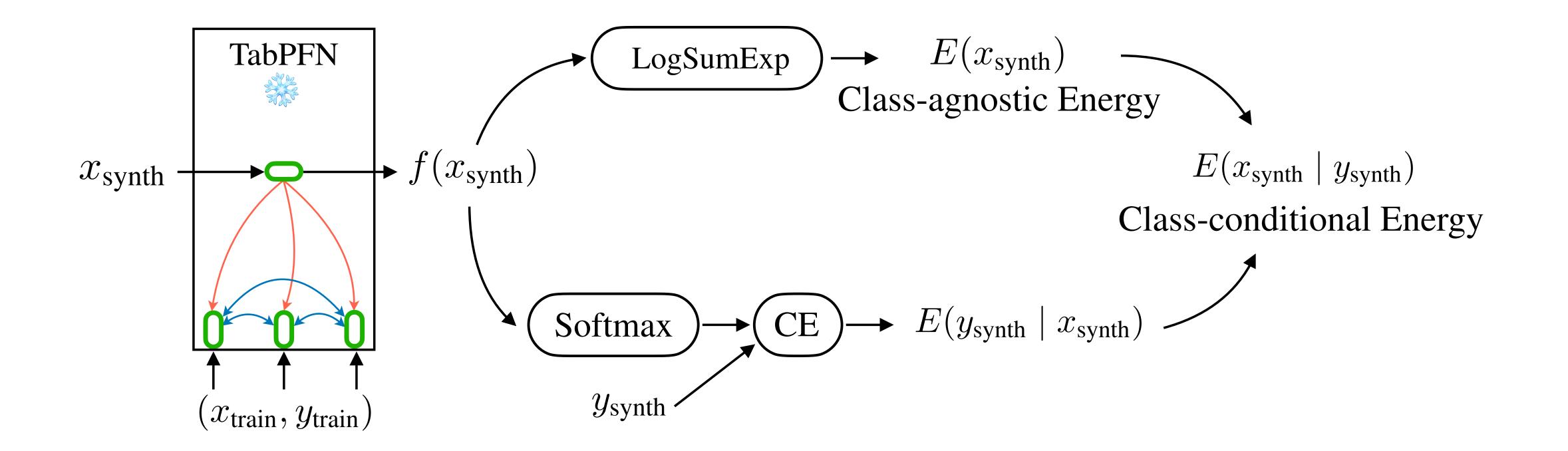
- E_{θ} can be any function or network
- How do we define the energy function for generation?

- EBMs parameterize a density using its unnornamlized log-density function

$$= \int_{x} exp(-E_{\theta}(x))dx$$

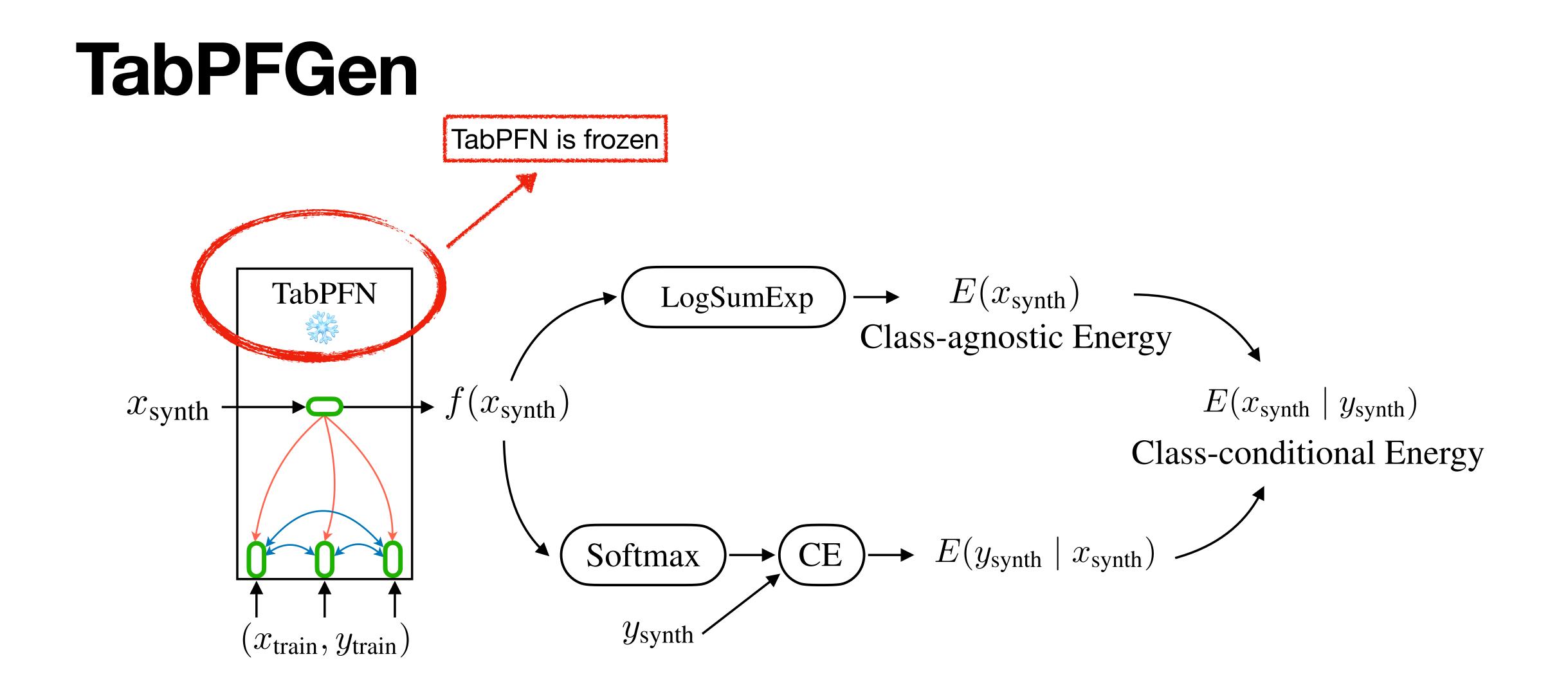
Harnessing TabPFN - the Energy Function

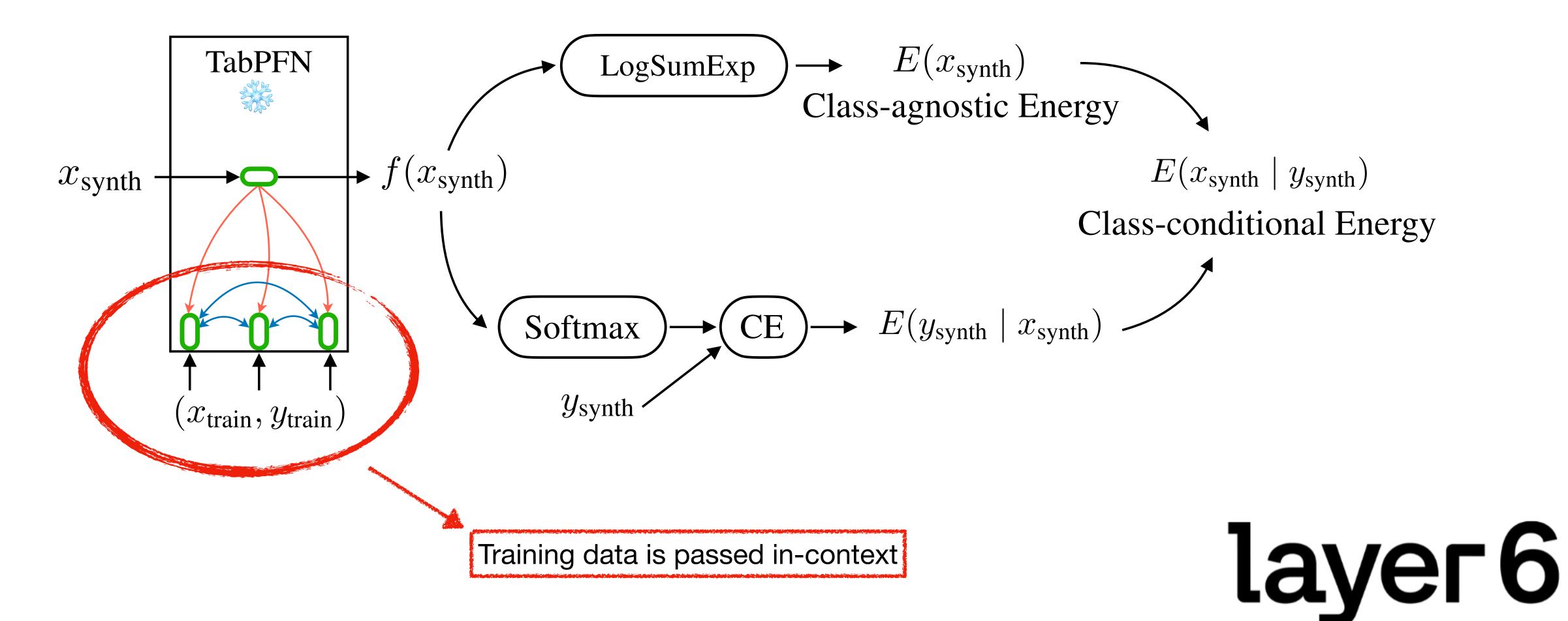
$$E_{\theta}(x) = -\log \sum_{y} exp(f_{\theta}(x)[y]),$$

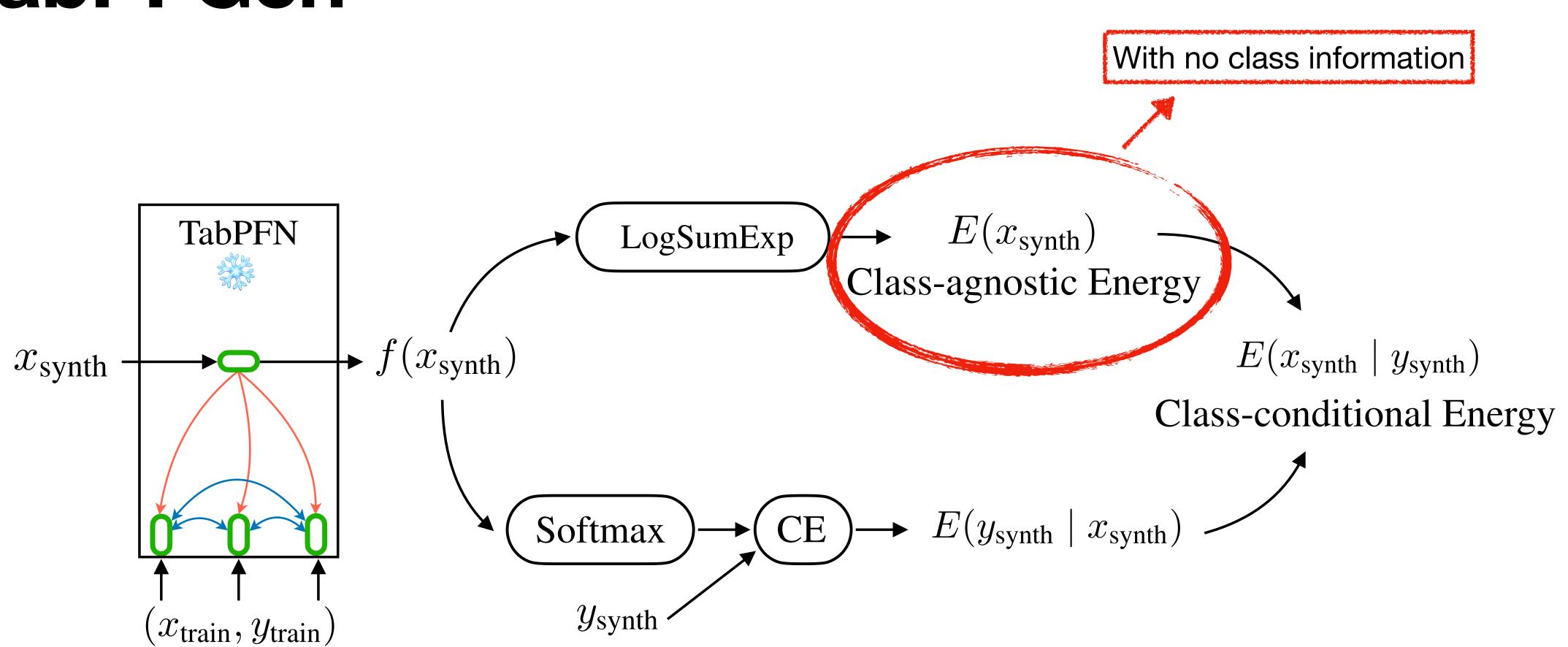

- where $f_{\theta}(x)$ is the classifier logit and [] indicates indexing function

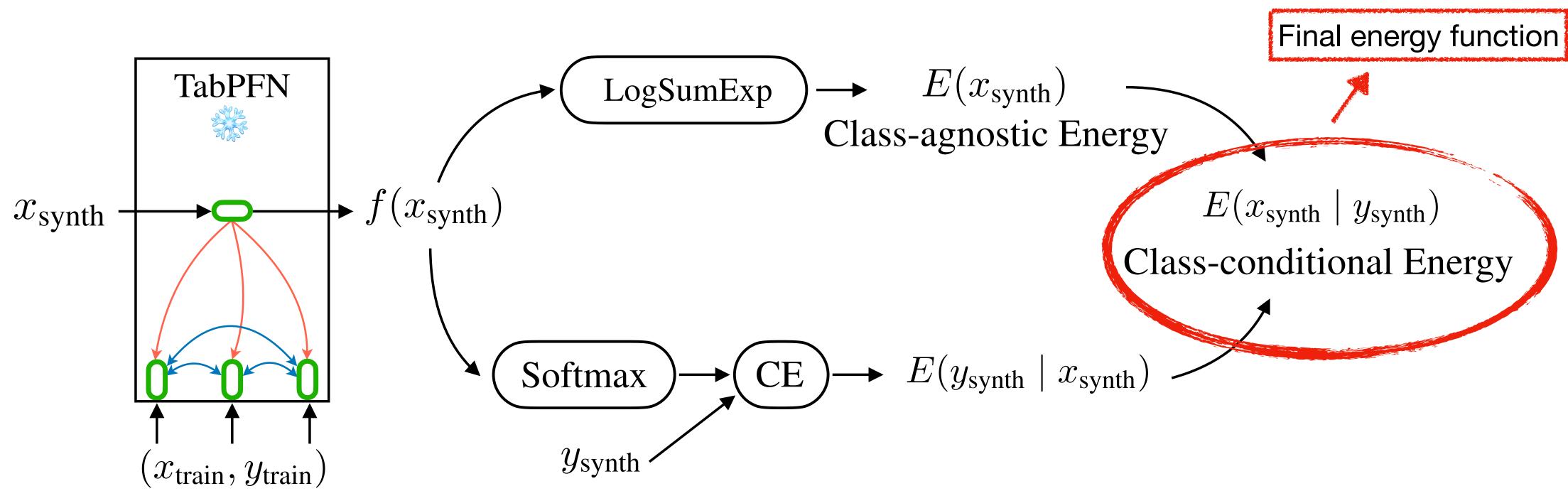
 To sample from this EBM, we can use Stochastic Gradient Langevin Dynamics (SGLD)

Grathwohl et al. proposed to use classifier outputs as the energy function

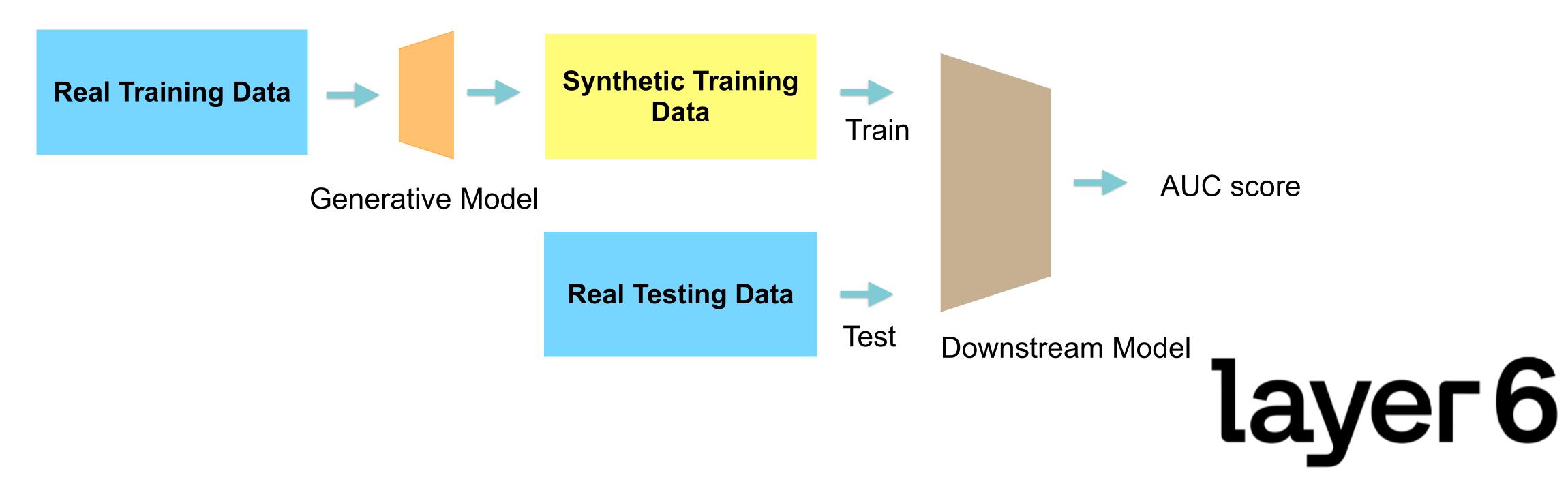








layer6


In-context learning generation with SGLD: - Frozen TabPFN's discriminative power is inverted for generation - No additional training or hyper-parameter tuning required

Experimental Setup

- Use synthetic data to augment, replace or class balance
- Test set is used to evaluate downstream models performance with synthetic data
- Downstream models include: XGB, RF, LR and TabPFN

Results - Augmentation and Replacement

Model	Original	SMOTE	CTGAN	TVAE	NF	RTVAE	TabDDPM	TabPFGen	
XGB RF LR TabPFN	$0.906 {\pm} {3e-4} \ 0.920 {\pm} {7e-4}$	$0.906 {\pm} {2e-3} \\ 0.914 {\pm} {3e-3}$	$0.898 {\pm} 1e{-3} \ 0.904 {\pm} 3e{-3}$	$0.904 {\pm} 1e{-3} \\ 0.909 {\pm} 6e{-3}$	$0.894{\pm}3e{-4}\ 0.901{\pm}9e{-4}$	$0.907 {\pm} 2e{-3} \\ 0.906 {\pm} 8e{-3}$	$0.927 {\pm} 3e {-}4 \ 0.911 {\pm} 7e {-}4 \ 0.885 {\pm} 3e {-}4 \ 0.929 {\pm} 5e {-}4$	$0.912 {\pm} 4e {-} 4$ $0.921 {\pm} 2e {-} 4$	
XGB RF LR TabPFN	0.934±2e-3 N/A N/A N/A N/A	$0.907 {\pm} 4e {-} 4 \ 0.894 {\pm} 1e {-} 3 \ 0.893 {\pm} 2e {-} 3$	$0.842 {\pm} 8e{-4} \ 0.837 {\pm} 6e{-4} \ 0.843 {\pm} 6e{-4}$	$0.858 {\pm} 2e{-3} \ 0.844 {\pm} 5e{-4} \ 0.873 {\pm} 1e{-3}$	$0.700{\pm}_{6e-4}\ 0.676{\pm}_{2e-3}\ 0.722{\pm}_{3e-3}$	$0.795 {\pm} 9e {-}4 \ 0.774 {\pm} 3e {-}4 \ 0.854 {\pm} 7e {-}4$	$0.929 \pm 5e - 4$ $0.812 \pm 3e - 4$ $0.814 \pm 9e - 4$ $0.876 \pm 3e - 4$ $0.894 \pm 7e - 4$	$0.921 \pm 3e - 4$ $0.906 \pm 6e - 4$ $0.920 \pm 1e - 3$	

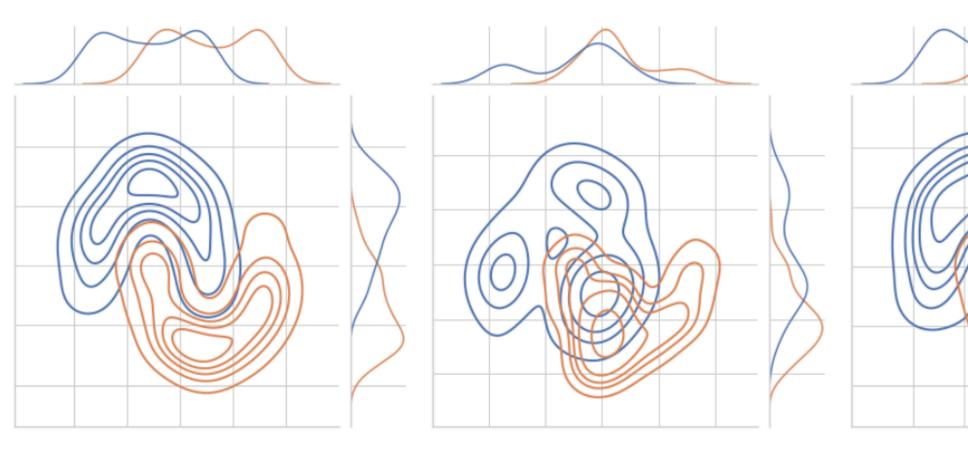
Augmentation

layer6

Results - Augmentation and Replacement

Original	SMOTE	CTGAN	TVAE	NF	RTVAE	TabDDPM	TabPFGen
$0.924{\pm}3e{-4}$	$0.926{\scriptstyle\pm3e-4}$	$0.912{\pm}2e{-4}$	$0.914{ \pm7e-4}$	$0.912{\pm}4e{-}4$	$0.917{\pm}3e{-}4$	$0.927{\pm}3e{-}4$	$0.934 \pm 3e - 4$
$0.906 {\pm} {}_{3e-4}$	$0.906 {\pm} 2e {-} 3$	$0.898 {\pm} 1e{-3}$	$0.904 {\pm} 1e{-3}$	$0.894 {\pm} {}_{3e-4}$	$0.907 {\pm} 2e {-} 3$	$0.911{\pm}7e{-4}$	$0.912 \pm 4e - 4$
$0.920 {\pm} 7e {-}4$	$0.914 {\pm} 3e {-} 3$	$0.904 {\pm} 3e{-3}$	$0.909 {\pm} 6e {-} 3$	$0.901 {\pm} 9e {-}4$	$0.906 {\pm} 8e {-} 3$	$0.885 {\pm} {}_{3e-4}$	$0.921 \pm 2e - 4$
$0.934{\pm}2e{-3}$	$0.927 {\pm} 1e{-3}$	$0.930 {\pm} 1e{-}3$	$0.931 {\pm} 1e {-} 3$	$0.928{\scriptstyle\pm3e-4}$	$0.932 {\pm} 1e{-3}$	$0.929{\pm}5e{-4}$	0.935±3e-4
N/A	$0.907{\pm}4e{-}4$	$0.842{\pm}8e{-4}$	$0.858{\scriptstyle\pm2e-3}$	$0.700{\pm}6e{-4}$	$0.795{\pm}9e{-4}$	$0.812 {\pm} 3e {-4}$	$0.927 \pm 3e - 4$
N/A							
N/A	$0.893 {\pm} 2e {-}3$	$0.843 {\pm} 6e{-4}$	$0.873 {\pm} 1e{-}3$	$0.722 {\pm} {}_{3e-3}$	$0.854{ \pm7e-4}$	$0.876 \pm 3e - 4$	$0.920 \pm 1e - 3$
N/A	$0.920{\pm}8e{-4}$	$0.888 {\pm} 4e{-4}$	$0.887 {\pm} {}_{3e-4}$	$0.705 {\pm} 2e {-} 3$	$0.862 {\pm} 1e {-} 3$	$0.894{\pm}7e{-}4$	$0.934 \pm 2e - 4$
(0.906±3e-4 0.920±7e-4 0.934±2e-3 N/A N/A N/A	$\begin{array}{cccccc} 0.906 \pm 3e - 4 & 0.906 \pm 2e - 3 \\ 0.920 \pm 7e - 4 & 0.914 \pm 3e - 3 \\ 0.934 \pm 2e - 3 & 0.927 \pm 1e - 3 \end{array}$ N/A $\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N/A $0.894 \pm 1e - 3$ $0.837 \pm 6e - 4$ $0.844 \pm 5e - 4$ $0.676 \pm 2e - 3$ $0.774 \pm 3e - 4$ $0.814 \pm 9e - 4$ N/A $0.893 \pm 2e - 3$ $0.843 \pm 6e - 4$ $0.873 \pm 1e - 3$ $0.722 \pm 3e - 3$ $0.854 \pm 7e - 4$ $0.876 \pm 3e - 4$

Replacement



Results - Class Balancing

Dataset	Original	Sampling	SMOTE	CTGAN	TVAE	NF	RTVAE	TabDDPM	TabPFGen
KC	0.823	0.875	0.872	0.859	0.848	0.862	0.866	0.805	0.877
PC	0.824	0.811	0.836	0.827	0.835	0.825	0.841	0.825	0.841
BL	0.731	0.757	0.756	0.743	0.714	0.755	0.706	0.774	0.767
CL	0.925	0.935	0.949	0.793	0.771	0.795	0.909	0.915	0.955
DI	0.837	0.832	0.832	0.831	0.813	0.832	0.837	0.843	0.844

Results - Qualitative

(a) Original

(b) CTGAN

(d) TabDDPM

(c) NF

(e) TabPFGen

Thank you!

and an a star star and a star and a star a star and a star and a star and a star a star a star and and a star a

layer 6

jeremy@layer6.ai