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A ADDITIONAL RELATED WORK

Fairness in Machine Learning. Much of the work in fairness in machine learning typically concerns
the implementation of a new fairness notion in a given learning setting; either an individual fairness
notion [Dwork et al. (2012); Joseph et al.|(2018), one based on equalizing a statistical rate across
protected subgroups |Hardt et al. (2016)); Pleiss et al.| (2017), or one based on an underlying causal
model Kusner et al.[(2017). With a given notion of fairness in hand, approaches to learning fair
classifiers can be typically classified as “in-processing", or trying to simultaneously learn a classifier
and satisfy a fairness constraint, “post-processing” which takes a learned classifier and post-processes
it to satisfy a fairness definition Hardt et al.|(2016)), or most closely related to the motivation behind
this paper, pre-processing the data to remove bias. Existing work on dataset bias serve as high level
motivation for our work.

Feature Importance Notions. The local explanation methods mentioned in Section [1.2]include
model-agnostic methods like LIME or SHAP Ribeiro et al.| (2016); Lundberg & Lee (2017), methods
like saliency maps |[Simonyan et al.|(2013); Sundararajan et al. (2017); Baehrens et al. (2010) that
require h to be differentiable in x, or model-specific methods that depend on the classifier. In addition
to these explanation methods, there are also global methods that attempt to explain the entire model
behavior and so can be run on the entire subgroup. Our LIN-F ID method as described in Appendix F|
is a global method that relies on training an inherently interpretable model (linear regression) on the
subgroup and inspecting its coefficients. Other inherently interpretable models that could be used
to define a notion of subgroup importance include decision trees |Quinlan| (1986) and generalized
additive models Liu et al.| (2022).

Fairness and Interpretability. Although no existing work examines the role of feature importance
notions in detecting disparities in rich subgroups, there is a small amount of existing work examining
explainability in the context of fairness. The recent |Grabowicz et al.| (2022) formalizes induced
discrimination as a function of the SHAP values assigned to sensitive features, and proposes a method
to learn classifiers where the protected attributes have low influence. Begley et al.| (2020) applies a
similar approach, attributing a models overall unfairness to its individual features using the Shapley
value, and proposing an intervention to improve fairness. Ingram et al.|(2022) examines machine
learning models to predict recidivism, and empirically shows tradeoffs between model accuracy,
fairness, and interpretability.

Additionally, [Lundberg (2020) decomposes feature attribution explanations and fairness metrics into
additive components and observes the relationship between the fairness metrics and input features.
Our work does not try to decompose fairness metrics into additive components and also focuses
on non-additive feature explanations. Furthermore, our consideration of rich subgroups is a novel
addition to the space.

B PROOF OF THEOREM 1]

We start by showing that for the unconstrained problem, computing the subgroup g; that maximizes
FID(f;,9,h) over G can be computed in two calls to CSCg when F' is separable.

Lemma 1. [f F' is separable and CSCg is a CSC oracle for G, then for any feature f;, g7 can be
computed with two oracle calls.

Proof. By definition g = argmax cgFID(j,g) = argmax cg|F(f;, X" h) — F(fj,9,h)] =

argmaxge{gtg,}FID(j, g), where g7 = argmax g F(fj,9,h), g~ = argmin g F(fj,9,h). By
the definition of separability, we can write

F(fjvg(Xn)ah): Z F, fJ?Xh Zg F/ fJ’Xﬂh)

Xeg(Xm™)
Then letting Ck = 0and ¢, = —F'(fj,Xk,h) for k = 1,...n, we see that g© =
CSC,((L,ct)), g7 = CSCy((c2, —ct)). This establishes the claim. O

Theorem E: Let I’ be a separable notion, fix a classifier h, subgroup class G, and oracle CSCg.
Then fixing a feature of interest f;, we will run AlgorithmEtwice; once with FID given by F', and

16



Under review as a conference paper at ICLR 2024

once with FID given by —F'. Let 155 be the distribution returned after ' = O( 4”523 : ) iterations by
Algorithm || that achieves the larger value of E[FID(j, g)]. Then:

FID(jag;)_E FID(j7g)] <v

142 3
B

ngg[

|DL(9)], [Pr(g)] <

Proof. We start by transforming our constrained optimization into optimizing a min — max objective.
The min player, referred to as the subgroup player will be solving a CSC problem over the class G
at each iteration, while the max player, called the dual player, will be adjusting the dual weights A
on the two constraints using the exponentiated gradient algorithm |[Kivinen & Warmuth (1997). By
Lemma 2[Freund & Schapire (1996), we know that if each player implements a no-regret strategy,
then the error of subgroup found after 7" rounds is sub-optimal by at most the average cumulative
regret of both players. The regret bound for the exponentiated gradient descent ensures this occurs in
poly(n) rounds.

As in [Kearns et al. (2018); [Agarwal et al.| (2018), we first relax Equation E to optimize over all
distributions over subgroups, and we enforce that our constraints hold in expectation over this
distribution. Our new optimization problem becomes:

. /
qué’liI(lg) ]Eg~pg [Z g(xz)F (fj?wlvh)]

1
st Egup, [®L(9)]

Egep, [Pu(g)]
We note that while |G| may be infinite, the number of distinct labelings of X by elements of G is

finite; we denote the number of these by |G(X)|. Then since Equation {|is a finite linear program in
|G(X)| variables, it satisfies strong duality, and we can write:

n

7

@)
<0
<0

(Pg: A") = argmin,, ¢ 5 (g)argmaxcyEgp, [L(g,\)] = argminpgEA(g)argmaxx\eAL(pg, A)

with  L(g,A) = Z g(@)F(fj,2,h) + AL®r + AvPy,  L(pg, A) = Egep, [L(g, V)]
zeX

As in Kearns et al.[(2018) A = {\ € R? | ||\||; < B} is chosen to make the domain compact, and
does not change the optimal parameters as long as B is sufficiently large, i.e. |A*||; < B. In practice,
this is a hyperparameter of Algorithm [I] similar to [Agarwal et al.|(2018); [Kearns et al.|(2018). Then
we follow the development in|/Agarwal et al.|(2018); Kearns et al. (2018) to show that we can compute
(p;, A*) efficiently by implementing no-regret strategies for the subgroup player (p,) and the dual
player (V).

Formally, since E,.,, [L(g, A)] is bi-linear in py, A, and A, A(G) are convex and compact, by Sion’s
minimax theorem [Kindler (2005)):

i L = in L = OPT
o2l REX E P ) =, W) PP ) =0 ®

Then by Theorem 4.5 in|Kearns et al. (2018), we know that if (pj, \*) is a v-approximate min-max
solution to Equation [5]in the sense that

if: * *) < . * > *

if:  L(py, A") ,pglAl(ng)L(p’/\ )+, L(pg, A) = max L(p", 1),

142 ©
B

then:  F(f;,pg,h) < OPT +2v, [®L(g)],|Pu(g)] <

So in order to compute an approximately optimal subgroup distribution p}, it suffices to compute
an approximate min-max solution of Equation[5. In order to do that we rely on the classic result of
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Freund & Schapire|(1996) that states that if the subgroup player best responds, and if the dual player
achieves low regret, then as the average regret converges to zero, so does the sub-optimality of the
average strategies found so far.

Lemma 2 (Freund & Schapire (1996)). Let p?, ... p%‘« be a sequence of distributions over A, played by
the dual player, and let g*, . . . g* be the subgroup players best responses against these distributions

respectively. Let A\p = T Zthl PPy = * ZtT:1 gi. Then if
T T
;E)\Npi‘ [L(ge, N)] — %R;[L(Qt» N)] < T,
Then (5\T, Pg) is a v-approximate minimax equilibrium of the game.

To establish Theorem [1| we need to show (i) that we can efficiently implement the subgroup players
best response using CSCg and (ii) we need to translate the regret bound for the dual players best
response into a statement about optimality, using Lemma @ Establishing (4) is immediate, since at
each round ¢, if Ay o = E 2 ALl Aeq = Ep» [Ar], then the best response problem is:

argmin,, ¢y Egp, [Z 9(@)F(fj 2, h) + Aeo®rL + A1 PU]
zeX

Which can further be simplified to:

argminge Y 9(@)(F(f,2,h) = AL+ Av) ™
reX

This can be computed with a single call of CSCg, as desired. To establish (ii), the no-regret algorithm
for the dual player’s distributions, we note that at each round the dual player is playing online linear
optimization over 2 dimensions. Algorithm [T/ implements the exponentiated gradient algorithm
Kivinen & Warmuth (1997), which has the following guarantee proven in Theorem 1 of |/ Agarwal et al.
(2018), which follows easily from the regret bound of exponentiated gradient Kivinen & Warmuth
(1997), and Lemma |2}

Lemma 3 (Agarwal et al. (2018)). Settingn = 5.7, Algorithmreturns pL that is a v-approximate
4n* B2
2

min-max point in at most O( ) iterations.

Combining this result with Equation [5|completes the proof.

C PROOF OF AVG-SEPFID PRIMITIVE

In Section 3} we presented our approach that optimizing for FID constrained across a range of
subgroup sizes will allow us to efficiently optimize for AVG-SEPFID. We provide a more complete
proof of that claim here:

Let ¢g* be the subgroup that maximizes AVG-SEPFID. Without loss of generality, ¢g* =
argmaxgegﬁ > g(x)F'(f;, X, h) (we drop the absolute value because we can also set F’' =

—F). Then it is necessarily true, that ¢g* also solves the constrained optimization problem
argmaxgeg% > g(x)F'(f;, X, h) such that |g| = |¢g*|, where we have dropped the normalizing

term ﬁ in the objective function, and so we are maximizing the constrained FID.

Now consider an interval I = [|g*| — «,|¢"| + a], and suppose we solve g =
argmax,cg+ > g(x)F'(f;, X, h) such that g € I. Then since g* € I, we know that
LS g F'(fj, X, h) < 23 g7 (x)F'(f;, X, h). This implies that:
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11
AVG-SEPFID(g}) > > g (@) F'(f5, X, 1)

~lgiln
= AVG-SEPFID(g") + (m — W)FID(Q )
I I
[0
= AVG-SEPFID(¢") - ———— - FID(g¢"
) T TP

Given the above derivation, as & — 0, we have AVG-SEPFID(gy) — AVG-SEPFID(g*).

Hence we can compute a subgroup g that approximately optimizes the AVG-SEPFID if we find
an appropriately small interval I aroudn |¢g*|. Since the discretization in SectionEcovers the unit
interval, we are guaranteed for sufficiently large n to find such an interval.

D CoST SENSITIVE CLASSIFIER, CSCg

Definition 4. (Cost Sensitive Classification) A Cost Sensitive Classification (CSC) problem for a
hypothesis class G is given by a set of n tuples {(X;, 0, ct)},, where ¢ and c} are the costs of
assigning labels 0 and 1 to X; respectively. A CSC oracle finds the classifier § € G that minimizes
the total cost across all points:

g = argminz (g(Xi)cZ1 +(1- g(Xi))C?) ®)

geg i

Algorithm 2 CSCg
Input: Dataset X C Rens x Rdsase costs (c?, c!) € R™

Let X, consist of the sensitive attributes x of each (z,2’) € X.

Train linear regressor 7 : R%sens — R on dataset (Xsens, cO) > learn to predict the cost 0
Train linear regressor r; : R%¢ns — R on dataset (Xsens, ¢') > learn to predict the cost ¢!
Define g((x,2")) := 1{(ro — r1)(x) > 0} > predict 0 if the estimated ¢p < ¢1

Return g

E NP-COMPLETENESS

We will show below that the fully general version of this problem (allowing any poly-time F') is NP
complete. First, we will define a decision variant of the problem:

Ox,Fha = wax ([F(fj,g,h) = F(f;, X, h)]) = A

9€G.f;

Note that a solution to the original problem trivially solves the decision variant. First, we will show
the decision variant is in NP, then we will show it is NP hard via reduction to the max-cut problem.

Lemma 4. The decision version of this problem is in NP.

Proof. Our witness will be the subset g and feature f; such that
(1F(f5,9.h) = F(f5, X, h)]) = A

Given these 2, evaluation of the absolute value is polytime given that F' is polytime, so the solution
can be verified in polytime. O

Lemma 5. The decision version of this problem is NP hard.
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Proof. We will define our variables to reduce our problem to maxcut(Q, k). Given a graph defined
with V, E as the vertex and edge sets of ) (with edges defined as pairs of vertices), we will define
our ', X, G, A, and h as follows:

X =V
h = constant classifier, maps every value to 1
G = P(V) ie. all possible subsets of vertices

F(fj,9,h) = |z € E:z[0] €g,z[1] € g
—i.e. F'(j, g, h) returns the number of
edges cut by a particular subset, ignoring
its first and third argument.
(this is trivially computable in polynomial

time by iterating over the set of edges).
A =k

Note that F'(f;, X, h) = 0 by definition, and that ' > 0. Therefore, |F'(f;,g,h) — F(f;, X, h)| =
F(f;,9,h), and we see that (|F'(f;,9,h) — F(f;,X,h)|) > A if and only if g is a subset on @
that cuts at least A = k edges. Therefore an algorithm solving the decision variant of the feature
importance problem also solves maxcut. O

F LINEAR FEATURE IMPORTANCE DISPARITY

The non-separable FID notion considered in this paper corresponds to training a model that is
inherently interpretable on only the data in the subgroup g, and comparing the influence of feature
7 to the influence when trained on the dataset as a whole. Since all of the points in the subgroup
can interact to produce the interpretable model, this notions typically are not separable. Below we
formalize this in the case of linear regression, which is the non-separable notion we investigate in the
experiments.

Definition 5. (Linear Feature Importance Disparity).  Given a subgroup g, let 0, =
infpera E(x,y)~r[9(X)(0'X — y)?], and O = infycga E(x )r[(0'X — y)?]. Then if ¢; is the
jt" basis vector in R?, we define the linear feature importance disparity (LIN-FID) by

LIN-FID(j,g) = |(6, - b) - ¢;]

LIN-FID(Jj,g) is defined as the difference between the coefficient for feature j when training the
model on the subgroup g, versus training the model on points from R. Expanding Definition [5]using
the standard weighted least squares estimator (WLS), the feature importance for a given feature f;
and subgroup g(X) is:

Fiin(j,9) = (Xg(X)XT)TH(XTg(X)Y)) - ¢, ©

Where ¢g(X) is a diagonal matrix of the output of the subgroup function. The coefficients of the linear
regression model on the dataset X can be computed using the results from ordinary least squares
(OLS): (XXT)"YXTY) -e;.

We compute argmax . ; LIN-FID = argmax ¢ | Fiin(j, X™) — Fiin(j, 9)| by finding the minimum
and maximum values of F};,(j, g) and choosing the one with the larger difference. For the experi-
ments in Section[d, we use logistic regression as the hypothesis class for g because it is non-linear
enough to capture complex relationships in the data, but maintains interpretability in the form of
its coefficients, and importantly because Equation [9 is then differentiable in the parameters 6 of
9(X)=0(X-0),0(x) = H% Since Equation |9 is differentiable in 6, we can use non-convex
optimizers like SGD or ADAM to maximize Equation[9|over 6.

While this is an appealing notion due to its simplicity, it is not relevant unless the matrix X g(X)X7T
is of full rank. We ensure this first by lower bounding the size of g via a size penalty term Ps;.. =
max(ar — |9(Xtrain)], 0) + max(|g(Xirain)| — av, 0), which allows us to provide « constraints
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in the same manner as in the separable approach. We also add a small I5 regularization term €l to
XTg(X)X. This forces the matrix to be invertible, avoiding issues with extremely small subgroups.
Incorporating these regularization terms, Equation [0] becomes:

Fiin(j,9) = As - (Xo(X - 0))XT +el) M (XTo(X - 01)Y) - €;) + Ac  Puize (10)

We note that LIN-FID is a similar notion to that of LIME Ribeiro et al. (2016), but LIME estimates
a local effect around each point which is then summed to get the effect in the subgroup, and so it is
separable. It is also the case that Fj;,, is non-convex as shown below:

Lemma 6. Fj;,, as defined in Equation[9)is non-convex.

Proof. We will prove this by contradiction. Assume Fj;,, is convex, which means the Hessian is
positive semi-definite everywhere. First we will fix (X g(X)X7))~! to be the identity matrix, which
we can do without loss of generality by scaling g by a constant. This scaling will not affect the
convexity of Fj;,.

Now, we have the simpler form of F};,, = (X7 g(X)Y) - e;. We then can compute the values of the
Hessian:

oF?
g = (XTg"(X)Y)-¢
Consider the case where X7 is a 2 x 2 matrix with rows 1,0 and 0, —1 and Y is a vector of ones.
If g weights the second column (i.e. feature) greater than the first, then the output Hessian will be
positive semi-definite. But if g weights the first column greater than the first, then it will be negative
semi-definite. Since the Hessian is not positive semi-definite everywhere, Fj;, must be non-convex
over the space of g. O

This means the stationary point we converge to via gradient descent may only be locally optimal. In
Section[d, we optimize Equation[I0/using the ADAM optimizer Kingma & Ba|(2015). Additional
details about implementation and parameter selection are in Appendix |G. Despite only locally optimal
guarantees, we were still able to find (feature, subgroup) pairs with high LIN-FID for all datasets.

G EXPERIMENTAL DETAILS

G.1 ALGORITHMIC DETAILS

Separable Case. In order to implement Algorithm |I over a range of [ar,ay] values, we need
to specify our dual norm B, learning rate 7, number of iterations used 7', rich subgroup class G,
and the associated oracle CSCg. We note that for each feature f;, Algorithm E is run twice; one
corresponding to maximizing FID(f;, g, k) and the other minimizing it. Note that in both cases
our problem is a minimization, but when maximizing we simply negate all of the point wise feature
importance values F'(f;,x;,h) = —F(f;,x;, h). In all experiments our subgroup class G consists
of linear threshold functions over the sensitive features: G = { € R%ens : §((x,2')) = 1{¢/x > 0}.
We implement CSCg as in |Agarwal et al. (2018); Kearns et al. (2018) via linear regression, see
Algorithm[2]in Appendix D. To ensure the dual player’s response is strong enough to enforce desired
size constraints, we empirically found that setting the hyperparameter B = 10% - 11(f;) worked well
on all datasets, where yi( f;) is the average absolute importance value for feature j over X. We set
the learning rate for exponentiated gradient descent to 7 = 10~°. Empirical testing showed that 1) - B
should be on the order of 4(f;) or smaller to ensure proper convergence. We found that setting the
error tolerance hyperparameter v = .05 - u(f;) - n - o, worked well in ensuring good results with
decent convergence time across all datasets and values of «. For all datasets and methods we ran
for at most 7' = 5000 iterations, which we observe empirically was large enough for FID values
to stabilize and for + Zthl lg¢| € [ar, ay], with the method typically converging in T = 3000
iterations or less. See Appendix [M]for a sample of convergence plots.

Non-Separable Case. For the non-separable approach, datasets were once again split into train and
test sets. For Student, it was split 50-50, while COMPAS, Bank, and Folktables were split 80-20
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train/test. The 50-50 split for Student was chosen so that a linear regression model would be properly
fit on a small g(X;es:). The parameter vector 6 for a logistic regression classifier was randomly
initialized with a PyTorch random seed of O for reproducability. We used an ADAM |Kingma & Ba
(2015) optimizer with a learning rate of .05 as our heuristic solver for the loss function.

To enforce subgroup size constraints, Az Ps;.. must be on a significantly larger order than \.Fy;,, (7, g).
Empirical testing found that values of A\, = 10° and \. = 10! returned appropriate subgroup sizes
and also ensured smooth convergence. The optimizer ran until it converged upon a minimized
linear regression coefficient, subject to the size constraints. Experimentally, this took at most 1000
iterations, see Appendix [N for a sample of convergence plots. After solving twice for the minimum
and maximum F;,, (7, g) values and our subgroup function g is chosen, we fit the linear regression on
both X and g(X¢est) to get the final FID.

G.2 FID NOTIONS

LIME: A random forest model h was trained on dataset X ™. Then each data point along with the
corresponding probability outputs from the classifier were input into the LIME Tabular Explainer
Python module. This returned the corresponding LIME explanation values.

SHAP: This was done with the same method as LIME, except using the SHAP Explainer Python
module.

Vanilla Gradient: Labeled as GRAD in charts, the vanilla gradient importance notion was computed
using the Gradient method from the OpenXAl library |Agarwal et al.|(2022b)). This notion only works
on differentiable classifiers so in this case, h is a logistic regression classifier. We found there was no
substantial difference between the choice of random forest or logistic regression for h when tested on
other importance notions (see Section[J). Due to constraints on computation time, this method was
only tested on the COMPAS dataset (using Two Year Recidivism as the target variable).

Linear Regression: For the linear regression notion, the subgroup g was chosen to be in the logistic
regression hypothesis class. For a given subgroup g(X), the weighted least squares (WLS) solution
is found whose linear coefficients 6, then define the feature importance value e; - 0.

For details on the consistency of these importance notions, see Appendix [O.

G.3 DATASETS

These four datasets were selected on the basis of three criterion: (i) they all use features which could
be considered sensitive to make predictions about individuals in a context where bias in a significant
concern (ii) they are heavily used datasets in research on interpretability and fairness, and as such
issues of bias in the datasets should be of importance to the community, and (iii) they trace out a
range of number of datapoints and number of features and sensitive features, which we summarise in
Table[d. For each dataset, we specified features that were "sensitive." That is, when searching for
subgroups with high FID, we only considered rich subgroups defined by features generally covered
by equal protection or privacy laws (e.g. race, gender, age, health data).

Student: This dataset aims to predict student performance in a Portugese grade school using
demographic and familial data. For the purposes of this experiment, the target variable was math
grades at the end of the academic year. Student was by far the smallest of the four datasets with
395 data points. The sensitive features in Student are gender, parental status, address
(urban or rural), daily alcohol consumption,weekly alcohol consumption,and
health. Age typically would be considered sensitive but since in the context of school, age is
primarily an indicator of class year, this was not included as a sensitive feature. The categorical
features address, Mother’s Job, Father’s Job, and Legal Guardian were one hot
encoded.

COMPAS: This dataset uses a pre-trial defendant’s personal background and past criminal record to
predict risk of committing new crimes. To improve generalizability, we removed any criminal charge
features that appeared fewer than 10 times. Binary counting features (e.g. 25-45 yrs oldor 5+
misdemeanors) were dropped in favor of using the continuous feature equivalents. Additionally,
the categorical variable Race was one-hot encoded. This brought the total number of features to 95.
The sensitive features in COMPAS are age, gender, and race (Caucasian, African-American,
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Asian, Hispanic, Native American, and Other). For COMPAS, we ran all methodologies twice, once
using the binary variable, Two Year Recidivism, as the target variable and once using the
continuous variable Decile Score. Two Year Recidivismis what the model is intended
to predict and is labeled as COMPAS R in the results. Meanwhile, Decile Score is what the
COMPAS system uses in practice to make recommendations to judges and is labeled as COMPAS D
in the results.

Bank: This dataset looks at whether a potential client signed up for a bank account after being
contacted by marketing personnel. The sensitive features in Bank are age and marital status
(married, single, or divorced). The age feature in Bank is a binary variable representing whether the
individual is above the age of 25.

Folktables: This dataset is derived from US Census Data. Folktables covers a variety of tasks,
but we used the ACSIncome task, which predicts whether an individual makes more than $50k per
year. The ACSIncome task is meant to mirror the popular Adult dataset, but with modifications to
address sampling issues. For this paper, we used data from the state of Michigan in 2018. To reduce
sparseness of the dataset, the Place of Birth feature was dropped and the Occupation
features were consolidated into categories of work as specified in the official Census dictionary
Bureau| (2020), (e.g. people who work for the US Army, Air Force, Navy, etc. were all consolidated
into Occupation=Military). The sensitive features in Folktables are age, sex, marital
status (married, widowed, divorced, separated, never married/under 15 yrs old), and race
(Caucasian, African-American, Asian, Native Hawaiian, Native American singular tribe, Native
American general, Other, and 2+ races).

Table 4: Summary of Datasets

Dataset Data Points  # of Features  # of Sensitive Features
Student 395 32 6
COMPAS 6172 95 8
Bank 30488 57 4
Folktables Income 50008 52 16
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H MORE DISCUSSION OF HIGH FID SUBGROUPS

Absences Subgroup's Top 4 Coefficients Arrested, No Charges Subgroup's Top 5 Coefficients
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Figure 5: Exploration of key subgroup/feature pairs found for each dataset. The first graph shows the
change in feature importance from whole dataset to subgroup. The second graph shows the main
coefficients that define the subgroup.

In Figure [5| we highlight selections of an interesting (feature, subgroup, method) pair for each
dataset. Figure[5a]shows that on the Student dataset the feature absences which is of near zero
importance on the dataset as a whole, is very negatively correlated with student performance on a
subgroup whose top 2 features indicate whether a student’s parents are together, and if they live
in an rural neighborhood. Figure [5b shows that on the COMPAS dataset with method GRAD,
the feature arrested-but-with-no—charges is typically highly important when predicting
two-year-recidivism. However, it carries significantly less importance on a subgroup that is
largely defined as Native American males. When predicting the decile risk score on COMPAS, LIME
indicates that age is not important on the dataset as a whole; however, for non-Native American,
female minorities, older age can be used to explain a lower Decile Score. On the Bank dataset
using LIN-FID, we see that a linear regression trained on points from a subgroup defined by older,
single individuals, puts more importance on job=housemaid when predicting likelihood in signing
up for an account. Finally on Folktables, we see that LIN-F ID assigns much lower weight to the
job=military feature among a subgroup that is mainly white and divorced people than in the
overall dataset when predicting income. These interesting examples, in conjunction with the results
reported in Table[T] highlight the usefulness of our method in finding subgroups where a concerned
analyst/domain expert could dig deeper to determine how biases might be manifesting themselves in
the data and if/how to correct for them.

I COMPARISON OF FID VALUES ON RICH VS. MARGINAL SUBGROUPS

To better justify the use of rich subgroups, we performed the same analysis but only searching over
the marginal subgroup space. For each dataset and importance notion pair, we established the finite
list of marginal subgroups defined by a single sensitive characteristic and computed the feature
importance values on each of these subgroups. In Figure[6] we compare the maximal AVG-SEPFID
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rich subgroups shown in Figure 2 to the maximal AVG-SEPF ID marginal subgroup for the same
feature. In about half of the cases, the AVG-SEPFID of the marginal subgroup was similar to
the rich subgroup. In the other cases, expanding our subgroup classes to include rich subgroups
defined by linear functions of the sensitive attributes enabled us to find a subgroup that had a higher
AVG-SEPFID. For example, in Figure[6b] we can see that on the COMPAS R dataset using GRAD
as the importance notion, Arrested, No Charges had a rich subgroup with AVG-SEPFID
that was 4 times less than on the full dataset. However, we were unable to find any subgroup in the
marginal space where the importance of the feature was nearly as different. In some cases in Figure
[6, the marginal subgroup performs slightly better than the rich subgroup. This happens when using
rich subgroups does not offer any substantial advantage over marginal subgroups, and the empirical
error tolerance in Algorithm[I]stopped the convergence early.
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Figure 6: Comparison of the maximal FID rich subgroups from Figure E to the maximal FID
marginal subgroup on the same feature. This is displayed as |logio(R)| where R is the ratio of
average importance per data point for separable notions and the ratio of coefficients for the linear
coefficient notion. The feature associated with the subgroups is written above each bar.

J STATISTICAL VALIDITY OF RESULTS: GENERALIZATION OF FID AND |g|

When confirming the validity of our findings, there are two potential concerns: (1) Are the subgroup
sizes found in-sample approximately the same on the test set and (2) do the FID’s found on the
training set generalize out of sample? Taken together, (1) and (2) are sufficient to guarantee our
maximal AVG-SEPFID values generalize out of sample.

In Figure |z, we can see that when we take the maximal subgroup found for each feature f;, g7,
and compute it’s size [g;| on the test set, for both the separable and non-separable methods it
almost always fell within the specified [a,, ay] range; the average difference in |g} (X¢rqin)| and
|97 (Xtest)| was less than .005 on all notions of feature importance and all datasets except for Student,
which was closer to .025 due to its smaller size. A few rare subgroups were significantly outside the
desired « range, which was typically due to the degenerate case of the feature importance values all
being 0 for the feature in question. Additional plots for all (dataset, notion) pairs are in Appendix [L.

In Figure [8, we compare AVG-SEPFID(f;, 95, Xirain) tO AVG*SEPFID(fj,g;-‘, Xtest), Or
LIN-FID in the case of the linear regression notion, to see how FID generalizes. The separa-
ble notions all generalized very well, producing very similar AVG-SEPF ID values for in and out
of sample tests. The non-separable method still generalized, although not nearly as robustly, with
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Figure 7: Generalizability of |g| on the Folktables dataset. (a) Size outputs from Algorithmlifor
all features and separable notions and (b) from optimizing Equation [I0]for LIN-FID show that our
size constraints hold in-sample. (c) Plots the corresponding values of | g; (Xtrain)| vs | g5 (Xtest)| for
separable notions and (d) for LIN-FID, showing that the subgroup size generalizes out of sample.
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Figure 8: Out of sample generalization of the methods. Each dot represents a feature, plotting FID on
Xiest vs on Xypqin. All are computed on the Folktables dataset except (c) is computed on COMPAS
R. The diagonal line represents perfect generalization and the Pearson correlation coefficient is
displayed in figure. The non-separable approach suffers from the instability of the WLS method.

outlier values occurring. This was due to ill-conditioned design matrices for small subgroups leading
to instability in fitting the least squares estimator. In Appendix [O, we investigate the robustness of
the feature importance notions, evaluated on the entire dataset. We find that the coefficients of linear
regression are not as stable, indicating the lack of generalization in Figure 8 could be due to the
feature importance notion itself lacking robustness, rather than an over-fit selection of g;.

K CHOICE OF HYPOTHESIS CLASS

One ablation study we explored was the choice of classification model h. While the main experiments
used a random forest model, we also explored using a logistic regression model. The logistic
regression model was implemented with the default sklearn hyperparameters. We found that the
results are roughly consistent with each other no matter the choice of . In Table[5|and Table[6} we see
that the features with the highest AVG-SEPF ID, their subgroup sizes, and the AVG-SEPF ID values
are consistent between the choice of hypothesis class. We then looked further into the features that
were used to define these subgroups. In Figure[9] we see that the subgroups with high AVG-SEPFID
for the feature Age were both defined by young, non-Asians.

Similarly consistent results were found across all feature importance notions and datasets. As a result,
all of the results presented in the main section of the paper used random forest as the hypothesis class.

L  SUBGROUP SIZES OUTCOMES

In Figure @ we chart the subgroup sizes, |g(Xtest)|, outputted by the algorithms across all dataset
and importance notion combinations. As a whole, the final subgroup sizes were generally within the
specified a range. Occasionally, there were subgroups which were significantly outside the expected
range. Usually this was due to most of the importance values, F'(f;, X, k), being zero for a given
feature.
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h = Random Forest

h = Logistic Regression

\ Feature Size  AVG-SEPFID | Feature Size  AVG-SEPFID |
Age 05—-.1 144 Age 05—-.1 21
Priors Count .01—.05 .089 Priors count .01—.05 .092
Juv Other Count .01 —.05 .055 Juv Other Count .01 —.05 .055
Other Features - < .025 Other Features - < .025

Table 5: Comparing results between using random forest and logistic regression as the hypothesis
class for classifier h using LIME as the importance notion on the COMPAS R dataset. Here we
display the features with the highest AVG-SEPF ID, the subgroup size |g|, and the AVG-SEPFID.
We can see that the choice of hypothesis class h does not substantially affect the output. We used
random forest for all of our main experiments.

h = Random Forest h = Logistic Regression

\ Feature Size  AVG-SEPFID | Feature Size  AVG-SEPFID |
Age .01—.05 4 Age .01—.05 21
Priors Count .01—.05 11 Priors count .01—.05 .14
Other Features - < .05 Other Features - < .05

Table 6: Same as Tableexcept using SHAP as the importance notion. With SHAP, there were fewer
features with significant AVG-SEPF ID before dropping off but in both cases, the choice of & did not
significantly affect the outcome.
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(a) h = Random Forest, f;~ = Age (b) h = Logistic Regression, fj+ = Age
Figure 9: Comparing the choice of hypothesis class of h. Here we show the defining coefficients for
the highest AVG-SEPF ID subgroup found on the COMPAS R dataset using LIME as the feature
importance notion. For the feature Age, we find that young and non-Asian were the two most defining
coefficients for g* no matter which choice of h.
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In Figurewe compare | g5 (Xtrain)| and | g; (Xtest)|, outputted by the algorithms across all dataset
and importance notion combinations. As we can see, the subgroup sizes were very consistent between
the train and test set meaning |g| generalized very well. The average difference was only somewhat
large on the Student dataset, due to the fact that it is a smaller dataset.
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Figure 10: Final subgroup sizes of g(X;.s;) compared with « range. These almost always fall within
the correct size range. Student has the largest errors, mostly due to the fact that the dataset itself is
small.
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Figure 11: Comparing | g;(Xtmm)| and | g5 (Xtest)|. We can see that the size of the subgroup was
consistent between the train and test set.

M  ALGORITHM [1]OPTIMIZATION CONVERGENCE

Here are additional graphs showing examples of the convergence of Algorithm|[I] Data was tracked
every 10 iterations, recording the Lagrangian values (to compute the error v; = max(|L(p§, p5) —
L|,|L— L(pt,p%)|)). the subgroup size, and AVG-SEPFID value, graphed respectively in Eigure
We can see AVG-SEPFID value moving upward, except when the subgroup size is outside the «
range, and the Lagrangian error converging upon the set error bound v before terminating.

While Theorem [I] states that convergence time may grow quadratically, in practice we found that
computation time was not a significant concern. The time for convergence varied slightly based on
dataset but for the most part, convergence for a given feature was achieved in a handful of iterations
that took a few seconds to compute. Features which took several thousand iterations could take

around 30 minutes to compute on larger datasets.
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Figure 12: Plots detailing the convergence of Algorithm The top plot shows the error convergence,
i.e. the max difference in Lagrangian values between our solution and the min/max-players’ solution.
The other two plots display the subgroup size and AVG-SEPF ID of the solution. Convergence almost
always happened in fewer than 5000 iterations, allaying concerns about theoretical run time.
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N NON-SEPARABLE OPTIMIZATION CONVERGENCE

Here are additional graphs showing the convergence in the non-separable approach. Using the loss
function that rewards minimizing the linear regression coefficient (or maximizing it) and having a
size within the alpha constraints, we typically reach convergence after a few hundred iterations. In
Figure[I3] we can see in the respective upper graphs that the subgroup size converges to the specified
« range and stays there. Meanwhile, in the lower graph, we see the LIN-FID attempt to maximize
but oscillates as the appropriate size is found.

Convergence using this method was almost always achieved in under 1000 iterations. Running this
for all features took around 2 hours to compute on the largest datasets. The optimization was run
using GPU computing on NVIDIA Tesla V100s.
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Figure 13: Plots of subgroup size and linear regression coefficient of g over the training iterations of
the Adam optimizer. For each dataset, the feature with the highest LIN-FID was displayed.
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O IMPORTANCE NOTION CONSISTENCY

To see how consistent importance notion methods were, we plotted the values of F'(f;, Xiest, h)
against F'(fj, X¢rain, ) with each point representing a feature f; of the COMPAS dataset. The closer
these points track the diagonal line, the more consistent a method is in providing the importance values.
As we can see in Figure [I4, LIME and GRAD are extremely consistent. Linear regression is less
consistent, due to instability in fitting the least squares estimator on ill-conditioned design matrices.
SHAP is also inconsistent in its feature importance attribution, however the AVG-SEPFID still
generalized well as seen in Figure[8] This could mean that while SHAP is inconsistent from dataset to
dataset, it is consistent relative to itself. i.e. if F'(j, Xtrain) > F(J, Xtest) then F(j, ¢(Xirain)) >
F(f, Xtest) meaning the AVG—-SEPFID value would remain the same.

These inconsistencies seem to be inherent in some of these explainability methods as noted in other
research [Krishna et al.|(2022); |Dai et al.|(2022); |Agarwal et al.|(2022a); |Alvarez-Melis & Jaakkola
(2018); Bansal et al. (2020). Exploring these generalization properties would be an exciting future
direction for this work.
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Figure 14: Consistencies of importance notions. Each point represents a feature, the x-value
is F(j, Xtest), and y-value is F(j, X¢rqin). The closer the points are to the diagonal, the more
consistent the notion is.
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